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Abstract—This paper sets forth a novel intelligent residential
air-conditioning (A/C) system controller that has smart grid
functionality. The qualifier “intelligent" means the A/C system
has advanced computational capabilities and uses an array of
environmental and occupancy parameters in order to provide
optimal intertemporal comfort/cost trade-offs for the resident,
conditional on anticipated retail energy prices. The term “smart-
grid functionality" means that retail energy prices can depend on
wholesale energy prices. Simulation studies are used to demon-
strate the capabilities of the proposed A/C system controller.
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NOMENCLATURE

BRo Nominal BTU rating (BTU/h) of the A/C system

(at 35◦ C).

COPo Nominal cooling coefficient-of-performance

(unit-free) for the A/C system at 35◦ C).

Ca Heat capacity (BTU/°F) of the internal air mass.

Cm Heat capacity (BTU/°F) of the internal solid

mass.

Cn A/C electricity cost ($) during period n.

E(·) Expected value calculated using f(ν), the prob-

ability density function (pdf) for ν.

en Electric energy consumption (kWh) of the A/C

system during period n.

En(·) Expected value calculated using the marginal pdf

for νn.

F Pro-rated fixed cost ($) that the load-serving

entity (LSE) charges R for A/C energy usage

during each period n.

f(ν) Pdf for ν = [ν1, . . . ,νN ].
Gmax Maximum possible comfort level (Utils) achiev-

able by house resident R during each period n
from the thermal condition of his house.

Gn Comfort (Utils) attained by R during period n
from the thermal condition of his house.

This material is based upon work supported in part by the Electric Power
Research Center of Iowa State University, the National Science Foundation
under Grant No. 0835989, and the Pacific Northwest National Laboratory.

A. G. Thomas, P. Jahangiri, C. Cai and D. C. Aliprantis are with the
Department of Electrical and Computer Engineering, Iowa State University,
Ames, IA 50011 USA (e-mail: {agthomas, pedramj, ccai, dali}@iastate.edu).

D. Wu is with the Pacific Northwest National Laboratory, Richland, WA
99352 USA (e-mail: Di.Wu@pnnl.gov).

H. Zhao is with the ISO-New England, Holyoke, MA 01040 USA (e-mail:
hzhao@iso-ne.com)

L. Tesfatsion is with the Department of Economics, Iowa State University,
Ames, IA 50011 USA (e-mail: tesfatsi@iastate.edu).

h1, h2 Parameters appearing in R’s comfort function

that weigh R’s thermal discomfort for the current

and subsequent period, respectively.

I R’s targeted income expenditure level ($).

K Conversion factor (3412.1 BTU ≈ 1 kWh).

k1n, k2n Lower and upper temperature bounds for R’s

comfort function in period n.

mi Fraction of heat flow rate (unit-free) from inter-

nal heat flux to the internal solid mass.

ml Fraction of cooling load (unit-free) that indicates

the latent cooling load inside the house, i.e., the

unwanted moisture that needs to be removed.

ms Fraction of heat flow rate (unit-free) from solar

radiation to the internal solid mass.

N Number of successive time periods n comprising

R’s planning horizon, where period n is defined

as the time interval [(n− 1)∆t, n∆t), for some

fixed time step ∆t.
Na, Nm Number of grid points corresponding to T a

n , Tm
n ,

respectively.

NBn Net benefit (Utils) attained by R in period n
(discounted to period 1).

p Vector of retail A/C energy prices for periods 1

through N , p = [p1, p2, . . . , pN ].
pn Retail price ($/kWh) that the load-serving entity

(LSE) charges R for A/C energy usage during

period n.

py Vector of m consumption good prices, py =
[py1 , p

y
2 , . . . , p

y
m].

pyj Retail price paid by R per unit of good j.

Q̇n Heat flow rate (BTU/h) from A/C system to

inside air mass during period n.

Q̇a
n Heat flow rate (BTU/h) from Q̇s

n and Q̇i
n to

inside air mass during period n.

Q̇i
n Heat flow rate (BTU/h) from internal appliances

and occupants during period n.

Q̇m
n Heat flow rate (BTU/h) from Q̇s

n and Q̇i
n to

inside solid mass during period n.

Q̇s
n Heat flow rate (BTU/h) from solar radiation

during period n.

R The resident of the house.

rn Retail price-to-go sequence starting in period n,

rn = [pn, pn+1, . . . , pN ].
TNB Total net benefit (Utils) attained by R over the

planning horizon (discounted to period 1).
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T a
n Internal air temperature (°F) at the beginning of

period n.

T b R’s bliss temperature, i.e., the inside air tem-

perature (°F) at which R achieves his maximum

comfort level.

Tm
n Internal mass temperature (°F) at the beginning

of period n (i.e., the equivalent temperature of

the lumped solid mass).

T o
n Outside air temperature during period n (°F).

Ua Thermal conductance (BTU/h/°F) between inter-

nal and external air mass defining the thermal

envelope of the house.

Um Thermal conductance (BTU/h/°F) between the

internal air mass and the solid mass.

u Sequence of A/C status conditions, u =
[u1, . . . , uN ].

un A/C system status (e.g., off or on) in period n.

wn Vector of forcing terms in period n.

x Sequence of state vectors, x = [x1, . . . ,xN ].
xn State vector describing the condition of the

house at the beginning of period n.

y Vector of consumption goods purchased by R
during periods 1, . . . , N in addition to A/C en-

ergy purchases, y = [y1, . . . , ym]T .

Z(y) Benefit obtained by R from consumption of y.

α Parameter (Utils/$) appearing in R’s net benefit

function that measures the benefit to R of a

dollar of income.

βn Discount factor for R’s net benefit in period n.

γ Parameter appearing in R’s comfort function that

influences the shape of this function around a

bliss temperature range.

ν Sequence of stochastic environmental condi-

tions, ν = [ν1, . . . ,νN ].
νn Vector of stochastic (external and internal) envi-

ronmental conditions during period n.

