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Abstract—Recent years have seen increased interest in the
design and deployment of smart grid devices and control al-
gorithms. Each of these smart communicating devices represents
a potential access point for an intruder spurring research into
intruder prevention and detection. However, no security measures
are complete, and intruding attackers will compromise smart
grid devices leading to the attacker and the system operator
interacting via the grid and its control systems. The outcome of
these machine-mediated human-human interactions will depend
on the design of the physical and control systems mediating the
interactions. If these outcomes can be predicted via simulation,
they can be used as a tool for designing attack-resilient grids
and control systems. However, accurate predictions require good
models of not just the physical and control systems, but also
of the human decision making. In this manuscript, we present
an approach to develop such tools, i.e. models of the decisions
of the cyber-physical intruder who is attacking the systems and
the system operator who is defending it, and demonstrate its
usefulness for design.

I. INTRODUCTION

Upervisory Control and Data Acquisition (SCADA) sys-

tems form the cyber and communication components of
electrical grids. Human operators use SCADA systems to
receive data from and send control signals to grid devices to
cause physical changes that benefit grid security and operation.
If a SCADA system is compromised by a cyber attack, the
attacker may alter these control signals with the intention of
degrading operations or causing widespread damage to the
physical infrastructure.

The increasing connection of SCADA to other cyber sys-
tems and the use of off-the-shelf computer systems for
SCADA platforms is creating new vulnerabilities[1] increasing
the likelihood that SCADA systems can and will be penetrated.
However, even when a human attacker has gained some
control over the physical components, the human operators
(defenders) retain significant SCADA observation and con-
trol capability. The operators may be able to anticipate the
attacker’s moves and effectively use this remaining capability
to counter the attacker’s moves. The design of the physical and
control system may have a significant impact on the outcome
of the SCADA operator’s defense, however, designing attack
resilient systems requires predictive models of these human-in-
the-loop control systems. These machine-mediated, adversarial
interaction between two humans have been described in pre-
vious game-theoretic models of human-in-the-loop collision
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avoidance systems for aircraft[2] and our recent extensions of
these models to electrical grid SCADA systems[3]]. The current
work builds upon and extends this previous work.

The model of machine-mediated human-human interactions
described in [2]] includes two important components. The first
is a mathematical framework for describing the physical state
of the system and its evolution as well as the available informa-
tion and its flow to both the humans and the automation. Well-
suited to this task is a semi Bayes net[2] which, like a Bayes
net, consists of: a set of nodes representing fixed conditional
probability distributions over the physical state variables and
the sets of information and directed edges describing the flow
and transformation of information and the evolution of the
physical state between the nodes. However, a semi Bayes net
also includes “decision” nodes with unspecified conditional
probability distributions that will be used to model the strategic
thinking of the humans in the loop. When these decision
nodes incorporate game-theoretic models, the resulting struc-
ture called a semi network-form game (SNFG) of human
strategic behavior.

Game theoretic models of the humans are fundamentally
different than models of the automation and control algo-
rithms. These simpler devices process inputs to generate
outputs without regard for how their outputs affect other
components, nor do they try to infer the outputs of other
components before generating their own output. Strategic
humans perform both of these operations. In adversarial inter-
actions, a strategically thinking human infers the decisions of
his opponent and incorporates this information into his own
decision making. He also incorporates that his opponent is
engaged in the same reasoning. These behaviors distinguish
humans from automation making the principled design of
human-in-the-loop control systems challenging. In our model,
we will utilize game theoretic solution concepts to resolve
the circular player-opponent inference problem just described
and compute the conditional probability distributions at the
decision nodes in a SNFG representation of a SCADA system
under attack.

A game theoretic model of a decision node includes two
important components. The first is a utility or reward function
that captures the goals of the human represented by the
decision node and measures the relative benefit of different
decisions. The second component is a solution concept that
determines how the human goes about making decisions. As
a model of human behavior, the solution concept must be
selected to accurately represent the humans in question. For
example, the humans may be modeled as fully rational, i.e.



IEEE TRANSACTIONS ON SMART GRIDS, VOL. X, NO. X, XXXXX XXXXX

always selecting the action that maximizes their reward, or
as bounded rational, sometimes taking actions that are less
than optimal. Additionally, if the decisions that the humans are
facing are too complex to afford exhaustive exploration of all
options, the mathematical operations we use to represent the
human’s mental approximations are also part of the solution
concept.

