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Abstract—The smart grid vision is to build an intelligent power
network with an unprecedented level of situational awareness
and controllability over its services and infrastructure. This
paper advocates statistical inference methods to robustify power
monitoring tasks against the outlier effects owing to faulty
readings and malicious attacks, as well as against missing data
due to privacy concerns and communication errors. In this
context, a novelload cleansing and imputation scheme is developed
leveraging the low intrinsic-dimensionality of spatiotemporal load
profiles and the sparse nature of “bad data.” A robust estimator
based on principal components pursuit (PCP) is adopted, which
effects a twofold sparsity-promoting regularization through an
ℓ1-norm of the outliers, and the nuclear norm of the nominal
load profiles. Upon recasting the non-separable nuclear norm
into a form amenable to decentralized optimization, adistributed
(D-) PCP algorithm is developed to carry out the imputation
and cleansing tasks using networked devices comprising theso-
termed advanced metering infrastructure. If D-PCP converges
and a qualification inequality is satisfied, the novel distributed
estimator provably attains the performance of its centralized PCP
counterpart, which has access to all networkwide data. Computer
simulations and tests with real load curve data corroboratethe
convergence and effectiveness of the novel D-PCP algorithm.

Index Terms—Advanced metering infrastructure, distributed
algorithms, load curve cleansing and imputation, principal com-
ponents pursuit, smart grid.

I. I NTRODUCTION

The US power grid has been recognized as the most
important engineering achievement of the 20th century [26],
yet it presently faces major challenges related to efficiency,
reliability, security, environmental impact, sustainability, and
market diversity issues [25]. The crystallizing vision of the
smart grid (SG) aspires to build a cyber-physical network that
can address these challenges by capitalizing on state-of-the-art
information technologies in sensing, control, communication,
optimization, and machine learning. Significant effort and
investment are being committed to architect the necessary
infrastructure by installing advanced metering systems, and
establishing data communication networks throughout the grid.
Accordingly, algorithms that optimally exploit the pervasive
sensing and control capabilities of the envisioned advanced
metering infrastructure (AMI) are needed to make the neces-
sary breakthroughs in the key problems in power grid monitor-
ing and energy management. This is no easy endeavor though,
in view of the challenges posed by increasingly distributed
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network operations under strict reliability requirements, also
facing malicious cyber-attacks.

Statistical inferencetechniques are expected to play an in-
creasingly instrumental role in power system monitoring [10],
not only to meet the anticipated “big data” deluge as the
installed base of phasor measurement units (PMUs) reaches
out throughout the grid, but also to robustify the monitoring
tasks against the “outlier” effects owing to faulty readings,
malicious attacks, and communication errors, as well as
against missing data due to privacy concerns and technical
anomalies [8]. In this context, aload cleansing and imputation
scheme is developed in this paper, building on recent advances
in sparsity-cognizant information processing [12], low-rank
matrix completion [9], and large-scale distributed optimiza-
tion [4].

Load curvedata refers to the electric energy consumption
periodically recorded by meters at points of interest across the
power grid, e.g., end-user premises, buses, and substations.
Accurate load profiles are critical assets aiding operational
decisions in the envisioned SG system [7], and are essential
for load forecasting [24]. However, in the process of acquir-
ing and transmitting such massive volumes of information
for centralized processing, data are oftentimes corruptedor
lost altogether. In a smart monitoring context for instance,
incomplete load profiles emerge due to three reasons: (r1)
PMU-instrumented buses are few; (r2) SCADA data become
available at a considerably smaller time scale than PMU
data; and (r3) regional operators are not willing to share all
their variables [23]. Moreover, a major requirement for grid
monitoring is robustness to outliers, i.e., data not adhering
to nominal models [1], [22]. Sources of so-termed “bad
data” include meter failures, as well as strikes, unscheduled
generator shutdowns, and extreme weather conditions [7],
[11]. Inconsistent data can also be due to malicious (cyber-
) attacks that induce abrupt load changes, or counterfeit meter
readings [18].

