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Chance-constrained optimization of demand
response to price signals

Gianluca Dorini, Pierre Pinsorgenior Member, |EEE, Henrik Madsen

Abstract—Household-based demand response is expected todefine reference signals based on consumption feedback [8],
play an increasing role in supporting the large scale integration the indirect control alternative using one-way commurdeat
of renewable energy generation in existing power systems and only and based on price signals to be sent to households, is
electricity markets. While the direct control of the consumption AP . . '
level of households is envisaged as a possibility, a credible9aNNY increased |nter_est. Concepts relate_d to contpbwer .
alternative is that of indirect control based on price signals to Systems based on prices have been discussed and studied
be sent to these end-consumers. A methodology is described herdor more than thirty years, as in [9]-[12] among others.
allowing to estimate in advance the potential response of flexible |t has been observed that flexibility is partly controllable
end-consumers to price variations, subsequently embedded in by price variations as consumers become significantly price

an optimal price-signal generator. In contrast to some real-time . . . ..
pricing proposals in the literature, here prices are estimated elastic when exposed to varying prices [13], [14]. This fezgl

and broadcast once a day for the following one, for households that the price is efficiently displayed to final consumers][15
to optimally schedule their consumption. The price-response is Note that various views and definition of indirect controiséx

modeled using stochastic Finite Impulse Response (FIR) models.as underlined in [16], while some potential limitations of
Parameters are estimated within a Recursive Least Squares dynamic price signals are also highlighted [17]. Two exanpl

(RLS) framework using data measurable at the grid level, L 2 - .
in an adaptive fashion. Optimal price signals are generated applications of indirect control by price signals may bettha

by embedding the FIR models within a chance-constrained Of (i) a retailer aiming at revenue maximization by optimally
optimization framework. The objective is to keep the price signal trading its flexibility [18], and(ii) a demand-side aggregator

as unchanged as possible from the reference market price, whilst Wanting its poo] of consumers targeting a reference in order
keeping consumption below a pre-defined acceptable interval. to provide services to the grid [19]. Indirect control based
Index Terms—demand forecasting, demand response, price on price signals has the advantage of neither requiring a bi-
signals, chance constrained optimization. directional communication interface, nor knowledge of the
end-user’s environment.
The work in the present paper places itself in a framework
different for other proposals in the literature, for a numbe
NTEGRATION of renewable though fluctuating energyy reasons. First of all, it is considered that price signals
generation, such as from wind and solar installations, jse optimized and broadcast once a day for the following
becoming an essential part of the development of futugge for household-type consumers to optimally plan their
power systems and electricity markets. Relying on such egsnsumption. They are therefore not generated in a model
ergy sources with high variability and limited predictéjil pregictive control framework, as in [19] for instance. In
propagates risk and uncertainty to the whole electricityera parallel, the main objective when determining price signal
chain, challenging existing market structures and baf@Cijs neijther to minimize imbalances by explicitly shiftingrso
strategies. The parallel phenomenon of household-typ@af &yumption in time, nor it is to attempt at having consumption
consumers becoming prosumers, both producing locally apfiowing a certain reference signal. It is instead to easur
envisaging a more proactive usage of electricity, chabsr@r nat consumption will stay as much as possible below a pre-
traditional top-down approach to power system managemegéfined acceptable level, for instance imposed by technical
It will similarly affect the way electricity markets are dgsed gnstraints at the grid level, or simply owing to market sost
and operated [1]. Such challenges in turn create opportNiIt considerations for the aggregator/retailer providingteieity
in the sense that demand-side management is foreseengtthese households. The importance of respecting grider|
play a crucial role in providing the flexibility needed forgperational constraints in demand-side management was re-
load balancing and congestion control in systems with a higRntly exemplified for the case of electric vehicles in low-
penetration of renewable energy generation. A repres’;wtatvonage networks [20].
set of recent work in that direction can be found in [2]-[7].  \ith these objectives in mind, our proposal is to use a
Various entities in power systems and electricity markeffata-driven statistical approach to estimate and foretteest
may be interested in optimally utilizing the flexibility of gynamics of the consumers’ elasticity. This task is perfeim
household-type of electricity consumers. In contrast ®dh sing data measurable at grid level, removing the need to
rect control of households’ consumption, where two-way €0ffhstall sensors and communication devices between eaéh ind
munication is required so that the system operator maytiirecyidual consumer and the price-generating entity. This psap
_ _ , contrasts with recent studies, where price response isresku
The authors are with the Department of Applied Mathematics @aoh-

puter Science at the Technical University of Denmark (emgildo@dtu.dk, to be determiniStiC{ also not being based on real data, 21§. |
ppin@dtu.dk, hmad@dtu.dk) [22]. Here price signals are subsequently generated by em-

