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Abstract—The smart grid vision is to build an intelligent power
network with an unprecedented level of situational awarenss
and controllability over its services and infrastructure. This
paper advocates statistical inference methods to robustifpower
monitoring tasks against the outlier effects owing to fauly
readings and malicious attacks, as well as against missingath
due to privacy concerns and communication errors. In this
context, a novelload cleansing and imputation scheme is developed
leveraging the low intrinsic-dimensionality of spatiotenporal load
profiles and the sparse nature of “bad data.” A robust estimabr
based on principal components pursuit (PCP) is adopted, wich
effects a twofold sparsity-promoting regularization through an
¢1-norm of the outliers, and the nuclear norm of the nominal
load profiles. Upon recasting the non-separable nuclear non
into a form amenable to decentralized optimization, adistributed
(D-) PCP algorithm is developed to carry out the imputation
and cleansing tasks using networked devices comprising theo-
termed advanced metering infrastructure. If D-PCP convergs
and a qualification inequality is satisfied, the novel distbuted
estimator provably attains the performance of its centralzed PCP
counterpart, which has access to all networkwide data. Comyter
simulations and tests with real load curve data corroboratethe
convergence and effectiveness of the novel D-PCP algorithm

Index Terms—Advanced metering infrastructure, distributed
algorithms, load curve cleansing and imputation, principd com-
ponents pursuit, smart grid.

I. INTRODUCTION

network operations under strict reliability requiremeratso
facing malicious cyber-attacks.

Statistical inferencaechniques are expected to play an in-
creasingly instrumental role in power system monitorn@]{1
not only to meet the anticipated “big data” deluge as the
installed base of phasor measurement units (PMUs) reaches
out throughout the grid, but also to robustify the monitgrin
tasks against the “outlier” effects owing to faulty reading
malicious attacks, and communication errors, as well as
against missing data due to privacy concerns and technical
anomalies[[B]. In this context,laad cleansing and imputation
scheme is developed in this paper, building on recent agganc
in sparsity-cognizant information processirig1[12], loavk
matrix completion[[9], and large-scale distributed opfai
tion [4].

Load curvedata refers to the electric energy consumption
periodically recorded by meters at points of interest actbe
power grid, e.g., end-user premises, buses, and substation
Accurate load profiles are critical assets aiding operation
decisions in the envisioned SG system [7], and are essential
for load forecasting([24]. However, in the process of acquir
ing and transmitting such massive volumes of information
for centralized processing, data are oftentimes corrupted
lost altogether. In a smart monitoring context for instance
incomplete load profiles emerge due to three reasons: (rl)

The US power grid has been recognized as the mddW\U-instrumented buses are few; (r2) SCADA data become
important engineering achievement of the 20th centiiry,[26jvailable at a considerably smaller time scale than PMU
yet it presently faces major challenges related to effigiendata; and (r3) regional operators are not willing to share al

reliability, security, environmental impact, sustaindi and
market diversity issues [25]. The crystallizing vision dfet

their variables[[23]. Moreover, a major requirement fordgri
monitoring is robustness to outliers, i.e., data not adigeri

smart grid (SG) aspires to build a cyber-physical netwoek tht® nominal models [[1], [[22]. Sources of so-termed “bad

can address these challenges by capitalizing on stateecedit
information technologies in sensing, control, communargt

data” include meter failures, as well as strikes, unscletiul
generator shutdowns, and extreme weather conditibhs [7],

optimization, and machine learning. Significant effort anfil]- Inconsistent data can also be due to malicious (cyber-
investment are being committed to architect the necessargttacks that induce abrupt load changes, or counterfaitmme

infrastructure by installing advanced metering systerms| a"€adings([18].

establishing data communication networks throughout thte g

In light of the aforementioned observations, the first con-

Accordingly, algorithms that optimally exploit the perias tribu_tion of this paper is on modeling spatiotemporal I_oad
sensing and control capabilities of the envisioned adwandeofiles, accounting for the structure present to effegtive
metering infrastructure (AMI) are needed to make the necdglPuté missing data and devise robust load curve estima-
sary breakthroughs in the key problems in power grid monitd®rs Stemming from convex optimization criteria (Secti@n |

