
IEEE TRANSACTIONS ON SMART GRID 1

When Bias Matters: An Economic Assessment of
Demand Response Baselines for Residential

Customers
Tri Kurniawan Wijaya, Graduate Student Member, IEEE, Matteo Vasirani, and Karl Aberer, Member, IEEE

Abstract—Demand response (DR) has been known to play an
important role in the electricity sector to balance supply and
demand. To this end, the DR baseline is a key factor in a
successful DR program since it influences the incentive allocation
mechanism and customer participation. Previous studies have
investigated baseline accuracy and bias for large, industrial
and commercial customers. However, the analysis of baseline
performance for residential customers has received less attention.
In this paper, we analyze DR baselines for residential customers.
Our analysis goes beyond accuracy and bias by understanding
the impact of baselines on all stakeholders’ profit. Using our
customer models, we successfully show how customer partic-
ipation changes depending on the incentive actually received.
We found that, in general, bias is more relevant than accuracy
for determining which baseline provides the highest profit to
stakeholders. Consequently, this result provides a valuable insight
into designing effective DR incentive schemes.

Index Terms—residential demand response, smart grid,
demand-side management, demand response baseline, net benefit
analysis.

I. INTRODUCTION

MATCHING supply and demand is a key feature in the
reliability of an electricity grid, since failure to ensure

it could result in blackouts. Demand response (DR) can be
seen as a demand side effort to match the available supply.
This is essential, especially when there is nothing more that
can be done from the supply side (particularly when energy
sources are renewables).1 The U.S. Federal Energy Regulatory
Commission (FERC) gives a clear definition of DR: changes
in electric usage by end-use customers from their normal
consumption patterns in response to changes in the price of
electricity over time, or to incentive payments designed to
induce lower electricity use at times of high wholesale market
prices or when system reliability is jeopardized [3]. In this
paper, we focus on incentive-based DR, where the incentive
can be in the form of bill rebates, redeemable vouchers,
discounts or any other monetary incentive.

There are two key factors to ensure the success of a DR
program, namely (i) how to operate DR resources, and (ii)
how to measure DR performance. The first factor depends
on customers, the energy market, devices, and the utility
company (or company). In this paper, we focus on the second
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1For more information about the benefit of DR, see [1], [2].

factor, and more specifically on the DR baseline (or simply
baseline), which is an estimate of what customers would have
consumed in the absence of a DR event. In an incentive-based
DR program, the baseline is important because it determines
the incentives allocated to customers, and thus influences
customers’ decisions and participation.

A. Baseline Analysis

Schnittger and Beare [4] provided a brief overview of a DR
baseline and its importance in a DR mechanism. Coughlin
et al. [5], [6], KEMA [7], and EnerNOC [8] analyzed the
accuracy and bias of DR baselines, and suggested different
adjustments to improve baseline accuracy. Our set of baselines
is inspired by their work. However, we consider only the core
baseline method, without adjustments. Their studies focused
on accuracy and bias, and did not analyze how baselines
affect stakeholders’ profits. Mathieu et al. [9] analyzed DR
baseline error (hence, accuracy). However, instead of using
a set of baseline methods, they considered only a regression-
based baseline. They characterized baseline error using several
parameters, and aimed to compute the error associated with
each parameter. As in previous work, this work focused on
baseline error/accuracy, and did not analyze further how a
baseline affects the stakeholder profit.

B. Residential Demand Response

Herter and Wayland [10] quantified the effect of residential
DR using critical peak pricing. They compared customer’s
critical and normal weekday loads at the same temperature
and found statistically significant average customer responses.
In addition, a number of studies have proposed an automated
response (aided by a software agent or energy management
system) in reaction to the variability in energy prices [11]–
[15]. Others have assumed the existence of small energy
storage on consumers’ premises [16]–[19]. Na Li et al. [20]
modeled customer benefit when using a particular appliance
at a particular time. This model was then used to provide
a schedule that maximized customer profits in response to
a dynamic pricing scheme. In contrast to previous works,
which rely on the customer side taking to make an action
when supply is short, Wijaya et al. [21] proposed that the
supply side should explicitly announce the available load and
let the customers bid for it. Overall, our literature review
suggested that research in residential DR focused on dynamic
pricing schemes, and automated response. Investigations about
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incentive-scheme based DR for residential customers has
largely been ignored so far.

