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Abstract—It is anticipated that an uncoordinated operation software to manage the demands of residential and commer-
of individual home energy management (HEM) systems in a cial customers. Consequently, there is an extensive titeza
neighborhood would have a rebound effect on the aggregate emerging on home energy management (HEM) systems, e.g.,

demand profile. To address this issue, this paper proposes a . e : . .
coordinated home energy management (CoHEM) architecture [7]-{10], dedicated to finding optimal scheduling algonith

in which distributed HEM units collaborate with each other ~for the household appliances, based on the price signals,
in order to keep the demand and supply balanced in their appliance load profiles, job deadlines, etc., with the gdal o
neighborhood. Assuming the energy requests by customers &r minimizing the electricity bill.

random in time, we formulate the proposed CoHEM design as  ag gpserved in [11], if all the customers in a neighborhood

a multi-stage stochastic optimization problem. We propos&ovel . . .
models to describe the deferrable appliance load (e.g., Ritin are given the same dynamic price, the HEM systems that are

(Hybnd) Electric Vehicles (PHEV))’ and app|y approxima’[ion |nd|V|dUa”y Operated by eaCh customer W|” Simultaneyusl
and decomposition techniques to handle the considered dgsi schedule the load to the low-price period, and, conseqyentl

problem in a decentralized fashion. The developed decentlized g new “rebound” peak may occur. Another concern is that
CoHEM algorithm allow the customers to locally compute ther dynamic prices may render the demand more volatile and less

scheduling solutions using domestic user information and ith . . - o S
message exchange between their neighbors only. Extensivens- predictable, causing serious stability and reliabilityuiss for

lation results demonstrate that the proposed CoHEM architeture  the grid if not handled properly [12]. In this paper, we aim
can effectively improve real-time power balancing. Extenion to  to blur the boundaries between DLC and dynamic pricing

joint power procurement and real-time CoHEM scheduling is  strategies by proposing an architecture through which the
also presented. HEM units inside the territory of an aggregator/retailen ca
cooperate with each other to keep wholesale demand of the
|. INTRODUCTION retailer balanced with the available generation supplyi¢tvh

Demand side management (DSM) techniques have bdBight be the day-ahead/hour-ahead bid plus locally geeerat
employed to make the inelastic demand for electricity flefenewable resources).
ible in order to achieve the goal of integrating intermitten Related works: Several existing works have studied
renewable energy resources in the power grid [1], [2]. Eagst Neighborhood-wise collaborative energy management giiou
DSM techniques can be divided into two categories— Diredlifferent models and optimization goals are considered. Fo
load control (DLC) and dynamic pricing. DLC mechanism&xample, in [11] a heuristic algorithm is proposed for sched
[3], [4] allow electric utilities to conduct centralized mand N9 the load of customers in a neighborhood to meet a
management on certain interruptible appliances, e.gujrigr Maximum power profile specified by the retailer. In [13]-[15]
off air conditioning systems for short periods of time, télistributed energy management algorithms, based on game-
maintain demand and supply balance during peak hours. }goretic approaches, were proposed to minimize the cost of
the contrary, dynamic pricing schemes [5], [6] distribute the retailer or the peak-to-average ratio of the aggregaig. |
control signal to the customers that reflects the congestion The works in [16], [17] and [18] proposed distributed energy
the grid, counting on the assumption that individual custsn Management algorithms that maximize the social welfare by
will modify their demands accordingly. Since a manual cohtr Minimizing both the costs of retailer and customers. Thekwor
in response to ever-changing price signals is infeasible, dn [19] considered simultaneous procurement of power in the

namic pricing solutions require intelligent energy mamagat day-ahead market and real-time load scheduling to maximize
the social welfare. However, most of the literature citedwab
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implemented in a centralized fashion and cannot guarahtee of the proposed CoHEM architecture and the decentralized
deadline constraints for customers. scheduling algorithm.

Contributions: In this paper, we propose a coordinated Synopsis:In Section Il, we first present the load models
HEM (CoHEM) architecture where the HEM units in aof deferrable appliances, and the individual (selfish) HEM
neighborhood collaborate to minimize the cost of their aglesign problem. Secondly, we present the proposed CoHEM
gregator/retailer in the real-time balancing market. &mi architecture and the associated CoHEM design formulation.
to previous works [8]-[10], [15], we assume that the retailén Section Ill, an MDP method for solving the selfish HEM
broadcasts dynamic pricing information to the residenaed, design problem is proposed. Then, based on this MDP method
that the associated HEM systems optimize the schedulingasfd decomposition techniques, we propose a decentralized
their local appliances. Unlike [8]-[10], and similar to |13 CoHEM algorithm. Two extensions of the proposed CoHEM
[16]-[19], the CoHEM customers will not be selfish. One oflesign are also discussed in the last subsection. Extensive
the key differences of our model compared to [11], [13]-[i$9] simulation results are presented in Section IV. Finallg th
in the choice of the network utility and in the effective gnig  conclusions and future directions are included in Section V
and service policy applied to the HEM users. Specifically,
in our model, the HEMSs, by cooperating, do not pay morédl. APPLIANCELOAD MODEL AND PROBLEM STATEMENT
than their selfishly optimized cost and do not experiencetow

quality of service. The network utility of the COHEM is chose ¢ yeferrable appliances and the individual HEM problem

to be equal to the cost of deviating in real time from the bulf jjation. The proposed CoHEM architecture is presented
power purchase of the retailer in the day-ahead and houxebhpn the third subsection.

markets, computed using the locational marginal price$. [22

_A_nother major diﬁerenqe compared to [13], [16}-[19], b%. Multi-Mode Deferrable Appliance Load Model
similar to [10], [11], [15], is that our work focuses on appli i
ances that are flexible in deferring their operating timeg,, e e consider the case where there dvedeferrable ap-
PHEV, washing machine, dish washer and tumble dryer efdiances in each residence. _The ap_phances are assumed to
(which are usually non-interruptible in power consumpjionhave kr!own power consumption profiles, and once are turned
Moreover, in order to be foresighted, we take into accoufifl» their operation cannot be interrupted, e.g., PHEV, dish
the customers’ probabilistic behavior by assuming that tigasher, tumble dryer etc. The HEM system in the house is
customers randomly submit requests to their HEM to ug#owed to defer their schedules within the deadlines $igeci
an appliance. Given the statistical information of custmanePy the customers. Specifically, given a request submitteitidy
and quality of service constraints (i.e., scheduling dead| customer, the HEM unit has to decide to turn on the appliance
constraints), we formulate the proposed CoHEM design profdmediately or defer the task by waiting in a queue. The
lem as a multi-stage stochastic optimization problem [23q§cision process is repeated until the HEM system chooses
[24], aiming at minimizing the expected real-time powel® activate the appliance or until the maximum delay time is
unbalancing cost of the retailer. The stochastic formatati Féached.
can provide optimal control policies which can be used for In the paper, we assume that the appliance may have multi-
real-time appliance scheduling by exploiting both custene Ple operation modes, each with a different power consumptio
statistical and real-time request information. profile, and they are decided by the customer. For example,