I. INTRODUCTION
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bedding the forecasts (and their uncertainty) within a €kanThe vector of coefficientd, corresponding to the price input
Constrained (CC) optimization framework. The advantage wériable defines the impulse response function from price to
the proposed CC optimization approach is to explicitly aecto consumption, characterizing the price-responseg.in

for uncertainty in the price response of consumers, as gell a At time ¢, the optimalk-step consumption prediction mini-
for a pre-defined maximum for allowed consumption levelsnizing squared errors is the conditional expectation [E8}.

within the problem definition. the FIR model (2), this forecasting is given by
The paper is structured as following. In the first stage, . - . T
Section Il describes the mathematical background for the Cornte = B {CornRernie} = Xipi6- (3)

price-response model. This is followed in Section Il byrhe input vectorx, s, of explanatory variables is noted as
the presentation of the price signal generator in a changeforecast since it may indeed include predictions of certai
constrained optimization framework. The application dcdtth variables, e.g., price and temperature at timek.
methodology to a real-world test is described in Section IV, In order to estimate the coefficients in the FIR model (2),
based on a dataset composed by more than 500 househpddsirsive and adaptive estimation is used based on Reeursiv
in Denmark subject to different price and control schemelseast Squares (RLS). For an introduction to RLS estimation
It is there shown how our proposal allows smoothing arid FIR models, the reader is referred to Ref. [23]. It corssist
moving consumption peaks. Concluding remarks end the pap@dating the model coefficients at every timahen new data
in Section V. becomes available, with the following two-step procedure,
Rt = O{Rt_l + XtXtT
II. PRICE-RESPONSEMODEL . R . . 4)
The mathematical background of the price-response model 0, =01+ R, x (yt X at_l) '

follows that in [19], which extensively described a numbek order to avoid computational issues related to matrieiinv
of models for the dynamics of demand response to priggn, R, should be initialized with sufficiently small values
signals. First, electricity consumption ought to be brodlewn  and not inverted before, say, 100 matrix updates. Similarly
into two additive components, that is, its non-responsivé athe various explanatory variables whose successive values
responsive parts, composex should be normalized. The vect®; of model
coefficients can be initialized with a vector of zeros.

e = F(@1,2) + 9 (P, 20), @ " Here it is assumed that the dependency between consump-
with tion, price, and the other external variables, can be desdri
~ T using the general linear model (2). If for some other tesésas
Cr1 = [Ct150 0 Coon,] this assumption was not deemed acceptable, nonlinearities
Pt = [Pres,-- - Pe—r+s] could be included in different ways. For instance by using
7= (20, 20", basis functions in a linear approximation, e.g., with polyn

o mial and spline bases, or Fourier and exponential series. A
wheren. andn. denote the finite number of lags for pastiscussion of methods permitting to handle the nonlinese ca

values of consumption and external variables influencing including recursive and adaptive estimation, can be found i
consumption at time. The price responsive component oRef. [19].

the end-user consumptigh depends on a time window of
L price values, some before and some after the target time |||. GENERATION OFOPTIMAL PRICE SIGNALS
t. The number of future prices influencing the consumption
is specified by the termt > 0. Following intuition, only
the responsive part of the consumption is expected to

colr;trollatbhle W'rt]h price S|g?als._ it wally. it i t.linstance be used by a Balance Responsible Party (BRP) as
" V‘?/nr |Iougn Cr%ni??ario?ilstspbl (r:nongelp;a nyd : rlsdistl tool to evaluate and compare the effects of different price
e overall consumption that is to be modeled and predictggl, ..o Formally, a BRP has the responsibility to iesur

\évét:efr??::s(,)rc:gutr?wztli:)nnp?r?:)g;Ip(nlgeisvasréaet(l:ci)f?esd Iirr11 tthh'z ?gﬁn&rotfhtae match between supply and consumption of electric energy
Finite Impulse Response (FIR), see e.g. [23]. In such a form in its balance area, while being financially penalized foy an

. d ext | variabl tdoor t ture fopist 'deviation that may arise. Effectively here, the price-cese
price and external variables (outdoor temperature foaimt) model can be embedded in a price signal optimization styateg