ρon Outside relative humidity during period n.

I. INTRODUCTION

T
HIS STUDY considers the design of a residential air-

conditioning (A/C) system capable of responding intel-

ligently to price signals in order to achieve optimal inter-

temporal comfort/cost trade-offs for a house resident. A key

motivation for this study is a 2010 report by the United

States Federal Energy Regulatory Commission (FERC) on

demand response and advanced metering technology. This

report concludes:

“The investments in devices, controls and software

to implement demand response remain one of the

greatest barriers to increased penetration." [1, p. 56]

In line with this conclusion, the current paper carefully

considers the complex interplay between the comfort/cost

preferences of a house resident and the structural conditions

constraining his A/C choices arising both from the physics of

energy flows and the engineering limitations of A/C system

implementations.
Previous research on comfort and energy management is-

sues has largely focused on large building environments with

many occupants [2]–[5]. As detailed in the 2009 survey by

Dounis and Caraiscos [6], these studies consider not only heat-

ing and cooling systems but also other building design features

such as window placements, window shading, mechanical

ventilation systems, and lighting systems. Occupant comfort

in these studies is typically a complex multi-faceted concept

encompassing thermal comfort, visual comfort, and indoor

air quality, in keeping with ASHRAE standards [7]. Various

control methods are explored in these studies, including fuzzy

controllers [8], fuzzy adaptive controllers [4], [9], and neural

network controllers [10].

Nevertheless, in recent years the increasing interest in ad-

vanced metering infrastructure for households has encouraged

researchers to focus more carefully on the energy usage

choices of residential homeowners [11]. For example, Rogers

et al. [12] study an interesting residential demand model,

although without consideration of price signals. Guttromson et

al. [13] and Chassin et al. [14] focus on the modeling of price-

responsive residential demands constrained by internal and

external state conditions. The latter studies are anchored by

an Olympic Penninsula pilot project [15]. However, residential

energy demands in these studies are modeled by means of

pre-specified behavioral rules rather than as the solutions to

residential optimization problems. More recent research has

set forth formulations of the residential A/C control problem

as an optimization problem. In this work the objective is to

minimize some combination of thermal discomfort and energy

usage under varying electricity prices [16]–[20].

The current paper extends this prior work in three important

directions. First, the A/C control strategy is formulated as

a stochastic dynamic program in a manner that permits the

controller to respond to both energy prices and randomly

varying environmental conditions. We demonstrate that the

underlying optimization problem can be solved in a reasonable

amount of time using conventional computational resources

by adopting a certainty equivalence approach, using weather

forecast information that is nowadays readily available over

the Internet. Moreover, this is done in a way that is minimally

disruptive to the A/C system hardware, which is important

for retrofitting existing residential A/C systems. Second, the

thermal dynamics for the house and the A/C system are

represented by means of physics-based models that are suit-

ably realistic for residential A/C system control purposes

(whereas previous work adopted simpler models to describe

the plant dynamics). Third, the objective function expressing

comfort/cost trade-offs for the household resident is rigorously

motivated in terms of basic economic principles.

Section II sets out the stochastic optimal control problem

in general terms: a residential A/C system determines energy

usages over an N -period planning horizon to achieve optimal

intertemporal comfort/cost trade-offs for the house resident,

conditional on anticipated energy prices and on dynamically

changing internal and external conditions. In this general

formulation it is assumed that reliable state equations are

available for determining the change in the thermal state of

the resident’s house from one period to the next as a function

of the resident’s A/C energy usage level and environmental

parameters. It is also assumed that the resident’s comfort level
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is determined in each period by the indoor thermal state of his

house at the beginning and end of the period.

Sections III and IV then address what might be done in the

more practically relevant case in which the state equations for

the resident’s house must be approximated and the resident’s

achievable comfort levels are constrained by the mechanical

requirements of the resident’s A/C system. Illustrative findings

from computer simulations demonstrating the capabilities of

the resulting A/C system controller are reported in Section V.

Concluding remarks are given in Section VI. Appendix A

provides technical details regarding the use of a Luenberger

observer to construct an estimate for mass temperature, and

Appendix B provides additional motivation for the modeling

of the resident’s comfort/cost trade-offs.

II. GENERAL STOCHASTIC OPTIMAL CONTROL PROBLEM

FOR A RESIDENTIAL A/C SYSTEM

A. Problem Formulation

For computational tractability, the planning horizon of the

house resident is discretized into time periods n = 1, . . . , N ,

and the continuous thermal dynamics of the house are cor-

respondingly discretized into the discrete-time motion of a

state vector xn. However, the dimension and content of the

state vectors xn are not restricted. Consequently, the state

equation formulation in this section is generic and can be used

to implement a wide variety of thermal models.1

The state xn+1 is assumed to be determined as a function Sn

(time-varying for generality) of the previous state xn, the A/C

status un, and a vector νn of environmental parameters, as

xn+1 = Sn(xn, un,νn) , n = 1, . . . , N , (1)

where the initial state at the beginning of period 1 is exoge-

nously given as

x1 = x1 . (2)

The A/C status un in (1) is assumed to be restricted to a

domain U . For example, U = {−1, 0} could represent a

bang-bang control domain corresponding to cooling and off,

whereas U = [−1, 0] could represent a continuous control

domain ranging from full cooling (−1) to off (0). Also,

suppose the A/C heat flow rate Q̇n is determined as a function

Q̇n = Q̇(un,νn) . (3)

Finally, assume the electric energy usage en of the A/C system

can be expressed as a function

en = e(Q̇n,νn) ≡ ẽ(un,νn) . (4)

To model price-responsive demand for electricity, it is

assumed that resident R has a retail contract with a load-

serving entity (LSE) under which he pays a price pn ($/kWh)

for his A/C energy usage en (kWh) plus a pro-rated fixed

charge F ($) to cover costs such as equipment purchases and

1In Section III, below, this generic formulation is concretely illustrated
for a thermal model with two-dimensional state vectors xn, where the two
state components are internal air temperature Ta

n
and internal solid mass

temperature Tm

n
.

connection fees.2 The total cost charged by the LSE to R
during period n thus takes the form

Cn = C(pn, en) = pnen + F . (5)

The sequence p = [p1, p2, . . . , pN ] of retail A/C energy

prices is assumed to be communicated by the LSE to R prior

to the start of period 1. Although R has access to this price

data, he does not need to act on a continual basis. Rather, it is

the intelligent A/C controller that assumes this responsibility.