To this end, we first present a Markov decision procegge washing machine may have one mode for colored clothes
(MDP) formulation that can efficiently solve the selfish HEMtNd one mode for white clothes. We assume that appliance
design problem. Subsequently, we show that the MDP metho#as M/; modes, and each mode specifies a (discrete-time)
can be used to developdecentralized scheduling algorithmPower load profiley; ,,,(¢), t = 1,. .., Gim, WhereGi, > 0
for efficiently handling the proposed COHEM design probs the maximum job length o .,(t). The times at which
lem. It is known that a centralized computation require fulne customer submits a request for an appliance are random.
knowledge of all the statistical and real-time informatiof? Particular, at each time, appliancei will be requested
of the customers, and moreover, the required computatioR¥l the customer with probability;(¢) € [0,1], and, once
complexity increases with the number of residences and thdS requested, it is with probability; () that modem
number of controllable appliances. In view of this, a distted  Will be chosen ¥~ ,.(t) = 1), wheret = 1,...,T,
implementation algorithm, that can decompose the origin&ith 7' > 0 denoting the maximum look-ahead time horizon.
problem into parallel subproblems with smaller problenesjz Information aboup;(t) and~; . (t) can be estimated through
is of great interest. Such a distributed algorithm can K¥Be usage history of customers; see, e.g., [25], [26] fateel
deployed in the neighborhood in a fully decentralized fashi Papers. Suppose that requests for turning on appliaaceve
where each of the residences computes its scheduling@olu@t timest; 1,t;2,... € {1,...,T}. Moreover, letd;(t; ) €
locally using domestic information and by communicatingl;---,M;} denote the operation mode chosen at timge.
with its neighbors only. Since no explicit information albouThen, without scheduling, the power load due to appliance
customers’ electricity usage is exchanged and submittéueto Would be
retailer, this decentralized method also preserves cus®m o0
privacy with respect to their appliance usage. Extensivaisi L;(t) = Zgiygi(tw)(t —tix) Vi (1)
lation results will be presented to demonstrate the effeatss k=1

In the first two subsections, we present the load model



The requested appliance tasks may be queued and scheduléh important aspect for the multi-stage stochastic formula
to operate later. Lets; 1, s;2, ... € {1,...,T}, be the tion (6) is that, according to the stochastic optimizatioadry
scheduled times determined by the HEM system for turniragmd dynamic programming techniques [23], [24], we can find
on appliance, wheres; ;, > t; . for all k. Then, the scheduled a so called optimatontrol policy for {six} that, based on

power load of appliancéis given by the customer’s specific real-time requests, can schedele th
oo appliances in real time satisfying the real-time schedulin

Di(t) = Zgivei(ti,k)(t — s;x) Vt. (2) constraints (6¢) and (6d) while minimizing the expectedt cos

k=1 in (6a). For the HEM design problem in (6), however, it

Taking into account the power load of the uncontrollabl§ intrinsically too difficult to obtain such optimal policy

appliances, denoted b (), the aggregate power load of ats _current form. I|_’1 Section IlI-A, we _V\_/iII show that an
residence can be expressed as optimal control policy of (6) can be efficiently obtained by

reformulating (6) as a Markov decision process [23].

N
Liotar(t) = U(t) + ZDi(t)7 t=1....,T. @) c. Proposed CoHEM Design
= Dynamic prices{r(t)}_, are designed by the retailer so
B. HEM Design Problem that the customers would move their load to use cheaper
Let 7(t), t = 1,...,T, be the dynamic electricity prices electricity and mitigate congestion in the grid. As menédn
given by the retailer. The HEM targets to schedule the cotft the introduction, due to the rebound peaks, the aggregate
trollable appliances such that the expected total elégtigost power load from multiple HEM-based customers may not

of the customer, i.e., necessarily follow the bulk power purchase of the retadad
T the resultant real-time power imbalance will increase thet ¢
ZE{W(t)Ltotal(t)} (4) of th(.a.retalletr in thg wholesale re.al-t|me bglgnc_mg market
et Specifically, in addition to purchasing electricity in thayd

. L . ahead and hour-ahead markets, the retailer has to purchase
is minimized, whereE{-} denotes the expectation operator,

. : . . additional amount of energy in the real-time balancing rairk
The scheduling task is usually subject to constraints #fé&tat or pay the grid for absorbing the excessive energy that danno

the customer’s degree of comfort. In this work, we assume’ .- cumed. The profit of the retailer is roughly
that the customer will preassign a maximum tolerable delay '

for each appliance, and that the HEM system must not exceed Profit= B. — Costzr — CoSthg 4 )
the specified delay. In particular, we I&t,, > 0 denote the
maximum delay for mode: of appliance. Then the operating
times of applianceé have to satisfy

whereB, represents the total money paid by the customers for
their electricity usage, Cosiy 4 denotes the cost already paid
by the retailer in the day-ahead and hour-ahead markets, and
tik < Sik < tik + Cigi(tin) VE- (5) Costzr denotes the cost in the real-time market. As discussed,
e selfish HEM systems will potentially increase Ggst
ence it is desirable to coordinate the customers to reduce
Costgr3.
T N Let m,(t) be the price for buying energy from the real-
s mm Y E {”(t) (Z Di(t) + U(t)> } (63) time mapr(ket andr,(t) be the price for absorbing extra energy
V=l N t=1 =1 (if ms(t) < 0 then it implies that the retailer may sell
> , back the extra energy). Le®(t) be the bulk power already
s.t.Di(t) = Zgiv"i(ti,k)(t = i) Vist, (6b) purchased in the day-ahead :Elrzd hour-ahead markéts ihay
h=1 . also contain powers generated by local renewable sources,
tik < Sik < ik + Gioiin) Vi Ky (60) applicable). Moreover, assume that there are a total of
sk <max{T — G, 9,4, ,) tir} Vi,k, (6d) H residences/customers, each contributing the power load
Ogggzal(t) [see (3)] to the grid. The total real-time market cost
of the retailer Cosir is given by

Mathematically, the HEM design problem can be formulat {
as the followingmulti-stage stochastic optimization problem

where, in (6a), the expectation is with respect to the rand
arrival times{t; »}, random operation mode§;(t; )} and

t_he control _Va”ableisivk}' which are all based on th_e St_atls' 2By stochastic optimization [23], [24], a control policy isfenction of the
tical usage information of the customer. The constrain{§@) probiem states and is like a table that lists all the cornesjngy actions that the
and (6d), however, specify the real-time scheduling cairss. controller should follow for all possible states of the desh. Once a control

e . . ) . policy is obtained (e.g., by the dynamic programming teghes [24]), the
Specmcally, (GC) |mplles that the customer won't wait ImQ controller can control the appliance in real time by apmlythe action that

than the specified delag; ., in real time; while (6d) implies corresponds to the specific real-time state informationhef appliance. A
that all the requested tasks have to be finished beforefiifie control policy is said to be optimal if it minimizes the expett cost function

; ; . : of the considered problem.
they arrive before timé” — leei(ti,k)’ otherwise, they should 3The reduction in Cogfr implies that the retailer can make more profits,

be activated for service right after their arrivals and in turn the retailer may consider reducing the eletyriprrice of the
customers. Hence the CoHEM program is potentially econaliyibeneficial
INote that if (6d) is not imposed and §i0,(t; ) = Gio,t; ) the tothe cooperative customers from a long term perspective.
scheduler would not turn on the appliance until the end of hbgzon T, 4The real-time cost can be extended to general convex fursctaee Section
since it contributes no cost to the objective function in)(6a lI-C.
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the introduction section, our interest lies in a decerdeali
- H + scheduling algorithm. To this end, we present in SectioiBIII
Costrr :Z lrs (t) <p(t) _ Z ngt)al(t)> a suboptimal but efficient decentralized algorithm for Haed
t=1 h=1 (9), based on proper problem approximation and Lagrange
H + dual optimization techniques [27]. It will be shown that the
+ mp(t) (Z nggal(t) - p(t)> ] . (8) MDP method presented in Section IllI-A can be conveniently
h=1 employed by the proposed decentralized algorithm for com-
. : puting the load scheduling policy of each individual resicie
where ()" = max{z,0}. As incentives for the customersg; v ‘v interesting extensions of the proposed COHEM
to participate in the propoged CoHEM architecture, we P chitecture are presented in in Section IlI-C.
pose that 1) the retailer will charge the customers the same
amount of money as that optimized by their individual (sklfis Solving HEM Problen(6) by MDP