2r'e:|ger<;0léplleg,rand :]hg prl(cer respgnse Conrferqlljﬁztlyr?ﬁlzgose purpose is to optimize prices in view of the BRP’s
odetlorc, can be expressed as a general linear mo jectives, as well as of the potential flexibility of consensn

The price-response model discussed in Section Il allows
redicting and simulating electricity consumption undarl-m
Sle pricing scenarios, along with its uncertainty. It ctm

ct=¢ 0. +25tTgp +2] 0.4+ ¢ =x]0+¢, 2) At every timet a sequence ofX future price scenario;
_ _ . _ - pe+k, k=1,..., K, can be generated, and the corresponding
variance, wherea8 andx; are defined as Eg. (2). The consumption values based on the reference
=T ST 2T market priceg; .,k = 1,..., K, are denoted by, k =
Xt = [6_1,P¢ » % |

1,..., K. Now suppose that this reference consumption sce-

0= [GT OT 0T]T . ! X
- : nario happens to exceed a pre-defined sequence of maximum

crVprVz
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consumption levelg™ k = 1,..., K, wherec]® may for the end-users consumption, as would be the case with model
instance originates from grid constraints at the distidyut predictive controllers e.g. [19]. In a way this approach mren
level (as for the EV charging problem of [20]) or decidedlexible, as it allows for any consumption pattern, provided
upon owing to expected prohibitive balancing costs. The BRRat the probability to exceed constraint (5) is lower thiaa t
would then like to incentivize modifications in consumptiomesired probabilityp.
so as to stay as much as possible below that maximumThis type of CC optimization formulation has been exten-
level, by introducing deviations in prices from its markesively studied in Operations Research. Applications of CC
values. This is done here by setting up anoptimization j@rbl optimization (or CC programming), are rather broad: resierv
imposing a level of confidence— p on the maximum allowed operation [24], ground-flow management [25], portfolio man
consumption level, agement [26], chemical engineering [27], and power system
max studies [28]-[30], among others. For extensive reviews on
Plecene > k] <p k=1,...K ) the theory and applications of CC optimization problems, th
where ¢, 1,k = 1,...,K is the modified consumption, reader is referred to [31], [32]. Here we limit the discus-
induced by changes in prices. Note that there is still sion to showing how, under the assumption of linearity and
probability p of exceeding the constrainf’®y. Gaussianity, the CC is equivalent to a deterministic convex
Let F; be the information set available at tinte i.e., programming problem, and to how it can thus be solved
containing the measurements and potentially forecastsx-of efficiently.
planatory variables needed as input to the FIR model (2).Since the price-response model (2) is a linear one, assuming
The optimization objective to be minimized is defined athat the random variables are Gaussian and independent,
the deviation between the potential temporal evolution difie objective function (7) has a quadratic form, and the
consumption (which we refer to as trajectory or scenarigpnstraints (5) can be expressed based on quantiles with
over theK lead times if influenced by price signals, and theominal proportionl — p for the predictive distribution of
consumption trajectory that would realize if no price signaonsumption,
was used,

K & 10+ B0y + 210+ \Nar (et a) O < (9)
. _ 2
min E Z (ct+k:‘t — Ct+k|t) |./—"f

N(O,l)
415005 Pt+K
Pt+1 t+ %

wheregq; "’ is the quantile with nominal proportioh — p

By plugging the linear form of (2) into (6), we obtain aof a standard Gaussian variab}é(0, 1). The quantile in (9)

uadratic obiective function to be minimized enters a linear inequality directly influenced by the decisi
q I ' variables. The resulting CC problem formulation has quécra

K 9 objective function and linear inequality constraints. dincbe
. ~T =~ . .
. min Z (BlixOp — Dilibp) (7)  written in a compact manner as
Pt+1s--Pt+ K ot
K
also being a direct function of the price signals . T =~ 2
. - ! min 0, — 0
Pists. .-, Peak, Which are the decision variables of the piii,..peix 1; (P14 = Pryr6y)
optimization problem. T T T
Prices are also assumed to be non-negative, hence a furth&i™ Cornbc + Pryip + 2116
constraint is imposed + \/Var{et+k}qiv_(2’1) <p, k=1,...,K
pt+k,20,k:1,...,K. (8) thrkZO,k:L...,K
The optimal solution is the price signaf,, .k = 1,..., K where thep;, ’s are theK decision variables, and whepeis
and corresponding consumptiop, .,k = 1,..., K, attaining an input parameter defining the probability that the openaii

the minimum of (7) whilst fulfilling the constraint in (5). constraint is not respected.