In light of the aforementioned observations, the first con-
tribution of this paper is on modeling spatiotemporal load
profiles, accounting for the structure present to effectively
impute missing data and devise robust load curve estima-
tors stemming from convex optimization criteria (Section II).
Existing approaches to load curve cleansing have relied on
separate processing per time series [7], [11], [21], and have
not capitalized on spatial correlations to improve performance.
The aim is forminimal-rank cleansed load data, while also
exploiting outliersparsityacross buses and time. An estimator
tailored to these specifications is principal components pursuit
(PCP) [5], [6], [28], which is outlined in Section III. PCP
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minimizes a tradeoff between the least-squares (LS) model
fitting error and a twofold sparsity-promoting regularization,
implemented through anℓ1-norm of the outliers and the
nuclear norm of the nominal load profiles. While PCP has been
widely adopted in computer vision [5], for voice separationin
music [13], and unveiling network anomalies [20], its benefits
to power systems engineering and monitoring remains so
far largely unexplored. The second contribution pertains to
developing adistributed(D-) PCP algorithm, to carry out the
imputation and cleansing task using a network of intercon-
nected devices as part of the AMI (Section IV). This is possible
by leveraging a general algorithmic framework for sparsity-
regularized rank minimization put forth in [20]. Upon recasting
the (non-separable) nuclear norm present in the PCP cost
into a form amenable to decentralized optimization (Section
IV-A), the D-PCP iterations are obtained in Section IV-C via
the multi-block alternating-directions method of multipliers
(ADMM) solver [3], [4]. In a nutshell, per iteration each smart
meter exchanges simple messages with its (directly connected)
neighbors in the network, and then solves its own optimization
problem to refine its current estimate of the cleansed load
profile. In the context of power systems, the ADMM has
been recently adopted to carry out dynamic network energy
management [16], and distributed robust state estimation [14].

Computer simulations corroborate the convergence and op-
timality of the novel D-PCP algorithm, and demonstrate its
effectiveness in cleansing and imputing real load curve data
(Section V). Concluding remarks and directions for future
research are outlined in Section VI, while a few algorithmic
details are deferred to the Appendix.

II. M ODELING AND PROBLEM STATEMENT

This section introduces the model for (possibly) incomplete
and grossly corrupted load curve measurements, acquired by
geographically-distributed metering devices monitoringthe
power grid. The communication network model needed to
account for exchanges of information among smart meters is
described as well. Lastly, the task of load curve cleansing and
imputation is formally stated.

A. Spatiotemporal load curve data model

Let the N × 1 vector y(t) := [y1,t, . . . , yN,t]
′ (′ stands

for transposition) collect the spatial load profiles measured by
smart meters monitoringN network nodes (buses, residential
premises), at a given discrete-time instantt ∈ [1, T ]. Consider
theN×T matrix of observationsY := [y(1), . . . ,y(T )]. The
n-th row (yn)

′ of Y is the time series of energy consumption
(load curve) measurements at noden, while the t-th column
y(t) of Y represents a snapshot of the networkwide loads
taken at timet. To model missing data, consider the set
Ω ⊆ {1, . . . , N} × {1, . . . , T } of index pairs(n, t) defining a
sampling of the entries ofY. Introducing the matrix sampling
operatorPΩ(·), which sets the entries of its matrix argument
not indexed byΩ to zero and leaves the rest unchanged, the
(possibly) incomplete spatiotemporal load curve data in the
presence of outliers can be modeled as

PΩ(Y) = PΩ(X+O+E) (1)

whereX, O, andE denote the nominal load profiles, the out-
liers, and small measurement errors, respectively. For nominal
observationsyn,t = xn,t + en,t, one hason,t = 0.
Remark 1 (Model under-determinacy): The model is in-
herently under-determined, since even for the (most favorable)
case of full data, i.e.,Ω ≡ {1, . . . , N}×{1, . . . , T }, there are
twice as many unknowns inX andO as there is data inY.
EstimatingX and O becomes even more challenging when
data are missing, since the number of unknowns remains the
same, but the amount of data is reduced.

In any case, estimation of{X,O} from PΩ(Y) is an ill-
posed problem unless one introduces extra structural assump-
tions on the model components to reduce the effective degrees
of freedom. To this end, two cardinal properties ofX and
O will prove instrumental. First, common temporal patterns
among the energy consumption of a few broad classes of
loads (e.g., industrial, residential, seasonal) in addition to their
(almost) periodic behaviors render most rows and columns
of X linearly dependent, and thusX typically haslow-rank.
Second, outliers (or attacks) only occur sporadically in time
and affect only a few buses, yielding asparse matrix O.
Smoothness of the nominal load curves is related to the low-
rank property ofX, which was adopted in [7] to motivate
a smoothing splines-based algorithm for cleansing. However,
while in [7] smoothness was enforced per load profile time-
series, i.e., per row(xn)

′ of X; the low-rank property of
X also captures the spatial dependencies introduced by the
network. Approaches capitalizing on outlier- and “bad data-”
sparsity can be found in e.g., [14], [15] and [21].

B. Communication network model

Suppose that on top of the energy measurement functional-
ity, the N networked smart meters are capable of performing
simple local computations, as well as exchanging messages
among directly connected neighbors. Single-hop communica-
tion models are appealing due to their simplicity, since one
does not have to incur the routing overhead. The AMI network
is naturally abstracted to an undirected graphG(N ,L), where
the vertex setN := {1, . . . , N} corresponds to the network
nodes, and the edges (links) inL represent pairs of nodes that
are connected via a physical communication channel. Node
n ∈ N communicates with its single-hop neighboring peers
in Jn, and the size of the neighborhood will be henceforth
denoted by|Jn|. The graphG is assumed connected, i.e., there
exists a (possibly multihop) path that joins any pair of nodes
in the network. This requirement ensures that the network
is devoid of multiple isolated (connected) components, and
allows for the data collected by e.g., smart metern, namely
then-th row (yn)

′ of Y, to eventually reach every other node
in the network. This way, even when only local interactions
are allowed, the flow of information can percolate the network.

