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Real-Time Power Balancing via Decentralized
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Abstract—It is anticipated that an uncoordinated operation
of individual home energy management (HEM) systems in a
neighborhood would have a rebound effect on the aggregate
demand profile. To address this issue, this paper proposes a
coordinated home energy management (CoHEM) architecture
in which distributed HEM units collaborate with each other
in order to keep the demand and supply balanced in their
neighborhood. Assuming the energy requests by customers are
random in time, we formulate the proposed CoHEM design as
a multi-stage stochastic optimization problem. We proposenovel
models to describe the deferrable appliance load (e.g., Plug-in
(Hybrid) Electric Vehicles (PHEV)), and apply approximati on
and decomposition techniques to handle the considered design
problem in a decentralized fashion. The developed decentralized
CoHEM algorithm allow the customers to locally compute their
scheduling solutions using domestic user information and with
message exchange between their neighbors only. Extensive simu-
lation results demonstrate that the proposed CoHEM architecture
can effectively improve real-time power balancing. Extension to
joint power procurement and real-time CoHEM scheduling is
also presented.

I. I NTRODUCTION

Demand side management (DSM) techniques have been
employed to make the inelastic demand for electricity flex-
ible in order to achieve the goal of integrating intermittent
renewable energy resources in the power grid [1], [2]. Existing
DSM techniques can be divided into two categories– Direct
load control (DLC) and dynamic pricing. DLC mechanisms
[3], [4] allow electric utilities to conduct centralized demand
management on certain interruptible appliances, e.g., turning
off air conditioning systems for short periods of time, to
maintain demand and supply balance during peak hours. On
the contrary, dynamic pricing schemes [5], [6] distribute a
control signal to the customers that reflects the congestionof
the grid, counting on the assumption that individual customers
will modify their demands accordingly. Since a manual control
in response to ever-changing price signals is infeasible, dy-
namic pricing solutions require intelligent energy management
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software to manage the demands of residential and commer-
cial customers. Consequently, there is an extensive literature
emerging on home energy management (HEM) systems, e.g.,
[7]–[10], dedicated to finding optimal scheduling algorithms
for the household appliances, based on the price signals,
appliance load profiles, job deadlines, etc., with the goal of
minimizing the electricity bill.

As observed in [11], if all the customers in a neighborhood
are given the same dynamic price, the HEM systems that are
individually operated by each customer will simultaneously
schedule the load to the low-price period, and, consequently,
a new “rebound” peak may occur. Another concern is that
dynamic prices may render the demand more volatile and less
predictable, causing serious stability and reliability issues for
the grid if not handled properly [12]. In this paper, we aim
to blur the boundaries between DLC and dynamic pricing
strategies by proposing an architecture through which the
HEM units inside the territory of an aggregator/retailer can
cooperate with each other to keep wholesale demand of the
retailer balanced with the available generation supply (which
might be the day-ahead/hour-ahead bid plus locally generated
renewable resources).

Related works: Several existing works have studied
neighborhood-wise collaborative energy management, though
different models and optimization goals are considered. For
example, in [11] a heuristic algorithm is proposed for schedul-
ing the load of customers in a neighborhood to meet a
maximum power profile specified by the retailer. In [13]–[15],
distributed energy management algorithms, based on game-
theoretic approaches, were proposed to minimize the cost of
the retailer or the peak-to-average ratio of the aggregate load.
The works in [16], [17] and [18] proposed distributed energy
management algorithms that maximize the social welfare by
minimizing both the costs of retailer and customers. The work
in [19] considered simultaneous procurement of power in the
day-ahead market and real-time load scheduling to maximize
the social welfare. However, most of the literature cited above
does not account for the customers’ probabilistic behaviorin
the usage of appliances, which is very important for making
decisions that meet the current need of the customers as wellas
for predicting what else the customer may want in the future.
Moreover, a common assumption in these papers is that the
HEM system can adjust the appliance power consumptions,
which may not be valid for some non-interruptible appliances.
In [20], [21], a neighborhood-level load scheduling architec-
ture is proposed by modulating and scheduling the demand
of certain deferrable appliances. This architecture, however, is
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implemented in a centralized fashion and cannot guarantee the
deadline constraints for customers.

Contributions: In this paper, we propose a coordinated
HEM (CoHEM) architecture where the HEM units in a
neighborhood collaborate to minimize the cost of their ag-
gregator/retailer in the real-time balancing market. Similar
to previous works [8]–[10], [15], we assume that the retailer
broadcasts dynamic pricing information to the residences,and
that the associated HEM systems optimize the scheduling of
their local appliances. Unlike [8]–[10], and similar to [13],
[16]–[19], the CoHEM customers will not be selfish. One of
the key differences of our model compared to [11], [13]–[19]is
in the choice of the network utility and in the effective pricing
and service policy applied to the HEM users. Specifically,
in our model, the HEMs, by cooperating, do not pay more
than their selfishly optimized cost and do not experience lower
quality of service. The network utility of the CoHEM is chosen
to be equal to the cost of deviating in real time from the bulk
power purchase of the retailer in the day-ahead and hour-ahead
markets, computed using the locational marginal prices [22].

Another major difference compared to [13], [16]–[19], but
similar to [10], [11], [15], is that our work focuses on appli-
ances that are flexible in deferring their operating times, e.g.,
PHEV, washing machine, dish washer and tumble dryer etc.
(which are usually non-interruptible in power consumption).
Moreover, in order to be foresighted, we take into account
the customers’ probabilistic behavior by assuming that the
customers randomly submit requests to their HEM to use
an appliance. Given the statistical information of customers
and quality of service constraints (i.e., scheduling deadline
constraints), we formulate the proposed CoHEM design prob-
lem as a multi-stage stochastic optimization problem [23],
[24], aiming at minimizing the expected real-time power
unbalancing cost of the retailer. The stochastic formulation
can provide optimal control policies which can be used for
real-time appliance scheduling by exploiting both customers’
statistical and real-time request information.

To this end, we first present a Markov decision process
(MDP) formulation that can efficiently solve the selfish HEM
design problem. Subsequently, we show that the MDP method
can be used to develop adecentralized scheduling algorithm
for efficiently handling the proposed CoHEM design prob-
lem. It is known that a centralized computation requires full
knowledge of all the statistical and real-time information
of the customers, and moreover, the required computational
complexity increases with the number of residences and the
number of controllable appliances. In view of this, a distributed
implementation algorithm, that can decompose the original
problem into parallel subproblems with smaller problem sizes,
is of great interest. Such a distributed algorithm can be
deployed in the neighborhood in a fully decentralized fashion
where each of the residences computes its scheduling solution
locally using domestic information and by communicating
with its neighbors only. Since no explicit information about
customers’ electricity usage is exchanged and submitted tothe
retailer, this decentralized method also preserves customers’
privacy with respect to their appliance usage. Extensive simu-
lation results will be presented to demonstrate the effectiveness

of the proposed CoHEM architecture and the decentralized
scheduling algorithm.

Synopsis: In Section II, we first present the load models
of deferrable appliances, and the individual (selfish) HEM
design problem. Secondly, we present the proposed CoHEM
architecture and the associated CoHEM design formulation.
In Section III, an MDP method for solving the selfish HEM
design problem is proposed. Then, based on this MDP method
and decomposition techniques, we propose a decentralized
CoHEM algorithm. Two extensions of the proposed CoHEM
design are also discussed in the last subsection. Extensive
simulation results are presented in Section IV. Finally, the
conclusions and future directions are included in Section V.

II. A PPLIANCE LOAD MODEL AND PROBLEM STATEMENT

In the first two subsections, we present the load model
of deferrable appliances and the individual HEM problem
formulation. The proposed CoHEM architecture is presented
in the third subsection.

A. Multi-Mode Deferrable Appliance Load Model

We consider the case where there areN deferrable ap-
pliances in each residence. The appliances are assumed to
have known power consumption profiles, and once are turned
on, their operation cannot be interrupted, e.g., PHEV, dish
washer, tumble dryer etc. The HEM system in the house is
allowed to defer their schedules within the deadlines specified
by the customers. Specifically, given a request submitted bythe
customer, the HEM unit has to decide to turn on the appliance
immediately or defer the task by waiting in a queue. The
decision process is repeated until the HEM system chooses
to activate the appliance or until the maximum delay time is
reached.