ing and energy management. This is no easy endeavor thoUgHSting approaches to load curve cleansing have relied on
in view of the challenges posed by increasingly distributetfParate processing per time serfes [7]) [11]] [21], andhav
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not capitalized on spatial correlations to improve perfance.
The aim is forminimal-rank cleansed load data, while also
exploiting outliersparsityacross buses and time. An estimator
tailored to these specifications is principal componentsuiti
(PCP) [5], [6], [28], which is outlined in Sectionlll. PCP
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minimizes a tradeoff between the least-squares (LS) modgiereX, O, andE denote the nominal load profiles, the out-
fitting error and a twofold sparsity-promoting regularinat liers, and small measurement errors, respectively. Forimam
implemented through arf;-norm of the outliers and the observations),, ; = x,,+ + en+, One has, ; = 0.
nuclear norm of the nominal load profiles. While PCP has beRemark 1 (Model under-determinacy): The model is in-
widely adopted in computer visiohl[5], for voice separation herently under-determined, since even for the (most féleya
music [13], and unveiling network anomaliés]20], its betseficase of full data, i.eQ ={1,..., N} x {1,...,T}, there are
to power systems engineering and monitoring remains smice as many unknowns iX and O as there is data ifY.
far largely unexplored. The second contribution pertaims EstimatingX and O becomes even more challenging when
developing adistributed (D-) PCP algorithm, to carry out the data are missing, since the number of unknowns remains the
imputation and cleansing task using a network of intercosame, but the amount of data is reduced.
nected devices as part of the AMI (Section IV). Thisis pdssib In any case, estimation dfX, O} from Pq(Y) is an ill-
by leveraging a general algorithmic framework for sparsityposed problem unless one introduces extra structural gssum
regularized rank minimization put forth in [20]. Upon retiag tions on the model components to reduce the effective degree
the (non-separable) nuclear norm present in the PCP costfreedom. To this end, two cardinal properties Xf and
into a form amenable to decentralized optimization (Sectid will prove instrumental. First, common temporal patterns
[[V-A], the D-PCP iterations are obtained in Section IV-C viamong the energy consumption of a few broad classes of
the multi-block alternating-directions method of muligss loads (e.g., industrial, residential, seasonal) in additd their
(ADMM) solver [3], [4]. In a nutshell, per iteration each srha (almost) periodic behaviors render most rows and columns
meter exchanges simple messages with its (directly coadectof X linearly dependent, and thd§ typically haslow-rank
neighbors in the network, and then solves its own optindrati Second, outliers (or attacks) only occur sporadically meti
problem to refine its current estimate of the cleansed loadd affect only a few buses, yielding sparse matrix O.
profile. In the context of power systems, the ADMM has$moothness of the nominal load curves is related to the low-
been recently adopted to carry out dynamic network energgnk property ofX, which was adopted in_[7] to motivate
managemen{[16], and distributed robust state estiméfidh [ a smoothing splines-based algorithm for cleansing. Howeve

Computer simulations corroborate the convergence and ayhile in [7] smoothness was enforced per load profile time-
timality of the novel D-PCP algorithm, and demonstrate itseries, i.e., per rowx, ) of X; the low-rank property of
effectiveness in cleansing and imputing real load curvea daX also captures the spatial dependencies introduced by the
(Section[Y). Concluding remarks and directions for futureetwork. Approaches capitalizing on outlier- and “bad eata
research are outlined in Sectibn] VI, while a few algorithmisparsity can be found in e.gl, [14],]15] and[21].
details are deferred to the Appendix.

B. Communication network model
) o ] ) Suppose that on top of the energy measurement functional-

This section introduces the model for (possibly) incom®lefyy, e N networked smart meters are capable of performing
and grossly corrupted load curve measurements, acquireddi¥pie |ocal computations, as well as exchanging messages
geographically-distributed metering devices monitorithg  50\ong directly connected neighbors. Single-hop communica
power grid. The communication network model needed i, models are appealing due to their simplicity, since one
account for exchanges of information among smart Metersy§es not have to incur the routing overhead. The AMI network
described as well. Lastly, the task of load curve cleansing ajq naturally abstracted to an undirected grapt\', £), where

II. MODELING AND PROBLEM STATEMENT

imputation is formally stated. the vertex set\" := {1,..., N} corresponds to the network
) nodes, and the edges (links) dhrepresent pairs of nodes that
A. Spatiotemporal load curve data model are connected via a physical communication channel. Node
Let the N x 1 vectory(t) := [y1.t,....yn,) (' stands n € N communicates with its single-hop neighboring peers

for transposition) collect the spatial load profiles meadusy in 7,, and the size of the neighborhood will be henceforth
smart meters monitoringy network nodes (buses, residentialenoted by.7,,|. The graphG is assumed connected, i.e., there
premises), at a given discrete-time instart [1,7]. Consider exists a (possibly multihop) path that joins any pair of reode
the N x T" matrix of observation := [y(1),...,y(7T)]. The in the network. This requirement ensures that the network
n-th row (y,,)" of Y is the time series of energy consumptiotis devoid of multiple isolated (connected) components, and
(load curve) measurements at nadewhile the¢-th column allows for the data collected by e.g., smart metemamely
y(t) of Y represents a snapshot of the networkwide loadse n-th row (y,,)" of Y, to eventually reach every other node
taken at timet. To model missing data, consider the sdh the network. This way, even when only local interactions
QC{l,...,N} x{1,...,T} of index pairs(n, t) defining a are allowed, the flow of information can percolate the nekwor
sampling of the entries oY . Introducing the matrix sampling The importance of the network model will become apparent
operatorPq(-), which sets the entries of its matrix argumenin Section1V.