As a result of the above optimization problem, prices are The reader can easily verify the convexity of the quadratic
issued so that operational constraints are fulfilled with farm of (6), hence yielding a convex optimization problem.
minimum impact over the reference household consumptiofhhe optimal solution can be obtained by a straightforward
namely the consumption that would have occurred if disrepplication of Interior Point (IP) methods, already extesly
garding operational constraints. Note that the potentigep employed for a number of practical applications [33], and
variations are here neither bounded nor directly penalizeavailable as part of off-the-shelf optimization solvers.
though they could be, for instance in line with the recent In general an IP method is an iterative procedure, where
proposal in Ref. [18] where the allowed range for price vareach step requires the calculation of the first and secoret ord
ations is seen as defined through retailer-consumer céstraterivatives of the objective functions and constraint fiorts.
or through regulation. Such aspects could be accounted For many practical applications interior-point methods ca
in the above optimization problem by adding a penalizatissolve the problem in a number of steps or iterations that is
of prices and their variations in the objective function,byr almost always in the range between 10 and 100. Ignoring any
introducing additional constraints reflecting an agreeidepr structural peculiarity of the problem (such as sparsitgghe
range. It is also important to notice how the proposed C&ep requires on the order afax {n3,n2m,F} operations,
approach does not attempt to impose a specific time patternioeren is the number of decision variables, is the number
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of constraints, and” is the cost of evaluating the derivatives. All households in the experiment eventually received elec-
Description of IP methods and descent methods, as well taisity priced as 'spot price with financing’, which in pré
further analysis of their complexity, can be found in [34]. is the market price plus an overhead of 1-2 gre (hundreds of
Danish Crown). Data was collected over a period between
IV. APPLICATION TO PRICERESPONSIVE HEATING April 2007 and March 2009. The data points are hourly
SYSTEMS measurements of electricity consumption, but not for the

A case study is presented in the following, showing hov{pdividual households, rather as mean values for everygrou

using the above methodological proposal, household heat-

ing can be used to bring flexibility into the power systermr ° ’

Household heating systems can be seen as flexible devic « ——SmmGepemene .

hence endowed with inertia due to the time constants indolv

in their heat dynamics. Other flexible devices that could I ) ‘ ] ~l

considered include cooling systems, hot tap water heatir - (1Y e R M

space heating, air conditioning systems, etc. Flexibldcdsv ' |l | i ! i i

have the property such that they can be turned off (or mc - PR TV 0 e

generally, pushed away from their reference functioningtpo . . P

during a short period of time with no or very little conseqeen T ae T mmomm ol e

on the comfort of household occupants. Such feature can — et fom Gor 7

exploited to provide services to the power system in a mark * ‘

environment. s s
The experimental data was collected in the frame of tf¢ , Ll il ‘ ‘ ~l

DEVI experiment, within the FlexPower project [14], as firs [H1IH oo {I | i w

described below. Subsequently, the way the FIR models w " Ml I ; A

fitted is presented, followed by a visualization of the canpu ° ’

—— Control Group consumption

3 3

kWh
~

deviation from Control group

—— Control Group consumption

KWh
~

! il 1

tion response to prices identified from the experimentah.da - oo sms swos s oms seos o o7 s’ pos ios  Oogs  ancs
Finally, the chance-constrained optimization used foicepri
generation is illustrated. Fig. 1. Deviation in consumption between the control groug e price-

reSpOnSiVe groups.

. The price-responsive behavior can be qualitatively olekrv

A. The DEVI experiment by conl?ronting ?he consumption of the gifferently Xegudate
The experiment was conducted in South Jutland (Denmaggbups against that of the control group. Fig. 1 shows that

to identify and measure the response from more than 5@fhsumption patterns are similar during the summer period.

households subject to different kinds of schemes for rémga puring the winter instead, when a significant overhead is

their electricity consumption. brought in by heating costs, the consumption of the various