C. Overview of Contributions
We summarize our contributions as follows. We study

the impact of DR baselines applied to residential customers,
whereas previous works focused on large, industrial and com-
mercial customers [5]–[8]. While they concentrated on base-
line accuracy and bias, we go beyond these by explaining how
a baseline affects customer decision and participation in a DR
event, and how it affects both customer and company profit.
We evaluate existing methods as well as the new ones that
we introduce here. We also develop three models of customer
response during a DR event. We are able to model changes
in customer participation as a response to the incentives they
have actually received. We show that more positively biased
baselines foster greater customer participation. Interestingly,
while the idea of positively biased baselines does not work
to the favor of utility companies, it does deliver the highest
overall profits when profit sharing is low.

The rest of the paper is organized as follows. In Section II,
we present different DR baseline methods. In Section III, we
provide the necessary definitions needed for our analysis, in-
cluding customer and company profit. We present our analysis
in Section IV and V. In Section VI, we conclude and outline
the further implications of our work.

II. DEMAND RESPONSE BASELINES

Consider a set of (residential) customers C. We divide a day
into a set of timeslots T = {t0, . . . t|T |}. We define the actual
load of customer i on day (or date) d at timeslot t ∈ T as
`i(d, t). In the presence of a DR event, we define the load that
a customer would have consumed in the absence of a DR event
as true baseline, i.e., the customer’s intended consumption.2

However, in practice, during a DR event the true baseline
is unknown. Thus, to calculate a customer’s reduction in
demand (and her incentive for participation) during a DR
event, the utility company needs to establish a DR baseline, or
predicted baseline (or simply a baseline when the context is
clear). Predicted baseline is the load that the utility company
estimates a customer would have consumed in the absence of
a DR event, i.e., the prediction of a customer’s true baseline.
We denote the predicted baseline of customer i ∈ C on day d
at timeslot t ∈ T as bi(d, t), and her true baseline as b∗i (d, t).

Several methods have been proposed in the literature and
used in practice to compute a predicted baseline load for a
DR event: these include HighXofY, MidXofY, exponential
moving average, and regression baselines [7], [8]. For the
completeness of our analysis, we also define a new baseline
method: LowXofY. In addition, a DR baseline should be
simple enough for all stakeholders to understand, calculate,
and implement, including end-use customers [7], [8]. Thus,
even though more sophisticated machine learning methods
could deliver higher prediction accuracy, we do not consider
them in this study.3

2In the absence of a DR event, true baseline is equal to actual load.
3We refer interested readers to [22] for performance analysis of more

complex prediction methods.

We define DR days, or target days, as days when DR events
occur, and others as non-DR days. Furthermore, we define
two day-types: weekdays (Monday to Friday), and weekend
(Saturday and Sunday). Let D(Y, d) be a set of Y most recent
non-DR days preceding the day d having the same day type
as d. In addition, let `i(d) =

∑
t∈T `i(d, t) be the total load

of customer i on day d.

A. HighXofY baseline

HighXofY baseline considers Y non-DR days preceding the
DR event. The baseline is the average load of the X highest
consumption days within those Y days. More formally, for
customer i, we define her HighXofY days preceding a DR
event day d as High(X,Y, d) ⊆ D(Y, d), where:

(i) |High(X,Y, d)| = X , and
(ii) `i(d̂) ≥ `i(d

′) where d̂ ∈ High(X,Y, d) and d′ ∈
D(Y, d) \High(X,Y, d).

The HighXofY baseline of customer i for timeslot t on day d
is

bi(d, t) =
1

X

∑
d∈High(X,Y,d)

`i(d, t). (1)

Examples of HighXofY baseline are [7]:
• PJM Economic: High4of5 for a weekday, and High2of3

for a weekend DR event.
• NYISO: High5of10 for a weekday, and High2of3 for a

weekend DR event.
• CAISO: High10of10 for a weekday, and High4of4 for a

weekend DR event.