In the paper, we assume that the appliance may have multi-
ple operation modes, each with a different power consumption
profile, and they are decided by the customer. For example,
the washing machine may have one mode for colored clothes
and one mode for white clothes. We assume that appliance
i hasMi modes, and each mode specifies a (discrete-time)
power load profilegi,m(t), t = 1, . . . , Gi,m, whereGi,m > 0
is the maximum job length ofgi,m(t). The times at which
the customer submits a request for an appliance are random.
In particular, at each timet, appliancei will be requested
by the customer with probabilitypi(t) ∈ [0, 1], and, once
it is requested, it is with probabilityγi,m(t) that modem
will be chosen (

∑Mi

m=1 γi,m(t) = 1), where t = 1, . . . , T ,
with T > 0 denoting the maximum look-ahead time horizon.
Information aboutpi(t) andγi,m(t) can be estimated through
the usage history of customers; see, e.g., [25], [26] for related
papers. Suppose that requests for turning on appliancei arrive
at timesti,1, ti,2, . . . ∈ {1, . . . , T }. Moreover, letθi(ti,k) ∈
{1, . . . ,Mi} denote the operation mode chosen at timeti,k.
Then, without scheduling, the power load due to appliancei
would be

Li(t) =

∞
∑

k=1

gi,θi(ti,k)(t− ti,k) ∀t. (1)
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The requested appliance tasks may be queued and scheduled
to operate later. Letsi,1, si,2, . . . ∈ {1, . . . , T }, be the
scheduled times determined by the HEM system for turning
on appliancei, wheresi,k ≥ ti,k for all k. Then, the scheduled
power load of appliancei is given by

Di(t) =
∞
∑

k=1

gi,θi(ti,k)(t− si,k) ∀t. (2)

Taking into account the power load of the uncontrollable
appliances, denoted byU(t), the aggregate power load of a
residence can be expressed as

Ltotal(t) = U(t) +

N
∑

i=1

Di(t), t = 1, . . . , T. (3)

B. HEM Design Problem

Let π(t), t = 1, . . . , T, be the dynamic electricity prices
given by the retailer. The HEM targets to schedule the con-
trollable appliances such that the expected total electricity cost
of the customer, i.e.,

T
∑

t=1

E{π(t)Ltotal(t)} (4)

is minimized, whereE{·} denotes the expectation operator.
The scheduling task is usually subject to constraints that reflect
the customer’s degree of comfort. In this work, we assume
that the customer will preassign a maximum tolerable delay
for each appliance, and that the HEM system must not exceed
the specified delay. In particular, we letζi,m ≥ 0 denote the
maximum delay for modem of appliancei. Then the operating
times of appliancei have to satisfy

ti,k ≤ si,k ≤ ti,k + ζi,θi(ti,k) ∀k. (5)

Mathematically, the HEM design problem can be formulated
as the followingmulti-stage stochastic optimization problem

min
si,1,si,2,...
∀ i=1,...,N

T
∑

t=1

E

{

π(t)

(

N
∑

i=1

Di(t) + U(t)

)}

(6a)

s.t.Di(t) =
∞
∑

k=1

gi,θi(ti,k)(t− si,k) ∀i, t, (6b)

ti,k ≤ si,k ≤ ti,k + ζi,θi(ti,k) ∀i, k, (6c)

si,k ≤ max{T −Gi,θi(ti,k), ti,k} ∀i, k, (6d)

where, in (6a), the expectation is with respect to the random
arrival times{ti,k}, random operation modes{θi(ti,k)} and
the control variables{si,k}, which are all based on the statis-
tical usage information of the customer. The constraints in(6c)
and (6d), however, specify the real-time scheduling constraints.
Specifically, (6c) implies that the customer won’t wait longer
than the specified delayζi,m in real time; while (6d) implies
that all the requested tasks have to be finished before timeT if
they arrive before timeT −Gi,θi(ti,k); otherwise, they should
be activated for service right after their arrivals1.

1Note that if (6d) is not imposed and ifζi,θi(ti,k) ≥ Gi,θi(ti,k)
, the

scheduler would not turn on the appliance until the end of thehorizon T ,
since it contributes no cost to the objective function in (6a).

An important aspect for the multi-stage stochastic formula-
tion (6) is that, according to the stochastic optimization theory
and dynamic programming techniques [23], [24], we can find
a so called optimalcontrol policy2 for {si,k} that, based on
the customer’s specific real-time requests, can schedule the
appliances in real time satisfying the real-time scheduling
constraints (6c) and (6d) while minimizing the expected cost
in (6a). For the HEM design problem in (6), however, it
is intrinsically too difficult to obtain such optimal policyin
its current form. In Section III-A, we will show that an
optimal control policy of (6) can be efficiently obtained by
reformulating (6) as a Markov decision process [23].

C. Proposed CoHEM Design

Dynamic prices{π(t)}Tt=1 are designed by the retailer so
that the customers would move their load to use cheaper
electricity and mitigate congestion in the grid. As mentioned
in the introduction, due to the rebound peaks, the aggregate
power load from multiple HEM-based customers may not
necessarily follow the bulk power purchase of the retailer,and
the resultant real-time power imbalance will increase the cost
of the retailer in the wholesale real-time balancing market.
Specifically, in addition to purchasing electricity in the day-
ahead and hour-ahead markets, the retailer has to purchase
additional amount of energy in the real-time balancing market
or pay the grid for absorbing the excessive energy that cannot
be consumed. The profit of the retailer is roughly

Profit= Bc − CostRT − CostDHA (7)

whereBc represents the total money paid by the customers for
their electricity usage, CostDHA denotes the cost already paid
by the retailer in the day-ahead and hour-ahead markets, and
CostRT denotes the cost in the real-time market. As discussed,
the selfish HEM systems will potentially increase CostRT .
Hence it is desirable to coordinate the customers to reduce
CostRT 3.

Let πp(t) be the price for buying energy from the real-
time market andπs(t) be the price for absorbing extra energy
(if πs(t) ≤ 0 then it implies that the retailer may sell
back the extra energy). LetP (t) be the bulk power already
purchased in the day-ahead and hour-ahead markets (P (t) may
also contain powers generated by local renewable sources,
if applicable). Moreover, assume that there are a total of
H residences/customers, each contributing the power load
L
(h)
total(t) [see (3)] to the grid. The total real-time market cost

of the retailer CostRT is given by4

2By stochastic optimization [23], [24], a control policy is afunction of the
problem states and is like a table that lists all the corresponding actions that the
controller should follow for all possible states of the problem. Once a control
policy is obtained (e.g., by the dynamic programming techniques [24]), the
controller can control the appliance in real time by applying the action that
corresponds to the specific real-time state information of the appliance. A
control policy is said to be optimal if it minimizes the expected cost function
of the considered problem.

3The reduction in CostRT implies that the retailer can make more profits,
and in turn the retailer may consider reducing the electricity price of the
customers. Hence the CoHEM program is potentially economically beneficial
to the cooperative customers from a long term perspective.

4The real-time cost can be extended to general convex functions; see Section
III-C.
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CostRT =

T
∑

t=1



πs(t)

(

P (t)−

H
∑

h=1

L
(h)
total(t)

)+

+ πp(t)

(

H
∑

h=1

L
(h)
total(t)− P (t)

)+


 , (8)

where (x)+ = max{x, 0}. As incentives for the customers
to participate in the proposed CoHEM architecture, we pro-
pose that 1) the retailer will charge the customers the same
amount of money as that optimized by their individual (selfish)
HEM system [i.e., (6)]; 2) the CoHEM will maintain the
same scheduling deadline constraints specified by each of the
customers. In summary, the CoHEM customers would neither
have any financial loss nor would lose any degree of comfort.
The retailer, which presumably will have infrastructure cost
to cover, seeks to make a profit by minimizing CostRT under
the strict deadline constraints. Hence, the actual degree of
flexibility of the community customers affects the retailer’s
profit.

The proposed CoHEM design problem can be formulated
as

min
s
(h)
i,1

,s
(h)
i,2

,...