All households in this experiment have a high consumptigagulated groups tends to be lower than for the control group
of electricity for heating (more than 15000 kWh/year). In the

winter period, in fact, the electricity consumption is ab8Lb o .
times more than in the summer period. Different regulatidd EStimation of the price response
methods have been used: The generic model structure presented in Section Il is
- Electronic housekeeper (20 households) - An installed here adapted to case of the DEVI dataset. In line with the
electronic system that shows the price signals, to whigxperimental setup, consumption time series are considsre
the users can manually respond to by turning the heating aggregated level, not for individual households.
up and down; The control group serves as a reference to monitor the
- Email (114 households) - The users receive a daily mdiehavior of consumers not being responsive to price variati
containing the prices for the next day, inducing a potentidlhe hypothesis is made that for all other groups, if they were
manual response; not price-responsive, they would follow the same consuompti
- 9VIS (35 households) - The users receive a daily SM@attern as for the control group. The approach therefore con
containing the prices for the next day, inducing a potentialsts in modeling the control group consumption, and then th
manual response; deviation of each price-responsive groups from this refeze
- DEVI (16 households) - An installed system that collectsattern. Furthermore, price responsiveness is assumegdaonl
the prices and automatically regulates the heating so tliegating, as winter electricity consumption weights mornth
more electricity is used when prices are low and les¥% of total annual consumption.
is used when prices are high. The individual householdsThe data available, as envisaged in an indirect control
have a certain degree of control over the equipment afrdamework, does not make distinction between heating abd no
can e.g. decide how high and low the inside temperatuneating (seen a base consumption) usage of electricitg Thi
is allowed to be; is somehow handled by the models based on the previously
- Control group (355 households) - No specific installedormulated assumption that it is the heating part of the
system, while not receiving any price information. consumption that is responsive to prices.
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The comfort needs of the electricity consumers vary during The choice of the categorie$ is done by combining
the day, mostly depending on whether or not they are at honaéferent types of classification, such as hour of the day, da
thus the base consumption is a time-dependent variable Hef the week, month, season, working day, holiday, etc. It is
a simple look-up table representation is adopted, where tingortant to keep in mind that the number of categories can
time variable is classified in categories. We denote/tthe grow very fast. Large number of categories increases model
set of conditions, and with(z, t) a Boolean function returning complexity, and affects its generalization ability. On titeer
1 if conditioni € I is true at timet, and zero otherwise. For hand, different classifications may be equivalently desioe
eacht there is one and only onee I such thath(i,t) = 1. even though leading to significantly different number of pa-
Henceb(j,t) = 0 for all j # i. rameters. For instance, Fig. 2 shows howthere of the

The only external variable considered is a function of théay x wor ki ng- day/ hol i day classification, having 14
external temperature, denoted Bybeing the signed deviation categories only, can be used instead ofre of the day
of actual temperature from a reference of €7 This deviation x day of the week, yielding 168 categories. Both rep-
is calculated based on a weighted average of the actue$entations, in fact, show that the daily base consumption
temperature observations over the previous 72 hours. If thes two peaks, one in the morning and one in the evening
temperature is above 1€, thenT is set to 0.1 can then be around 19:00. The peak in the morning is around 7:00 during
seen as a variable directly inducing needs for electricilhgat the working days, and around 10:00 during the non working

The control group consumptioe’“ is described with the days.

linear model The selected model has parameterizatn= 3, M = 1,
N || = 14, with a resulting coefficient of determination of 94%.

6 = Z 055+ The reduced number of past temperature tefmshould not
=1 be surprising, as the variablE is time aggregated and thus

M it represents a cumulative indicator of the energy needs for
+ ) 0nTiiir+ Y Obib(ist) + 7€, heating.
i=1 iel The model, whose parameters are estimated adaptively

using a forgetting factotv = 0.995, allows for stable extended

wheres{'“ is a centered Gaussian noise with finite variance Co . . ;
o o . Stochastic simulations, as shown in Fig. 3. Perhaps, higher
c““. The model complexity is chosen such that an increase

in the number of lags does not significantly improve perfogerformance could be obtained by selectinguith a proper

- . cross-validation exercise, like illustrated in [23]. Hoxee
mance, measured by a coefficient of determinafitn . o .
even with the actual parameterization, both the whiteneds a

025 the Gaussianity (Fig. 4) of the residual prediction erpf
' could be confirmed.