HEM system [i.e., (B)]; 2) the COHEM will maintain the In the subsection, we show how (6) can be efficiently solved
same scheduling deadline constraints specified by eacteof th an MDP formulation. Note that, for the HEM design

customers. In summary, the CoHEM customers would neith bl 6 f timizi i
have any financial loss nor would lose any degree of comfof{2P'em (6), we can focus on optimizing one appliance, say

The retailer, which presumably will have infrastructurestco appliancei, as follows

to cover, seeks to make a profit by minimizing Ggstunder ] T s

the strict deadline constraints. Hence, the actual degfee o, Hun ZE 7(t) Zgia‘gi(ti,k)(t_ Sik) (10a)
t=1 k=1

flexibility of the community customers affects the retaer

profit. Sttin <sip <tir+ <i7ei(ti,k) vk, (10b)
The proposed CoHEM design problem can be formulated sikp < max{T — Giygi(tiyk),ti,k} Vk. (10c¢)

as

According to the appliance model described in Section II-A,

T H + once the customer requests to activate an appliance, thie app

\(h)mifhl) ZE [ws(t) (P(t) - ZLEZt)al(t)> ance is either operated immediately or it waits in a queue to
Fi10® =1 h=1 be turned on later by the scheduler. We use the three vasiable

i,1°5,20
vV i,h

H + Sz(t) S {0,1,...,M1‘}, Wz(t) S {O,...,maxmzl_,__yM Gi,m}
+mp(t) [ ST L () — P(2) ©a) and Qi(t) € {0,1,...,maxpy=1 m(m} to denote the
he1 operation mode, the remaining job length and the remaining
maximum delay time for applianceat time¢. Moreover, we

N
stLP () =U™ (1) + > DM (t), Vh,t, (9b) usewu;(t) € {0,1} as a control variable that switches on and
o i=1 off the appliance at time.
constraints in (6b)6c), (6d) Vi, k, h, (9¢)  When all S;(t),W;(t) and Q,(t) are zero (ie.,

. o (Si(t), Wi(1),Qi(t)) = (0,0,0)), the appliance is idle,
where we use superscripth) h;[O denote  thenth resi and consequently:;(¢) = 0. Then it is with probability

. ( (h)
dence/customer; for example, ;. and s; represent the pi(t + 1)vi.m(t + 1) that the customer will request to activate
request arrival and task operating times of appliahae the i S d o dev. If i
hth residence. Similar to the selfish HEM design probleﬁ']lﬁ.pp lance at timet 1 and operate it in mode.. If appliance
(6), for the Co'HEM roblem (9), we aim to find an optima is called by the customer to operate in medgthen we have
' P weal ' PN .+ 1), Wit + 1), Qi(t + 1)) = (m, Gim, Gim)» and the

. (h) . .
control policy fOI’.{si,k} for_ aII. ki and h, n order 1o HEM system has to decide whether to activate the appliance
schedule the appliances satisfying the real-time needbeof brto queue the task by deciding(t+1) = 1 or us(t+1) = 0

customers while minimizing the expected real-time markﬁt the controller chooses to activate the appliance, then th

cost in (9a). Note that problem (9) is subject to the SaMpliance has to work foG;,, time slots consecutively,
scheduling constraints as (6) for each residence, mean; dz)wing its load profile ;m (1) Gim(Gim) (i ’

that the degrees of comfort of customers are preserved |
. . it + 1) = w(t+2) = - = ui(t + Gim) = 1). After
the CoHEM architecture. However, different from (6) whlcrﬁlhzt tt i)s witﬁ Eor:baLiIin-(t i é_( ++1)7_’ /)(t i C)J +1)

is solved by each individual residence independently, tl?ﬁat the appliance is called (for mode’) and goes back
CoHEM problem (9) and its associated scheduling policy ha\llg state (m’, Gy, Come); Otherwise (with probability
to be jointly optimized across all the residences in order tlo—p»(t+ G —’F 13’;"it’ gl(;gs ’back {0 staté0, 0, 0) (idle)

minimize the real-time market cost of the retailer. If, at state(m, Gy.m, Ci.m), the controller chooses to delay
the appliance; (¢ + 1) = 0), then the state moves {&; (¢ +

I1l. PROPOSEDSOLUTIONS FORHEM AND COHEM 2), Wit +2),Qi(t + 2)) = (m,Gim,Cim — 1) in the next

In this section, we present the detailed methods for solvitigne slot, and the HEM system needs to decide;ift + 2)
the HEM design problem in (6) and handling the proposesthould be one or zero. The decision process is repeated until
CoHEM design problem in (9). In Section IlI-A, we showthe HEM system chooses to turn on the appliance or until
that the HEM design problem (6) can be efficiently solvethe maximum delay time is reached. In both cases, the state
by reformulating it as a Markov decision process (MDP)noves to(m,G;., —1,0). An example of a 2-mode appliance
Regarding the CoHEM design problem (9), as discussed ifillustrated in Figure 1.
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Fig. 1: lllustration of the Markov process for modeling a ®ae deferrable appliance with/; = 2, G;1 = 4, (;1 = 3,
Gi2=2,Co2=1,pia(t) =py andp, 2(t) = py2. The triplets in the circles stand for the st&i® W, Q) of the appliance.

JZa0!

Let X;(t) = (Si(t), W;(t),Q:(t)) be a state vector, andl; is obtained, the controller can schedule the applianceah re
be the set that contains all possib¥ (¢)’s. Using the above time, following the policy given the real-time state status
Markov process model, the HEM design problem (10) can b¥;(¢) of the appliance.

rewritten as the following MDP: By dynamic programming (DP) [24]u;.(X;(t)) can be
obtained by considering the following backward recursive
H?)? ZE {7(t) (ui(t)gi,s,()(Gi,s,6) — Wit) + 1)) } equations
N, J(Xi(t)= min 7w (t)gim(Gim — Wilt) + 1)+
t:l,...,T w; (t)€{0,1}
St pi (X (1) = ui(t), (11a) Eg, (¢4 1){Je+1(X5(t + 1))}
Si (X (1), el(t +1)) s.t. Si(t) = m,
Xi(t+1) = [ Wi(X5(t), us(t), 0i(t + 1)) constraints in (11b)11c) (12)
Qi( X (1), ui(t), 0i(t + 1))

for all possible X;(¢t), t = 1,...,7 — 1. Specifically,
ve=1,....T, (11b) wit(X5(t)) is given by the optimal;(¢) of (12). The value of
1t (Si(t), Giom, Qi(1)) =1V t1>T — Gz sit)» (11€)  J,(X4(t)) is known as the cost-to-go function [24]. One can
where6;(t + 1) € {0,1,..., M} is a random variable with show that (12) can be classified into the following four cases
Prob(6;(t+1) = m) = pz(t—i- 1)7vim(t+1) andProb(6; (¢t + (see Figure 1 as an example): _
1) =0) =1—p;(t+1), indicating the operation mode of theCase 1(5i(t) = 0.Wi(t) = 0, Qi(t) = 0): 14+(0,0,0) = 0,
appliance at time+ 1 provided that it is requested. Moreoverd"
Si(-), Wi(-) and Q;(-) are the state transition functions given .J,(0,0,0) =(1 — p;(t + 1))J;41(0,0,0)+
by (see Figure 1 as an example) M,
o 6(t+1)if Si(t) =0, pi(t+1) Z YimJe41(m, Gim, Giom)- (13)
Si(Xi(#), 0s(t + 1)) = { S;(t)  otherwise m=1
Case 2(5;(t) =m, W;i(t) = Gim, 1
t > T sza ,ufzt(m szaQ(
2< W( )< Gy m7uz(t) =1, (11c); OtherW|Sa%,t(m Gz,man( ))