∀ i,h

T
∑

t=1

E



πs(t)

(

P (t)−
H
∑

h=1

L
(h)
total(t)

)+

+ πp(t)

(

H
∑

h=1

L
(h)
total(t)− P (t)

)+


 (9a)

s.t.L(h)
total(t) = U (h)(t) +

N
∑

i=1

D
(h)
i (t), ∀h, t, (9b)

constraints in (6b), (6c), (6d) ∀i, k, h, (9c)

where we use superscript(h) to denote thehth resi-
dence/customer; for example,t(h)i,k and s

(h)
i,k represent the

request arrival and task operating times of appliancei in the
hth residence. Similar to the selfish HEM design problem
(6), for the CoHEM problem (9), we aim to find an optimal
control policy for {s

(h)
i,k } for all k, i and h, in order to

schedule the appliances satisfying the real-time needs of the
customers while minimizing the expected real-time market
cost in (9a). Note that problem (9) is subject to the same
scheduling constraints as (6) for each residence, meaning
that the degrees of comfort of customers are preserved in
the CoHEM architecture. However, different from (6) which
is solved by each individual residence independently, the
CoHEM problem (9) and its associated scheduling policy have
to be jointly optimized across all the residences in order to
minimize the real-time market cost of the retailer.

III. PROPOSEDSOLUTIONS FORHEM AND COHEM

In this section, we present the detailed methods for solving
the HEM design problem in (6) and handling the proposed
CoHEM design problem in (9). In Section III-A, we show
that the HEM design problem (6) can be efficiently solved
by reformulating it as a Markov decision process (MDP).
Regarding the CoHEM design problem (9), as discussed in

the introduction section, our interest lies in a decentralized
scheduling algorithm. To this end, we present in Section III-B
a suboptimal but efficient decentralized algorithm for handling
(9), based on proper problem approximation and Lagrange
dual optimization techniques [27]. It will be shown that the
MDP method presented in Section III-A can be conveniently
employed by the proposed decentralized algorithm for com-
puting the load scheduling policy of each individual residence.
Finally, two interesting extensions of the proposed CoHEM
architecture are presented in in Section III-C.

A. Solving HEM Problem(6) by MDP

In the subsection, we show how (6) can be efficiently solved
by an MDP formulation. Note that, for the HEM design
problem (6), we can focus on optimizing one appliance, say
appliancei, as follows

min
si,1,si,2,...

T
∑

t=1

E

{

π(t)

(

∞
∑

k=1

gi,θi(ti,k)(t− si,k)

)}

(10a)

s.t. ti,k ≤ si,k ≤ ti,k + ζi,θi(ti,k) ∀k, (10b)

si,k ≤ max{T −Gi,θi(ti,k), ti,k} ∀k. (10c)

According to the appliance model described in Section II-A,
once the customer requests to activate an appliance, the appli-
ance is either operated immediately or it waits in a queue to
be turned on later by the scheduler. We use the three variables
Si(t) ∈ {0, 1, . . . ,Mi}, Wi(t) ∈ {0, . . . ,maxm=1,...,M Gi,m}
and Qi(t) ∈ {0, 1, . . . ,maxm=1,...,M ζi,m} to denote the
operation mode, the remaining job length and the remaining
maximum delay time for appliancei at time t. Moreover, we
useui(t) ∈ {0, 1} as a control variable that switches on and
off the appliance at timet.

When all Si(t),Wi(t) and Qi(t) are zero (i.e.,
(Si(t),Wi(t), Qi(t)) = (0, 0, 0)), the appliance is idle,
and consequentlyui(t) = 0. Then it is with probability
pi(t+1)γi,m(t+1) that the customer will request to activate
appliancei at timet+1 and operate it in modem. If appliance
i is called by the customer to operate in modem, then we have
(Si(t + 1),Wi(t + 1), Qi(t + 1)) = (m,Gi,m, ζi,m), and the
HEM system has to decide whether to activate the appliance
or to queue the task by decidingui(t+1) = 1 or ui(t+1) = 0.
If the controller chooses to activate the appliance, then the
appliance has to work forGi,m time slots consecutively,
following its load profile gi,m(1), . . . , gi,m(Gi,m) (i.e.,
ui(t + 1) = ui(t + 2) = · · · = ui(t + Gi,m) = 1). After
that, it is with probabilitypi(t + Gi + 1)γi,m′(t + Gi + 1)
that the appliance is called (for modem′) and goes back
to state (m′, Gi,m′ , ζi,m′); otherwise (with probability
1− pi(t+Gi + 1)) it goes back to state(0, 0, 0) (idle).

If, at state(m,Gi,m, ζi,m), the controller chooses to delay
the appliance (ui(t+1) = 0), then the state moves to(Si(t+
2),Wi(t + 2), Qi(t + 2)) = (m,Gi,m, ζi,m − 1) in the next
time slot, and the HEM system needs to decide ifui(t + 2)
should be one or zero. The decision process is repeated until
the HEM system chooses to turn on the appliance or until
the maximum delay time is reached. In both cases, the state
moves to(m,Gi,m−1, 0). An example of a 2-mode appliance
is illustrated in Figure 1.
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Fig. 1: Illustration of the Markov process for modeling a 2-mode deferrable appliance withMi = 2, Gi,1 = 4, ζi,1 = 3,
Gi,2 = 2, ζi,2 = 1, pi,1(t) = pγ1 andpi,2(t) = pγ2. The triplets in the circles stand for the state(S,W,Q) of the appliance.

Let Xi(t) = (Si(t),Wi(t), Qi(t)) be a state vector, andXi
be the set that contains all possibleXi(t)’s. Using the above
Markov process model, the HEM design problem (10) can be
rewritten as the following MDP:

min
µi,t(X),
∀X∈Xi,
t=1,...,T

T
∑

t=1

E
{

π(t)
(

ui(t)gi,Si(t)(Gi,Si(t) −Wi(t) + 1)
)}

s.t. µi,t(Xi(t)) = ui(t), (11a)

Xi(t+ 1) =





Si(Xi(t), θi(t+ 1))
Wi(Xi(t), ui(t), θi(t+ 1))
Qi(Xi(t), ui(t), θi(t+ 1))





∀t = 1, . . . , T, (11b)

µi,t(Si(t), Gi,m, Qi(t))=1 ∀ t≥T −Gi,Si(t), (11c)

whereθi(t + 1) ∈ {0, 1, . . . ,Mi} is a random variable with
Prob(θi(t+1) = m) = pi(t+1)γi,m(t+1) andProb(θi(t+
1) = 0) = 1− pi(t+1), indicating the operation mode of the
appliance at timet+1 provided that it is requested. Moreover,
Si(·), Wi(·) andQi(·) are the state transition functions given
by (see Figure 1 as an example)

Si(Xi(t), θi(t+ 1)) =

{

θi(t+ 1) if Si(t) = 0,
Si(t) otherwise,

Wi(Xi(t), ui(t), θi(t+ 1))

=















Wi(t)− 1 if Si(t) = m, 2 ≤Wi(t) ≤ Gi,m, ui(t) = 1,
Wi(t) if Wi(t) ≥ 1, ui(t) = 0,
Gi,m if 0 ≤Wi(t) ≤ 1 andθi(t+ 1) = m,
0 if 0 ≤Wi(t) ≤ 1 andθi(t+ 1) = 0,

Qi(Xi(t), ui(t), θi(t+ 1))

=















Qi(t)− 1 if Si(t) = m,Wi(t) = Gi,m, ui(t) = 0,
ζi,m if 0 ≤Wi(t) ≤ 1, θi(t+ 1) = m,
0 if Si(t) = m, 2 ≤Wi(t) ≤ Gi,m, ui(t) = 1,

or if Wi(t) = 1 andθi(t+ 1) = 0,

and (11c) is due to (10c), which enforces the requested
appliance to turn on if its task is still queued fort ≥ T−Gi,m.
In (11), the optimal control policy forui(t), denoted by
µi,t(Xi(t)), is a function ofXi(t), for all Xi(t) ∈ Xi and for
all t = 1, . . . , T . Once the control policyµi,t(·), t = 1, . . . , T ,

is obtained, the controller can schedule the appliance in real
time, following the policy given the real-time state status
Xi(t) of the appliance.