Note that the time step of the A/C system model does not have

to be the same as the time step of operations for the wholesale

electric power market. For example, day-ahead market LMPs

are determined on an hourly basis in the United States whereas

an A/C system will typically run at a faster time rate. If hourly

day-ahead market LMPs were to be charged to R as retail

energy prices, the vector p would consist of 24 equal-length

sub-vectors of constant-valued prices.

As in [12], the comfort level (Utils) attained by R in

period n from the thermal condition of his house is measured

as a time-varying function of the state vectors at the beginning

and end of period n:

Gn = G(xn,xn+1, n) . (6)

As is standard in (power) economics, the comfort assess-

ment (6) is assumed to be determined independently of any

cost considerations.

From the viewpoint of period 1, the net benefit NBn attained

by R in period n is given by R’s attained comfort level minus

his energy purchase costs, weighted by a discount factor βn,

as follows:

NBn = βn[G(xn,xn+1, n)− αC(pn, ẽ(un,νn))] . (7)

The key parameter α (Utils/$) appearing in (7) measures the

benefit (utility) to R of an additional dollar of income. It

permits costs measured in dollars to be expressed in benefit

units (Utils), so that comfort/cost trade-offs can be calculated.

The precise sense in which α quantifies the trade-off be-

tween comfort satisfaction and energy cost for R is explained

in some detail in Appendix B of our paper. Specifically,

it is shown in Appendix B that α can be derived as the

shadow price for R’s budget constraint in a more fully

articulated constrained benefit maximization problem: namely,

the maximization of R’s benefit from consumption of multiple

goods/services (including thermal comfort) subject to a budget

constraint. Thus, α measures R’s “marginal benefit of income”

at the optimization point, i.e., the drop in the maximized value

of R’s benefit that would result if R had one less dollar of

income to spend (e.g., due to a higher energy price). For

2In the general problem formulation presented in this section, the manner
in which the LSE sets the A/C energy usage prices pn is not restricted; hence,
in particular, these prices do not need to bear any particular relationship to
the prices paid by the LSE for its wholesale energy purchases. In reality, of
course, an LSE that contracts with retail consumers having intelligent A/C
system controllers as modeled in the current study will have to set its A/C
energy usage prices in line with the prices it pays for energy at wholesale in
order to remain profitable. For example, as illustrated below in Section V, pn
could be set equal to the day-ahead locational marginal price (LMP) paid by
the LSE at wholesale plus a “mark-up" to cover additional types of operational
costs.
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simplicity, this section treats a reduced form of this more

comprehensive benefit maximization problem in which R is in

effect solving a first-order necessary condition for this more

comprehensive problem, taking α as given.3

The total net benefit attained by R over the planning

horizon from period 1 to period N , conditional on a given

state sequence x, A/C status sequence u, environmental-

term sequence ν, and price sequence p is calculated as the

discounted sum of period-by-period net benefits:

TNB(x,u,ν,p) = ΣN
n=1NBn . (8)

Let the expected value of (8), conditional on (1) through (7),

be denoted by

E[TNB(x,u,ν,p)] =

∫

V

TNB(x,u,ν,p)f(ν)dν (9)

where V denotes the domain of possible environmental vec-

tors ν that could be realized during the planning horizon

{1, . . . , N}, and f(ν) denotes the joint probability density

function (PDF) for ν.

Putting this all together, the stochastic optimal control

problem to be solved at the beginning of period 1 for determi-

nation of optimal A/C status choices u∗

n ∈ U during periods

n = 1, . . . , N can be expressed as follows:

maxE[TNB(x,u,ν,p)] (10)

with respect to u = [u1, u2, . . . , uN ]T subject to (1) and (2).

B. Closed-Loop Dynamic Programming Solution

Stochastic dynamic programming can be used to solve the

control problem (10) in closed-loop form. That is, (10) can

be solved in sequential form with the optimal A/C status

value u∗

n(xn; rn) in each period n expressed as a function of

the current state xn, conditional on the price-to-go sequence

rn = [pn, pn+1, . . . , pN ]T consisting of the given retail energy

prices from period n through the final planning period N .

For any n satisfying 1 ≤ n ≤ N , let Valn(xn; rn) denote

the maximum expected total net benefits attainable by R
starting from any feasible state xn, conditional on rn. That is,

let Valn(xn; rn) denote R’s price-conditioned period-n value

function.4

From the developments in Section II-A, we can define

ValN (xN ; rN ) =

max
uN

EN [NBN (xN , SN (xN , uN ,νN ), pN , ẽ(uN ,νN))]

(11)

where rN ≡ pN denotes the retail energy price for period N ,

and the expectation is taken with respect to the randomly

varying environmental conditions νN for period N , condi-

tional on xN and exogenously given factors (such as rN ).

Note that the solution to (11) has the closed-loop form u∗

N =

3As a practical matter, a household resident could experiment with different
α values to find a value for this trade-off parameter that approximately reflects
his true marginal benefit of income.

4The exogenously given price-to-go sequences rn are explicitly included
as conditioning factors in the optimal control and value functions in order to
emphasize the price-responsive nature of the A/C system controller.

uN(xN ; rN ). It then follows, by definition, that resident R’s

value functions satisfy the following recursive relationship:5

For n = 1, . . . , N − 1:

Valn(xn; rn) =

max
un

En[NBn(xn, Sn(xn, un,νn), pn, ẽ(un,νn))

+ Valn+1(Sn(xn, un,νn); rn+1)] . (12)

where rn ≡ [pn, rn+1].