not indexed by} to zero and leaves the rest unchanged, the

(possibly) incomplete spatiotemporal load curve data & tit | oad curve cleansing and imputation

presence of outliers can be modeled as The load curve cleansing and imputation problem studied

Pa(Y) =Pa(X+O+E) (1) here entails identification and removal of outliers (or “bad



IEEE TRANSACTIONS ON SMART GRID, VOL. X, NO. X, XXXXXX 2012 3

data”), in addition to completion of the missing entriesnfro to a central monitoring and data analytics station, which
the nominal load matrix, and denoising of the observadses their aggregation iR, (Y) to reject outliers and im-
ones. To some extent, it is a joint estimation-interpolatigpute missing data. While for the most part this is the pre-
(prediction)-detection problem. With reference [d (1)veyi vailing operational paradigm nowadays, there are linotei
generally incomplete, noisy and outlier-contaminated- spassociated with this architecture. For instance, colgcall
tiotemporal load datéP,(Y), the cleansing and imputationthis information centrally may lead to excessive overhead
tasks amount to estimating the nominal load profisand in the communication network, especially when the rate of
the outliersO, by leveraging the low-rank property ®& and data acquisition is high at the meters. Moreover, miningzin
the sparsity inO. Collaboration between metering devicegor avoiding altogether) the exchanges of raw measurements
(collecting networkwide data) is considered here, rathant may be desirable for privacy and cyber-security reasons, as
local processing of load curves per bus. well as to reduce unavoidable communication errors that

Note that load cleansing and imputation are different fromnanslate to missing data. Performing the optimization in a
load forecastind24], which amounts to predicting future loadcentralized fashion raises robustness concerns as wade si
demand based on historical data of energy consumption ahd central data analytics station represents an isolated p
the weather conditions. Actually, cleansing and imputatice of failure. These reasons motivate devising fully-disitésl
critical preprocessing tasks utilized to enhance the tuafi iterative algorithms for PCP, embedding the load cleansing
load data, that would be subsequently used for load forecastand imputation functionality to the AMI. This is the subject
and optimum power flow[]2]. of the next section.

IIl. PRINICIPAL COMPONENTSPURSUIT IV. DISTRIBUTED CLEANSING AND IMPUTATION

An estimator matching nicely the specifications of the load A distributed (D-)PCP algorithm to solve (P1) using a
curve cleansing and imputation problem stated in Sectioetwork of smart meters (modeled as in Seclionlll-B) should
[I=C] is the so-termed (stable) principal components ptirsbbe understood as an iterative method, whereby each node
(PCP) [5], [6], [28], that will be outlined here for complete carries out simple local (optimization) tasks per itenatio
ness. PCP seeks estimates, O} as the minimizers of k =1,2,..., and exchanges messages only with its directly

1 ) connected neighbors. The ultimate goal is for each node to
(P1) o Pa(Y =X = O)l + A« [IX[l. + A [|Oll; form local estimates,, [k] ando, [K] that coincide with the:-

’ th rows of X andO ask — oo, where{X, O} is the solution
where thet;-norm [Of[ := 3", , [on i/ and the nuclear norm of (p1) obtained when all datB,(Y) are centrally available.
X[l := 32, 0i(X) (04(X) denotes the-th singular value of agtaining the centralized performance with distributedadis
X) are utilized to promote sparsity in the number of OUt“er§npossible if the network is disconnected.

(nonzero entries) ir0, and the low rank ofX, respectively.  Tq facilitate reducing the computational complexity and
The nuclear and’;-norms are the closest convex surrogat§femory storage requirements of the D-PCP algorithm sought,
to the rank and cardinality functions, which albeit the most is nhenceforth assumed that an upper bound (rﬁljk< P
natural criteria they are in general NP-hard to optimizee Ths 4 priori available [recallX is the estimated low-rank
tuning parameters\;, A. > 0 control the tradeoff between cjeansed load profile obtained via (P1)]. As argued next,
fitting error, rank, and sparsity level of the solution. Wheghe smaller the value ob, the more efficient the algorithm
an estimates? of the observation noise variance is availablgyecomes. Small values pfare well motivated due to the low
guidelines for selecting.. and\, have been proposed in [28].jyrinsic dimensionality of the spatiotemporal load presi(cf.
The nonzero entries i@ reveal “bad data” across both buse%ectionEIE). Because ralﬁK) < p, (P1)'s search space is
and time. Clearly, it does not make sense to flag outliers dfectively reduced and one can factorize the decisioratsei
data that has not b_een observe(_:i, namely (fart) ¢ Q. I_n asX = PQ’, whereP andQ are N x p andT x p matrices,
those cases (P1) yields,; = 0 since both the Frobenious espectively. Adopting this reparametrization3fin (P1) and
and/;-norms are separable across the entries of their matfhgking explicit the distributed nature of the data (cf. 8ect