By dynamic programming (DP) [24],µi,t(Xi(t)) can be
obtained by considering the following backward recursive
equations

Jt(Xi(t))= min
ui(t)∈{0,1}

π(t)ui(t)gi,m(Gi,m −Wi(t) + 1)+

Eθi(t+1){Jt+1(Xi(t+ 1))}

s.t. Si(t) = m,

constraints in (11b), (11c), (12)

for all possible Xi(t), t = 1, . . . , T − 1. Specifically,
µi,t(Xi(t)) is given by the optimalui(t) of (12). The value of
Jt(Xi(t)) is known as the cost-to-go function [24]. One can
show that (12) can be classified into the following four cases
(see Figure 1 as an example):
Case 1(Si(t) = 0,Wi(t) = 0, Qi(t) = 0): µi,t(0, 0, 0) = 0,
and

Jt(0, 0, 0) =(1− pi(t+ 1))Jt+1(0, 0, 0)+

pi(t+ 1)

Mi
∑

m=1

γi,mJt+1(m,Gi,m, ζi,m). (13)

Case 2(Si(t) = m, Wi(t) = Gi,m, 1 ≤ Qi(t) ≤ ζi,m): For
t ≥ T − Gi,m, µi,t(m,Gi,m, Qi(t)) = 1 according to
(11c); otherwiseµi,t(m,Gi,m, Qi(t)) is given by the optimal
solution of the following problem

Jt(m,Gi,m, Qi(t))

= min
ui(t)∈{0,1}

π(t)ui(t)gi,m(1)+

Jt+1(m,Wi(t+ 1), Qi(t+ 1))

s.t.Wi(t+ 1) = Gi,m − ui(t),

Qi(t+ 1) =

{

0, if ui(t) = 1,
Qi(t)− 1, if ui(t) = 0.

Case 3(Si(t) = m, 2 ≤Wi(t) ≤ Gi,m, Qi(t) = 0):
µi,t(m,Wi(t), 0) = 1, and

Jt(m,Wi(t), 0) =π(t)gi,m(Gi,m −Wi(t) + 1)+

Jt+1(m,Wi(t)− 1, 0).
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Case 4(Si(t) = m, Wi(t) = 1, Qi(t) = 0): µi,t(m, 1, 0) =
1, and

Jt(m, 1, 0) =π(t)gi,m(Gi,m) + (1− pi(t+ 1))Jt+1(0, 0, 0)

+ pi(t+ 1)

Mi
∑

m=1

γi,mJt+1(m,Gi,m, ζi,m).

It can be seen that, only for Case 2 (e.g., the gray states
shown in Figure 1), one is required to compute the optimal
control policy µi,t(Xi(t)). Therefore, at each stage of the
backward computation, one needs only compute and store
µi,t(Xi(t)) for

∑Mi

m=1 ζi,m possible states. Since bothMi and
ζi,m are usually small numbers, the backward computation
can be implemented very efficiently. By applying the MDP
approach to each of the appliances, we obtain the optimal
appliance control policy for the HEM design problem (6).

Remark 1 In the Markov model presented above, the appli-
ance has multiple modes which are decided by the customer.
Sometimes, each mode may have multiple power consumption
alternates that all can fulfill the same task. In that case, the
controller has a further degree of freedom to choose the one
that is best out of all the available consumption profiles in
minimizing the customer’s cost. This appliance model can be
easily extended from the current Markov model described in
this subsection. Specifically, suppose that, for an appliance,
each mode has 2 alternate power profiles to choose from, e.g,
gi,m,1(t) and gi,m,2(t). The control variableui(t) then has
three possible values – 0 means WAIT (or remain IDLE if not
requested), 1 means ON following profile 1, and 2 means ON
following profile 2. The state vector for this case is given by
Xi(t) = (Si(t), Ri(t),Wi(t), Qi(t)) whereRi(t) ∈ {0, 1, 2}.
An example forMi = 1 (single mode),Gi,1 = 3, ζi,1 = 2
andpi,1(t) = p is illustrated in Fig. 2. The associated optimal
control policy for the HEM design problem (6) can be derived
in a similar fashion as described in this subsection.

B. Decentralized Stochastic Optimization for CoHEM

While the Markov process model presented in the previous
subsection can also be used for the CoHEM problem (9),
the resultant MDP problem would involve a large number
of states (which increases exponentially withH andN ) and
thus the solution quickly becomes computationally unafford-
able. A simple approximate DP approach to overcoming the
curse of dimensionality issue is the model predictive certainty
equivalent control (CEC) method [24]. In this method, one
searches for the optimal control in a forward manner and
apply the control at each time that would be optimal if the
uncertain quantities, i.e.,t(h)i,k and θ(h)i (ti,k), were fixed at
some typical values, e.g., the mean values. The advantage
of this method is that at each timet, one only deals with
a deterministic optimization problem; the associated solution
can be directly applied to control the appliances in real time.
In [28], we have proposed a decentralized CoHEM algorithm
(i.e., [28, Algorithm 1]) based on the model predictive CEC
method. While the algorithm in [28] can be implemented in a
decentralized fashion (i.e., [28, Algorithm 2]), the controller
has to repeat the optimization until the end of the horizon,

IDLE

Requested 
for Mode 1 Choose 

to Profile 2

Choose 
to Profile 1

PSfrag replacements

OFF

u=1

u=1
u=1

u=1

u=1

u=1

u=0

u=0u=0u=0

u=2

u=2u=2

u=2

u=2

u=2

p

p

p

1−p

1−p

1−p

(0, 0, 0, 0) (1, 0, 3, 2) (1, 0, 3, 1) (1, 0, 3, 0)

(1, 1, 2, 0) (1, 1, 1, 0)

(1, 2, 2, 0) (1, 2, 1, 0)

Fig. 2: Illustration of the Markov process for modeling a
single-mode deferrable appliance(Mi = 1) with two alternate
power consumption profiles, andGi,1 = 3, ζi,1 = 2 and
pi,1(t) = p. The quadruples in the circles stand for the state
(S,R,W,Q) of the appliance; see Remark 1.

from time 1 to timeT − 1. Moreover, since the decentralized
optimization algorithm involves multiple iterations, each of
which requires the customers to exchange messages with their
neighbors in real time. As a result, the model predictive CEC
algorithm in [28] may cause a considerable communication
overhead in the CoHEM network. In this subsection, we
present a decentralized stochastic optimization method which
can greatly alleviate the communication overhead.

Unlike the model predictive CEC, the idea here is to
maintain the stochastic nature of the CoHEM problem (9),
using a suboptimal formulation as follows

min
s
(h)
i,1 ,s

(h)
i,2 ,...

∀ i,h

T
∑

t=1

{

πs(t)

(

P̂ (t)−
H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]

)+

+ πp(t)

(

H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]− P̂ (t)

)+
}

(14a)

s.t.D(h)
i (t) =

∞
∑

k=1

g
(h)
i (t− s

(h)
i,k ) ∀i, t, h, (14b)

t
(h)
i,k ≤ s

(h)
i,k ≤ t

(h)
i,k + ζ

(h)

i,θ
(h)
i

(t
(h)
i,k

)
∀i, k, h, (14c)

s
(h)
i,k ≤ max{T −G

(h)

i,θ
(h)
i

(t
(h)
i,k

)
, t

(h)
i,k } ∀i, k, h, (14d)

whereP̂ (t) = P (t) −
∑H

h=1 U
(h)(t). It can be seen that the

objective function (14a) is instead the deviation between the
expected aggregate load and the power supplyP̂ (t), which is
a lower bound of that in (9a). Note that (14) is still a (multi-
stage) stochastic optimization problem.

Define

z(t) =

(

H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]− P̂ (t)

)+

∀t, (15)
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and note that
(

P̂ (t)−
H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]

)+

= z(t)−

(

H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]− P̂ (t)

)

. (16)

Substituting the above equations into (14) gives rise to

min
s
(h)
i,1 ,s

(h)
i,2 ,...

∀ i,h

T
∑

t=1

(πs(t) + πp(t))z(t)

−
T
∑

t=1

πs(t)

(

H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]− P̂ (t)

)

(17a)

s.t. z(t) =

(

H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]− P̂ (t)

)+

∀t, (17b)

constraints in (14b), (14c), (14d). (17c)

Assuming the usual case ofπs(t)+πp(t) ≥ 0, we can further
rewrite (17) as

min
s
(h)
i,1 ,s

(h)
i,2 ,...