Consequently, in principle, resident R at the beginning of

period 1 can derive a closed-loop solution to his stochastic

optimal control problem (10) as follows. He should first use

(11) and (12) to derive his value functions Valn(xn; rn),
starting at period n = N and working backward to period

n = 1. As a by-product of these calculations, for each period

n ≥ 1 the resident will obtain the optimal A/C status choice

u∗

n(xn; rn) as a function of xn, conditional on rn.

From the vantage point of the initial period, R does not yet

know what state vectors xn will be realized in subsequent peri-

ods due to the inherent uncertainty in the system. Nevertheless,

he will know xn at the beginning of each period n prior to his

actual choice of an A/C status un. The closed-loop solutions

u∗

n(xn; rn) are thus complete contingency plans determining

what A/C status choice should be optimally implemented at

each future time, conditional on the state and price conditions

at that time. Clearly, however, the state domain would have to

be appropriately discretized to obtain a practically computable

closed-loop solution. An example of such a discretization is

provided in Section IV.

III. PHYSICS-BASED MODELING OF THE A/C SYSTEM

The A/C is a conventional residential system, such as the

ones that may be typically found in United States middle-class

residences. These are conventional systems, with an electri-

cally powered central unit or a window/wall unit that cycles

on and off to maintain the air temperature around a thermostat

set point. This section provides explicit forms for the abstractly

represented thermal state equation (1) and energy equation (4),

as foundations for the proposed intelligent A/C system con-

troller. The complexity of these forms arises because they are

physically based. An important point here, however, is that

house residents employing the proposed controller do not need

to be exposed to this complexity; an interface can separate a

resident from the internal workings of the controller. As will

be clarified more carefully in Section IV below, all that a

resident needs to be exposed to via this interface are “knobs"

permitting him to adjust to his satisfaction the settings for

his thermal comfort function parameters and his comfort/cost

trade-off parameter α.

The thermal dynamics for a house are represented by means

of an Equivalent Thermal Parameter (ETP) model [21], [22].

The ETP model supposes that the state of a house at time t
consists of the inside air and mass temperatures, T a and Tm,

whose dynamics are defined by a system of two first-order

5Equation (12) is a special case of Bellman’s Principle of Optimality.
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linear differential equations:

dT a

dt
=

1

Ca

[

(T o − T a)Ua + (Tm − T a)Um + Q̇+ Q̇a
]

(13)

dTm

dt
=

1

Cm

[

(T a − Tm)Um + Q̇m
]

. (14)

The parameters appearing above have been defined in the

nomenclature; also

Q̇a = (1−ms)Q̇s + (1 −mi)Q̇i (15)

Q̇m = msQ̇s +miQ̇i . (16)

For computational tractability, the above continuous-time sys-

tem is transformed to a discrete-time system of the form

xn+1 = Âxn + B̂wn (17)

under the assumption that all time-varying forcing terms are

step functions that remain constant during each period n, with

wn =
[

T o
n Q̇s

n Q̇i
n Q̇n

]T
. (18)

This discrete state equation is of the same form as (1). To

see this, first note that the A/C heat flow rate Q̇n depends on

the A/C status un (cooling or off), which is represented by

the following indicator function:

un =

{

0 if A/C status = off

−1 if A/C status = on
(19)

The A/C heat flow rate Q̇n represented by (3) is defined as

Q̇n = Q̇(un,νn) =
BR(T o

n)

m(ρon)
un (20)

where the vector νn contains all stochastic time-varying terms,

νn =
[

T o
n Q̇s

n Q̇i
n ρon

]T
. (21)

In particular, the state function Sn in (1) reduces to a time-

invariant function S of (xn, un,νn) that is linear in xn.

Finally, an explicit form for the energy consumption func-

tion (4) of the A/C is established as

en = e(Q̇n,νn) = K
|Q̇n|

COP(νn)
m(ρon)∆t . (22)

Explicit numerical expressions for the functions that appear

above are obtained from [22]:

BR(T o
n) = BRo (1.4892− 0.0052T o

n) (23)

COP(νn) =
COPo

−0.01364+ 0.01067T o
n

(24)

m(ρon) = 1.1 +
ml

1 + exp(4− 0.1ρon)
. (25)

IV. CONTROLLER IMPLEMENTATION

This section explains the envisioned practical implementa-

tion of the proposed intelligent A/C system controller, given

the A/C system model described in Section III. This controller

consists of two main parts, namely, the software running the

scheduling algorithm and the wall control unit, as shown in

Fig. 1.

Current residential A/C systems, whose logic is based

on relatively simple thermostatic control, could be readily

retrofitted by just upgrading their wall control units with the

proposed intelligent unit (i.e., the A/C mechanical components

would not need to be modified). The scheduling software could

be programmed on the actual wall control unit; alternatively,

in order to reduce hardware cost, it could run on a remote

server as a cloud computing application, managed by an

entity offering this service. The wall control unit also requires

communications capability, for example, a wireless connection

to the house’s broadband internet.

At the time of installation, the four thermal parameters of

the ETP model, namely Ca, Cm, Ua, and Um, would have

to be programmed into the unit, since they are required for

the model-based optimization process. These, together with

mi and ms, may be determined using a standard spreadsheet-

like calculation process based on the physical dimensions of

the house such as the number of stories, the number and

orientation of windows and doors, the floor area, and the level

of thermal insulation [23]. The installer also would need to

enter the BR and COP functions of the A/C unit.