< Qi(t) < Gim):  For
)) = 1 according to
is given by the optimal

Wi(Xi(t), ui(t), 0:(t + 1))
Wi(t) — 1 Sy(t) = m
Wi(t) if Wi(t) >

1 ua(t) = solution of the following problem
") Giwm  FOSW() <1 and9 t+1)= Jo(m, Gimy Qi(t))
0 if 0<W;(t) <1and;(t+1)= 0 = min 7 (t)u(t)gim(1)+
Qi(X; <t> ui(t), b <t+ 1) st
B Q_]m ifogwi(t)gl, 0:(t +1) = m, st Wi(t+1) =Gim ()
or if W;(t) =1 andf;(t+1) =0, il 1 if ui(t) =0.

and (11c) is due to (10c), which enforces the request€dise 3(Si(t) = m, 2 < W;(t) < Glm, Qi(t) = 0):
appliance to turn on if its task is still queued for T— G, ;.. i, (m, W;(¢),0) =1, and

In (11), the optimal control policy foru,;(t), denoted by : - . o

wit(X;(t)), is a function ofX;(¢), for all X;(t) € X; and for Jo(m, Wi(t), 0) = (8)giom (Giom = Wilt) + 1)+
allt=1,...,T. Once the control policy, (), t = 1,...,T, Jia(m, Wi(t) —1,0).
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Case 4(Sz(t) =1m, Wl(t) =1, Ql(t) = O) ,uiyt(m, 1,0) =
1, and
Jt(m, 1, O) :W(t)g1m(Gz,m) + (1 - pz(t + 1))Jt+1(0, O, O)

M;
+ pl(t + 1) Z ’Yi,mJt-ﬁ-l (ma Gi,ma <i,m)-

IDLE

m=1

It can be seen that, only for Case 2 (e.g., the gray states

shown in Figure 1), one is required to compute the optim(}\ u=0
control policy y; .(X;:(t)). Therefore, at each stage of the \l —p Requested
backward computation, one needs only compute and store ;= for Mode 1
wi (X (¢)) for Zﬁf;l Ci.m possible states. Since baif; and

Ci,m are usually small numbers, the backward computation
can be implemented very efficiently. By applying the MDP
approach to each of the appliances, we obtain the optimal

appliance control policy for the HEM design problem (6).

Remark 1 In the Markov model presented above, the appIE_ig' 2: lllustration of the Markov process for modeling a
ance has multiple modes which are decided by the custoniifidle-mode deferrable appliancé/; = 1) with two alternate
Sometimes, each mode may have multiple power consumptRfver consumption profiles, and;; = 3, (;1 = 2 and
alternates that all can fulfill the same task. In that case, thi.1(!) = p- The quadruples in the circles stand for the state
controller has a further degree of freedom to choose the one &: W @) of the appliance; see Remark 1.

that is best out of all the available consumption profiles in

minimizing the customer’s cost. This appliance model can f@m time 1 to timeT" — 1. Moreover, since the decentralized
easily extended from the current Markov model described @ptimization algorithm involves multiple iterations, éaof

this subsection. Specifically, suppose that, for an appéianWhich requires the customers to exchange messages with thei
each mode has 2 alternate power profiles to choose from, égighbors in real time. As a result, the model predictive CEC
gi.m.1(t) and g; . »(t). The control variableu;(t) then has algorithm in [28] may cause a considerable communication
three possible values — 0 means WAIT (or remain IDLE if ndtverhead in the CoHEM network. In this subsection, we
requested), 1 means ON following profile 1, and 2 means aNesent a decentralized stochastic optimization methadhwh
following profile 2. The state vector for this case is given bgan greatly alleviate the communication overhead.

Xi(t) = (Si(t), Ri(t), Wi(t), Qi(t)) whereR;(t) € {0,1,2}. Unlike the model predictive CEC, the idea here is to
An example forM; = 1 (single mode)G;1 = 3, ;1 = 2 maintain the stochastic nature of the CoHEM problem (9),
andp; 1(t) = p is illustrated in Fig. 2. The associated optimalising a suboptimal formulation as follows

control policy for the HEM design problem (6) can be derived

+
in a similar fashi described in this subsection. d . ul
in a similar fashion as described in this subsection min =) [ Pt _ZZE[D(h)(t)]
() (1) ‘
B. Decentralized Stochastic Optimization for CoOHEM Si,lvvsii,z v t=1 h=11i=1
While the Markov process model presented in the previous H N +
subsection can also be used for the CoHEM problem (9), + mp(t) ZZE[DZ@)@)] — P(t) } (14a)
the resultant MDP problem would involve a large number b1 i1

of states (which increases exponentially withand N) and S

thus the solution quickly becomes computationally unaifor s.t. th) (t) = ggh)(t — sgf}j) Vi, t, h, (14b)
able. A simple approximate DP approach to overcoming the k=1

curse of dimensionality issue is the model predictive detya t(}}j < 5%) < t(}}j + C(h)(m . Vi, kB, (14c)
equivalent control (CEC) method [24]. In this method, one " " " 07 (4 %)

searches for the optimal control in a forward manner and si,};) < max{T — a t(.h)} Vi, k,h, (14d)

1.0 (Y ik

apply the control at each time that would be optimal if the O )
. . (h h :

uncertain quantities, |.e.t1(.7,3 and Hf )(ti7k), were fixed at where P(t) = P(t) — 21 UM (1). It can be seen that the

some typical values, e.g., the mean values. The advant%%?ective function (14a) is instead the deviation betwden t

of this m?t,h‘?d is ,th"?‘t a_t each time one only Qeals ,With expected aggregate load and the power suﬁm},}, which is
a determllnlst|c opt|m|zat|on problem; the gssoma_ted tmmlu a lower bound of that in (9a). Note that (14) is still a (multi-
can be directly applied to control the appliances in reabt'mstage) stochastic optimization problem.

In [28], we have proposed a decentralized CoHEM algorithm Define
(i.e., [28, Algorithm 1]) based on the model predictive CEC

method. While the algorithm in [28] can be implemented in a H N . A +
decentralized fashion (i.e., [28, Algorithm 2]), the caiter z(t) = <Z ZE[Df '(@t)] - P(t)) vt, (15)
has to repeat the optimization until the end of the horizon, h=1i=1



and note that One can see from the above equation thét) is in fact

+ a dummy variable since it does not appear in the objective
<P(t) - ZZE[D“’) ) function. By combining (20b) to (20d), we then obtain
h=11i=1
N h)
- <Z > _EDM (1) - P(t)) . (18 Z @
h=1i=1 1 L1 oh=1
Substituting the above equations into (14) gives rise to SLOS AN <7m(t) +mp(t) Vi=1,...,T. (21)
o The dual optimization method for (18) is to iteratively solv
S<h>1221>7 ;( (&) +mp(1)=(2) the inner minimization problems in (19) and the outer maxi-
Noan T mization part in (21) [27].
T H A Distributed inner primal minimization: Let A(t;n) de-
= m(t) (ZZE[DE%)] —P(t)) (17a) note the dual variable\() obtained at iteration. Given
t=1 h=1 i=1 At;n),t = 1,...,T, the algorithm solves the inner mini-
H N . + mization problems in (19) for alh = 1,..., H. Note that
s.t. z(t) _<Z Z]E[Dgh) (t)] — P(t)) vt, (17b) the objective function of (21) is a summation®f™) (\), h =
h=1i=1 ., H, which is decomposable. Thus the inner minimization
constraints in (14b)14c) (14d) (17c) step can be carried out in a fully distributed fashion where
each residencé solves the corresponding subproblem (19)

Assuming the usual case 8f(t) + 7 () > 0, we can further

rewrite (17) as independently.