∀ i,h

T
∑

t=1

(πs(t) + πp(t))z(t)

−
T
∑

t=1

πs(t)

(

H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]− P̂ (t)

)

(18a)

s.t. z(t) ≥
H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]− P̂ (t) ∀ t, (18b)

z(t) ≥ 0 ∀t, (18c)

constraints in (14b), (14c), (14d). (18d)

The ingredient of our decentralized stochastic optimization
method is to consider the Lagrange dual [29] of the stochastic
problem (18), analogous to the methods adopted in [30], [31]
for other applications. Letλ(t) ≥ 0 andη(t) ≥ 0 be the dual
variables associated with each of the constraints in (18b) and
(18c). The dual function of (18) can be shown to be










H
∑

h=1

Φ(h)(λ), if πp(t) + πs(t)− λ(t) = η(t) ∀t,

−∞, elsewhere,

whereλ = [λ(1), . . . , λ(T )]T and

Φ(h)(λ) =

min
s
(h)
i,1 ,s

(h)
i,2 ,...

T
∑

t=1

E

[

(λ(t)− πs(t))

(

N
∑

i=1

D
(h)
i (t) + U (h)(t)−

P (t)

H

)]

s.t. constraints in (14b), (14c), (14d). (19)

The dual problem of (18) is thus given by

max
λ(t),

t=1,...,T

H
∑

h=1

Φ(h)(λ) (20a)

s.t. λ(t) ≥ 0 ∀ t = 1, . . . , T, (20b)

η(t) ≥ 0, ∀ t = 1, . . . , T, (20c)

πp(t) + πs(t)− λ(t) = η(t) ∀t = 1, . . . , T. (20d)

One can see from the above equation thatη(t) is in fact
a dummy variable since it does not appear in the objective
function. By combining (20b) to (20d), we then obtain

max
λ(t),

t=1,...,T

H
∑

h=1

Φ(h)(λ)

s.t. 0 ≤ λ(t) ≤ πs(t) + πp(t) ∀ t = 1, . . . , T. (21)

The dual optimization method for (18) is to iteratively solve
the inner minimization problems in (19) and the outer maxi-
mization part in (21) [27].

Distributed inner primal minimization: Let λ(t;n) de-
note the dual variableλ(t) obtained at iterationn. Given
λ(t;n), t = 1, . . . , T, the algorithm solves the inner mini-
mization problems in (19) for allh = 1, . . . , H . Note that
the objective function of (21) is a summation ofΦ(h)(λ), h =
1, . . . , H, which is decomposable. Thus the inner minimization
step can be carried out in a fully distributed fashion where
each residenceh solves the corresponding subproblem (19)
independently.

It is important to observe that subproblem (19) has exactly
the same formulation as the selfish HEM design problem (6),
except that, in (19), thehth residence is given a “pseudo price”
λ(t;n) − πs(t), t = 1, . . . , T . Therefore, the MDP method
presented in Section III-A can be directly used to efficiently
solve (19) and obtain the optimal appliance control policy
of (19) for each residenceh. Let us denote{µ(h)

i,t (·;n)}
T
t=1,

i = 1, . . . , N , (see (11)) as the optimal appliance control
policy for (19) obtained by residenceh at iterationn. More-
over, letE{D(h)

i (t;n)}, i = 1, . . . , N , t = 1, . . . , T , be the
corresponding expected scheduled loads for residenceh.

Distributed dual subgradient update: The dual variable
λ(t), t = 1, . . . , T , can be updated by the subgradient
projection method [32]:

λ(t;n+ 1)=P

{

λ(t;n)+cn

(

H
∑

h=1

N
∑

i=1

E[D
(h)
i (t;n)]− P̂ (t)

)}

∀t = 1, . . . , T, (22)

wherecn > 0 is the step size, andP(·) denotes the operation
of projection onto the set[0, πp(t) + πs(t)].

In view of the fact that updating (22) requires the aggregate
load

∑H
h=1

∑N
i=1 E[D

(h)
i (t;n)] of all residences, it usually

requires a control center to coordinate the residences for
the dual update. To perform the dual update (22) in afully
decentralizedfashion, we alternatively employ the consensus-
subgradient method [33]. In this method, each residenceh
maintains a set of local copies ofλ(t;n), t = 1, . . . , T ,
denoted byλ(h)(t;n), t = 1, . . . , T on its own, and locally
updates them according to the subgradient ofΦ(h)(λ):

ν(h)(t;n) = λ(h)(t;n)+

cn

(

N
∑

i=1

E[D
(h)
i (t;n)] + E[U (h)(t)]−

P (t)

H

)

(23)

for t = 1, . . . , T . Note that, in (23), only the local information
about residenceh is used, in addition to the bulk power
purchaseP (t) broadcasted by the retailer. Since the desired
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subgradient update (22) is the average of (23) over allh =
1, . . . , H , the second step in the consensus-subgradient method
[33] is that each residenceh exchanges with its connecting
neighbors aboutν(h)(t;n) so as to achieve a consensus on
λ(t;n+1). More precisely, residenceh obtainsλ(h)(t;n+1)
by

λ(h)(t;n+ 1) = P
{

fψ(ν(j)(t;n), j ∈ {h} ∪ Nh)
}

(24)

for t = 1, . . . , T , where Nh denotes the index set of the
neighbors that can communicate with residenceh, f(·) is an
averaging consensus function (e.g., [33]

f(ν(j)(t;n), j ∈ {h} ∪ Nh) =
∑

j∈{h}∪Nh

[W ]h,jν
(j)(t;n),

whereW is anH by H mixing matrix), and the superscript
ψ indicates that the averaging consensus step is repeated for
ψ times.

The convergence properties of the consensus-subgradient
method has been studied in [33]. Roughly speaking, the dual
iteratesλ(h)(t;n + 1) for all h asymptotically converge to
each other with a discrepancy no larger thanǫ1 > 0, and the
corresponding dual objective value in (21) also asymptotically
approaches the optimal value with a deviation no more than
ǫ2 > 0, where bothǫ1 andǫ2 are small positive numbers and
decrease withψ. This implies that, if the number of consensus
stepsψ is sufficiently large, the consensus-subgradient method
converges to the optimal solution of (21). In computer simu-
lations, we find that a small number ofψ (e.g.,ψ ≤ 15) is
sufficient for achieving good convergence performance.

Monte Carlo method for estimating
∑N
i=1 E{D

(h)
i (t;n)}:

In order to perform the dual update (23), each resi-
dence h has to compute the expected scheduled load
∑N

i=1 E{D
(h)
i (t;n)}, t = 1, . . . , T , associated with the control

policy {µ
(h)
i,t (·;n)}

T
t=1, i = 1, . . . , N . While it is difficult to

obtain this expected power load analytically, one can estimate
it through the Monte Carlo method [23]. In particular, the
HEM unit in residenceh can repeatedly generate realiza-
tions of appliance requestst(h)i,1 , t(h)i,2 , . . . (according to the

customer’s usage probabilitiesp(h)i (t) andγ(h)i,m(t)), followed

by applying the optimal control policy{µ(h)
i,t (·;n)}

T
t=1, i =

1, . . . , N, at iterationn; this outputs a simulated scheduled
load profile

∑N
i=1D

(h)
i (t), t = 1, . . . , T . The HEM unit

repeats this simulation multiple times, each of which outputs
a scheduled load profile

∑N
i=1D

(h)
i (t), t = 1, . . . , T . By

averaging
∑N

i=1D
(h)
i (t), t = 1, . . . , T , over all the simulated

realizations, residenceh can use this sample average as an
estimate of

∑N
i=1 E{D

(h)
i (t;n)}, t = 1, . . . , T . Note that the

computations mentioned above all can be implemented for
each appliance and for each realization in a parallel manner.

We summarize the decentralized stochastic optimization
algorithm in Algorithm 1. Three remarks regarding Algorithm
1 are in order:

Remark 2 We should emphasize that the above optimization
method for (21) can be done in anoff-line fashion since solving
(21) uses only the statistical information of customers (i.e.,
p
(h)
i (t), γ

(h)
i,m(t)). As a result, we only need to perform the

Algorithm 1 Decentralized stochastic optimization algorithm
for (14)

1: Input an initial set ofλ(h)(t; 0), t = 1, . . . , T , at residence
h, for all h = 1, . . . , H .

2: Setn = 0.
3: repeat
4: for h = 1, . . . , H do
5: 1) Given{λ(h)(t;n)− πs(t)}

T
t=1, residenceh solves

(19) by the MDP method in Section III-A to
obtain the optimal control policy of appliances
{µ

(h)
i,t (·;n)}

T
t=1, i = 1, . . . , N .