For R’s thermal comfort function, we adopt the

following simple representation loosely based on the

ANSI/ASHRAE 55-2010 standard [7] and similar to the one

used in [12]:

Gn = G(xn,xn+1, n) =

= Gmax − h1f(xn,1, n)− h2f(xn+1,1, n+ 1) , (26)

where the function f is defined as

f(x, n) =











[x− (T b − k1n)]
γ if x < T b − k1n

[x− (T b + k2n)]
γ if x > T b + k2n

0 otherwise

(27)

The parameters h1, h2, k1n, and k2n are positive constants,

whereas γ is a positive even integer. An increase in γ increases

the magnitude of the slope of the discomfort function f when

moving away from the bliss temperature range.6

This modeling of R’s comfort function can be interpreted

as follows. For periods n during which the house resident R
is at home, he can set k1n = k2n = 0, so that he attains his

maximum comfort level when the air temperature (the first

element of xn) is maintained at his bliss temperature. When

6The thermal comfort parameters h1, h2, and γ could be modeled as
time varying without any technical difficulty. However, R’s thermal comfort
function (26) is meant to measure the true comfort (benefit) that R attains
from the thermal state of his house under different thermal and occupancy
conditions, independently of cost considerations. A change in the values of
these parameters over time would therefore have to reflect some type of time
variation in R’s basic preferences for thermal comfort. This does not seem
reasonable for the relatively short planning interval (one or two days) that we
have in mind for the problem formulation.
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Scheduling

(on remote or

local server)
Wall

Control

Unit

Control

Map

Estimator

for Tm
n

(App. A)

House Thermal Dynamics

(ETP model)

Forecast of

environmental

conditions ν

Retail price

sequence p

α, k1n, k2n,

h1, h2, γ,

(Gmax), T
b

User-defined preferences

(entered via a user-friendly

graphical interface)

T a
n

Environmental

conditions νn

u∗

n

(to A/C

motor)

Fig. 1. Block-diagram schematic of the intelligent A/C system control.

the resident is not at home, nonzero values for k1n and k2n
can be set, so that the same comfort level is attained within

a range of temperatures, T b − k1n and T b + k2n. In other

words, the resident, while absent, is indifferent to the actual

temperature inside the house, as long as it stays within the

pre-specified range (for instance, to protect pets, foodstuff,

or medicinal supplies). It should be noted that R could also

decide to have nonzero k1n and k2n set-points even while

at home, if this is his preference. The choice of constant

representing the maximum comfort level attained (Gmax) is

not of any practical significance, since it does not affect the

result of the optimization. Its numerical value can be selected

so that R’s total net benefit has a positive value, measured in

Utils, although this is not critical.

The resident R could program his comfort and cost pref-

erences either directly on the wall control unit or (more

realistically) via a user-friendly graphical user interface, which

could run on R’s personal computer, smart phone, or some

other mobile computing device. The latter would allow R
to program the device without directly entering numerical

values; these would be determined internally by the software.

The parameters reflecting R’s preferences are communicated

to the scheduling program. Whenever R decides to modify

his bliss temperature or some other parameter, the updated

parameter set would be re-sent, and the optimal scheduling

would have to be recomputed. The scheduling algorithm also

needs the day-ahead price sequence p and a forecast of future

environmental conditions included in vector ν. In particular,

it is quite challenging to obtain an accurate forecast of the

internal heat flow rate Q̇i
n, which arises from various sources

such as people, lights, and electrical appliances. Therefore, a

typical variation of this term must be assumed, for example,

using the recommendations of [24]. Nevertheless, R might

be willing to provide some additional information, such as

the number of occupants and relevant details of their daily

occupancy schedule, or whether visitors are expected on a

certain date/time, which would help improve the scheduling.

Proper discretization of the state vector xn is necessary

for computational tractability when solving the scheduling

problem. The internal air temperature is assumed to vary in

the range [T b − 24, T b + 24]. To obtain reasonable accuracy,

the range is discretized using Na = 481 points, yielding

an accuracy of 0.1 °F. The internal mass temperature is

discretized with Nm points. Generally, the difference between

T a
n and Tm

n will be small. Herein, it is assumed that Tm
n lies

in [T a
n − 4.8, T a

n + 4.8], and that Nm = 481, yielding an

accuracy of 0.02 °F for the difference (T a
n −Tm

n ). A grid has

thus been formed containing all allowable combinations of

(T a
n , T

m
n ). When applying equation (17) during the dynamic

programming algorithm, the states obtained are not guaranteed

to lie on the grid, so they are moved to their nearest grid point,

as illustrated in Fig. 2. This prevents the gradual increase of

the grid size as dynamic programming proceeds backwards

in time. Equations (11) and (12) are then used to develop

the control map for the entire planning horizon. The control

map is an (NaNm) × N matrix containing zeros or ones,

where each element represents an on-or-off solution of (12).

For instance, in this implementation, the computer memory

required to store this map in binary format (using one bit for

each element) is approximately 40 MB, or as low as 2 MB

if sparse-matrix storage techniques are used. The dynamic

programming algorithm was programmed in Matlab, and takes

ca. 40 seconds to run on an Intel Core 2 Duo CPU E8400 3-

GHz processor with 4 GB of RAM.
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Tm
n (Nm elements)

T a
n (Na

elements)

Fig. 2. Discretization of the state vector xn.

It should be noted that the internal mass temperature

Tm
n cannot be obtained by direct measurement. However, as

demonstrated in Appendix A, a Luenberger observer can be

designed to estimate it using measurements of the environmen-

tal variables (and reasonable assumptions for the internal heat

flow rate). These measurements could be obtained by actual

temperature, solar irradiation, and humidity sensors installed

at the house, or indirectly from weather monitoring websites.

V. SIMULATION RESULTS

This section reports simulation findings for the proposed

intelligent A/C system controller. These simulation findings

indicate that the controller works as expected to provide a

flexible way for a house resident to optimally trade off thermal

comfort against costs over time, conditional on his preferences

for comfort, his anticipated occupancy times, and his A/C

energy usage costs.
As discussed in Section II-A and Appendix B, the α pa-

rameter appearing in resident R’s net benefit function (7) is an

attribute of R reflecting his marginal benefit of income, not a

control variable. Previous studies have not paid attention to the

key role played by this attribute parameter in the determination

of optimal comfort/cost trade-offs for household residents.

Consequently, the simulations reported in this section explore

outcomes for a range of possible α values for R.
Other parameter values are set as follows. The thermal

comfort parameter values for R are set at Gmax = 1.5 Utils,

h1 = h2 = 0.04 Utils/(°F)2, γ = 2, and T b = 74 °F.