arguments. , _ , [=B), one arrives at an equivalent optimization problem
Being convex (P1) is computationally appealing, and it

has been shown to attain good performance in theory and . 1 9

practice. For instance, in the absence of noise and whee ther (P2) (P.Q.0} Z [EHPQ" (Yn = Qpn = 0n)l2

is no missing data, identifiability and exact recovery ctinds =t A

were reported in[[5] and [6]. Even when data are missing, +2ZPQ ||« + Millon]l1

it is possible to recover the low-rank component under some N

technical assumptions|[5]. Theoretical performance guaes which is non-convex due to the bilinear tefQ’, and where

in the presence of noise are also available [28]. P := [p1,...,pn|". The number of variables is reduced from
Regarding algorithms, a PCP solver based on the accelera&ddl” in (P1), top(N + T') + NT in (P2). The savings can

proximal gradient method was put forth in [17], while théoe significant wherp is small, and bothV and T are large.

ADMM was employed in[[2]7]. Implementing thesentral- Note that the dominan¥T-term in the variable count of (P2)

ized algorithms presumes that networked metering devicesdue toO, which is sparse and can be efficiently handled

continuously communicate their local load measuremgnis even when bothV and7" are large.

N
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Remark 2 (Challenges facing distributed implementation): Notice that (P3) and (P4) are equivalent optimization prob-
Problem (P2) is still not amenable for distributedems, since the network graptf(N,L£) is connected by
implementation due to: (cl) the non-separable nucleassumption. Even though consensus is a fortiori imposed onl
norm present in the cost function; and (c2) the global végiabwithin neighborhoods, it extends to the whole (connected)
Q coupling the per-node summands. network and local estimates agree on the global solution of

Challenges (c1)-(c2) are dealt with in the ensuing sectior{®3). To arrive at the desired D-PCP algorithm, it is congahi

to reparametrize the consensus constraints in (P4) as

A. A separable low-rank regularization

To address (c1), consider the following alternative charac™"
terization of the nuclear norm (see elg.][20])

=F" Q,=F", andF" =F", meJ,ncN
(3

where {F7" F"},c, are auxiliary optimization variables

- : l 2 2 _ l
X[« = jmin 2 (”PHF * HQHF) ;S0 X=PQ. that will be eventually eliminated (cf. Remdrk 3).

{P.Q}
)
The optimization[(R) is over all possible bilinear factatibns
of X, so that the number of columpsof P andQ is also a C. The D-PCP algorithm
variable. Leveragind {2), the following reformulation d?2) To tackle (P4), associate Lagrange multiplBig' andM™
provides an important first step towards obtaining the D-PGgith the first pair of consensus constraintsih (3). Intragitie

algorithm: quadraticallyaugmented_agrangian function[[3]
N

1 N
P3 i =[Pa, (yn — QpPn — 0n)l5 + Atl|on 1
(P3) {p%%}; [2” on(yn = Qe —on)lF+ llonll oy vy = T [iﬂ'Pgn(yn—ann—onH%

n=1
)\* 2 2
) As
Fa (Ve IQIE) hiloul + 5 (N + 1Qu13)

As asserted in[[20, Lemma 1], adopting the separable N

Fro_beni_us—norr_n regularization _in (P3) comes with no _Ioss of Z Z (<1\7[nm’ Q. —F™) + (M™,Q,, — ]f:\nm>)

optimality relative to (P1), provided rafK) < p. By finding n=lme,

the global minimum of (P3) [which could have considerably N

less variab_les than (P1)], one can recover thg optimal igolut + g Z Z (”Qn —F"|% 4+ |1Qm — f‘mﬁpHQF) (4)

of (P1). This could be challenging however, since (P3) is-non n=1meT,

convex and it may have stationary points which need not b% ) i i

globally optimum. wherec > 0 is a penalty parameter, :ﬁd the primal v%rlables
Interestingly, it is possible to certify global optimaligf a '€ Split into three groug‘gb:: {Qutn=1, Vo = {Pn}no

stationary poin{ P, Q, O} of (P3). Specifically, one can estap@ndVs := {on, FY ’ FTT}n_eN”' For notational b;ezGV}ty, collect

lish that if | Po (Y —PQ/—0)|| < A., then{X := PQ/,0 := all Lagrange .m.ult|pI|ers |n{\/l = (M, Mo Note