B. LowXofY

We propose this new, yet relatively simple baseline method.
Similar to the HighXofY baseline, the LowXofY baseline for
day d is calculated using the X lowest consumption days
of Y non-DR days (of the same day type) preceding d.
More formally, for customer i, we define her LowXofY days
preceding a DR event day d as Low(X,Y, d) ⊆ D(Y, d),
where:

(i) |Low(X,Y, d)| = X , and
(ii) `i(d̂) ≤ `i(d

′) where d̂ ∈ Low(X,Y, d) and d′ ∈
D(Y, d) \ Low(X,Y, d)}.

The LowXofY baseline of customer i for timeslot t on day d
is

bi(d, t) =
1

X

∑
d′∈Low(X,Y,d)

`i(d
′, t). (2)

From this baseline method, we use Low4of5, Low5of10, and
Low10of20. Unlike previous baselines in HighXofY, for these
three baselines we use the same configuration for X and Y for
weekday and weekend DR events. As we will show later, this
baseline method has higher accuracy, but has more negative
bias than the others.



IEEE TRANSACTIONS ON SMART GRID 3

C. MidXofY

The MidXofY baseline for day d is calculated using X
of Y non-DR days preceding d by dropping some of the
lowest and highest consumption days, retaining only the X
middle consumption days. Let X,Y ∈ N, X ≤ Y , and
(Y − X) mod 2 = 0. In addition, let Z = (Y − X)/2. The
MidXofY baseline is calculated using D(Y, d) by dropping the
Z-lowest and Z-highest consumption days. More formally, for
customer i, we define her MidXofY days preceding a DR event
d as Mid(X,Y, d) = D(Y, d)\(Low(Z, Y, d)∪High(Z, Y, d)).
The MidXofY baseline of customer i for timeslot t on day d
is

bi(d, t) =
1

X

∑
d∈Mid(X,Y,d)

`i(d, t). (3)

For our analysis, we consider Mid4of6 (which has also been
considered in [7]).

D. Exponential moving average

The exponential moving average baseline is a weighted
average of a customer’s historical load, where the weight
decreases exponentially with time. This baseline is computed
using historical load data from the beginning of the measure-
ment day up to the day preceding the target day d.

Let D(∞, d) = {d1, . . . , dk} be the set of all measured days
preceding the target day d having the same day type as d. In
addition, let 1 ≤ τ ≤ k be a constant. We define si(dτ , t) as
the initial average load of customer i on timeslot t, i.e.,

si(dτ , t) =
1

τ

τ∑
j=1

`i(dj , t) (4)

The exponential moving average for τ < j ≤ k is

si(dj , t) =
(
λ · si(dj−1, t)

)
+
(
(1− λ) · `i(dj , t)

)
(5)

where λ ∈ [0, 1]. Then, we define the exponential moving
average baseline for customer i on day d at timeslot t as:

bi(d, t) = si(dk, t). (6)

The baseline for days earlier than dτ+1 is undefined.
For this baseline method, we consider the ISONE baseline

[7] where τ = 5 and λ = 0.9. The ISONE baseline is
undefined for a customer who joined the DR program for less
than 5 days. Even though in practice the ISONE baseline is
not applied to the weekend, in this paper, we also compute
the ISONE baseline for the weekend.

E. Regression

The baseline of day d is computed using linear regressions
whose parameters are inferred on the basis of historical data
taken from D(Y, d). This method uses one linear regression
predictor for each timeslot during the day, i.e., the baseline of
customer i on day d at timeslot t is computed by:

bi(d, t) = (θi,t)
Txi,t + εi,t (7)

where xi,t is the feature vector, θi,t is the (vector of) re-
gression coefficient, and εi,t is the error term. The feature

TABLE I: Summary of the baseline methods.

Baseline Short description
HighXofY average of the highest X of Y days
LowXofY average of the lowest X of Y days
MidXofY average of the middle X of Y days
Exp. moving avg. weighted average of customer’s consumption
Regression linear regression of customer’s consumption
note: all historical data considering only non-DR days preceding the DR event

vector is a vector of explanatory variables such as historical
consumption, temperature, or sunrise/sunset time. Then, we
estimated the regression coefficient and the error term using
ridge regression, although other estimation methods can also
be used.