The current work builds upon previous game-theoretic
models of human-in-the-loop aircraft collision avoidance
systems[2] and our recent extension of these models to sim-
plified electrical grid SCADA systems[3] where the focus
was on developing the computational model for predicting the
outcome of a SCADA attack where the SCADA operator was
certain that an attacker was present. In the present work, we
retain the simplified electrical grid model, but make several
important extensions. First, we remove the SCADA operator’s
certainty that an attacker is present forcing the operator to
perform well under both normal and ‘“attack” conditions.
Second, we shift our focus from only predicting the outcome
of an attack to an initial effort at using these predictions
as a tool to design physical and control systems. Third, the
extension to design requires numerical evaluation of many
more scenarios, and we have implemented new computational
algorithms that speed our simulations.

To summarize, the designer models and simulates the
behavior of the SCADA operator and the cyber-physical
attacker by developing reward functions and solution concepts
that closely represent the decision making processes of these
humans. These game theoretic models are embedded into the
decision nodes of a SNFG that represents the evolution of
the physical state and information available to both human
decision nodes and the automation nodes. If the model is
accurate, then the designer can utilize this model to predict the
outcomes of different system designs and, therefore, maximize
his own “designer’s reward function”. This design process
closely resembles the economic theory of mechanism design
[4]], [5], whereby an external policy-maker seeks to design a
game with specific equilibrium properties. The key difference
between our work and mechanism design is that we do not
assume equilibrium behavior, and this enables us to use the
standard control techniques described abovel[6], [7], [8l, [9].

We also make contributions to the growing literature on
game theory and network security [10], [11]. The assumption
that human operators infer the existence of an attacker from
the state of the SCADA places this model alongside work
on intrusion detection systems [12], [13l], [14], [15)], [L6].
However, we also model the human operator’s attempts to
mitigate damages when an attack is detected. So our model
contributes to the literature on intrusion response [17]].

The rest of this paper is organized as follows. Section
describes the simplified electrical distribution circuit and the
SCADA used to control it. Section III reviews the structure
of SNFG and points out features and extensions important for
the current work. Section IV describes the solution concept we
apply to our SCADA model. Section V and VI describe the
simulation results and our use of these results to assess design
options, respectively. Section VII gives our conclusions and
possible directions for future work.
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Fig. 1. The simplified distribution feeder line used in this study. Node 1 is at
the substation where the SCADA enables control over V7 via a tap changer.
Node 2 represents a large aggregate real p2 and reactive g2 loads that fluctuate
within a narrow range. Node three represents a distributed generator with real
and reactive outputs p3 and g3. The assume the SCADA system enables
control over g3 to assist with voltage regulation along the circuit and that the
attacker has taken control over g3. The distribution circuit segments between
the nodes have resistance r; and reactance x;. The node injections p; and g;
contribute to the circuit segment line flows @; and P;.

II. SIMPLIFIED ELECTRICAL GRID MODEL

To keep the focus of this work on modeling the adversarial
interaction between the defender and attacker, we retain the
simplified model of an electrical grid used in previous work[3l].
Specifically, we consider the three-node model of a radial
distribution circuit shown schematically in Fig. [I] The circuit
starts at the under-load tap changer (ULTC) on the low-
voltage side of a substation transformer at node 1, serves
an aggregation of loads at node 2, and connects a relatively
large, individually-modeled distributed generator at node 3.
In practice, most systems are considerably more detailed
than this example. This example was chosen to limit the
degrees of freedom to allow full enumeration of the parameter
space and improve our understanding of the model’s salient
features. However, it is important to note that the model is
not limited computationally by the size of the power system,
rather it is limited by the number of players and their possible
observations and actions. Extensions to more complex settings
is an open challenge for future research.

In Fig.[I} V;, p;, and ¢; are the voltage and real and reactive
power injections at node i. P;, QQ;, r;, and x; are the real power
flow, reactive power flow, resistance, and reactance of circuit
segment ¢. For this simple setting, we use the LinDistFlow
equations [[18]]

Py=—p3, Qa=—q3, PL=Py+ps, Q1 =Q2+¢q (1)
Vo=Vi—(mPr+21Q1), Va="Va— (roPa+22Q2). (2)

Here, all terms have been normalized by the nominal system
voltage Vj, and we set r; = 0.03 and z; = 0.03.