0} is the globally optimal solution of (P1JT20, Prop. 1]. Théhat the remaining constraints inl (3), namely := {F}" =

qualification condition|Po(Y — PQ’ — O)|| < A, captures Fn’» m € Jn, n € N}, have not been dualized. _

tacitly the role ofp. In particular, for sufficiently smalp the ~ T0 minimize (P4) in a distributed fashion, (a multi-block

residual| Po (Y —PQ’—O)|| becomes large and consequentlyarant of)_the ADMM will be adqpted here. The ADMM

the condition is violated [unless, is large enough, in which IS an iterative augmented.Lagranglan mgthod especially wel

case a sufficiently low-rank solution to (P1) is expectedje T Suited for parallel processingl[3].][4], which has been prov

condition on the residual also implicitly enforces r@m < p, successful to tackle the optimization tasks stemming frem g

which is necessary for the equivalence between (P1) and (Fg;)all distributed estimators of deterministic and (noaf)shary
random signals; see e.d., [14],[20] and references theféim

B. Local variables and consensus constraints proposed solver entails an iterative procedure comprifgiog

To decompose the cost in (P3), in which summands insiateepS per iteratior = 1, 2’_' o [7? €N, me Jnin @-@)
the square brackets are coupled through the global variabléS1l] Update dual variables:

cf. (c2) under Remark]2], introduce auxiliary variables —m —m —mn
Q [ef, (2) under Remarkl2], | Y Mk = Mk = 1]+ e(Qulk] ~ F k) (5)
{Q..},—; representing local estimates & per smart meter - - "
n. To obtain a separable PCP formulation, use these estimates M7 [k] = Mk — 1] + c(Qm[k] — F'[k]).  (6)

along with consensusonstraints [S2] Update first group of primal variables:

N
. 1 .
(P4 min ; {il%n (¥n — Qupn — 00)|3 Valk + 1] = arg min £e (V1. Vo[K], Va[k], M) (7)
allonll + A (N||pn||§ n ”Qn”%) [S3] Update second group of primal variables:

2N

sS. to Qn — Qm7 m e jn7 n e N VQ[k+ 1] = arg Héizn‘cc (Vl[k+ 1]5V27V3[k]aM[k]) (8)
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Algorithm 1 : D-PCP at smart metet ¢ A/
input y,, Qn, A, A1, ande.
initialize S[0] = Orx,, and Q. [1], p»[1] at random.
for k=1,2,...do

It is then apparent that the Hadamard product can be replaced
with the usual matrix-vector product &,  (z) = €2,,z, where
Q,, = diagw, ). Operators® and ve¢] denote Kronecker

Receive{Q:[k]} from neighborsm € 7,.
[S1] Update local dual variables:
Snlk] = Snlk = 1] +¢>_,.c 7 (Qu[k] = Quml[E]).

n

[S2] Update first group of local primal variables:

Anlk+1] = {(Pa[kPL[E]) © Qn + A /N + 2¢[Tn)Tpr}

Quk+ 1] = unvee{ Anfk + 1{ (Pn[k] © 2.) (v — 02 [K)
—ved(S, [k]) + Vede 3, g, (Qulk] + Q[K))

[S3] Update second group of local primal variables:
polk+1] = {QL[k + 1], Qu[k +1] +1,} "

xQp[k + 1] (yn — onlk]).
[S4] Update third group of local primal variables:
onlk + 1] = Sx, (Qu(yn — Qulk + Upalk + 1])).
TransmitQ, [k + 1] to neighborsm € 7,.

—
N—

product and matrix vectorization, respectively. Finalllie
soft-thresholding operator &, (-) := sign(-) max(|-|— A1, 0).
Remark 3 (Elimination of redundant variables): Careful
inspection of Algorithni L reveals that the redundant aaxyli
variables {F7", F", M} "</ have been eliminated. Each
smart meter, say the-th, does not need teeparatelykeep
track of all its non-redundant multiplier§M™},,.c 7 , but
only update their respective surg[k] :=2% ., M (k).
When employed to solve non-convex problems such as (P4),
ADMM so far offers no convergence guarantees. However,
there is ample experimental evidence in the literature khic
supports convergence of ADMM, especially when the non-
convex problem at hand exhibits “favorable” structtre Fjr

end for

instance, (P4) is bi-convex and gives rise to the strictiyvex
return Q. [00], pn[o0], 0n[00].