It is important to observe that subproblem (19) has exactly

a . N the same formulation as the selfish HEM design problem (6),
RO S(h) Z(WS( )+ mp(t)=(t) except that, in (19), thath residence is given a “pseudo price”
RV At;n) — mg(t),t = 1,...,T. Therefore, the MDP method

T H N presented in Section IlI-A can be directly used to efficigntl
- Zws(t) (ZZ]E[DEh)(t)] —P(t)) (18a) solve (19) and obtain the optimal appliance control policy

t=1 h=1 i=1 of (19) for each residenck. Let us denotqug_’?(-;n)}f:l,
H N R i = 1,...,N, (see (11)) as the optimal appliance control
s.t.z(t) > Z Z]E[Dgh) ()] —P(t) v, (18b)  policy for (19) obtained by residendeat iterationn. More-
h=1i=1 over, IetE{DEh)(t;n)}, 1=1,...,N,t=1,...,T, be the
z(t) = 0 Vt, (18¢c)  corresponding expected scheduled loads for residénce
constraints in (14hY14c) (14d) (18d) Distributed dual subgradient update: The dual variable

At), t = 1,...,T, can be updated by the subgradient

The ingredient of our decentralized stochastic optimarati rojection method [32]:

method is to consider the Lagrange dual [29] of the stoahast
problem (18), analogous to the methods adopted in [30], [31(]

H N
h N
for other applications. LeA(¢) > 0 andn(t) > 0 be the dual A(t;n+1)= { (tin)+cn (Z ZE (D" (t;n)] P(ﬂ)}
variables associated with each of the constraints in (184) a h=11=1

(18c). The dual function of (18) can be shown to be vi=1,...,T, (22)
) ) wherec,, > 0 is the step size, anf(-) denotes the operation
D OWN), i m(t) + m(t) = M) = n(t) Vi, of projection onto the sgb, m, (t) + ms(t)].

In view of the fact that updating (22) requires the aggregate

o elsewherg load Zthlsz:lE[Dgh)(t;n)] of all residences, it usually
whereX = [\(1),...,A\(T)]T and requires a control center to coordinate the residences for
M (N) = the dual update. To perform the dual update (22) ifulyy

- decentralizedashion, we alternatively employ the consensus-
min ZE[(/\(t) — Tt (Z DM () + U™ (¢)— @) subgradient method [33]. In this method, each resideince

s st H maintains a set of local copies of(t;n), t = 1,...,T,

s.t. constraints in (14bjl4c), (14d). (19) denoted byA")(t;n), ¢t = 1,...,T on its own, and locally

updates them according to the subgradien®&f (\):

The dual problem of (18) is thus given by

H v (tn) = AW (8 n)+
max » 0" (X) (20a)
P(t
A = Cn (Z]E )(t:n)] + E[UM (1)) — %) (23)
stAt) >0vVe=1,...,T, (20b)
fort =1,...,T. Note that, in (23), only the local information
> =1,... o . : ”
n(t) 20, vi=1,....T, (200) about residencé: is used, in addition to the bulk power
mp(t) +ms(t) = A(t) = n(t) ¥t =1,...,T. (20d) pyrchaseP(t) broadcasted by the retailer. Since the desired
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subgradient update (22) is the average of (23) ovehat Algorithm 1 Decentralized stochastic optimization algorithm
1,..., H, the second step in the consensus-subgradient meth@d(14)

[33] is that each residence exchanges_ with its connecting ;. |nput an initial set ofA(") (¢;0), ¢ = 1,..., T, at residence
neighbors about") (t;n) so as to achieve a consensus on hforall h=1,..., H.
A(t;n+1). More precisely, residendeobtainsA™ (t;n+1) 5. Setn — 0.
by 3: repeat
(R) (4. . Wi () (. . 4. for h=1,...,H do
AP(En+1) =P {f (W2 (En), 5 € {h} UN")} @4 1) Given{\")(t;n) — my(t)}1_,, residencer solves
for t = 1,...,T, where A}, denotes the index set of the (19) by the MDP method in Section Ill-A to
neighbors that can communicate with residehce(-) is an obE%m theToptllmaI control policy of appliances
averaging consensus function (e.g., [33] {piy (sn)}imyi=1,...,N.
‘ . 6: 2) Residenceh applies the instantaneous con-
FOD(tn), 5 e (BPUN) = > Wi pW (), trol policy {1\")(sn)}7y,i = 1,...,N, and the
JE{hIUN,, Monte Carlo method to estimate the expected load
h
whereW is an H by H mixing matrix), and the superscript Zf\; E{Df )(t;n)}a_t = % oo T
 indicates that the averaging consensus step is repeated for ~ 3) Residence: obtainsy(") (t; n) by (23).
 times. 8: 4) Residencé exchanges ™ (t;n) with its connect-
The convergence properties of the consensus-subgradient  ing neighbors for updating (t;n + 1) by (24).

method has been studied in [33]. Roughly speaking, the du&  end for

iterates \(")(t;n + 1) for all h asymptotically converge to 10: n=mn+1

each other with a discrepancy no |arger tharb 0, and the 11: until the pr8defined Stopping criterion is satisfied.

corresponding dual objective value in (21) also asympatific 12: All residences respectively apply the running-averaged

approaches the optimal value with a deviation no more than control polices in (25) foon-line (real-time) scheduling.

€2 > 0, where bothe; ande, are small positive numbers and

decrease with). This implies that, if the number of consensus

stepsy is sufficiently large, the consensus-subgradient methddcentralized optimizatioonce for each look-ahead horizon

converges to the optimal solution of (21). In computer simuF. The associated optimal control policy of appliances can

lations, we find that a small number ¢f (e.g.,4» < 15) is then be applied to the real-time scheduling process. Nate th

sufficient for achieving good convergence performance.  this is very different from the model predictive CEC method
Monte Carlo method for estimating vazl E{Dgh)(t;n)}: in [28] where distributed optimization has to be carried out

In order to perform the dual update (23), each resiF—1 times. Therefore, the proposed Algorithm 1 has a much

dence h has to compute the expected scheduled loadduced computation and communication overheads for the

Zf.vzl E{Dgh)(t;n)}, t=1,...,T, associated with the control COHEM network. We should also mention that Algorithm

policy {Ml(-_}?(ﬁn)};[:u i =1,...,N. While it is difficult to 1 works well under the assumption that the retailer has

obtain this expected power load analytically, one can egtm reasonably accurate estimates of the real-time balanciogsp

it through the Monte Carlo method [23]. In particular, thems(t)}/=; and{m,(t)},.

HEM unit in residenceh can repeatedly generate realiza-

tions of appliance requesﬁélﬁ), tEZ), ...(according to the Remark 3 Since the proposed approach is based on

customer's usage probabilitigs™ (t) and~") (1)), followed the(h)dual ;)ptirnizatlion (]2\[1)’ bth'e 3rimal Cr?ﬁtm' policy
by applying the optimal control polic" (;n)}7,, i = it (vn)}i=r,i = 1,..., N, obtained at each iteration,

cinay not converge as well as the dual variafl®9) (¢; n)} -, .
n that case, following the same spirit as in [34], [35], oa& ¢
alternatively use the running averaged policy

1,..., N, at iterationn; this outputs a simulated schedule
load profile ZfilDZ(h)(t), t = 1,...,7. The HEM unit
repeats this simulation muljt\i[ple t(i}gr;es, each of which otgpu
a scheduled load profilg ;" , D, (t), t = 1,...,T. By 1o~ B
averaging" , D(t), t = 1,..., T, over all the simulated ~ "1 {ﬁ Doy (X;ﬂ)} € {013 vX e X", 1, h,
realizations, residenck can use this sample average as an =t (25)
estimate onfvzl E{Dgh)(t;n)}, t=1,...,T. Note that the
computations mentioned above all can be implemented fg€e Step 12 of Algorithm 1), where the operatorind(-)
each appliance and for each realization in a parallel mannépunds the averaged policy to its feasible region. We find
We summarize the decentralized stochastic optimizatiiifrough simulations that this running-averaged policy kgor
algorithm in Algorithm 1. Three remarks regarding Algorith Well in practice.