The attacker-defender game is modeled in discrete time with
each simulation step representing one minute. To emulate the
normal fluctuations of consumer real load, ps at each time
step is drawn from a uniform distribution over the relatively
Narrow range P2 min; P2.maz) With g2 = 0.5p2. The real power
injection ps is of the distributed generator at node 3 is fixed.
Although fixed for any one instance of the game, p2 4, and
ps are our design parameters, and we vary these parameters
to study how they affect the outcome of the attacker-defender
game. In all scenarios, ps in 18 set 0.05 below p max

In our simplified game, the SCADA operator (defender)
tries to, keep the voltages V5 and V3 within appropriate
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operating bounds (described in more detail below). Normally,
the operator has two controls: the ULTC to adjust the voltage
V1 or the reactive power output g3 of the distributed generator.
We assume that the system has been compromised, and the
attacker has control of g3 while the defender retains control
of V;. Changes in V) comprise the defender decision node
while control of g3 comprise the attacker decision node.

By controlling g3, the attacker can modify the @); and cause
the voltage V5 at the customer node to deviate significantly
from 1.0 p.u. — potentially leading to economic losses by
damaging customer equipment or by disrupting computers
or computer-based controllers belonging to commercial or
industrial customers[19]. The attacker’s goals are modeled by
the reward function

Ra=0(Va—(1+¢€)+0((1—¢)—V3). 3)

Here, ¢ represents the halfwidth of the acceptable range
of normalized voltage. For most distribution systems under
consideration, € ~ 0.05. ©(-) is a step function representing
the need for the attacker to cross a voltage deviation threshold
to cause damage.

In contrast, the defender attempts to control both V5 and V3
to near 1.0 p.u.. The defender may also respond to relatively
small voltage deviations that provide no benefit to the attacker.
We express these defender goals through the reward function

2 2
e (P) () e
€ €

III. TIME-EXTENDED, ITERATED SEMI NET-FORM GAME

To predict how system design choices affect the outcome of
attacker-defender interactions, we need a description of when
player decisions are made and how these decisions affect the
system state, i.e. a “game” definition. Sophisticated attacker
strategies may be carried out over many time steps (i.e. many
sequential decisions), therefore we need to expand the SNFG
description in the Introduction to allow for this possibility.

Figure [2] shows three individual semi-Bayes networks repre-
senting three time steps of our time-extended attacker-defender
interaction. Each semi-Bayes net has the structure of a distinct
SNFG played out at time step ¢. These SNFGs are “glued”
together to form an iterated SNFG by passing the system state
S¢, the players’ moves/decisions D, and D?, and the players’
memories M}, and M’ from the SNFG at time step i to the
SNFG at time step ¢+ 1. Iterated SNFGs are described in more
detail in [3].

In the rest of this section, we describe the nodes in this
iterated SNFG and their relationship to one another.

1) Attacker existence: In contrast to our previous work,
we add an ‘A exist” node in Fig. }-the only node that is
not repeated in each SNFG. This node contains a known
probability distribution that outputs a 1 (attacker exists) with
probability p and a 0 (no attacker) with probability 1 — p.
When the attacker is not present, his decision nodes (Df4) are
disabled and g3 is not changed. We vary p to explore the effect
of different attack probabilities.

Fig. 2. The iterated semi net-form game (SNFG) used to model attackers
and operators/defenders in a cyber-physical system. The iterated SNFG in the
Figure consists of three individual SNFGs that are “glued” together at a subset
of the nodes in the semi Bayes net that make up each SNFG.

2) System state: The nodes S° contain the true physical
state of the cyber-physical system at the beginning of the
time step i. We note that the defender’s memory M}, and
the attacker’s memory M’ are explicitly held separate from
the S? to indicate that they cannot observed by other player.

3) Observation Spaces: Extending from S* are two directed
edges to defender and attacker observation nodes O%, and OY.
The defender and attacker observation spaces, {2p and (24,
respectively, are

Qp = [V1,Va, V3, P, Q1], Qa=[V2,V3,p3,q3]. (5)

These observations are not complete (the players do not get
full state information), they may be binned (indicating only the
range of a variable, not the precise value), and they may be
noisy. The content of {2 and €24 is an assumption about the
capabilities of the players. Here, Q) provides a large amount
of system visibility consistent with the defender being the
SCADA operator. However, it does not include p3 or g3 as
the distributed generator has been taken over by the attacker.
In contrast, €24 mostly provides information about node 3 and
also includes V5 because a sophisticated attacker would be able
to estimate V5 from the other information in €2 4. Although we
do not consider this possibility here, we note that the content
of the 2p and to some extent the content of ) 4 are potential
control system design variables that would affect the outcome
of the attacker-defender interaction. For example, excluding
V3 from Qp will affect the decisions made by the defender,
and therefore, the outcome of the interaction.