The importance of the network model will become apparent
in Section IV.

C. Load curve cleansing and imputation

The load curve cleansing and imputation problem studied
here entails identification and removal of outliers (or “bad
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data”), in addition to completion of the missing entries from
the nominal load matrix, and denoising of the observed
ones. To some extent, it is a joint estimation-interpolation
(prediction)-detection problem. With reference to (1), given
generally incomplete, noisy and outlier-contaminated spa-
tiotemporal load dataPΩ(Y), the cleansing and imputation
tasks amount to estimating the nominal load profilesX and
the outliersO, by leveraging the low-rank property ofX and
the sparsity inO. Collaboration between metering devices
(collecting networkwide data) is considered here, rather than
local processing of load curves per bus.

Note that load cleansing and imputation are different from
load forecasting[24], which amounts to predicting future load
demand based on historical data of energy consumption and
the weather conditions. Actually, cleansing and imputation are
critical preprocessing tasks utilized to enhance the quality of
load data, that would be subsequently used for load forecasting
and optimum power flow [2].

III. PRINICIPAL COMPONENTSPURSUIT

An estimator matching nicely the specifications of the load
curve cleansing and imputation problem stated in Section
II-C, is the so-termed (stable) principal components pursuit
(PCP) [5], [6], [28], that will be outlined here for complete-
ness. PCP seeks estimates{X̂, Ô} as the minimizers of

(P1) min
{X,O}

1

2
‖PΩ(Y −X−O)‖2F + λ∗ ‖X‖∗ + λ1 ‖O‖

1

where theℓ1-norm‖O‖1 :=
∑

n,t |on,t| and the nuclear norm
‖X‖∗ :=

∑

i σi(X) (σi(X) denotes thei-th singular value of
X) are utilized to promote sparsity in the number of outliers
(nonzero entries) inO, and the low rank ofX, respectively.
The nuclear andℓ1-norms are the closest convex surrogates
to the rank and cardinality functions, which albeit the most
natural criteria they are in general NP-hard to optimize. The
tuning parametersλ1, λ∗ ≥ 0 control the tradeoff between
fitting error, rank, and sparsity level of the solution. When
an estimatêσ2

v of the observation noise variance is available,
guidelines for selectingλ∗ andλ1 have been proposed in [28].
The nonzero entries in̂O reveal “bad data” across both buses
and time. Clearly, it does not make sense to flag outliers in
data that has not been observed, namely for(n, t) /∈ Ω. In
those cases (P1) yieldŝon,t = 0 since both the Frobenious
and ℓ1-norms are separable across the entries of their matrix
arguments.

Being convex (P1) is computationally appealing, and it
has been shown to attain good performance in theory and
practice. For instance, in the absence of noise and when there
is no missing data, identifiability and exact recovery conditions
were reported in [5] and [6]. Even when data are missing,
it is possible to recover the low-rank component under some
technical assumptions [5]. Theoretical performance guarantees
in the presence of noise are also available [28].

Regarding algorithms, a PCP solver based on the accelerated
proximal gradient method was put forth in [17], while the
ADMM was employed in [27]. Implementing thesecentral-
ized algorithms presumes that networked metering devices
continuously communicate their local load measurementsyn,t

to a central monitoring and data analytics station, which
uses their aggregation inPΩ(Y) to reject outliers and im-
pute missing data. While for the most part this is the pre-
vailing operational paradigm nowadays, there are limitations
associated with this architecture. For instance, collecting all
this information centrally may lead to excessive overhead
in the communication network, especially when the rate of
data acquisition is high at the meters. Moreover, minimizing
(or avoiding altogether) the exchanges of raw measurements
may be desirable for privacy and cyber-security reasons, as
well as to reduce unavoidable communication errors that
translate to missing data. Performing the optimization in a
centralized fashion raises robustness concerns as well, since
the central data analytics station represents an isolated point
of failure. These reasons motivate devising fully-distributed
iterative algorithms for PCP, embedding the load cleansing
and imputation functionality to the AMI. This is the subject
of the next section.

IV. D ISTRIBUTED CLEANSING AND IMPUTATION

A distributed (D-)PCP algorithm to solve (P1) using a
network of smart meters (modeled as in Section II-B) should
be understood as an iterative method, whereby each node
carries out simple local (optimization) tasks per iteration
k = 1, 2, . . ., and exchanges messages only with its directly
connected neighbors. The ultimate goal is for each node to
form local estimatesxn[k] andon[k] that coincide with then-
th rows ofX̂ andÔ ask → ∞, where{X̂, Ô} is the solution
of (P1) obtained when all dataPΩ(Y) are centrally available.
Attaining the centralized performance with distributed data is
impossible if the network is disconnected.