Because our dataset, as we will explain later, does not
contain temperature or other measurements which could poten-
tially be explanatory variables, we use historical consumption
at the same hour of the day as feature vectors. In order to
capture the weekly trend, we set the length of the feature
vector to 7 for weekday estimation, and to 5 for weekend
days.4 We consider two regression baselines:
• Reg1, where D(Y, d) contains all historical data available,
• Reg2, where Y = 150.

Table I summarizes the baseline methods explained in this
section.

III. RESIDENTIAL DEMAND RESPONSE

With large, industrial and commercial customers, DR is
often contract-based. For example, customers agree to respond
to a fixed number of DR events per year. However, DR among
residential customers can be very dynamic and need not be
contract-based. One of the common execution scenarios, which
we also consider in this paper, is as follows:

1) The company sends a DR signal to the customers.
2) Each customer decides whether she would like to respond

to the signal or not.
3) Using customer’s smart meter data, the company reads

her actual load and calculates her incentive.

A. DR Signal

Below are two possible types of DR signal for residential
customers:

1) A signal which communicates the DR event start/end
times and the amount of kWh to be reduced.

2) A signal which communicates the DR event start/end
times and lets the customer decide how much she is
willing to reduce.

In order to understand how baselines and incentive alloca-
tion influence customers’ decisions to reduce their consump-
tion, we focus on DR signals of type 2.

4Note that from a specific weekday (or weekend day), to reach that same
day one week ago, we need to go back at least 5 previous weekdays (or 2
previous weekend days).
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Fig. 1: An illustration of the true baseline, predicted baseline,
and actual load where a DR event occurs from 17:00 to 20:00
to curtail the evening peak.

B. DR Event

We define a DR event as a tuple δ = (δstart , δend) where
δstart is the start time and δend is the end time of the event,
and we denote d(δ) as the day/date of the event. In addition,
we define the total actual load, predicted baseline, and true
baseline of customer i during event δ as:

li(δ) =

δend∑
t=δstart

li(d(δ), t), (8)

bi(δ) =

δend∑
t=δstart

bi(d(δ), t), (9)

b∗i (δ) =

δend∑
t=δstart

b∗i (d(δ), t). (10)

For our analysis (later in Section V), we obtained customers’
true baselines from the real-world dataset, and we model
customers’ responses during a DR event to generate the actual
load. Figure 1 provides a simple illustration of the customer’s
actual load, predicted baseline, and true baseline when there
is a DR event from 17:00 to 20:00.

Then, for an event δ, we define the aggregate actual load,
predicted baseline, and true baseline over all customers as:

L(δ) =
∑
i∈C

li(δ). (11)

B(δ) =
∑
i∈C

bi(δ), (12)

B∗(δ) =
∑
i∈C

b∗i (δ), (13)

In practice, while B∗(δ) is not known, B(δ) and L(δ) are
known. Publishing this information does not violate customer
privacy (since both of them describe information aggregated
over all customers). In addition DR performance feedback can
also be useful to foster customer participation [23]. Thus, we
assume that the utility company publish B(δ) and L(δ).

C. Cost and Profit Functions

Cost We denote c(L) as the total cost of meeting load demand
L. We assume that c is monotonically increasing and strictly
convex. An example of a real energy cost function that satisfies
both the above assumptions is the quadratic cost function for
thermal generators [11], [24], [25]:

c(L) = a1L
2 + a2L+ a3. (14)

where a1, a2, and a3 are constants.
Note that our assumption about the monotonically increas-

ing cost function might not hold in cases of renewable energy
generation, such as solar or wind power when there is an
abundance of sunlight or wind. In this case, we consider a
typical situation where there is a lack of supply, and more
expensive generator or power sources need to be activated.
This may involve advanced buying from the wholesale energy
market at a few hours’ notice.