The thermal model parameter values for R’s house are set

at Ca = 794.5 BTU/°F, Cm = 4726.4 BTU/°F, Ua =
444.3 BTU/h/°F, Um = 7501 BTU/h/°F, ms = mi = 0.5,

BRo = 42000 BTU/h, COPo = 3.8, and ml = 0.3. These

were obtained for a hypothetical 1500 ft2 single-story house

with very good insulation.
Meteorological data are obtained from the typical meteoro-

logical year (TMY2) database [25], which contains records

of a typical year for most of the regions in the United

States. A relatively hot day is simulated based on the data

corresponding to June 14th, 2009 in Detroit, Michigan. The

data are smoothed to represent actual weather conditions and

an offset is added to the temperature data. The day-ahead

scheduling is carried out based on the outside temperature and

relative humidity of the modified data as the forecast.
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Day−Ahead Scheduling Simulation

Fig. 3. Variation of environmental parameters for day-ahead scheduling and
simulation.

For the simulation of the A/C system, artificial conditions

are synthesized based on the modified TMY2 data. To this

end, a small perturbation is superimposed on the modified

data to simulate actual (different than forecasted) conditions.

The solar radiation incident on the house is a function of the

direct normal radiation and the diffuse horizontal radiation.

The solar heat gain factor [22] is then used to calculate the heat

flow rate from the solar radiation. Radiation data are obtained

from the TMY2 file; however, since these are provided on an

hourly time-scale, other higher-frequency recorded data from

NREL [26] are used to simulate cloud movement in a more

realistic fashion.

A crudely predetermined schedule of appliances (based

on the design value of internal heat flow rate [22]) is used

to construct the internal heat flow rate for the day-ahead

scheduling. A finer variation of appliances and occupant

activity is assumed to occur in the simulation. The variation

of all environmental parameters used for day-ahead scheduling

and in simulations is depicted in Fig. 3. For scheduling, the

variables are represented by piecewise constant functions,

changing every hour.

The retail price corresponding to the chosen region (Detroit,

MI) is the day-ahead LMP obtained from an historical LMP

report [27] for the Midwest ISO. The price pn in (5) includes

the LMP plus a mark-up of 5 cents/kWh, whereas F = 0. The

retail price variation is shown in Fig. 4.

Simulations are run using a 2-day planning horizon, where

each period ∆t is 2 minutes long (implying N = 1440). The

discount factors βn in (7) are specified to be 1.0 for the first



8

0 8 16 24 32 40 48
6.5

7

7.5

8

8.5
R

e
ta

il
 P

ri
c
e
 (

C
e
n

ts
/k

W
h

)

Time (h)

Fig. 4. Retail price variation.

day of the planning horizon and 0.9 for the second day of the

planning horizon.

The general A/C controller set out in Section II-A postulates

the existence of a joint PDF for the environmental variables

over the planning horizon. Nevertheless, for implementation

purposes, it would generally be very difficult to obtain or

estimate such a joint PDF. Here we make use of a “certainty

equivalence” approach to derive an approximate solution for

the optimal on/off A/C controls. This approach replaces the

random environmental variables over the planning horizon by

their expected values, reducing the problem to a determin-

istic dynamic programming problem. Since the application

at hand involves only a short two-day planning horizon, the

approximate solution should be reasonably close to the optimal

solution.

A few simplifications are introduced to ease the presentation

of results. First, because day-ahead LMPs cannot be known

with certainty two days in advance, it is assumed that the

price sequence for the second day of the planning horizon is

forecasted to be the same as for the first day. Second, although

a new optimization takes place at the end of each day for

a two-day planning horizon, optimization outcomes are only

shown for the first 24 hours of each two-day planning horizon.

Finally, it should be noted that the two-day rolling-horizon

optimization implemented for the application at hand to gener-

ate updates to the A/C control map could instead be undertaken

at shorter intervals (e.g., hourly). A shorter rolling-horizon

specification would presumably permit a greater forecast ac-

curacy for the environmental variables and improved com-

fort/cost optimization outcomes, but at the cost of increased

computational time.

A. Resident Stays at Home Throughout the Day

As a first case study, the resident is assumed to remain

at home throughout the day, maintaining a constant bliss

temperature, and k1n = k2n = 0. For comparison purposes,

a simulation was first run over a 24-hour horizon using

a classical A/C thermostat operating with simple hysteresis

control, with a deadband of ±0.25 °F. The thermal comfort

obtained was 1078.8 Utils. (The ideal daily thermal comfort

is (N/2)Gmax = 1080 Utils.) The energy consumption of the

A/C system was 27.3 kWh and the electricity cost was $2.14.

These results are listed as the first row of Table I for the

reader’s convenience.

TABLE I
RESULTS WITH k1n = k2n = 0

24-hour 24-hour 24-hour 24-hour
α Electricity Thermal Net Benefit Energy

Cost ($) Comfort (Utils) (Utils) (kWh)

N/A 2.14 1078.8 N/A 27.3

0 2.14 1072.4 1072.4 27.4
50 2.13 1070.7 964.1 27.3

200 2.11 1064.3 641.8 27.0
500 2.09 1052.7 9.7 26.7

1000 2.04 1016.3 -1026.6 26.2
2000 1.88 862.7 -2888.8 24.1
3000 1.77 675.0 -4624.6 22.7
4000 1.70 429.7 -6374.5 22.0
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Fig. 5. Variation of internal air temperature (Ta

n
) for various α values.

Fig. 5 shows the variation of the indoor air temperature

inside R’s house for a range of α values. It is obvious that, as α
is increased, the deviations of T a

n from T b become increasingly

prominent. Table I summarizes the results. As expected, an

increase in α results in increased electric energy savings but

lower thermal comfort.