To facilitate reducing the computational complexity and
memory storage requirements of the D-PCP algorithm sought,
it is henceforth assumed that an upper bound rank(X̂) ≤ ρ
is a priori available [recallX̂ is the estimated low-rank
cleansed load profile obtained via (P1)]. As argued next,
the smaller the value ofρ, the more efficient the algorithm
becomes. Small values ofρ are well motivated due to the low
intrinsic dimensionality of the spatiotemporal load profiles (cf.
Section II-A). Because rank(X̂) ≤ ρ, (P1)’s search space is
effectively reduced and one can factorize the decision variable
asX = PQ′, whereP andQ areN × ρ andT × ρ matrices,
respectively. Adopting this reparametrization ofX in (P1) and
making explicit the distributed nature of the data (cf. Section
II-B), one arrives at an equivalent optimization problem

(P2) min
{P,Q,O}

N
∑

n=1

[

1

2
‖PΩn

(yn −Qpn − on)‖
2

2

+
λ∗

N
‖PQ′‖∗ + λ1‖on‖1

]

which is non-convex due to the bilinear termPQ′, and where
P := [p1, . . . ,pN ]

′. The number of variables is reduced from
2NT in (P1), to ρ(N + T ) + NT in (P2). The savings can
be significant whenρ is small, and bothN andT are large.
Note that the dominantNT -term in the variable count of (P2)
is due toO, which is sparse and can be efficiently handled
even when bothN andT are large.
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Remark 2 (Challenges facing distributed implementation):
Problem (P2) is still not amenable for distributed
implementation due to: (c1) the non-separable nuclear
norm present in the cost function; and (c2) the global variable
Q coupling the per-node summands.

Challenges (c1)-(c2) are dealt with in the ensuing sections.

A. A separable low-rank regularization

To address (c1), consider the following alternative charac-
terization of the nuclear norm (see e.g. [20])

‖X‖∗ := min
{P,Q}

1

2

(

‖P‖2F + ‖Q‖2F
)

, s. to X = PQ′.

(2)
The optimization (2) is over all possible bilinear factorizations
of X, so that the number of columnsρ of P andQ is also a
variable. Leveraging (2), the following reformulation of (P2)
provides an important first step towards obtaining the D-PCP
algorithm:

(P3) min
{P,Q,O}

N
∑

n=1

[

1

2
‖PΩn

(yn −Qpn − on)‖
2

2 + λ1‖on‖1

+
λ∗

2N

(

N‖pn‖
2

2 + ‖Q‖2F
)

]

.

As asserted in [20, Lemma 1], adopting the separable
Frobenius-norm regularization in (P3) comes with no loss of
optimality relative to (P1), provided rank(X̂) ≤ ρ. By finding
the global minimum of (P3) [which could have considerably
less variables than (P1)], one can recover the optimal solution
of (P1). This could be challenging however, since (P3) is non-
convex and it may have stationary points which need not be
globally optimum.

Interestingly, it is possible to certify global optimalityof a
stationary point{P̄, Q̄, Ō} of (P3). Specifically, one can estab-
lish that if‖PΩ(Y−P̄Q̄′−Ō)‖ < λ∗, then{X̂ := P̄Q̄′, Ô :=
Ō} is the globally optimal solution of (P1) [20, Prop. 1]. The
qualification condition‖PΩ(Y − P̄Q̄′ − Ō)‖ < λ∗ captures
tacitly the role ofρ. In particular, for sufficiently smallρ the
residual‖PΩ(Y−P̄Q̄′−Ō)‖ becomes large and consequently
the condition is violated [unlessλ∗ is large enough, in which
case a sufficiently low-rank solution to (P1) is expected]. The
condition on the residual also implicitly enforces rank(X̂) ≤ ρ,
which is necessary for the equivalence between (P1) and (P3).

B. Local variables and consensus constraints

To decompose the cost in (P3), in which summands inside
the square brackets are coupled through the global variable
Q [cf. (c2) under Remark 2], introduce auxiliary variables
{Qn}

N
n=1 representing local estimates ofQ per smart meter

n. To obtain a separable PCP formulation, use these estimates
along withconsensusconstraints

(P4) min
{Pn,Qn,O}

N
∑

n=1

[

1

2
‖PΩn

(yn −Qnpn − on)‖
2

2

+λ1‖on‖1 +
λ∗

2N

(

N‖pn‖
2

2 + ‖Qn‖
2

F

)

]

s. to Qn = Qm, m ∈ Jn, n ∈ N .