Base consumption [kWh]

electricity consumption [kWh]

hour of the day

working day
----- not working day

5 10 15 20 25 30 35 40 45
time [h]

Fig. 3. Stochastic simulation of the control group consunmmpti®olid line
are measured data, dashed lines are the 95% predictionahtegrey lines
are consumption scenarios obtained by Monte Carlo simulation

The response of consumers to prices for ttth group is
modeled as the deviation from the control group,

Base consumption [kWh]

R
(i = %) =D Oei (ciumg — 5) +

Jj=1 (
10)
0 5 10 15 20 L Re
hour of the day + E Hp,i7jpt—j+s + g ee,i,jetfj —+ Et
j=1 j=1

Fig. 2. Two equivalent categorization for the base consumpti
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0.997 - P
0.99 + %
0.90 0.90
0.95 0.75 0.75
0.50 0.50
0.25 0.25
0.75 0.10 / 0.10
#
0.50 ; h
2 1 0 1 2 2 1 0 1 2
0.25 .
(a) Elect Housekeepers (b) Email
0.05 s+
/; ++
0.01 0.90 0.90
0.003 0.75 0.75| -
: : : ; : 0.50 0.50
-2 -1 0 1 2 0.25 0.25
0.10 : 0.10
Fig. 4. Gaussian quantile-quantile plot for the controlugranodel residuals { itt 7
€¢'E collected up to 4 Nov. 2008. S o T s > 1 o 1 2
(c) SMs (d) DEVI

with ¢; a centred Gaussian noise of finite variance, and where

the termse; are the past prediction errors, thus yielding &ig. 6. Gaussian quantile-quantile plots for the model reslisle} for the
moving average component. The deviations in consumptit{ious regulated groups, collected up to 4 Nov. 2008.

with respect to the control group is based on a certain number

S of future prices. C. Misualization of the price response

The optimal parameterization of the selected models wa
obtained after maximization of the coefficient of deterntima
R?. The same parameterization was chosen for all models.

pr_u;]e rlespli)nie tgrr_n coggri 34“?9 wm_I(_jr?wloE% hours, is done by isolating the change in electricity consumption
with a look ahead time ob = ours. The moving average;,,cqq by a unit step change in price—for instance, and

countsRe = 24 past prediction errors, whereas only one UG5 rease of 1 Danish Crown at a given timé-or that purpose,
r%gresg\;e terrnR - 1fwas n.eedfed. Parimeters Wgr?dgst|mat exploit the superposition principle, which is valid fordar
adaptively using a forgetting factax = 0.995, yielding a systems [23]. It translates to calculating the differenoe i

. Lo ) .
Eoefnment of d%t;eor/m:cnatl(r)]n %‘cg\zﬁ’ for theég(!/ecftronécMhSous onsumption between two simulations, one being the referen
eeper group, o for the group, o for an <f:§€nario with constant electricity prices, and the othee on

Email groups. F|g.. S shc_:ws an exam.ple of scenarios Obt"‘.' ing the same characteristics except for a change of one
.by Monte Carlo simulation, along with gstlmated .pre(_j|ct|onnit in the price at a given time Both simulations have the
intervals, for the DEVI group. The Gaussian quantile-guant same duration and initial conditions, while they ought to be

plots_of Fig. 6 iI_Iustrate that the quel residuals_ are vdoge | ng enough to ensure convergence so that the whole price
to being Gaussian, maybe except in the very tails for the DE}%sponse pattern is observed. In the present case, thésresul

SThe FIR models fitted previously may then be used to visu-
_@Lieze the nature and dynamics of the response to price signal
identified based on the experimental data. In practié, th

group. obtained for the various groups and their associated fittRd F
models are gathered in Fig. 7. In this figure, the step change
2 in price occurs at the “0” time index.
£ 04 before price step after price step
5 0.3 DEVI N
£ sMs  ----
? 0.2
c DEVI -
g - 01 Electronic
IE E housekeeper

0 V ol

_____________

-0.1

-0.2

0 5 10 15 20 25 30 35 40 45
time [h] -0.3

50 -40 -30 -20 -10 0 10 20 30 40

Fig. 5. Stochastic simulation of the DEVI group consumptiohe Bolid line time [hours]

is for the measured data, dashed lines are for the 95% pratioterval, while
the grey lines are the scenarios obtained by Monte Carlo atioul
Fig. 7. Response of consumption to a step change of 1 DanislnCiro
price, as described by the FIR models fitted to the experimeiatial.
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All groups respond by increasing the consumption befo
the price increment, and by decreasing the consumption at
the price increment. As expected, pre-heating takes ple
during periods of low prices in anticipation for future hagh
prices. Normally, price fluctuations take place during arshc
period of time, whereas it takes a certain time for the hous
hold temperature to reach its reference. Therefore, imduci
changes in household electricity consumption by sendiiog pr 5 10 15 20 25
signals barely reduced their comfort. If the price remaiighh time [h]
the consumer groups reduce consumption, hence they red
the temperature in the house and the corresponding com!
level. The only exception is for the electronic housekeep
group. The pre-heating in this case is significantly highant
the other groups, but eventually, if the price stays higle, ti
consumption remain unchanged.