6: 2) Residenceh applies the instantaneous con-
trol policy {µ

(h)
i,t (·;n)}

T
t=1, i = 1, . . . , N , and the

Monte Carlo method to estimate the expected load
∑N

i=1 E{D
(h)
i (t;n)}, t = 1, . . . , T.

7: 3) Residenceh obtainsν(h)(t;n) by (23).
8: 4) Residenceh exchangesν(h)(t;n) with its connect-

ing neighbors for updatingλ(h)(t;n+ 1) by (24).
9: end for

10: n = n+ 1
11: until the predefined stopping criterion is satisfied.
12: All residences respectively apply the running-averaged

control polices in (25) foron-line (real-time) scheduling.

decentralized optimizationonce for each look-ahead horizon
T . The associated optimal control policy of appliances can
then be applied to the real-time scheduling process. Note that
this is very different from the model predictive CEC method
in [28] where distributed optimization has to be carried out
T − 1 times. Therefore, the proposed Algorithm 1 has a much
reduced computation and communication overheads for the
CoHEM network. We should also mention that Algorithm
1 works well under the assumption that the retailer has
reasonably accurate estimates of the real-time balancing prices
{πs(t)}

T
t=1 and{πp(t)}Tt=1.

Remark 3 Since the proposed approach is based on
the dual optimization (21), the primal control policy
{µ

(h)
i,t (·;n)}

T
t=1, i = 1, . . . , N , obtained at each iterationn,

may not converge as well as the dual variables{λ(h)(t;n)}Tt=1.
In that case, following the same spirit as in [34], [35], one can
alternatively use the running averaged policy

round

{

1

n

n
∑

ℓ=1

µ
(h)
i,t (X; ℓ)

}

∈ {0, 1} ∀X ∈ X
(h)
i , t, i, h,

(25)

(see Step 12 of Algorithm 1), where the operatorround(·)
rounds the averaged policy to its feasible region. We find
through simulations that this running-averaged policy works
well in practice.

Remark 4 The proposed method is suboptimal compared to
the original CoHEM design problem (9) since it is optimizing
the lower-bound problem in (18), and (18) and its Lagrange
dual in (21) have a non-zero duality gap in general [30],
[31]. The suboptimiality can be measured as follows. Let us
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denote the optimal objective value of (9) byf⋆p , denote that
of the lower-bound problem (18) byf⋆l , and denote that of
the dual problem (21) byf⋆ld. Then we havef⋆p ≥ f⋆l ≥ f⋆ld
by weak duality. Suppose that the running-averaged control
policy in (25) corresponds to an empirical primal objective
value f̂p(n) ≥ f⋆p for (9) at iterationn, and the averaged
dual iterates

∑H
h=1 λ

(h)(t;n)/H , t = 1, . . . , T, correspond
to an empirical dual valuef̂ld(n) ≤ f⋆ld for (21). The
normalized approximation gap between̂fp(n) andf⋆p can be
upper bounded as

f̂p(n)− f⋆p
f⋆p

≤
f̂p(n)− f̂ld(n)

f̂ld(n)
∀n, (26)

where the right hand side term is the empirical duality gap
which can be evaluated numerically and will be examined in
Section IV-D.

C. Extensions

In this subsection, we discuss two interesting extensions of
the proposed CoHEM design.

1) Joint power procurement and CoHEM optimization:
As we mentioned in Remark 2, the proposed approach opti-
mizes the CoHEM scheduling in an off-line manner. Therefore,
it is possible to optimize the CoHEM scheduling for the next
day and determine the power bid{P (t)}Tt=1 jointly5, provided
that the aggregator can accurately estimate the locational
marginal price (LMP) in the day-ahead wholesale market and
the real-time prices{πs(t)}Tt=1 and {πp(t)}Tt=1 beforehand.
Note that the two problems have different time scales – the
power procurement is in the day-ahead market where the
retailer submits bidsB(1), . . . , B(24), for 24 hours of the next
day; while the CoHEM scheduling is for the real-time market
where the unit of (discrete) time is usually in minutes. For ease
of illustration, let us assume that sampling time interval in real
time is 15 minutes. ThenP (t) = B(⌈t/4⌉) for t = 1, . . . , 96.
Let Cb,ℓ(B(ℓ)) denote the (convex) cost for the power bid at
hour ℓ, ℓ = 1, . . . , 24. By addingCb,ℓ(B(ℓ)) to the real-time
cost in (8), the total cost of the retailer is given by

Cost=
96
∑

t=1



πs(t)

(

B(⌈t/4⌉)−

H
∑

h=1

E[L
(h)
total(t)]

)+

+πp(t)

(

H
∑

h=1

E[L
(h)
total(t)]−B(⌈t/4⌉)

)+


+
24
∑

ℓ=1

Cb,ℓ(B(ℓ)),

(27)

and the associated joint power procurement and CoHEM
scheduling problem can be formulated as

min
B(ℓ)≥0,ℓ=1,...,24,

s
(h)
i,1 ,s

(h)
i,2 ,...∀ i,h

Cost function in (27)

s.t. (9b) and constraints in (14b) to (14d). (28)

5If the hour-ahead market is available, then the retailer canalso jointly
determine the CoHEM scheduling and the power bid for the nexthour. Here,
we illustrate the joint design problem by assuming the day-ahead market only.

By following the same reformulation steps and dual decompo-
sition technique in (17) to (21), we can obtain the dual problem
of (28) as

max
λ(t),

t=1,...,T

{

H
∑

h=1

Φ(h)(λ) + Ψ(λ)

}

s.t. 0 ≤ λ(t) ≤ πs(t) + πp(t) ∀t = 1, . . . , T, (29)

whereΦ(h)(λ), similar to (21), is given by

Φ(h)(λ) =

min
s
(h)
i,1 ,s

(h)
i,2 ,...

T
∑

t=1

(λ(t) − πs(t))

(

N
∑

i=1

E

[

D
(h)
i (t)

]

+ U (h)(t)

)

s.t. constraints in (14b) to (14d), (30)

andΨ(λ) is given by

Ψ(λ) =

min
B(ℓ)≥0,
ℓ=1,...,24

24
∑

ℓ=1

Cb,ℓ(B(ℓ))−
96
∑

t=1

(λ(t) − πs(t))B(⌈t/4⌉). (31)

One can see from (29) that the optimization ofΦ(h)(λ),
h = 1, . . . , H , andΨ(λ) are completely separable, and thus,
the inner primal minimization of (29) can be carried out in a
fully parallel manner. In particular, (30) can be solved by the
MDP method in Section III-A, while (31) is a convex problem
which can be solved by off-the-shelf convex solvers [36]. The
only difference from (20) is that either an aggregator or one
of the customers may need to be in charge of solving (31).
Then the joint design problem (27) can be handled in a similar
decentralized fashion as Algorithm 1. Simulation results to be
presented in the next section will show that this joint power
procurement and CoHEM scheduling can further reduce the
overall cost of the retailer.

2) Extension to general convex cost functions:In some
cases, the real-time cost function can be more complicated
than that in (8) [18] . The proposed CoHEM design problem
(9) and Algorithm 1 can be extended to other general (convex,
increasing) real-time cost functions. To illustrate this,let us
rewrite (14) as follows

min
s
(h)
i,1 ,s

(h)
i,2 ,...

∀ i,h

T
∑

t=1

{

Cs,t

[

(

P̂ (t)−
H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]

)+
]

+ Cp,t

[

(

H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]− P̂ (t)

)+
]}

s.t. constraints in (14b) to (14d), (32)

whereCs,t[·] and Cp,t[·] denote the cost functions for buy-
ing additional power and absorbing extra power at timet,
respectively; they are assumed to be convex and increasing.
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By introducing the two slack variables

z(t) =

(

H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]− P̂ (t)

)+

∀t, (33)

y(t) =

(

P̂ (t)−
H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]

)+

∀t, (34)

one can write (32) as

min
s
(h)
i,1 ,s

(h)
i,2 ,...

∀ i,h

T
∑

t=1

{

Cs,t[z(t)] + Cp,t[y(t)]

}

(35a)

s.t. constraints in (14b) to (14d),

z(t) ≥ 0, y(t) ≥ 0, ∀t,

z(t) ≥
H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)]− P̂ (t) ∀t, (35b)

y(t) ≥ P̂ (t)−
H
∑

h=1

N
∑

i=1

E[D
(h)
i (t)] ∀t. (35c)

Similar to (20), one can show that the dual problem of (35)
has a separable inner minimization part, but has two additional
minimization subproblems. These two subproblems can be
handled by an aggregator or one of the voluntary residences.
Moreover, the dual variables associated with constraints (35b)
and (35b) can be updated by the consensus projected subgradi-
ent method, analogous to Algorithm 1. The detailed derivations
are omitted here.