4) Player Memories: The content and evolution of player
memories should be constructed based on application-specific
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domain knowledge or guided by human-based experiments.
In this initial work, we assume a defender memory M7, and
attacker memory M’ consisting of a few main components

Mp = [Qp, Diy ' Ml My = (@), Diy ', Myl (©)

The inclusion of the player’s current observations )’ and
previous move D! are indicated by directed edges in Fig.
The directed edge from M'~! to M’ indicates the carrying
forward and updating of a summary metric M’ that potentially
provides a player with crucial additional, yet imperfect, system
information that cannot be directly observed.

Our defender uses M p to estimate if an attacker is present.
One mathematical construct that provides this is

Mp = (1—1/m)My?

+ sign(Vi — Vi) sign(V§ — Vi) (D)

The form of statistic in Eq. [/| is similar to the exponentially
decaying memory proposed by Lehrer[20]. For attackers with
small g3 capability, even full range changes of ¢3 will not
greatly affect Vs, and the sign of changes in V3 will be the
same those of V;i. The second term on the RHS of Eq.
will always be +1, and Mp — 1. An attacker with large ¢3
capability can drive changes in V; and V3 of opposite sign.
Several sequential time steps of with opposing voltage changes
will cause M p — —1. We note that if the defender does not
change V7, the contribution to M p is zero, and the defender
does not gain any information.

The general form of the attacker’s memory statistic is
similar to the defender’s,

My = (1=1/nMy?
+ sign (ﬂoor (AVP’ — Aq?’w/%)) )

ov

however the contributions to M 4 are designed to track the
defender’s changes to V3. If the attacker changes g3 by Agl =
q — qéfl, the attacker would expect a proportional change
in V3 by AV = Vi — Vi™' ~ Agias/Vp. If V3 changes
according to this reasoning, then the second term on the
RHS of Eq. [§]is zero. If instead the defender simultaneously
increases V7 by v, AV?f will increase by dv, and the second
term on the RHS of Eq. [§] is then +1. A similar argument
yields -1 if the defender decreases V; by dv. Equation [§] then
approximately tracks the aggregate changes in V7 over the
previous n time steps.

5) Decision or Move space: Here, we only describe the
decision options available to the players. How decisions are
made is discussed in the next Section. Typical hardware-
imposed limits of a ULTC constrain the defender actions at
time step ¢ to the following domain

iD = {min(vmaz, Vf + 0v), Vf, max(Vpmin, Vf —ov)} (9)

where dv is the voltage step size for the transformer, and v,
and v,,4, represent the absolute min and max voltage the
transformer can produce. In simple terms, the defender may
leave V7 unchanged or move it up or down by dv as long as
V1 stays within the range [Usin, Umaz ). We take vy, = 0.90,
Umaz = 1.10, and v = 0.02. We allow a single tap change per

time step (of one minute) which is a reasonable approximation
tap changer lockout following a tap change.

Hardware limitations on the generator at node 3 constrain
the attacker’s range of control of gs. In reality, these limits
can be complicated, however, we simplify the constraints by
taking the attacker’s g3 control domain to be

qu = {_p3,maxa---aOa---ap3,ma3c}~ (10)

In principle, the attacker could continuously adjust g3 within
this range. To reduce the complexity of our computations, we
discretize the attacker’s move space to eleven equally-spaced
settings with —p3 42 and +ps mas as the end points.

IV. SoLUTION CONCEPTS

Nodes other than D%, and D?, represent control algorithms,
evolution of a physical system, a mechanistic memory model,
or other conditional probability distributions that can be writ-
ten down without reference to any of the other nodes in the
semi-Bayes net of Fig. 2} Specifying nodes D% and DY
requires a model of human decision making. In an iterated
SNFG with N time steps, our defender would 3N possibilities,
and maximizing his average reward (ZZ]-V:1 RY/N) quickly
becomes computationally challenging for reasonably large
N. However, a human would not consider all 3V choices.
Therefore, we seek a different solution concept that better
represents human decision making, which is then necessarily
tractable.