1 are in order: Remark 4 The proposed method is suboptimal compared to

Remark 2 We should emphasize that the above optimizatiahe original CoHEM design problem (9) since it is optimizing

method for (21) can be done in aff-linefashion since solving the lower-bound problem in (18), and (18) and its Lagrange
(21) uses only the statistical information of customers.(i. dual in (21) have a non-zero duality gap in general [30],
pz(-h) (t),y(h) (t)). As a result, we only need to perform thg31]. The suboptimiality can be measured as follows. Let us

i,m



denote the optimal objective value of (9) by, denote that By following the same reformulation steps and dual decompo-
of the lower-bound problem (18) by, and denote that of sition technique in (17) to (21), we can obtain the dual peabl
the dual problem (21) by;. Then we havef; > fr > f5; of (28) as

by weak duality. Suppose that the running-averaged control

policy in (25) corresponds to an empirical primal objective H )
value f,(n) > fr for (9) at iterationn, and the averaged ~ 1ax P(A) + ¥(A)
dual iteratesy ", A" (t;n)/H, t = 1,...,T, correspond ~ t=1...7 ‘=1
to an empirical dual valuefis(n) < f7, for (21). The SLO<AW) <mg(t) +mp(t) VE=1,...,T, (29)
normalized approximation gap betweé,g(n) and f, can be
upper bounded as where®™ (X), similar to (21), is given by

fo(n) = f5 < fp(n) = fua(n) n, (26)

f fra(n) M (\) =
where the right hand side term is the empirical duality gap . T N * .
which can be evaluated numerically and will be examined in  min PGEEAG) (ZE{DZ (’5)} +U! )(f)>
Section IV-D. 8i1084,2 0 =1 i=1
s.t. constraints in (14b) to (14d) (30)
C. Extensions and ¥'(X) is given by
In this subsection, we discuss two interesting extensiéns o

the proposed CoHEM design. T(A) =

1) Joint power procurement and CoHEM optimization: 24 96
As we mentioned in Remark 2, the proposed approach opti- min Zbeg(B(ﬁ)) - Z()\(t) —7s(t))B([t/4]). (31)
mizes the CoHEM scheduling in an off-line manner. Thergfore éi(f’)fgg =1 t=1
it is possible to optimize the CoHEM scheduling for the next

day and determine the power bid(¢)}7_, jointly®, provided One can see from (29) that the optimization &) ()),
that the aggregator can accurately estimate the locatiopal 1,...,H, and¥()\) are completely separable, and thus,
marginal price (LMP) in th‘; day-ahead WhToIesaIe market aggk inner primal minimization of (29) can be carried out in a
the real-time priceq{r(t)};—, and {m,(t)};~, beforehand. |y parallel manner. In particular, (30) can be solved bg t
Note that the two problems have different time scales — thgop method in Section I11-A, while (31) is a convex problem
power procurement is in the day-ahead market where igich can be solved by off-the-shelf convex solvers [36]e Th
retailer submits bids3(1), ..., B(24), for 24 hours of the next o1y difference from (20) is that either an aggregator or one
day; while the CoHEM scheduling is for the real-time mark&if the customers may need to be in charge of solving (31).
where the unit of (discrete) time is usually in minutes. Fas&@ Then the joint design problem (27) can be handled in a similar
of illustration, let us assume that sampling time intervaiéal  gecentralized fashion as Algorithm 1. Simulation residtbe
time is 15 minutes. Thew(t) = B([¢/4]) fort =1,...,96.  presented in the next section will show that this joint power

Let Cy, ¢(B(f)) denote the (convex) cost for the power bid gbrocurement and CoHEM scheduling can further reduce the
hour?, ¢ =1,...,24. By addingCy, .(B(¢)) to the real-time yerall cost of the retailer.

cost in (8), the total cost of the retailer is given by 2) Extension to general convex cost functionstn some

cases, the real-time cost function can be more complicated
* than that in (8) [18] . The proposed CoHEM design problem
(t)]> (9) and Algorithm 1 can be extended to other general (convex,
increasing) real-time cost functions. To illustrate tHet, us
rewrite (14) as follows

t=1 h=1

96 H
Cost=» [ﬂ-s(t) <B(W4U -> E[L),)

H + 24
(1) (Z BIL{) (0] = B([t/4] >> +3° Che(B(0)),
h=1 =1

@D o i{csvtKP(t)—i E[Dgh)(t)]y}

and the associated joint power procurement and COHEMVS;,W“' t=1 h=1i=1
scheduling problem can be formulated as v &R

H N +
i ion i (h) D
B(z)z&g,...,% Cost function in (27) +C ,t[ <Z ZE[Di ()] p(t)> }}
s s ik h=1i=1
B ' s.t. constraints in (14b) to (14d) (32)

s.t. (9b) and constraints in (14b) to (14d§28)

s _ , _ - where Cs;[-] and Cj, ;[-] denote the cost functions for buy-
If the hour-ahead market is available, then the retailer also jointly i ’

determine the CoHEM scheduling and the power bid for the hextr. Here, Ing add_'t'onal power and absorblng extra power e}t time )
we illustrate the joint design problem by assuming the deged market only. respectively; they are assumed to be convex and increasing.
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By introducing the two slack variables other 14 appliances listed in [25, Table B1] and is generated
i following the synthetic method in [25]. We assumed that each
S(t) = XH: al EDM )] - Py | v (33) residenceh can accurately estimaté()(t), for all h.
a i ’ If not mentioned specifically, the setting of Algorithm 1 is

v as follows. The initial value\(" (¢; 0) is set toZ(F () for

H +
| pra (h) allt=1,...,96,andh = 1,..., H; the step size,, is set to
y(t) = (P(t) }; ;E[Di (t)]> vt (34) 5/(n+5); the number of averaging consensus steis set to
T 15; 100 randomly generated realizations are used to estimate

h=11i=1

one can write (32) as SN E{D"(t;n)} in the Monte Carlo method. Algorithm 1
T is run for a predetermined number of iterations equal to 200.