Notice that (P3) and (P4) are equivalent optimization prob-
lems, since the network graphG(N ,L) is connected by
assumption. Even though consensus is a fortiori imposed only
within neighborhoods, it extends to the whole (connected)
network and local estimates agree on the global solution of
(P3). To arrive at the desired D-PCP algorithm, it is convenient
to reparametrize the consensus constraints in (P4) as

Qn = F̄m
n , Qm = F̃m

n , and F̄m
n = F̃m

n , m ∈ Jn, n ∈ N
(3)

where {F̄m
n , F̃m

n }n∈N , are auxiliary optimization variables
that will be eventually eliminated (cf. Remark 3).

C. The D-PCP algorithm

To tackle (P4), associate Lagrange multipliersM̄m
n andM̃m

n

with the first pair of consensus constraints in (3). Introduce the
quadraticallyaugmentedLagrangian function [3]

Lc (V1,V2,V3,M) =

N
∑

n=1

[

1

2
‖PΩn

(yn −Qnpn − on)‖
2

2

+λ1‖on‖1 +
λ∗

2N

(

N‖pn‖
2

2 + ‖Qn‖
2

F

)

]

+

N
∑

n=1

∑

m∈Jn

(

〈M̄m
n ,Qn − F̄m

n 〉+ 〈M̃m
n ,Qm − F̃m

n 〉
)

+
c

2

N
∑

n=1

∑

m∈Jn

(

‖Qn − F̄m
n ‖2F + ‖Qm − F̃m

n ‖2F‖
2

F

)

(4)

wherec > 0 is a penalty parameter, and the primal variables
are split into three groupsV1 := {Qn}Nn=1, V2 := {pn}Nn=1

andV3 := {on, F̄
m
n , F̃m

n }m∈Jn

n∈N . For notational brevity, collect
all Lagrange multipliers inM := {M̄m

n , M̃m
n }m∈Jn

n∈N . Note
that the remaining constraints in (3), namelyCF := {F̄m

n =
F̃m

n , m ∈ Jn, n ∈ N}, have not been dualized.
To minimize (P4) in a distributed fashion, (a multi-block

variant of) the ADMM will be adopted here. The ADMM
is an iterative augmented Lagrangian method especially well
suited for parallel processing [3], [4], which has been proven
successful to tackle the optimization tasks stemming from gen-
eral distributed estimators of deterministic and (non-)stationary
random signals; see e.g., [14], [20] and references therein. The
proposed solver entails an iterative procedure comprisingfour
steps per iterationk = 1, 2, . . ., [n ∈ N , m ∈ Jn in (5)-(6)]

[S1] Update dual variables:

M̄m
n [k] = M̄m

n [k − 1] + c(Qn[k]− F̄m
n [k]) (5)

M̃m
n [k] = M̃m

n [k − 1] + c(Qm[k]− F̃m
n [k]). (6)

[S2] Update first group of primal variables:

V1[k + 1] = arg min
V1

Lc (V1,V2[k],V3[k],M[k]) . (7)

[S3] Update second group of primal variables:

V2[k + 1] = arg min
V2

Lc (V1[k + 1],V2,V3[k],M[k]) . (8)
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Algorithm 1 : D-PCP at smart metern ∈ N
input yn,Ωn, λ∗, λ1, andc.
initialize S[0] = 0T×ρ, andQn[1], pn[1] at random.
for k = 1, 2,. . . do

Receive{Qm[k]} from neighborsm ∈ Jn.
[S1] Update local dual variables:
Sn[k] = Sn[k − 1] + c

∑

m∈Jn
(Qn[k]−Qm[k]).

[S2] Update first group of local primal variables:
An[k+1] := {(pn[k]p

′
n[k]) ⊗Ωn + (λ∗/N + 2c|Jn|)IρT }

−1

Qn[k + 1] = unvec
(

An[k + 1]
{

(pn[k]⊗Ωn)(yn − on[k])

−vec(Sn[k]) + vec(c
∑

m∈Jn
(Qn[k] +Qm[k]))

})

.

[S3] Update second group of local primal variables:
pn[k + 1] = {Q′

n[k + 1]ΩnQn[k + 1] + Iρ}
−1

×Q′
n[k + 1]Ωn(yn − on[k]).

[S4] Update third group of local primal variables:
on[k + 1] = Sλ1

(Ωn(yn −Qn[k + 1]pn[k + 1])).
TransmitQn[k + 1] to neighborsm ∈ Jn.

end for
return Qn[∞],pn[∞], on[∞].

[S4] Update third group of primal variables:

V3[k + 1] = arg min
V3∈CF

Lc (V1[k + 1],V2[k + 1],V3,M[k])

(9)

which amount to a block-coordinate descent method cycling
over V1 → V2 → V3 to minimize Lc, and dual variable
updates [3]. At each step while minimizing the augmented
Lagrangian, the variable groups not being updated are treated
as fixed, and are substituted with their most up to date values.
Different from the standard two-block ADMM [3], [4], the
multi-block variant here cycles over three groups of primal
variables [19].