A. Policies

We consider a policy-based approach for players’ decisions,
i.e. a mapping from a player’s memory to his action (M5 —
D). A single decision regarding what policy to use for the
entire iterated SNFG greatly reduces the complexity making
it independent of N. A policy does not dictate the action at
each time step. Rather, the action at time step ¢ is determined
by sampling from the policy based on the actual values of
MY (M'). We note that the reward garnered by a player’s
single policy decision depends on the policy decisions of other
player because the reward functions of both players depend on
variables affect by the other player’s policy. Policies and the
methods for finding optimal policies are discussed in greater
detail in [3].

B. Solution Concept: Level-K Reasoning

The coupling between the players’ policies again increases
the complexity of computing the solution. However, the fully
rational procedure of a player assessing his own reward based
on all combinations of the two competing policies is not
a good model of human decision making. We remove this
coupling by invoking level-k reasoning as a solution concept.
Starting at the lowest level-k, a level-1 defender policy is
determined by finding the policy that maximizes the level-
1 defender average reward when playing against a level-0
attacker. Similarly, the level-1 attacker policy is determined
by optimizing against a level-0 defender policy. The higher
k-level policies are determined by optimization with regard to
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the the k-1 policies. We note that the level-0 policies cannot be
determined in this manner. They are simply assumptions about
the non-strategic policy behavior of the attacker and defender
that are inputs to this iterative process.

From the perspective of a level-k player, the decision node
of his level k-1 opponent is now simply a predetermined
conditional probability distribution making it no different
than any other node in the iterated SNFG, i.e. simply part
of his environment. The level-k player only needs to com-
pute his best-response policy against this fixed level k-1
opponent/environment. The selection of the levek-k policy is
now a single-agent reinforcement learning problem. Level-k
reasoning as a solution concept is discussed in more detail in

(3.

C. Reinforcement Learning

Many standard reinforcement learning techniques can be
used to solve the optimization problem discussed above [21]],
[22], [23]. In our previous work[3], the attacker and defender
optimization problems were both modeled as Markov Decision
Processes (MDP), even though neither player could observe
the entire state of the grid. The additional uncertainty related
to attacker existence casts doubt on this approach. Instead,
we employ a reinforcement learning algorithm based on [24]]
which has convergence guarantees for Partially Observable
MDPs (POMDP). This approach has two distinct steps. First is
the policy evaluation step, where the Q-values for the current
policy are estimated using Monte Carlo. Second, the policy
is updated by placing greater weight on actions with higher
estimated Q-values. The two steps are iterated until the policy
converges to a fixed point indicating a local maximum has
been found. The details of the algorithm can be found in [24].

V. SIMULATION RESULTS

Due to space limitations and our desire to explore the design
aspects of our models, we only consider results for a level-
1 defender matched against a level-O attacker. We retain the
level-0 attacker policy that we have used in our previous
work[3]]. Although he is only level-0, this level-O attacker is
modeled as being knowledgeable about power systems and is
sophisticated in his attack policy.

A. Level-0 Attacker

The level-0 attacker drifts one step at at time to larger g3 if
Vo < 1 and smaller g3 if V5 > 1. The choice of V5 to decide
the direction of the drift is somewhat arbitrary, however, this
is simply assumed level-O attacker behavior. The drift in g3
causes a drift in @); and, without any compensating move by
the defender, a drift in V5. A level-1 defender that is unaware
of the attacker’s presence would compensate by adjusting V;
in the opposite sense as V5 in order to keep the average of V5
and V3 close to 1.0. The level-0 attacker continues this slow
drift forcing the unaware level-1 defender to ratchet V) near
t0 Umin OF Upmqe. At some point, based on his knowledge of
the power flow equations and the physical circuit, the level-0
attacker determines it is time to “strike”, i.e. a sudden large

1.15
=V, =V,
——V, —e V
2
110 [ S v, V
S
o
3 ™ '
‘(—;1.05 !
>
o !
3
21.00
0.95
0.90 a) Attacker present 0% of training episodes b) Attacker present 50% of training episodes
o 20 40 60 80 0 20 40 60 80 100
Simulation time step Simulation time step
Fig. 3. Typical time evolution of V7 (blue), V> (red), and V3 (green) for a

level-1 defender facing a level-0 attacker. In the left plot, the level-1 defender’s
policy was optimized for p = 0.0 in “A exist”, i.e. no level-0 attacker was
ever present. In the right plot, the level-1 defender’s policy was optimized with
p = 0.50. At the start of the simulation, no attacker is present. The attacker
enters the simulation at time step 50. In these simulations, p2 mar = 1.4,
P2,min = 1.35 and P3,max = 1.0.