optimization subproblems each tinde is minimized with re-
spect to one of the group variables, which admit unique close
form solutions per iteration [cf.[]7)=(9)]. This obsengti
[S4] and the linearity of the constraints suggest good convesen
. properties for the D-PCP algorithm. Extensive numericstiste
Vslk +1] = arg Vaels Le Vilk + 1], Valk +1], Vs, MK]) including those presented in Sectioh V demonstrate that thi
(9) is indeed the case. While a formal convergence proof is the

which amount to a block-coordinate descent method cyclisgbject of ongoing investigation, the following propasiti
over V; — V», — V5 to minimize L., and dual variable asserts that upon convergence, the D-PCP algorithm attains
updates|[B]. At each step while minimizing the augmentambnsensus and global optimality. For a proof (omitted here
Lagrangian, the variable groups not being updated arectieatiue to space limitations), see [20, Appendix CJ.

as fixed, and are substituted with their most up to date valuggoposition 1: Suppose iterated Q,, [k], pn[k], 05 [k]}nen

Different from the standard two-block ADMM_[3].[4], the generated by Algorithril 1 converge {®., P, on nen. If

multi-block variant here cycles over three groups of primalk (1 is the optimal solution of (P1), the@®, = Q, =

variables [18]. . _ . ... = Qu. Also, if [Po(Y — PQ, — 0)| < A., then
Reformulating the estimator (P1) to its equivalent form)(P4x — PQ;, o= O}.

renders the augmented Lagrangiariin (4) highly decompesab

The separability comes in two flavors, both with respect # th

V. NUMERICAL TESTS
variable groups/;-Vs, as well as across the network nodes __ . .
. . . S . This section corroborates convergence and gauges perfor-
n € N. This leads to highly parallelized, simplified recursions ; . :
o . mance of the D-PCP algorithm, when tested using synthetic
to be run by the networked smart meters. Specifically, it IS
shown in the Appendix that the aforementioned ADMM stepasnd real load curve data.
[S1]-[S4] give rise to the D-PCP iterations tabulated under )
Algorithm [l. Per iteration, each device updates: [S1] allocA- Synthetic data tests
matrix of dual pricesS,[k]; [S2]-[S3] local cleansed load A network of N = 25 smart meters is generated as a
estimatesQ,,[k + 1] and p,[k + 1] obtained as solutions realization of the random geometric graph model, meaning
to respective unconstrained quadratic problems (QPs); amatles are randomly placed on the unit square and two nodes
[S4] its local outlier vector, through a sparsity-promgtsoft- communicate with each other if their Euclidean distance is
thresholding operation. The: + 1)-st iteration is concluded less than a prescribed communication rangedof= 0.4;
after smart metem transmitsQ,,[k + 1] to its single-hop see Fig.[]l. The time horizon i§ = 600. Entries of E
neighbors in7,. Regarding communication co€},,[k+ 1] is are independent and identically distributed (i.i.d.) ,czerean,
aT x p matrix and its transmission does not incur significarfGaussian with variance? = 1073; i.e., e;; ~ N(0,0?).
overhead for smalp. Observe also thaP,(y,) need not be Low-rank spatiotemporal load profiles with ramk= 3 are
exchanged which is desirable to preserve data secrecyhandgenerated from the bilinear factorization modél= WZ/,
communication cost is independent &t where W andZ are N x r andT x r matrices with i.i.d.
Before moving on, a clarification on the notation used iantries drawn from Gaussian distribution§0,100/N) and
Algorithm[1 is due. To define matri,, in [S2]-[S4], observe A(0,100/T'), respectively. Every entry of) is randomly
first that the local sampling operator can be expressed drawn from the set{—1,0,1} with Pr(o,;, = —-1) =
Pq, (z) = w, ® z, where® denotes Hadamard product, andr(o,; = 1) = 5 x 1072. To simulate missing data, a
the binary masking vectap,, € {0,1}7 has entries equal to sampling matrixQ < {0,1}*7 is generated with i.i.d.
1 if the corresponding entry of is observed, an@l otherwise. Bernoulli distributed entries,, ; ~ Ber(0.7) (30% missing

Update third group of primal variables:
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Fig. 1. A simulated network graph with = 25 nodes. Fia. 3. Evolution of the consensus error.
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Fig. 4. School and government building load curve data cliean
Fig. 2. Convergence of the D-PCP algorithm for differentwaoek sizes.

D-PCP attains the same estimation error as the centralizedrs B. Real load curve data test

Here, the D-PCP algorithm is tested on real load curve data.