Reformulating the estimator (P1) to its equivalent form (P4)
renders the augmented Lagrangian in (4) highly decomposable.
The separability comes in two flavors, both with respect to the
variable groupsV1-V3, as well as across the network nodes
n ∈ N . This leads to highly parallelized, simplified recursions
to be run by the networked smart meters. Specifically, it is
shown in the Appendix that the aforementioned ADMM steps
[S1]-[S4] give rise to the D-PCP iterations tabulated under
Algorithm 1. Per iteration, each device updates: [S1] a local
matrix of dual pricesSn[k]; [S2]-[S3] local cleansed load
estimatesQn[k + 1] and pn[k + 1] obtained as solutions
to respective unconstrained quadratic problems (QPs); and
[S4] its local outlier vector, through a sparsity-promoting soft-
thresholding operation. The(k + 1)-st iteration is concluded
after smart metern transmitsQn[k + 1] to its single-hop
neighbors inJn. Regarding communication cost,Qn[k+1] is
a T × ρ matrix and its transmission does not incur significant
overhead for smallρ. Observe also thatPΩ(yn) need not be
exchanged which is desirable to preserve data secrecy, and the
communication cost is independent ofN .

Before moving on, a clarification on the notation used in
Algorithm 1 is due. To define matrixΩn in [S2]-[S4], observe
first that the local sampling operator can be expressed as
PΩn

(z) = ωn ⊙ z, where⊙ denotes Hadamard product, and
the binary masking vectorωn ∈ {0, 1}T has entries equal to
1 if the corresponding entry ofz is observed, and0 otherwise.

It is then apparent that the Hadamard product can be replaced
with the usual matrix-vector product asPΩn

(z) = Ωnz, where
Ωn := diag(ωn). Operators⊗ and vec[·] denote Kronecker
product and matrix vectorization, respectively. Finally,the
soft-thresholding operator isSλ1

(·) := sign(·)max(|·|−λ1, 0).
Remark 3 (Elimination of redundant variables): Careful
inspection of Algorithm 1 reveals that the redundant auxiliary
variables{F̄m

n , F̃m
n , M̃m

n }m∈Jn

n∈N have been eliminated. Each
smart meter, say then-th, does not need toseparatelykeep
track of all its non-redundant multipliers{M̄m

n }m∈Jn
, but

only update their respective sumsSn[k] := 2
∑

m∈Jn
M̄m

n [k].
When employed to solve non-convex problems such as (P4),

ADMM so far offers no convergence guarantees. However,
there is ample experimental evidence in the literature which
supports convergence of ADMM, especially when the non-
convex problem at hand exhibits “favorable” structure [4].For
instance, (P4) is bi-convex and gives rise to the strictly convex
optimization subproblems each timeLc is minimized with re-
spect to one of the group variables, which admit unique closed-
form solutions per iteration [cf. (7)-(9)]. This observation
and the linearity of the constraints suggest good convergence
properties for the D-PCP algorithm. Extensive numerical tests
including those presented in Section V demonstrate that this
is indeed the case. While a formal convergence proof is the
subject of ongoing investigation, the following proposition
asserts that upon convergence, the D-PCP algorithm attains
consensus and global optimality. For a proof (omitted here
due to space limitations), see [20, Appendix C].

Proposition 1: Suppose iterates{Qn[k],pn[k],on[k]}n∈N

generated by Algorithm 1 converge to{Q̄n, p̄n, ōn}n∈N . If
{X̂, Ô} is the optimal solution of (P1), then̄Q1 = Q̄2 =
. . . = Q̄N . Also, if ‖PΩ(Y − P̄Q̄′

1 − Ō)‖ < λ∗, then
{X̂ = P̄Q̄′

1, Ô = Ō}.

V. NUMERICAL TESTS

This section corroborates convergence and gauges perfor-
mance of the D-PCP algorithm, when tested using synthetic
and real load curve data.