change of g3 in the opposite direction to the drift would push
Vs outside the range [1 — ¢,1 + ¢]. If the deviation of V3 is
large, it will take the defender a number of time steps to bring
V5 back in range, and the attacker accumulates reward during
this recovery time. More formally, this level-0 attacker policy
can be expressed as
LEVELOATTACKER ()
1 V*=maxgep,, Vo —1];
2 ifVE>0,
3 then return arg max,cp,, |V2 —1[;
4 ifVy<1
5 then return g3 ;1 + 1;
6 return gz, 1 —1;

Here, 64 is a threshold parameter that triggers the strike.
Throughout this work, we have used 4 = 0.07 > ¢ to indicate
when an attacker strike will accumulate reward.

B. Level-1 Defender—Level-0 Attacker Dynamics

We demonstrate our entire modeling and simulation process
on two cases. In the first case, a level-1 defender optimizes his
policy against a level-0 attacker that is present 50% of the time,
i.e. p = 0.50 in the node “A exist” in Fig. |2 In the second case,
the level-1 defender optimizes his policy against a “normal”
system, i.e. p = 0.0 in “A exist”’. The behavior of these two
level-1 defenders is shown in Fig. [3] where we temporarily
depart from the description of our model. In the first half
of these simulations, the level-O attacker does not exist, i.e.
p = 0.0, and there are no significant differences between the
two level-1 defenders. At time step 50, a level-0 attacker is
introduced with p = 1.0. The level-1 defender optimized for
p = 0.0 suffers from the “drift-and-strike” attacks as described
above. In contrast, the level-1 defender with a policy optimized
at p = 0.50 has learned not to follow these slow drifts and
maintains a more or less steady V7 even after time step 50.
Although V3 is out of acceptable bounds for some periods,
these are much shorter than before and V5 is never out of
bounds.
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C. Policy Dependence on p During Defender Training

Next, we present a few preliminary studies that prepare
our model for studying circuit design tradeoffs. Although
policy optimization (i.e. training) and policy evaluation seem
closely related, we carry these out as two distinct processes.
During training, all of the parameters of the system are fixed,
especially the probability of the attacker presence p and the
circuit parameters po ;nq, and P3 ;mq;. Many training runs are
carried out and the policy is evolved until the reward per time
step generated by the policy converges to a fixed point. The
converged policy can then be evaluated against the conditions
for which is was trained, and in addition, it can be evaluated
for different but related conditions. For example, we can train
with one probability of attacker existence p, but evaluate the
policy against a different value of p’. Next, we carry out just
such a study to determine if a single value of p can used in all
of our subsequent level-1 defender training. If using a single
training p can be justified, it will greatly reduce the parameter
space to explore during subsequent design studies.

We consider seven values of p logarithmically spaced from
0.01 to 1.0. A set of seven level-1 defenders, one for each p, is
created by optimizing their individual policies against a level-
0 attacker who is present with probability p. Each of these
defenders is then simulated seven times, i.e. against the same
level-0 attacker using the same range of p as in the training.
In these simulations, p2 ;e = 1.4 and p3 ;e = 1.0. During
the simulation stage, the average defender reward per time
step is computed and normalized by the value of p during
the simulation stage, i.e. Zf\il ¢)/Np, creating a measure
of level-1 defender performance per time step that the level-0
attacker is actually present. The results are shown in Fig.

For an achievable number of Monte Carlo samples and for
low values of p during policy optimization (i.e. training), there
will be many system states S that are visited infrequently
or not at all, particularly those states where the attacker is
present. The reinforcement learning algorithm will provide
poor estimates of the Q values for these states, and the results
of the policy optimization should not be trusted. For these
infrequently visited states, we replace the state-action policy
mapping with the mapping given by the level-0 defender policy
used in our previous work[3]. Even with this replacement,
the level-1 defenders trained with p < 0.10 perform quite
poorly. For p > 0.20, it appears that enough states are visited
frequently enough such that level-1 defender performance
improves. For the remainder of the studies in this manuscript,
we use p = 0.20 for all of our level-1 defender training.