Besides the noise caused by the limited sample size of 5 10 15 20 25
regulated households (i.e., the number of participanthén t time [h]
regulated experiments), the rather harsh shape of the step-
response function in Fig. 7 may be also interpreted as a céif- 8 Example of a scenario where pre-defined maximum consampti
sequence of very nature of the demand response mechanlg\rlﬁl.ctﬂk is likely to be exceeded by the participants in the DEVI group
Indeed, electricity consumers are not bounded to any specifi

responsive mechanism (since manual), hence their individu_Market prices handfelectrlcny Cﬁ_“s%lmp“o?], are mutually
response can be fairly diverse. dependent, as they form an equilibrium. This can be ob-

served in the critical scenario of Fig. 8, where the price
peak corresponds to a higher consumption level. The CC
D. Control by price using chance constrained optimization optimization framework is conceived in order to alter thiegr

The FIR model for the DEVI dataset, described in geg&onsumption equilibrium as little as possible. The impéct o
tion IV-B, is here embedded within the CC approach tdhe opt'imization on the original price signal can be pbs@rve
the determination of optimal price signals, in turn desadib from Figs. 9, 10, and 11, where the CC problem is solved
in Section Ill. As an illustrative example, we consider &7 increasing levels of confidence — p. In all cases, the
situation where the price signal is unique, and we test tQBtimized price tends to anticipate the price peak, trigger
CC optimization assuming that the price-response meaimani@ Smoother and distributed consumption response. The impac
is represented by the DEVI group. In fact, among the fof the optimization on the original price signal grows wittet
groups considered, DEVI is the only one equipped Wiﬂ;\esqed level of conﬁdencb—_p assigned to the pre-defined
fully automatic responding devices, hence reflecting thealid Maximum allowed consumption level.
population of flexible electricity consumers.

We address the situation where, at timea possible issue
with consumption reaching a level above the capacity lisnit i
foreseen over the range of tli€ lead times. Such situation is
depicted in Fig. 8, where the system capacity linfif*, k =

25 oo
©0o0o0 UETEIR s 00
2 0095000050000

’~ >

=

1 O  maximum capacity
expected consumption
o5 ----- 90th percentile of consumption

electricity consumption [kWh]

cost of electricity [DKK/kWh]
}

25 00004 o o
2 000 g eEe.000000

electricity consumption [kWh]

1,..., K shows a drop. This passing of system capacity limits 05 O maxmumcapacty  —— reguiatedresponse

. . . non regulated response = = == 80th percentile of consumption
is assessed by the BRP, using the FIR model to simulate the 0 5 10 15 2 2
end-user price response, based on the temperature forecast time [h]

and on market prices. Consequently, the BRP iterates on
potential price signals through the CC optimization apphga
then eventually sending an optimized prize signal back ¢o th
households.

The reference set of pricefp, 1,...,p x} iS optimally
determined by imposing a level of confidente- p of not
exceeding the pre-defined maximum allowed consumption for
the group, as in (5). Since the DEVI model described ifg 9. DEVI group consumption response to CC optimized prigaals,
Section IV-B is linear, the system capacity constraintsSh (when the confidence level is— p = 80%.
take the linear form of (9), while the objective function (i) It is important to notice how peaks and fluctuations in
the CC optimization is quadratic. The optimal solution isrid both the optimized price signgb; and related successive
using IP methods and the optimized set of price sigpélss consumption values; .,k = 1,...,K are similar to the
sent to the households. For each valugopthe optimization reference scenar@kfk =1,...,K,and¢, ., k=1,..., K.
took less than a tenth of a second, using a standard quadritare specifically, whenl — p = 95% (the most constraining
programming solver coded in MATLAB. case), there is a maximum deviation of 41% in price, and

non regulated price
regulated price

cost of electricity [DKK/kWh]
;

5 10 15 20 25
time [h]
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electricity consumption [kWh]

©%0040 00°
2 000560606000000

maximum capacity
non regulated response = = = = 90th percentile of consumption

5 10 15 20 25
time [h]

05 O

regulated response

non regulated price

deemed sufficiently accurate for describing the dynamics of
consumption as induced by external weather variables and
price variations, it may be that more advanced modelling
approaches could be used in the future, potentially allgvian
more accurate and skillful forecasts of consumption dyeami
This would come at a cost though, since embedding nonlinear
models and resulting forecasts in a price generator woukt mo
certainly result in more complex optimization problems.