(Um%’n) Z {Cs,t[z(t)] + C, ,t[y(t)]} (35a)  The model predictive CEC method in [28, Algorithm 1 &

i1954,3 00 t=1 Algorithm 2] is also simulated. The initial values, stepesiz

Y ik

and number of averaging consensus steps of [28, Algorithm
s.t. constraints in (14b) to (14d) ging ps of [ g

2] are set to the same values as Algorithm 1. The maximum

z(t) >0, y(t) > 0, Vt, number of iterations of [28, Algorithm 2] is set to 150. Note
H N that, according to [28, Algorithm 1], [28, Algorithm 2] has t
z(t) > E[DM (1)) — P(t) vt, (35b) be carried out 95 times, from time 1 to time 95.
h=1i=1 For ease of elaboration, we set both priae&) andm,(t)
) H N h to one for allt = 1,...,96. In this case, the real-time cost in
y(t) > P(t) =Y > E[D;"(1)] vi. (35€)  (8) reduces to the total deviation between the aggregatk loa
h=1i=1 S ngzal(t) and the day-ahead power purchds&(t)} 7,
Similar to (20), one can show that the dual problem of (35) 7 i
has a separable inner minimization part, but has two additio Deviation Cost— Z P(t) — Z LE"QK 1@‘- (36)
minimization subproblems. These two subproblems can be Py —

handled by an aggregator or one of the voluntary residences , .
Moreover, the dual variables associated with constraBab) The day-ahead bit4P(1)};_, are generated as follows.

and (35b) can be updated by the consensus projected su-bgrga{en the usage probabilities of customers, we use the Monte
ent method, analogous to Algorithm 1. The detailed dexvei Carlo method to generate 50 reallz%tlons of aggregate edsch
are omitted here. uled deferrable Ioadij,’?:1 Zfil LZ(. )(t),t =1,...,96 (see

(1)), by which an estimate ozthl Zf.vzl E[LZ(.") (t)], denoted
IV SIMULATION RESULTS by L(t), is obtained by taking the sample average. The day-

Extensive simulation results are presented in this se¢tionahead bid{ P(¢)}Z_, used in the simulations is obtained by
examine the performance of the proposed CoHEM architecture B

. 16 H
and Algorithm 1. P(t) = 1_16 S L6([/16] — 1) + 0 + S UM ()
(=1

A. Simulation Setting h=1

We consider a scenario where there die residential
units, with 4 deferrable appliances in each residence. TEE
optimization horizon is set t66 (7' = 96) which corresponds
to a whole day with 24 hours and 4 quarters for each ho
The four controllable appliances considered are respygtiv
washing machine, dish washer, tumble dryer and PHEYV, all ,
assumed to have a single operation mode and a single pO\lI:éerself'Sh HEM v.s. CoHEM
profile for simplicity. The load profiles of the first three Since there is no existing work that considers the same
appliances are obtained according to the discrete load Isodgetwork utility and probabilistic models in this paper, we
in [25, Table B1]; the load profile of PHEV is set to begocus on comparing the proposed CoHEM architecture and
constant when on, with an instantaneous power consumptidigorithm 1 with the selfish HEM system (6) and the model
of 3 kW, and a working duration uniformly generated betweepredictive CEC method in [28] . Figure 3 shows the simulation
1 to 6 hours. We follow the synthetic method proposed ii¢sults of the unscheduled load and the load scheduled by
[25] to generate the request probabilit';el(éb)(t) for the first selfish HEM systems, in the presence of 100 residential units
three appliances in each house. For the PHEV, the requedt = 100). All the presented results are averaged over 50
probability is set to 0.8 for three times that are uniformlj@ndomly generated request realizations. In the simulaio
distributed between 8 am and 12 pm, 5 pm and 0 am, and@fish HEM, the residences are given a price signal that
am and 2 am, respectively. The deadline constraints for tiseinversely proportional to the power bid of the grid, i.e.,
washing machine and dish washer are uniformly generatetf) = 1/P(t), in order to motivate the HEM systems in
between 15 minutes to 2 hours, and for the tumble dryer and
PHEV, they are generated uniformly between 15 minutes 0rgm a practical point of view; however it is sufficient for @ro assess and
hours. The uncontrollable Ioab'“”(t) is contributed by the compare the scheduling capabilities of the developed DRridhgns.

for t = 1,...,96. Note that in the first term of the above
uation, we applied a peice-wise averaging for every 16-
mple interval in order to emulate the effects of genematio
ramping constraints and that the retailer may have imperfec
‘Watistical information of customers and renewables

The way we generate the day-ahead bid may not always beasabisf
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= = = Scheduled power supply = = = Scheduled power supply

Unscheduled load : | 3007 Decentralized CoHEM in [28]
Selfish HEM
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250r 2501
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Fig. 3: Simulation results of the unscheduled power load Model bredictive CEC method in 128 100
and the power load scheduled by selfish HEM systems. The (8) Model predictive method in [28H = 100)
number of residenceH is set to 100.
300} = = — Scheduled power supply

the residences to move their loads to the high-supply period
One can see from Figure 3 that the selfish HEM design  250f
successfully moves the load to the high-supply region, but
that also causes significant rebound peaks. The aggregai
deviation in (36) corresponding to the unscheduled load is ~ 150}
2823.3 kW, but the deviation corresponding to selfish HEM

Decentralized CoHEM (Algorithm 1)

2001

kw

increases td350.4 kW. This result shows that the selfish HEM 1007

without coordination between the neighborhood would ttesul 50l

in significant power imbalances and consequently condidiera

real-time cost to the retailer. 4 8 12 16 20
Figure 4(a) displays the power load scheduled by the model Time (hour)

predictive CEC method in [28, Algorithm 1 & Algorithm 2]. (b) Algorithm 1 (H = 100)

By comparing Fig. 4(a) with Figure 3, one can observe that the
scheduled aggregate load by the model predictive CEC metho 1600~
[28] can follow the power supply, and the corresponding 1aqol
deviation cost dramatically decreases1t®19.8 kW. Figure
4(b) presents the power load scheduled by the propose
Algorithm 1. As one can see from this figure, Algorithm 1~ 1000¢
performs comparably as the model predictive CEC method iré 800t
[28], but it has a slightly higher average deviation2002.7
kW. Compared to the deviations of the unscheduled loads
(2823.3 kW) and the selfish HEM systerd350.4 kW) shown 400(
in Fig. 3, Algorithm 1 yields aroun@9% and53% reductions, 200}
respectively. We should emphasize again that Algorithm 1

has a much lower communication overhead than the mode % 4 8 12 16 20 24
predictive CEC method in [28]. In particular, according to Time (hour)

the setting described in Section IV-A, Algorithm 1 requires (c) Algorithm 1 (H = 400)

a total of 200 x 15 = 3000 message exchanges; WhereaI§

the model predictive CEC method in [28] requires at m \edictive CEC method in [28] and Algorithm 1.

0
150 > 15 x 95 = 213750 message exchanges. Fi.gure A 00 randomly generated request realizations. We see from
further shows the power loads scheduled by Algorithm 1 ar:\%ble | that there is a significant drop of the normalized

the selfish HEM system in a neighborhood of 400 customeys,iation cost fronf4.5 KW to 22.4 KW when the number of

(H = 400). Again, we see that the proposed COHEM archigigences increase from 5 to 50; affér> 50, the normalized

tecture and Algorithm 1 can significantly improve the powe&jeyiation costs remain relatively constant, showing thet t

balancing and rea_l-time cost of the aggregatqr. erformance of Algorithm 1 is quite robust against the size o
To further look into how the number of residences aﬁecfﬁe neighborhood.

the performance of the proposed CoHEM architecture, we list

in Table | the normalized average deviation cost for diffiere C- Robustness of CoHEM

numbers of residences. The results are obtained by testingVhile all the residences in the neighborhood should coop-
the associated scheduling policy output by Algorithm 1 overatively participate in the proposed CoHEM program, it is

= = = Scheduled power supply
Selfish HEM
Decentralized CoHEM (Algorithm 1)

1200

600

ig. 4: Simulation results of the loads scheduled by the rhode
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TABLE I: Normalized average deviation cost (in kW) versuFABLE Il: Average computation time (in seconds) of Algo-

number of residences. rithm 1 versus number of residences.
H 5 10 50 | 170 | 210 | 400 H 50 90 170 210 400
Deviation cost/H | 54.5 | 46.4 | 22.4 | 21.4 | 22.9 | 20.6 T, [ite 79.367 | 126.258 | 272.612 | 330.771 | 562.284
* The results are obtained by averaging over 100 simulatializegions. [ Tc/ite/H | 1587 | 1402 | 1603 | 1.575 | 1.407 |