VI. DESIGN PROCEDURE AND SOCIAL WELFARE

Significant deviations of V5, or V3 from 1.0 p.u. can
cause economic loss either from equipment damage or lost
productivity due to disturbances to computers or computer-
based industrial controllers[19]]. The likelihood of such voltage
deviations is increased because possibility of attacks on the
distributed generator at node 3. However, this generator also
provides a social benefit through the value of the energy it
contributes to the grid. The larger the generator (larger p3 qaq)
the more energy it contributes and the higher this contribution

p(AO0) in evaluation
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Fig. 4. Level-1 defender reward per time step of level-0 attacker presence dur-
ing simulation (Zf\]: 1 RiD /Np ) versus the probability of attacker presence
during training. The curves representing different levels of attacker presence
during simulation all show the same general dependence, i.e. a relatively flat
plateau in normalized level-1 defender reward for p > 0.20 due to the more
complete sampling of the states S during training (i.e. policy optimization).
This common feature leads us to select p = 0.20 for training for all the
subsequent work in the manuscript.

to the social welfare. However, when compromised, a larger
generator increases the likelihood of large voltage deviations
and significant economic loss.

To balance the value of the energy against the lost produc-
tivity, we assess both in terms of dollars. The social welfare
of the energy is relatively easy to estimate because the value
of electrical energy, although variable in both time and grid
location, can be assigned a relatively accurate average value.
Here the value of electrical energy is approximated by a flat-
rate consumer price. In heavily regulated markets, the price
of electricity can be distorted, and this approach may be a
bad approximation of the true value of the energy. So while
price is a reasonable approximation of value for the purposes
of this model, in practice it may be necessary to adjust for
market distortions on a case-by-case basis. In our work, the
generator at node 3 is installed in a distribution system where
we estimate the energy value at Cp =$80/MW-hr.

As with estimating the value of energy, estimating the social
cost of poor power quality is also a prerequisite to the power
grid design procedure. In contrast to the value of energy,
there is no obvious proxy for this cost making it difficult to
estimate. Studies[19] have concluded that the cost is typically
dominated by a few highly sensitive customers, making this
cost also dependent on grid location and time — the location
of the highly sensitive customers and their periods operation
drive this variability. The average cost of a power quality
event has been estimated[19] at roughly Cpg =$300/sensitive
customer/per power quality event. Note that social welfare,
including estimates of the value of energy and the social
cost of poor power quality, determines the optimality of the
power grid design and should be carefully chosen for each
application.

We now describe a series of numerical simulations and
analyses that enable us to find the social welfare break even
conditions for the generator at node 3.
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A. Level-1 Defender Performance Versus (p2maz:P3,max)

Because the output of the node “A exist” in the iterated
SNFG in Fig. [2] fixes the probability of the presence of an
attacker for the rest of the IV steps in the simulation, the results
from each simulation of the iterated SNFG are statistically
independent. Therefore, if we know the level-1 defender’s
average reward when he is under attack 100% of the time
(p = 1) and 0% of the time (p = 0), we can compute his
average reward for any intermediate value of p. Taking this
into account, we proceed as follows. Using the guidance from
the results in Fig. @ we train level-1 defenders against level-
0 attackers (using p = 0.2) for an array of (D2 maz.P3,maz)
conditions. Next, we simulate these level-1 defenders with
p =1 and p = 0 so that we can compute their average reward
for any p. The results for all (P2 q2,P3,maz) conditions for
p = 0.01 are shown in Fig. [5] The results show two important
thresholds, i.e. the level-1 defenders’ average reward falls off
quickly when p3 pqq > 1.5 or when pa e, > 1.9. In the rest
of this analysis, we will focus on the region p3ma, < 1.5
before the large decrease in the defender’s average reward

B. Level-1 Defender p3 maq Sensitivity

Using the energy and power quality cost estimates from
above, the results in Fig. [5] could be turned into surface plots
of social welfare. However, the number of design parameters
that could be varied would generate a multi-dimensional set
of such surface plots making the results difficult to interpret.
Instead, we seek to reduce this dimensionality and generate
results that provide more design intuition. We first note that
the level-1 defenders’ reward falls approximately linearly with
D3,maz O P3.mae < 1.5. The slope of these curves is the
sensitivity of the level-1 defenders’ average reward to ps mqz,
and we extract and plot these sensitivities versus pg ,nqz in
Fig. [6]