The price signal was optimized by embedding the FIR
model within a CC optimization framework. The CC opti-
mization problem may be defined by the BRP, setting a time

regulated price

sequence of maximum admissible loads over a set of lead
times. Those maximum acceptable values may be motivated
by technical constraints at the grid level, or simply owing
to market costs considerations for the aggregator/retpii@
viding electricity to these households. The BRP can set the
level of confidence for the maximum consumption limits, and
the CC optimization yields an optimal price signal fulfitin
the constraints with a minimum deviation from the original
consumption pattern. The optimization criterion is based o
the consideration that market prices and consumption devel

=
&
2
4
=)
315M
2
3
(0]
<
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o

5 10 15 20 25
time [h]

Fig. 10. DEVI group consumption response to CC optimized psigeals,
when the level of confidence is— p = 90%.
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/

maximum capacity
non regulated response

0 are mutually dependent. The linearity of the price-respons

regulated response
== = = 95th percentile of consumption

05 O

electricity consumption [kWh]

5 10 15 20 25
time [h]

models is exploited so that the CC problem is quadratic and
convex. Optimal price signals can then be readily obtained
2 using IP methods.

The methodology was applied to the real-world test case
of the DEVI experiment in order to show its practical ap-
plicability. The way peaks in consumption may be smoothed
in time by anticipating price peaks was illustrated. Follogv
intuition, the higher the level of confidence for maximumdoa
constraints is, the more the optimized price deviated frben t
market price.

This proposal methodology comprises an alternative to
16.5% in consumption. Meanwhile, this translate to an iasee existing proposals in a model predictive control framework
of total costs for the consumer of only 1.2% with an overajence considering real-time dynamic pricing. Optimal dete
consumption decrease of 0.22%. This suggests that, bothnifhation and broadcast of prices a fair amount of time in
terms of total costs and consumption, the price signal hagvance permits to plan consumption in a way that may not
significant short-term impact, and close to negligible istpape possible with real-time pricing. In practice, it is betd
on overall consumption and costs for the consumers. It alggyt the two approaches ought to be combined: similarly to
shows that realistic price signals can be generated evéoutit current market organization today, demand-side managemen
imposing tight price constraints, and without attempting thased on price signals should consist of two stages, ie., th
force the consumption through a specific time pattern. In thgy-ahead optimization of consumption patterns in view of
presented CC formulation, in fact, the only price constraiglynamic operational constraints, and a real-time balancin
is non-negativity (Eq. (8)), whereas the consumption carehastage based on real-time pricing. The respective advasmtage
any pattern not exceeding the pre-defined maximum constraghd drawbacks of these complementary approaches, both in

terms of economics and power system aspects, should be the
V. CONCLUDING REMARKS focus of future work.

The price-responsive consumption of household-type of
electricity consumers was modeled using stochastic FIR-mod
els, hence also accounting for uncertainties in their con-
sumption pattern and response to price variations. ModelsThe work presented was partly supported by the Danish
parameters were adaptively estimated in a RLS framewoRkublic Service Obligation (PSO) Fund, under the FlexPower
permitting to track smooth changes in consumer’s respamseptoject (contract no. 2010-1-0486), as well as by the iPower
price variations, which may naturally change with time anplatform project, supported by DSF (Det Strategiske Forskn
seasons in the case of electric heating. Recursivity autditi ingsiad) and RTI (Rdet for Teknologi og Innovation), which
ally allows decreasing computational costs - a nice featuaee hereby acknowledged. The authors additionally acknowl
when aiming to embed predictions and scenarios in a reatlige the four reviewers and the editor for their comments and
world optimization problem. Even though FIR models wersuggestions.

non regulated price
regulated price

cost of electricity [DKK/kWh]
}

5 10 15 20 25
time [h]

Fig. 11. DEVI group consumption response to CC optimized psigeals,
when the level of confidence is— p = 95%.
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