B. Resident Leaves Home During the Day

For the second case study, the resident is assumed to leave

the house from 8 am to 5 pm. During this time, k1n and
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Fig. 6. Variation of internal air temperature (Ta

n
) for various α values and

k1n = k2n = 15 °F while the resident is not at home.

k2n are set to 15 °F. The simulation results shown in Fig. 6

exhibit a markedly different pattern from the previous case

study. Most notably, the A/C controller makes a decision to

switch off during the morning hours. For the extreme case of

α = 0, this switch occurs as soon as the resident leaves home.

However, as α is increased, the A/C turns off earlier than that.

It is also interesting to observe how the controller decides to

cool down the house in anticipation of the resident’s arrival at

home at 5 p.m., and how this decision varies with different α
values.

Table II summarizes the results, which follow a similar trend

as for the previous experiment. Comparing Tables I and II, we

find that the cost of electricity and the energy consumption

have decreased considerably. This is because the A/C is mostly

turned off during the time R is not at home.

VI. CONCLUSION

The purpose of this paper is to present the control of an A/C

system by stochastic dynamic programming (SDP) to achieve

optimal intertemporal trade-offs between thermal comfort and

A/C energy costs for a household resident conditional on retail

A/C energy prices and environmental conditions. A thermal

comfort model is used to capture the thermal preferences of

the resident.

TABLE II
RESULTS WITH NONZERO k1n , k2n

24-hour 24-hour 24-hour 24-hour
α Electricity Thermal Net Benefit Energy

Cost ($) Comfort (Utils) (Utils) (kWh)

0 2.09 1075.2 1075.2 26.4
50 2.05 1073.1 970.8 25.8

200 2.02 1067.6 664.3 25.4
500 1.96 1055.9 73.6 24.7

1000 1.88 990.6 -891.6 23.7
2000 1.71 826.1 -2594.8 21.4
3000 1.60 582.8 -4214.3 20.1
4000 1.49 287.9 -5670.8 18.5

The critical parameter α appearing in the household res-

ident’s net benefit function (7) plays a key role in the de-

termination of the resident’s optimal comfort/cost trade-offs.

As detailed in Appendix B, α reflects an attribute of the

household resident—namely, his marginal benefit of income—

that depends on his preferences and on his opportunities for the

purchase of alternative goods; α is not a “control variable.” As

seen in Section V, we envision our A/C controller as having

an α “knob” that each household resident can fine tune to

match his own particular preferences and choice environment.

n Section V we provide numerical examples to show how

different settings for this alpha “knob” for different residents

would affect the A/C energy usages resulting from the optimal

on-off A/C control settings generated by the A/C controller,

all else equal.

In a possible future smart-grid scenario, dynamically vary-

ing price signals can be communicated to households, thereby

achieving active demand response. Our thermal comfort model

can form a basis for studying the aggregation of price-sensitive

demand emanating from a residential area, since A/C systems

constitute a substantial component of residential energy con-

sumption during the summer. The methodology can also be

adopted by LSEs to forecast price-sensitive load from their

retail customers. Furthermore, there is an interesting feedback

loop connecting wholesale load to wholesale prices to retail

prices to retail load and back up to wholesale load. In fact,

this feedback loop is currently being explored by means of

systematic simulation studies [28].

As stressed in Section II, our study is agnostic regarding

the exact method by which the LSE servicing the A/C energy

needs of retail consumers determines the A/C energy prices.

Clearly, however, the ability to offer retail energy contracts

under which the prices charged vary dynamically with chang-

ing conditions could open up strategic opportunities for profit-

seeking LSEs. This important topic is part of our ongoing

research.

The general discrete-time SDP problem set out in Section II

for the household resident does not assume a finite domain

either for the control actions un or for the state vectors xn.

For practical application, however, finite discretizations are

introduced in Section III for the control and state domains

that render our SDP formulation equivalent to a finite-horizon

discrete-time Markov Decision Process (MDP). In future stud-

ies it would be of interest to compare and contrast our SDP
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solution approach to approaches that have been introduced in

the literature for the approximate solution of MDP problems.

It is also of great interest to design a similar controller for

inverter-based systems, which are rapidly gaining market share

worldwide, because they offer increased efficiency and energy

savings (albeit with increased capital cost). However, this is

not the case in the United States, where most residential A/C

systems are still commonly based on simple on/off control.

Therefore, one important advantage of our simple “bang-bang”

proposed control is that it lends itself to the retrofitting of ex-

isting systems (at least in the USA) with minimal intervention

required on the mechanical A/C components. Nevertheless,

the general mathematical formulation outlined in Section II

certainly permits the formulation of a continuous problem,

which would be appropriate for an inverter-based A/C system.

This is an important topic for future work.

The general formulation (6) for the household resident’s

thermal comfort function set out in Section II permits thermal

comfort to depend on the initial and final state vectors during

period n as well as directly on n. For concrete illustra-

tion, however, Section IV uses a simplified thermal comfort

function (26) that depends only on the initial and final air

temperature of the resident’s house for any period n as well as

on period-specific lower and upper bounds for the resident’s

comfort function reflecting whether the resident is actually

at home during period n. In future studies it would be of

great interest to explore more carefully the implications of

alternative thermal comfort function specifications for the

welfare of household residents and for system performance

more generally. Moreover, it would be important to refine

further the physical model of the A/C system, in order to study

the impact of improved modeling on the optimization results.

Finally, in future work we intend to implement the proposed

intelligent A/C system controller in practice, and to conduct

experiments to test its performance. The current study provides

the theoretical underpinnings for this experimental validation.

APPENDIX A

LUENBERGER OBSERVER TO ESTIMATE Tm

The ETP model (13)–(14) can be written as

[

Ṫ a

Ṫm

]

=

[

A11 A12

A21 A22

] [

T a

Tm

]

+

[

bT
1

bT
2

]

w (28)

where A11, A12, A21 and A22 are the scalar elements of the

matrix A, and bT
1 and bT

2 are the two rows of the matrix B.