To further analyze the results in Fig. [f] we must relate
the defender’s average reward to power quality events, which
can then be converted into a social welfare cost using Cpqg.
Equation [ expresses the defender’s reward Rp as a sum of
two smooth functions (one function of V5 and another of V3).
These individual contributions are equal to 1 when V5 or V3
are equal to either 1 4+ € or 1 — €. Although these deviations
are not severe, we consider such deviations to constitute
a power quality event, and we estimate its social welfare
cost by as RpCpg. Rp increases (decreases) quadratically
for larger (smaller) voltage deviations, and our definition of
the social welfare cost captures that these larger (smaller)
deviations result in higher (lower) social welfare costs. Us-
ing Cpg =$300/sensitive customer/per power quality event
estimated in [19], our simulation time step of one minute, and
assuming there is one sensitive customer on our circuit, the
slopes of ~0.006/(MW of p3 y,qs) in Fig. @ corresponds to a
social welfare cost of $108/(MW of ps3 4, )/hr. At this value
of Cpg, the social value provided by the energy at $80/MW-
hr is outweighed by the social welfare cost caused by the
reduction in power quality.

Slightly modifying the analysis just described, we can now
find the energy/power-quality break even points for the social
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Fig. 5. The level-1 defender’s average reward per simulation time step as a
function of p3,mas for a 1% probability of an attack on node 3. Each curve
represents a different value of P2 maq in the range [0.2...2.5].
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Fig. 6. The slope of the data in Fig.E]for P3,maz < 1.5. The slope measures
how quickly the level-1 defender’s reward decreases with p3 ,qz for different
values of p2 imaq. Consistent with Fig. [ the slope is roughly constant for
P2,maz < 1.9 and then rapidly becomes more negative as p2 maz increases
beyond 1.9. The rapid decrease demonstrates the level-1 defender is much
more susceptable to the level-0 attacker when p2 maz > 1.9.

welfare of the generator at node 3, i.e. the cost of a power
quality event that reduces the social welfare provided by the
energy to a net of zero. The break-even power quality cost
is plotted versus pa mqz in Fig. [/l Points of C'pg and p2 maa
that fall to the lower left of the curve contribute positive social
welfare while those to the upper right contribute negative
social welfare. When applied to more realistic power system
models, analysis such as shown in Fig. [/|can be used to make
decisions about whether new distributed generation should be
placed on a particular part of a distribution grid.

VII. CONCLUSION

We have described a novel time-extended, game theoretic
model of humans interacting with one another via a cyber-
physical system, i.e. an interaction between a cyber intruder
and an operator of an electrical grid SCADA system. The
model is used to estimate the outcome of this adversarial
interaction, and subsequent analysis is used to estimate the
social welfare of these outcomes. The modeled interaction has
several interesting features. First, the interaction is asymmetric
because the SCADA operator is never completely certain of
the presence of the attacker, but instead uses a simple statistical
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Fig. 7. The cost of a power quality event that yields a zero social welfare
contribution from the distributed generator at node 3 (i.e. the generator’s break
even point) Versus p2 maz. To compute the break even cost of power quality
events, we have assumed: the generator is under attack by a level-0 attacker
1% of the time and the value of the energy from the generator at node 3 is
$80/MW-hr.

representation of memory to attempt to infer the attacker’s
existence. Second, the interaction is mediated by a significant
amount of automation, and using the results of our model or
related models, this automation can be (re)designed to improve
the social welfare of these outcomes.

The models in this manuscript can be extended and im-
proved in many ways. Perhaps the most important of these
would be extending the model to incorporate larger, more
realistic grids, such as transmission grids, where the meshed
nature of the physical system would result in more complex
impacts from an attack. In contrast to the setting described
here, such complex grids would have multiple points where
a cyber intruder could launch an attack, and models of the
defender, his reward function, and his memory would be
equally more complex.

As discussed earlier, one challenge with our approach is
computational. The size of the physical system itself does not
overly increase the computational requirements (beyond what
is normally seen in solving power flow equations in large-scale
systems). However, the number of players and observations
does increase the computational requirements exponentially.
This is a major focus of our current work. In particular, we
note that the number of observations (monitors) that a real hu-
man can pay attention to is very limited. One approach we are
investigating for how to overcome the exponential explosion
is to incorporate this aspect of real human limitations into our
model The challenge here will be developing models of how
a human chooses which observations to make to guide their
decisions.
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