IV. SIMULATION RESULTS

Extensive simulation results are presented in this sectionto
examine the performance of the proposed CoHEM architecture
and Algorithm 1.

A. Simulation Setting

We consider a scenario where there areH residential
units, with 4 deferrable appliances in each residence. The
optimization horizon is set to96 (T = 96) which corresponds
to a whole day with 24 hours and 4 quarters for each hour.
The four controllable appliances considered are respectively
washing machine, dish washer, tumble dryer and PHEV, all
assumed to have a single operation mode and a single power
profile for simplicity. The load profiles of the first three
appliances are obtained according to the discrete load models
in [25, Table B1]; the load profile of PHEV is set to be
constant when on, with an instantaneous power consumption
of 3 kW, and a working duration uniformly generated between
1 to 6 hours. We follow the synthetic method proposed in
[25] to generate the request probabilitiesp(h)i (t) for the first
three appliances in each house. For the PHEV, the request
probability is set to 0.8 for three times that are uniformly
distributed between 8 am and 12 pm, 5 pm and 0 am, and 0
am and 2 am, respectively. The deadline constraints for the
washing machine and dish washer are uniformly generated
between 15 minutes to 2 hours, and for the tumble dryer and
PHEV, they are generated uniformly between 15 minutes to 3
hours. The uncontrollable loadU (h)(t) is contributed by the

other 14 appliances listed in [25, Table B1] and is generated
following the synthetic method in [25]. We assumed that each
residenceh can accurately estimateU (h)(t), for all h.

If not mentioned specifically, the setting of Algorithm 1 is
as follows. The initial valueλ(h)(t; 0) is set toπs(t)+πp(t)

2 for
all t = 1, . . . , 96, andh = 1, . . . , H ; the step sizecn is set to
5/(n+5); the number of averaging consensus stepψ is set to
15; 100 randomly generated realizations are used to estimate
∑N
i=1 E{D

(h)
i (t;n)} in the Monte Carlo method. Algorithm 1

is run for a predetermined number of iterations equal to 200.
The model predictive CEC method in [28, Algorithm 1 &

Algorithm 2] is also simulated. The initial values, step size,
and number of averaging consensus steps of [28, Algorithm
2] are set to the same values as Algorithm 1. The maximum
number of iterations of [28, Algorithm 2] is set to 150. Note
that, according to [28, Algorithm 1], [28, Algorithm 2] has to
be carried out 95 times, from time 1 to time 95.

For ease of elaboration, we set both pricesπs(t) andπp(t)
to one for allt = 1, . . . , 96. In this case, the real-time cost in
(8) reduces to the total deviation between the aggregate load
∑H
h=1 L

(h)
total(t) and the day-ahead power purchase{P (t)}Tt=1

Deviation Cost=
T
∑

t=1

∣

∣

∣

∣

P (t)−
H
∑

h=1

L
(h)
total(t)

∣

∣

∣

∣

. (36)

The day-ahead bits{P (t)}Tt=1 are generated as follows.
Given the usage probabilities of customers, we use the Monte
Carlo method to generate 50 realizations of aggregate unsched-
uled deferrable loads

∑H
h=1

∑N
i=1 L

(h)
i (t), t = 1, . . . , 96 (see

(1)), by which an estimate of
∑H
h=1

∑N
i=1 E[L

(h)
i (t)], denoted

by L̂(t), is obtained by taking the sample average. The day-
ahead bid{P (t)}Tt=1 used in the simulations is obtained by

P (t) =
1

16

16
∑

ℓ=1

L̂(16(⌈t/16⌉ − 1) + ℓ) +
H
∑

h=1

U (h)(t)

for t = 1, . . . , 96. Note that in the first term of the above
equation, we applied a peice-wise averaging for every 16-
sample interval in order to emulate the effects of generation
ramping constraints and that the retailer may have imperfect
statistical information of customers and renewables6.

B. Selfish HEM v.s. CoHEM

Since there is no existing work that considers the same
network utility and probabilistic models in this paper, we
focus on comparing the proposed CoHEM architecture and
Algorithm 1 with the selfish HEM system (6) and the model
predictive CEC method in [28] . Figure 3 shows the simulation
results of the unscheduled load and the load scheduled by
selfish HEM systems, in the presence of 100 residential units
(H = 100). All the presented results are averaged over 50
randomly generated request realizations. In the simulation of
selfish HEM, the residences are given a price signal that
is inversely proportional to the power bid of the grid, i.e.,
π(t) = 1/P (t), in order to motivate the HEM systems in

6The way we generate the day-ahead bid may not always be satisfactory
from a practical point of view; however it is sufficient for one to assess and
compare the scheduling capabilities of the developed DR algorithms.
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Fig. 3: Simulation results of the unscheduled power load
and the power load scheduled by selfish HEM systems. The
number of residencesH is set to 100.

the residences to move their loads to the high-supply period.
One can see from Figure 3 that the selfish HEM design
successfully moves the load to the high-supply region, but
that also causes significant rebound peaks. The aggregate
deviation in (36) corresponding to the unscheduled load is
2823.3 kW, but the deviation corresponding to selfish HEM
increases to4350.4 kW. This result shows that the selfish HEM
without coordination between the neighborhood would result
in significant power imbalances and consequently considerable
real-time cost to the retailer.

Figure 4(a) displays the power load scheduled by the model
predictive CEC method in [28, Algorithm 1 & Algorithm 2].
By comparing Fig. 4(a) with Figure 3, one can observe that the
scheduled aggregate load by the model predictive CEC method
[28] can follow the power supply, and the corresponding
deviation cost dramatically decreases to1549.8 kW. Figure
4(b) presents the power load scheduled by the proposed
Algorithm 1. As one can see from this figure, Algorithm 1
performs comparably as the model predictive CEC method in
[28], but it has a slightly higher average deviation of2002.7
kW. Compared to the deviations of the unscheduled loads
(2823.3 kW) and the selfish HEM system (4350.4 kW) shown
in Fig. 3, Algorithm 1 yields around29% and53% reductions,
respectively. We should emphasize again that Algorithm 1
has a much lower communication overhead than the model
predictive CEC method in [28]. In particular, according to
the setting described in Section IV-A, Algorithm 1 requires
a total of 200 × 15 = 3000 message exchanges; whereas
the model predictive CEC method in [28] requires at most
150 × 15 × 95 = 213750 message exchanges. Figure 4(c)
further shows the power loads scheduled by Algorithm 1 and
the selfish HEM system in a neighborhood of 400 customers
(H = 400). Again, we see that the proposed CoHEM archi-
tecture and Algorithm 1 can significantly improve the power
balancing and real-time cost of the aggregator.

To further look into how the number of residences affects
the performance of the proposed CoHEM architecture, we list
in Table I the normalized average deviation cost for different
numbers of residences. The results are obtained by testing
the associated scheduling policy output by Algorithm 1 over
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(a) Model predictive CEC method in [28] (H = 100)
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(b) Algorithm 1 (H = 100)
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Fig. 4: Simulation results of the loads scheduled by the model
predictive CEC method in [28] and Algorithm 1.
100 randomly generated request realizations. We see from
Table I that there is a significant drop of the normalized
deviation cost from54.5 kW to 22.4 kW when the number of
residences increase from 5 to 50; afterH ≥ 50, the normalized
deviation costs remain relatively constant, showing that the
performance of Algorithm 1 is quite robust against the size of
the neighborhood.

C. Robustness of CoHEM

While all the residences in the neighborhood should coop-
eratively participate in the proposed CoHEM program, it is
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TABLE I: Normalized average deviation cost (in kW) versus
number of residences.

H 5 10 50 170 210 400
Deviation cost/H 54.5 46.4 22.4 21.4 22.9 20.6

∗ The results are obtained by averaging over 100 simulation realizations.