A. Synthetic data tests

A network of N = 25 smart meters is generated as a
realization of the random geometric graph model, meaning
nodes are randomly placed on the unit square and two nodes
communicate with each other if their Euclidean distance is
less than a prescribed communication range ofdc = 0.4;
see Fig. 1. The time horizon isT = 600. Entries of E
are independent and identically distributed (i.i.d.), zero-mean,
Gaussian with varianceσ2 = 10−3; i.e., el,t ∼ N (0, σ2).
Low-rank spatiotemporal load profiles with rankr = 3 are
generated from the bilinear factorization modelX = WZ′,
whereW and Z are N × r and T × r matrices with i.i.d.
entries drawn from Gaussian distributionsN (0, 100/N) and
N (0, 100/T ), respectively. Every entry ofO is randomly
drawn from the set{−1, 0, 1} with Pr(on,t = −1) =
Pr(on,t = 1) = 5 × 10−2. To simulate missing data, a
sampling matrixΩ ∈ {0, 1}N×T is generated with i.i.d.
Bernoulli distributed entrieson,t ∼ Ber(0.7) (30% missing



IEEE TRANSACTIONS ON SMART GRID, VOL. X, NO. X, XXXXXX 2012 6

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 1. A simulated network graph withN = 25 nodes.
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Fig. 2. Convergence of the D-PCP algorithm for different network sizes.
D-PCP attains the same estimation error as the centralized solver.

data on average). Finally, measurements are generated as
PΩ(Y) = Ω ⊙ (X + O + V) [cf. (1)], and smart metern
has available then-th row of PΩ(Y).

To experimentally corroborate the convergence and optimal-
ity (as per Proposition 1) of the D-PCP algorithm, Algorithm
1 is run with c = 1 and compared with the centralized
benchmark (P1), obtained using the solver in [27]. Parameters
λ1 = 0.0141 and λ∗ = 0.346 are chosen as suggested
in [28]. For both schemes, Fig. 2 shows the evolution of
the global estimation errorseX [k] := ‖X[k] − X‖F /‖X‖F
andeO[k] := ‖O[k]−O‖F /‖O‖F . It is apparent that the D-
PCP algorithm converges to the centralized estimator, and as
expected convergence slows down due to the delay associated
with the information flow throughout the network. The test is
also repeated for network sizes ofN = 15 and 35 devices,
to illustrate that the time till convergence scales gracefully
as the network size increases. Finally, forN = 35 and with
Q̄[k] :=

∑

n Qn[k]/N , Fig. 3 depicts the consensus error
ec,n[k] := ‖Qn[k]−Q̄[k]‖F /‖Q̄[k]‖F for three representative
smart metering devices. In all cases the error decays rapidly
to zero, showing that networkwide agreement is attained on
the estimatesQn[k]
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Fig. 3. Evolution of the consensus error.
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Fig. 4. School and government building load curve data cleansing.

B. Real load curve data test

Here, the D-PCP algorithm is tested on real load curve data.
The dataset consists of power consumption measurements (in
kW) for a government building, a grocery store, and three
schools (N = 5) collected every fifteen minutes during a
period of more than five years, ranging from July 2005 to
October 2010. Data is downsampled by a factor of four, to
yield one measurement per hour. For the present experiment,
only a subset of the whole data is utilized for concreteness,
whereT = 336 was chosen corresponding to336 hour periods.
For the government building case, a snapshot of the available
load curve data spanning the studied two-week period is shown
in blue e.g., in Fig. 4 (bottom). Weekday activity patterns can
be clearly discerned from those corresponding to weekends,
as expected for most government buildings; but different, e.g.,
for the load profile of the grocery store in Fig. 5 (bottom).

To run the D-PCP algorithm, an underlying communication
graph was generated as in Section V-A. A randomly chosen
subset of30% of the measurements was removed to model
missing data. For one of the schools and the government
building data, Fig. 2 depicts the cleansed load curves that
closely follow the measurements, but are smooth enough to
avoid overfitting the abnormal energy peaks on the so-termed
“building operational shoulders.” Indeed, these peaks arein
most cases identified as outliers. The effectiveness in terms of
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Fig. 5. Government building and grocery store load curve imputation, when
30% of the data are missing.

imputation of missing data is illustrated in Fig. 3 (identified
outliers are not shown here); note how the cleansed (gray) load
curve goes through the (red) missing data points. The relative
error in predicting missing data is around6%, and degrades
to 8% when the amount of missing data increases to50%.

VI. CONCLUSION

A novel robust load curve cleansing and imputation method
is developed in this paper, rooted at the crossroads of sparsity-
cognizant statistical inference, low-rank matrix completion,
and large-scale distributed optimization. The adopted PCP
estimator jointly leverages the low-intrinsic dimensionality of
spatiotemporal load profiles, and the sparse (that is, sporadic)
nature of outlying measurements. A separable reformulation of
PCP is shown to be efficiently minimized using the ADMM,
and gives rise to fully-decentralized iterations which canbe
run by a network of smart-metering devices. Comprehensive
tests with synthetic and real load curve data demonstrate the
effectiveness of the novel load cleansing and imputation ap-
proach, and corroborate the convergence and global optimality
of the D-PCP algorithm.

An interesting future direction is to devise real-time cleans-
ing and imputation algorithms capable of processing load
curve data acquired sequentially in time. Online adaptive
algorithms enable tracking of “bad data” in nonstationary
environments, typically arising due to to e.g., network topol-
ogy changes and missing data. In addition, it is of interest
to rigorously establish convergence of the D-PCP algorithm.
Such results could significantly broaden the applicabilityof
ADMM for large-scale optimization over networks, even in
the presence of non-convex but highly structured and separable
cost functions.