) The dataset consists of power consumption measurements (in
data on average). Finally, measurements are generatede@§ for a government building, a grocery store, and three

Pa(Y) = Q0 (X + 0+ V) [cf. @], and smart meten.  schools (V = 5) collected every fifteen minutes during a
has available the-th row of Po(Y). period of more than five years, ranging from July 2005 to
To experimentally corroborate the convergence and optimélctober 2010. Data is downsampled by a factor of four, to
ity (as per Propositioh]1) of the D-PCP algorithm, Algorithnyield one measurement per hour. For the present experiment,
@ is run with ¢ = 1 and compared with the centralizedonly a subset of the whole data is utilized for concreteness,
benchmark (P1), obtained using the solver’in [27]. ParammetevhereT = 336 was chosen correspondingd®6 hour periods.
A1 = 0.0141 and A\, = 0.346 are chosen as suggestedror the government building case, a snapshot of the availabl
in [28]. For both schemes, Fidl 2 shows the evolution déad curve data spanning the studied two-week period is show
the global estimation errorsy [k] := ||X[k] — X]||r/[|X||r in blue e.g., in Figl}4 (bottom). Weekday activity patteras c
andeop[k] := ||O[k] — OJ|#/||O||r. It is apparent that the D- be clearly discerned from those corresponding to weekends,
PCP algorithm converges to the centralized estimator, andas expected for most government buildings; but differemnt, e
expected convergence slows down due to the delay associdtedhe load profile of the grocery store in F[d. 5 (bottom).
with the information flow throughout the network. The test is To run the D-PCP algorithm, an underlying communication
also repeated for network sizes &f = 15 and 35 devices, graph was generated as in Section V-A. A randomly chosen
to illustrate that the time till convergence scales gralbefu subset of30% of the measurements was removed to model
as the network size increases. Finally, fér= 35 and with missing data. For one of the schools and the government
Q[k] == >, Qulk]/N, Fig.[3 depicts the consensus errobuilding data, Fig[2 depicts the cleansed load curves that
eenlk] == || Qnlk] — QlK]| »/||Q[K]| r for three representative closely follow the measurements, but are smooth enough to
smart metering devices. In all cases the error decays yapidioid overfitting the abnormal energy peaks on the so-termed
to zero, showing that networkwide agreement is attained touilding operational shoulders.” Indeed, these peaksiare
the estimate€),, [k] most cases identified as outliers. The effectiveness inst@fm
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Government building which admit the closed-form solutions shown in Algorithin 1.
" Cetmeted ond cuve Moving on to [S4], from the decomposable structure of the
o PR augmented Lagrangian [cfJ(4)[](9) decouples into per-node

pare
- ’1 1 scalar Lasso subtasks (note tl&@} := [qn.1,- ... qn,7]")

Power consumption (kW)

. 1 2
0 50 100 150 A )260 250 300 On’t[k + 1] = arg Hgn {5 (yn,t - q;z,t[k + 1]pn[k + 1] - O)

Grocery store

o G +/\1|0|1}, t=1....T

- S)\l (ynyt - q;z,t[k + 1]p’n«[k + 1])7 = 15 e 7T

=]

o o
=]

and Zﬁ;l |J..| additional unconstrained QPs

Power consumption (kW)

N
S

T ™ B+ 1) = B2k + 1] = arg in {— (V2R + ML FY)

o

c _ _
Fig. 5. Government building and grocery store load curveutation, when +§ [”Qn[k + 1] - an”%“ + ||Qm[k + 1] - an”%“} } (10)
30% of the data are missing.

which admit the closed-form solutions
imputation of missing data is illustrated in Fig. 3 (idemtfi

outliers are not shown here); note how the cleansed (grag) lo F™[k + 1] = F™[k + 1] :%(Mﬁ (k] + M™[k])
curve goes through the (red) missing data points. The velati 1 ¢
error in predicting missing data is aroufl, and degrades +3 (Qulk + 1]+ Qulk+1]). (11)
to 8% when the amount of missing data increases(t. ~
Note that in formulating[(ZI0)F”* was eliminated using the
V1. CONCLUSION constraintsF™ = FQ defining Cr. Using [11) to eliminate
(f‘dT[k] and F*[k] from (@) and [[6) respectively, a simple