*Te/ite stands for the average computation time per iterationAnfdte/H

represents the computation time per iteration and pereesa unit.
4500

_e_CoHEM devia_tion cost with )
20001 non—cooperative residences ‘ | the residences has only one appliance). Under this setting,
‘‘‘‘‘ Deviation cost w/o scheduling . . .
s we are able to apply the MDP technique (as discussed in
< as00l Section llI-A) to exhaustively find the optimal control poi
8 for the CoHEM problem (9) and the corresponding optimal
S 3000l / objective value. In Fig. 6(c), we plof‘p(n) and f4(n) of
g Algorithm 1 and also the optimal value ¢f; obtained from
a] the exhaustive MDP search. Specifically, at iteration 208, w
2500 havef,(200) = 161.4 and f,4(200) = 116.7 while the optimal
objective value isf; = 156.7. One can see from this figure
20003 20 20 60 80 100 that, although there is a large gap betwgigtn) and fia(n),

Number of non—cooperative residences fp(n) is actually close tof; (with a normalized accuracy
Fig. 5: Simulation results of deviation cost of Algorithm 10.029). While such inspiring result may not always hold true
in the presence of non-cooperative customers; the siroalatfor large-scale problems (i.e., wheit and V are large), the
setting is the same as that for Fig. 4(b). evidenced results in Figures 3, 4 and 5 have demonstrated tha

Algorithm 1 is practically effective for large scale sceoar

possible that there are some non-cooperative residences \ahd can yield promising performance improvement for real-
selfishly keep using the selfish HEM policy. Here we examirtene power balancing.
how the number of such non-cooperative residences affect th Table Il lists the computation times (in seconds) of Algo-
performance of the proposed CoHEM architecture. Figurershm 1 for various numbers of residences in the neighbaidhoo
presents the deviation cost in (36) for different numberafn The algorithm was run on the Matlab platform using a com-
cooperative residences. The simulation setting is the ssameputer with a 4-core 2.6 GHz CPU and 12 GB RAM. Note
Fig. 4(b). We can see from this figure that the deviation cbst that while Algorithm 1 is a decentralized algorithm and the
the aggregator increases when there are more non-comgeratomputations involved for solving (19) and the Monte Carlo
residences. However, compared to that without scheduliveg (method can be parallelized, they can only be implemented
green dashed line), we observe that the aggregator can sefjuentially in a computer. The first row of Table Il shows
make a profile out of the CoHEM program as long as there dtee average computation times per iteration (averaged4f@r
more than50% of residences in the neighborhood willing taterations) . /ite) and the second row shows the computation
follow the CoHEM scheduling policy. This result demonstsat times per iteration and per number of residen@egite/ H). It
the robustness of the proposed CoHEM design against n@ninteresting to see th&t. /ite/ H remains relatively constant

cooperative residences. when H increases, demonstrating that Algorithm 1 is truly
scalable with the number of residences as long as a parallel
D. Convergence and Complexity computation can be implemented.

In this subsection, we examine the convergence behaviorfof J0int power procurement and CoHEM scheduling
Algorithm 1 (see Remark 4) and its computation times. Figure In this subsection, we examine the performance of the
6(a) displays the empirical objective valyfg(n) of the dual joint power procurement and CoHEM scheduling formulation
problem (21) versus the iteration number, for various nusbeliscussed in Section I1I-C. We consider the real-time dewia
of residences in the neighborhood. Figure 6(b) shows thestin (36) and the following quadratic cost function fornew
corresponding normalized duality gap as discussed in (26). procurement
can see from thgse figures that, within 150 ite_rations, t_hé du Coe(B(0)) = BX(O)map(0), €=1,...,24,
updates of Algorithm 1 as well as the normalized duality gap
converge asymptotically. The normalized duality gap shown Where mLyp (¢) denotes the LMP for houf. In the simula-
Figure 6(b) shows that the gap between the empirical objectfion, the LMP{mp\ (¢)}1, are obtained from https://www2.
valuefp(n) of the original problem (9) angfld(n) of the dual ameren.com/RetailEnergy/realtimeprices.aspx, on dag 2,
problem (21) could be large; however, this does not necigssa012. We put more weights on mitigating the power imbalance
imply that the CoHEM scheduling solution obtained fronky considering the following weighed cost

Algorithm 1 is far away from the optimal solution of problem 96 H . 24

(9), i.e., the gap betweef) (n) and f, is not necessarily large. 102 B([t/4]) — Z ]E[Lgot)al(t)]‘ + Z B2(0)mimp (£).
h=1 =1

we setH = 2 and N = 1 (two residences and each of 37)

To further examine this aspect, we conduct a simulation her =1
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(b) Joint power procurement and CoHEM scheduling

Fig. 7: Performance of joint power procurement and CoHEM
scheduling for a scenario with 130 residenc&s=€ 130).

under the same simulation setting as that in Fig. 3. The
associated cost for power procuremeﬁlﬁfé B2(0)mm (£)

and the average real-time deviation cﬁﬁ:f:l |B([t/4]) —

s ngt)al(t)ﬂ are given byl685.0 and1874.4, respectively,
leading to a total cost oB3559.4. The jointly optimized
power bid and the CoHEM scheduled load are shown in
Fig. 7(b). The corresponding cost for power procurement
72 B2()mm(¢) and the average real-time deviation cost
B2, |B([1/4]) =5 Ligtu(1)]] are given byl 111.0 and
1427.4, respectively, which results in a lower total cost of
2538.8 (28.6% reduction compared 8559.4 in Fig. 7(a)). We
see that the joint design can yield lower costs for both real-
time deviation and power procurement. We should emphasize

As a comparison with the joint power procurement anflere that the joint power procurement and CoHEM scheduling
CoHEM scheduling design, we also simulate a scenaf@sign requires accurate estimates for the LR (0) )24

where the retailer first obtains a power bid(¢)}74, sep-
arately, followed by performing CoHEM scheduling (Algo

in the day-ahead market as well as for the real-time prices

{rs(t) Y, and {m,(t)}£, for the next whole day. Further

rithm 1) based on this power bid. In particular, the powghyestigations taking into account possible price estiomat
bid is predetermined by minimizing the cost in (37) withsrrors are needed in the future.

ZleE[LEZQal(t)] replaced by the aggregate (unscheduled)

power load>" 2 SN E[L"(#)] (which can be estimated

V. CONCLUSIONS ANDFUTURE DIRECTIONS

through the Monte Carlo method. The uncontrollable loadsIn the paper, we have presented a CoHEM architecture that
UM (t) are neglected here). The obtained power bid amdordinates the home energy scheduling of multiple resieen

the corresponding CoHEM scheduled load (averaged owerorder to reduce the real-time power balancing cost. We firs
50 appliance request realizations) are presented in F&), 7proposed a simple MDP approach for modeling the deferrable
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appliances and solving the individual HEM design problenis] N. Gatsis and G. B. Giannakis, “Cooperative multi-desice demand
Then, we presented a decentralized algorithm (Algorithm 1)

for handling the CoHEM design problem. The presented sirH-,

ulation results have demonstrated that the proposed CoHEM

design as well as its decentralized algorithm can effelgtive

decrease the real-time power balancing cost of the retailer
In the future, we will extend the proposed load model
and decentralized algorithms to thermostatically coterbl [19]
appliances (e.g., heating, ventilating and air conditigni
(HVAC) [9]). In particular, since HVAC has much shorter20]
duty cycles compared to the non-interruptible loads, it lsan
scheduled myopically to reduce the uncertaintyfé(t) due
to imperfect information about the renewable energy saurcei]
and uncontrollable loads. In addition, it would be inteiregt
to integrate the CoHEM with storage device control as well
distributed power generation control [37], and study tbis{j
power flow control and CoHEM design problem form both
economic and algorithmic aspects.
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