APPENDIX

ALGORITHMIC CONSTRUCTION

The goal is to show that [S1]-[S4] can be simplified to the
iterations tabulated under Algorithm 1. Focusing first on [S3],
(8) decomposes intoN ridge-regression sub-problems

pn[k+1] = argmin
p

{

‖yn −Qn[k + 1]p− on[k]‖
2

2
+ λ∗‖p‖

2

2

}

which admit the closed-form solutions shown in Algorithm 1.
Moving on to [S4], from the decomposable structure of the

augmented Lagrangian [cf. (4)] (9) decouples into per-node
scalar Lasso subtasks (note thatQn := [qn,1, . . . ,qn,T ]

′)

on,t[k + 1] = argmin
o

{

1

2

(

yn,t − q′
n,t[k + 1]pn[k + 1]− o

)2

+ λ1|o|1

}

, t = 1, . . . , T

= Sλ1
(yn,t − q′

n,t[k + 1]pn[k + 1]), t = 1, . . . , T

and
∑N

n=1
|Jn| additional unconstrained QPs

F̄m
n [k + 1] = F̃m

n [k + 1] = arg min
F̄m

n

{

−〈M̄m
n [k] + M̃m

n [k], F̄m
n 〉

+
c

2

[

‖Qn[k + 1]− F̄m
n ‖2F + ‖Qm[k + 1]− F̄m

n ‖2F
]

}

(10)

which admit the closed-form solutions

F̄m
n [k + 1] = F̃m

n [k + 1] =
1

2c
(M̄m

n [k] + M̃m
n [k])

+
1

2
(Qn[k + 1] +Qm[k + 1]) . (11)

Note that in formulating (10),̃Fm
n was eliminated using the

constraintsF̄m
n = F̃m

n defining CF . Using (11) to eliminate
F̄m

n [k] and F̃m
n [k] from (5) and (6) respectively, a simple

induction argument establishes that if the initial Lagrange
multipliers obeyM̄m

n [0] = −M̃m
n [0] = 0, then M̄m

n [k] =
−M̃m

n [k] for all k ≥ 0, wheren ∈ N and m ∈ Jn. The
set{M̃m

n } of multipliers has been shown redundant, and (11)
readily simplifies to

F̄m
n [k+1] = F̃m

n [k+1] =
1

2
(Qn[k + 1] +Qm[k + 1]) . (12)

It then follows thatF̄m
n [k] = F̄n

m[k] for all k ≥ 0, an identity
that will be used later on. By plugging (12) in (5), the (non-
redundant) multiplier updates become

M̄m
n [k] = M̄m

n [k−1]+
c

2
[Qn[k]−Qm[k]], n ∈ N , m ∈ Jn.

(13)
If M̄m

n [0] = −M̄n
m[0] = 0, then the structure of (13) reveals

that M̄m
n [k] = −M̄n

m[k] for all k ≥ 0, wheren ∈ N and
m ∈ Jn.

The minimization (9) in [S4] also decouples inN simpler
sub-problems, namely

Qn[k + 1] = argmin
Q

{

1

2
‖Ωn(yn −Qpn[k]− on[k])‖

2

2

+
λ∗

2N
‖Q‖2F +

∑

m∈Jn

〈M̄m
n [k] + M̃n

m[k],Q〉

+
c

2

∑

m∈Jn

(

‖Q− F̄m
n [k]‖2F + ‖Q− F̃n

m[k]‖2F

)

}

= argmin
Q

{

1

2
‖Ωn(yn −Qpn[k]− on[k])‖

2

2

+
λ∗

2N
‖Q‖2F + 〈Sn[k],Q〉+ c

∑

m∈Jn

∥

∥

∥

∥

Q−
Qn[k] +Qm[k]

2

∥

∥

∥

∥

2

F

}

(14)
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where in deriving (14) it was used that: i)̄Mm
n [k] = M̃n

m[k]
which follows from the identitiesM̄m

n [k] = −M̃m
n [k] and

M̄m
n [k] = −M̄n

m[k] established earlier; ii) the definition
Sn[k] := 2

∑

m∈Jn
M̄m

n [k]; and iii) the identity F̄m
n [k] =

F̃n
m[k] which allows one to merge the identical quadratic

penalty terms and eliminate both̄Fm
n [k] andF̃n

m[k] using (12).
Problem (14) is again an unconstrained QP, which is readily
solved in closed form by e.g., vectorizingQ and examining
the first-order condition for optimality.

Finally, note that upon scaling by two the recursions (13)
and summing them overm ∈ Jn, the update recursion for
Sn[k] in Algorithm 1 follows readily. �
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