A novel robust load curve cleansing and imputation meth induction argument establishes that if the initial Lagmang
is developed in this paper, rooted at the crossroads ofigpars . - ~ -
s developec'in tis pap 'p multipliers obeyM™[0] = —M™[0] = 0, then M'[k]| =

cognizant statistical inference, low-rank matrix comiolet ~

and large-scale distributed optimization. The adopted PC_I%/I’IZQ/@ fo:c all I]t€' IZ 0, r;/vhel;en er{\/ and:jn Edj?a-%e 11
estimator jointly leverages the low-intrinsic dimensibityaof s€ (EI'I n } 0 I'?'m Itp 1ers has been shown redundant, 11
spatiotemporal load profiles, and the sparse (that is, dpjra readily simpiifies to

nature of outlying measurements. A separable reformulatio -,  E=m 1

PCP is shown to be efficiently minimized using the ADMM, k1] = Flle1] = 2 (Qulk+ 1]+ Qulk +1]). (12)
and gives rise to fully-decentralized iterations which dsn It then follows thatF [k] = F™ [k] for all k > 0, an identity

run by a network_of smart-metering devices. Comprehens%t will be used later on. By plugging{12) ifl (5), the (non-
tests with synthetic and real load curve data demonstrate f’gdundant) multiplier updates become

effectiveness of the novel load cleansing and imputation ap
proach, and corroborate the convergence and global oftymaivi™ k] = M™ [k;-l]-}-g[Qn[k]—Qm[k]], neN, meJ,.

of the D-PCP algorithm. (13)
An interesting future direction is to devise real-time clsa |t M™[0] = —M?”, [0] = 0, then the structure of {13) reveals
ing and imputation algorithms capable of processing logdat K—Am[k] _ _’1’{7[71 k] for all k > 0, wheren € A" and

curve data acquired sequentially in time. Online adaptiyg - T

algorithms enable tracking of “bad data” in nonstationary The minimization [) in [S4] also decouples ¥ simpler
environments, typically arising due to to e.g., networkdiep sub-problems, namely

ogy changes and missing data. In addition, it is of interest

to rigorously establish convergence of the D-PCP algorith o[k + 1] = arg min {1||Qn(}’n — Qpulk] — onlk])|2
Such results could significantly broaden the applicabitfy Q |2

ADMM for large-scale optimization over networks, even in A

2 \ [ \ [
the presence of non-convex but highly structured and sbleara + 2N 1QI%F + Z (MG [K] + M, [k, Q)
cost functions. meTn
C _ ~
+= —F2E% + 1Q — Frlk]|3
R P (lQ-Frmiz+1Q H|F)}
ALGORITHMIC CONSTRUCTION 1
: 2
The goal is to show that [S1]-[S4] can be simplified to the — arengh {§||Qn(3’n — Qpa (k] — on[k])l
iterations tabulated under Algorithioh 1. Focusing first o8][S 9
(8) decomposes intdV ridge-regression sub-problems + )\;[HQHQF + (S,[K], Q) + ¢ Z HQ _ Qulk] + Qu[K] }
2 ’ 2 ,

. meTn
palk+1) = argmin {|ly, — Qulk + 1lp — 0Kl + A.[IpI3} (19)
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where in deriving[(T4) it was used that: M”*[k] = M™ [k] [20] M. Mardani, G. Mateos, and G. B. Giannakis, “In-netwesgarsity-

which follows from the identitiesM"[k] = —M™[k] and r;gzgfigfgcg;kzmmsigitiglgio A;g(':gélt;)gssfggﬁg?gmf]EE Trans.
M [k] = _M%[k] established earlier; ii) the deflnltlon[21] G. Mateos and G. B Giannakis, “Robust nonparametrigagsion via

Snlk] == 23,,c, M [k]; and iii) the identity F}'[k] = sparsity control with application to load curve data cléags IEEE

F” [k] which allows one to merge the identical quadratif*zz]

Trans. Signal Proceswol. 60, no. 4, pp. 1571-1584, April 2012.
L. Mili, M. G. Cheniae, and P. J. Rousseeuw, “Robustestgtimation

penalty terms and eliminate boR;' [k] andF, [k] using [12). of electric power systemsJEEE Trans. Circuits Syst, vol. 41, no. 5,
Problem (14) is again an unconstrained QP, which is readily pp. 349-358, May 1994.

solved in closed form by e.g., vectorizi@ and examining

[23] K. M. Rogers, R. D. Spadoni, and T. J. Overbye, “Iderdificn of power
system topology from synchrophasor data,”Rroc. of Power Systems

the first-order condition for optimality. Conference and ExpositipiPhoenix, AZ, Mar. 2011.

Finally, note that upon scaling by two the recursidng (134] M. Shahidehpour, H. Yamin, and Z. Liarket Operations in Electric
and summing them ovein € 7,, the update recursion for

Power Systems: Forecasting, Scheduling, and Risk Managemélew
York, NY: Wiley-IEEE Press, 2002.

S,[k] in Algorithm 1 follows readily. B 25 us. Department  of  Energy, “The  smart  grid:
An introduction,” 2008, [Online.] Available:
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