0 20 40 60 80 100
2000

2500

3000

3500

4000

4500

Number of non−cooperative residences

D
ev

ia
tio

n 
co

st
 (

kW
)

 

 

CoHEM deviation cost with
non−cooperative residences
Deviation cost w/o scheduling

Fig. 5: Simulation results of deviation cost of Algorithm 1
in the presence of non-cooperative customers; the simulation
setting is the same as that for Fig. 4(b).

possible that there are some non-cooperative residences who
selfishly keep using the selfish HEM policy. Here we examine
how the number of such non-cooperative residences affect the
performance of the proposed CoHEM architecture. Figure 5
presents the deviation cost in (36) for different number of non-
cooperative residences. The simulation setting is the sameas
Fig. 4(b). We can see from this figure that the deviation cost of
the aggregator increases when there are more non-cooperative
residences. However, compared to that without scheduling (the
green dashed line), we observe that the aggregator can still
make a profile out of the CoHEM program as long as there are
more than50% of residences in the neighborhood willing to
follow the CoHEM scheduling policy. This result demonstrates
the robustness of the proposed CoHEM design against non-
cooperative residences.

D. Convergence and Complexity

In this subsection, we examine the convergence behavior of
Algorithm 1 (see Remark 4) and its computation times. Figure
6(a) displays the empirical objective valuêfld(n) of the dual
problem (21) versus the iteration number, for various numbers
of residences in the neighborhood. Figure 6(b) shows the
corresponding normalized duality gap as discussed in (26).We
can see from these figures that, within 150 iterations, the dual
updates of Algorithm 1 as well as the normalized duality gap
converge asymptotically. The normalized duality gap shownin
Figure 6(b) shows that the gap between the empirical objective
valuef̂p(n) of the original problem (9) and̂fld(n) of the dual
problem (21) could be large; however, this does not necessarily
imply that the CoHEM scheduling solution obtained from
Algorithm 1 is far away from the optimal solution of problem
(9), i.e., the gap between̂fp(n) andf⋆p is not necessarily large.
To further examine this aspect, we conduct a simulation where
we setH = 2 and N = 1 (two residences and each of

TABLE II: Average computation time (in seconds) of Algo-
rithm 1 versus number of residences.

H 50 90 170 210 400
Tc/ite 79.367 126.258 272.612 330.771 562.284

Tc/ite/H 1.587 1.402 1.603 1.575 1.407

∗Tc/ite stands for the average computation time per iteration andTc/ite/H
represents the computation time per iteration and per residential unit.

the residences has only one appliance). Under this setting,
we are able to apply the MDP technique (as discussed in
Section III-A) to exhaustively find the optimal control policy
for the CoHEM problem (9) and the corresponding optimal
objective value. In Fig. 6(c), we plot̂fp(n) and f̂ld(n) of
Algorithm 1 and also the optimal value off⋆p obtained from
the exhaustive MDP search. Specifically, at iteration 200, we
havef̂p(200) = 161.4 andf̂ld(200) = 116.7 while the optimal
objective value isf⋆p = 156.7. One can see from this figure
that, although there is a large gap betweenf̂p(n) and f̂ld(n),
f̂p(n) is actually close tof⋆p (with a normalized accuracy
0.029). While such inspiring result may not always hold true
for large-scale problems (i.e., whenH andN are large), the
evidenced results in Figures 3, 4 and 5 have demonstrated that
Algorithm 1 is practically effective for large scale scenarios
and can yield promising performance improvement for real-
time power balancing.

Table II lists the computation times (in seconds) of Algo-
rithm 1 for various numbers of residences in the neighborhood.
The algorithm was run on the Matlab platform using a com-
puter with a 4-core 2.6 GHz CPU and 12 GB RAM. Note
that while Algorithm 1 is a decentralized algorithm and the
computations involved for solving (19) and the Monte Carlo
method can be parallelized, they can only be implemented
sequentially in a computer. The first row of Table II shows
the average computation times per iteration (averaged over400
iterations) (Tc/ite) and the second row shows the computation
times per iteration and per number of residences (Tc/ite/H). It
is interesting to see thatTc/ite/H remains relatively constant
when H increases, demonstrating that Algorithm 1 is truly
scalable with the number of residences as long as a parallel
computation can be implemented.
E. Joint power procurement and CoHEM scheduling

In this subsection, we examine the performance of the
joint power procurement and CoHEM scheduling formulation
discussed in Section III-C. We consider the real-time deviation
cost in (36) and the following quadratic cost function for power
procurement

Cb,ℓ(B(ℓ)) = B2(ℓ)πLMP(ℓ), ℓ = 1, . . . , 24,

whereπLMP(ℓ) denotes the LMP for hourℓ. In the simula-
tion, the LMP{πLM(ℓ)}24ℓ=1 are obtained from https://www2.
ameren.com/RetailEnergy/realtimeprices.aspx, on day June 21,
2012. We put more weights on mitigating the power imbalance
by considering the following weighed cost

10
96
∑

t=1

∣

∣

∣

∣

B(⌈t/4⌉)−
H
∑

h=1

E[L
(h)
total(t)]

∣

∣

∣

∣

+
24
∑

ℓ=1

B2(ℓ)πLMP(ℓ).

(37)
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Fig. 6: Convergence curves of Algorithm 1.

As a comparison with the joint power procurement and
CoHEM scheduling design, we also simulate a scenario
where the retailer first obtains a power bid{B(ℓ)}24ℓ=1 sep-
arately, followed by performing CoHEM scheduling (Algo-
rithm 1) based on this power bid. In particular, the power
bid is predetermined by minimizing the cost in (37) with
∑H

h=1 E[L
(h)
total(t)] replaced by the aggregate (unscheduled)

power load
∑H

h=1

∑N
i=1 E[L

(h)
i (t)] (which can be estimated

through the Monte Carlo method. The uncontrollable loads
U (h)(t) are neglected here). The obtained power bid and
the corresponding CoHEM scheduled load (averaged over
50 appliance request realizations) are presented in Fig. 7(a),
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(a) Algorithm 1 with a predetermined power bid{P (t)}Tt=1.
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Fig. 7: Performance of joint power procurement and CoHEM
scheduling for a scenario with 130 residences (H = 130).

under the same simulation setting as that in Fig. 3. The
associated cost for power procurement

∑24
ℓ=1B

2(ℓ)πLM(ℓ)

and the average real-time deviation costE[
∑96

t=1 |B(⌈t/4⌉)−
∑H
h=1 L

(h)
total(t)|] are given by1685.0 and1874.4, respectively,

leading to a total cost of3559.4. The jointly optimized
power bid and the CoHEM scheduled load are shown in
Fig. 7(b). The corresponding cost for power procurement
∑24
ℓ=1B

2(ℓ)πLM(ℓ) and the average real-time deviation cost
E[
∑96

t=1 |B(⌈t/4⌉)−
∑H
h=1 L

(h)
total(t)|] are given by1111.0 and

1427.4, respectively, which results in a lower total cost of
2538.8 (28.6% reduction compared to3559.4 in Fig. 7(a)). We
see that the joint design can yield lower costs for both real-
time deviation and power procurement. We should emphasize
here that the joint power procurement and CoHEM scheduling
design requires accurate estimates for the LMP{πLM(ℓ)}24ℓ=1

in the day-ahead market as well as for the real-time prices
{πs(t)}Tt=1 and {πp(t)}Tt=1 for the next whole day. Further
investigations taking into account possible price estimation
errors are needed in the future.

V. CONCLUSIONS ANDFUTURE DIRECTIONS

In the paper, we have presented a CoHEM architecture that
coordinates the home energy scheduling of multiple residences
in order to reduce the real-time power balancing cost. We first
proposed a simple MDP approach for modeling the deferrable
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appliances and solving the individual HEM design problem.
Then, we presented a decentralized algorithm (Algorithm 1)
for handling the CoHEM design problem. The presented sim-
ulation results have demonstrated that the proposed CoHEM
design as well as its decentralized algorithm can effectively
decrease the real-time power balancing cost of the retailer.

In the future, we will extend the proposed load model
and decentralized algorithms to thermostatically controlled
appliances (e.g., heating, ventilating and air conditioning
(HVAC) [9]). In particular, since HVAC has much shorter
duty cycles compared to the non-interruptible loads, it canbe
scheduled myopically to reduce the uncertainty onP̂ (t) due
to imperfect information about the renewable energy sources
and uncontrollable loads. In addition, it would be interesting
to integrate the CoHEM with storage device control as well as
distributed power generation control [37], and study this joint
power flow control and CoHEM design problem form both
economic and algorithmic aspects.
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