An estimate for the mass temperature can be constructed as

˙̂
Tm = (A22 − K̃A12)T̂

m +A21T
a + bT

2 w

+ K̃(Ṫ a −A11T
a − bT

1 w) . (29)

The gain K̃ is chosen such that A22 − K̃A12 < 0, in which

case it can be shown that the error Tm − T̂m asymptotically

approaches zero as t → ∞ [29]. However, this estimator re-

quires knowledge of Ṫ a, which is unknown. To eliminate Ṫ a,

we let z ≡ T̂m−K̃T a, and (29) leads to a modified estimator

in terms of z, given by

ż = (A22− K̃A12)z+[(A22− K̃A12)K̃+A21− K̃A11]T
a

+ (bT
2 − K̃bT

1 )w . (30)

The mass temperature is estimated from T̂m = z+K̃T a. This

observer logic could be readily programmed in the wall unit,

in discrete-time form. For the simulation studies of Section V,

the gain was set to K̃ = −7.

APPENDIX B

EXTENDED MOTIVATION FOR THE COMFORT/COST

TRADE-OFF MODEL

Here we present additional motivation for the form of

resident R’s comfort/cost trade-off problem (10) set out in

Section II-A. In particular, we show that, for an appropriate

choice of α, the solution of this problem can be viewed as a

necessary condition for the solution of a more comprehensive

problem involving the budget-constrained maximization of

the benefit attained by R over periods 1, . . . , N from the

consumption of multiple goods in addition to thermal comfort.

As is standard in microeconomic treatments of multi-good

optimization problems, suppose the multi-good benefit ob-

tained by R over periods 1, . . . , N is given by the function

W (u,y) =

N
∑

n=1

βnG(xn, Sn(xn, un,νn), n) + Z(y) , (31)

where the state vectors xn satisfy the state equations (1) and

(2), and the dependence of W on the exogenously given terms

ν and x̄1 has been supressed from the notation. As in Sec-

tion II-A, the summation term measures the benefit (comfort)

attained by R from the thermal conditions inside his house

during periods 1, . . . , N . Now, however, there is also a second

term, Z(y), measuring the benefit (satisfaction) attained by R
from the consumption of a vector y = [y1, . . . , ym]T of m
additional types of goods during periods 1, . . . , N . Assume

that R strictly prefers more of each of these goods to less, all

else equal, implying that Z(y) is a strictly increasing function

of yj for each j = 1, . . . ,m.

Let py = [py1 , . . . , p
y
m], where pyj denotes the dollar amount

paid by R per unit of consumption of good j. Also, assume

that the A/C electric energy prices p = [p1, . . . , pN ], the goods

prices py , and the environmental conditions ν = [ν1, . . . ,νN ]
are known by R prior to the start of period 1. Let I ($) denote

R’s target total income expenditure level for periods 1, . . . , N ,

and let u = [u1, . . . , uN ] and y denote the choice vectors

for R.

Now consider the following optimization problem for R
involving the maximization of his multi-good benefit func-

tion (31) subject to a budget constraint:7

maxW (u,y) (32)

7For expositional simplicity, the restriction of un to some admissible
domain U and the restriction of y to the nonnegative orthant in Euclidean
m-space are ignored below. Also, the assumed nonsatiation of R with respect
to consumption of y guarantees that R will satisfy his budget constraint as a
strict equality.
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with respect to choice of u and y, subject to

N
∑

n=1

βnC(pn, ẽn(un,νn)) + py · y = I . (33)

Let α denote the Lagrange multiplier corresponding to the

budget constraint (33), and form the Lagrangian function L as

follows:

L(u,y, α, I) = W (u,y)

+ α

[

I −

N
∑

n=1

βnC(pn, ẽn(un,νn))− py · y

]

(34)

Suppose the usual Karush-Kuhn-Tucker (KKT) first-order

necessary conditions expressed in terms of the Lagrangian

function L result in unique solutions (u∗,y∗, α∗) for u, y,

and α. Let these solutions be expressed in the form

(u∗,y∗, α∗) = (u(I),y(I), α(I)) , (35)

where dependence on all exogenous variables except income I
has been suppressed from the notation. Given certain regularity

conditions, it follows by the envelope theorem8 that α(I)
measures R’s marginal benefit of income9 in the sense that

α(I) =
dW (u(I),y(I))

dI
. (36)

That is, α(I) measures the change in R’s optimized multi-good

benefits with respect to a change in his income I , evaluated

at the solution point.

Finally, here is the interesting observation that motivates this

appendix discussion. If α is pre-set at the level α(I) in the

Lagrangian function L in (34), this function separates into two

parts, one involving only u and the other involving only y, as

follows:

N
∑

n=1

βn [G(xn,xn+1, n)− α(I)C(pn, ẽn(un,νn))] (37)

and

Z(y) + α(I)[I − py · y] . (38)

The optimal setting of α(I) in (37) and (38) guarantees that

R’s income I is optimally split between expenditures on

electric energy for A/C and expenditures on the consumption

goods y. Consequently, the two parts can be separately treated

as individual optimization problems.

In particular, the maximization of (37) with respect to u,

the approach taken in Section II, results in the satisfaction of

the KKT necessary first-order conditions for the choice of u

corresponding to the more comprehensive budget-constrained

multi-good benefit maximization problem handled in this

8Applied to the problem at hand, the envelope theorem [30, Chap. 1,
Thm. 1.F.1] guarantees that:

dW (u(I),y(I))/dI = dL(u(I), y(I), α(I), I)/dI =

= ∂L(u(I),y(I), α(I), I)/∂I = α(I)

where d denotes total differentiation and ∂ denotes partial differentiation.
9In the economics literature, in which consumer benefits are assumed to

be measured by “utility functions," it is standard to refer to α as a marginal
utility of income measure.

appendix that involves a simultaneous choice of both u and y.

Thus, by appropriate trial-and-error experimentation, resident

R could arrive at a setting for the comfort/cost trade-off factor

α in (7) that approximately achieves his optimal A/C energy

usage solution for this more comprehensive problem.
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