A DR event typically happens when there is not enough
supply to meet demand or when the spot market price is
higher than the retail price. Therefore, the lower the customers’
consumption, the greater the company’s saving. We introduce
the notion of a company’s true saving as the differences
between the cost of generating the customers’ true baseline
and the cost of generating the customers’ actual load, i.e.,

c(B∗(δ))− c(L(δ)). (15)

However, in practice, what we can compute during a DR
event is the predicted baseline, and not the true baseline.
Under this condition, the company’s saving is computed as
the difference between the cost of generating the predicted
baseline and the cost of generating the actual load. Hence, we
define the notion of the company’s perceived saving:

c(B(δ))− c(L(δ)). (16)

Customer’s profit function Because of the customer’s own
efforts to reduce the load, and so as to give the customers
further incentives, we define α ∈ [0, 1] as the proportion
of the saving that the company would be willing to share
with its customers. A customer only receives an incentive if
she reduces her consumption in comparison to the predicted
baseline. The incentive received is proportional to the
aggregate load. We define the received incentive of customer
i as:

rv i(δ) =

{
α ·
( bi(δ)
B(δ) c(B(δ))− li(δ)

L(δ) c(L(δ))
)
, if li(δ) < bi(δ)

0, otherwise
(17)

We can see from Eq. 17, that customer’s received incentive
depends on the predicted baseline established by the company.
From the customer’s perspective, if we know what she would
have consumed (if there were no DR event), then we can also
compute her true incentive, which is defined by replacing the
predicted baseline in Eq. 17 with customer’s true baseline:

tv i(δ) =

{
α ·
( b∗i (δ)
B(δ) c(B(δ))− li(δ)

L(δ) c(L(δ))
)
, if li(δ) < b∗i (δ)

0, otherwise
(18)
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In this case, we assume that the customer is able to estimate
her own intended consumption (true baseline). This could be
made possible with the help of software agents for example,
since the customer is the stakeholder with the most knowledge
about the residence: the number and type of inhabitants,
the number and type of appliances, and access to personal
agendas to know when someone is at home or away. Because
the company publishes only B(δ) and L(δ), B∗(δ) remains
unknown to the customer. Thus, in Eq. 18 we use B(δ) as
the approximation of B∗(δ). A customer’s true incentive can
also be thought of as the customer’s received incentive when
the predicted baseline established by the company perfectly
estimates customer’s true baseline.

In addition, for customer i, we define the difference between
her received incentive and her true incentive for a DR event
δ as her additional profit, i.e.,

rvi(δ)− tvi(δ). (19)

Positive additional profit means that customer i receives more
incentive than she deserves.

Company’s profit function The company’s profit can be
calculated by subtracting the amount of incentives allocated
to customers from the true or perceived savings. Note that
in practice what it is possible to calculate is the company’s
perceived savings. However, the perceived savings depend on
the chosen baseline method and does not reflect the company’s
true savings or losses after a DR event. Therefore, if possible,
analyzing the company’s true profit using its true savings is
highly desirable. Below, we specify the company’s true profit
by its proportion to the cost of generating true baseline:

c(B∗(δ))− c(L(δ))−
∑
i∈C(rv i)

c(B∗(δ))
. (20)

In our analysis, we compute the company’s true profit by
maintaining the customers’ true baseline (obtained from a real-
world dataset), and modeling customer responses during a DR
event to obtain the actual load.

D. Customer Model
For our analysis, we propose three customer models.

Naı̈ve This first model introduces a naı̈ve customer model
whose fixed parameter γ ∈ [0, 1] determines by how much
she reduces her intended load (true baseline). For customer i,
for each DR event δ, we have:

li(δ) = (1− γi) · b∗i (δ). (21)

This parameter γ remains constant over time, regardless of the
chosen baseline or the incentive given by the company.

Rational From Eq. 17 and 18, we can see that when the
predicted baseline underestimates a customer’s true consump-
tion she receives less incentive than she deserves (and vice
versa). In this model, a customer responds to a DR signal
only if the predicted baseline established by the company does
not underestimate her true consumption. More formally, for
customer i, during a DR event δ:

li(δ) =

{
(1− γi) · b∗i (δ), if bi(δ) ≥ b∗i (δ)
b∗i (δ), otherwise

(22)

where γi ∈ [0, 1] is the proportion of customer i’s reduction
compared to her true consumption.

Adaptive In this model, we introduce a customer who learns
to make her decisions with regards to past experiences. The
greater incentive the customer actually receives, in relation to
the incentive she actually deserves, the more eager she will
be to participate in the next event. That is, the customer’s
decision to reduce load evolves from one DR event to the
next, influenced by the ratio between her received incentive
(what she receives) and her true incentive (what she should
have received).

Let δj be the jth DR event. From a predefined γ0i , this
parameter evolves as the exponential moving average ratio
between customer i’s received incentive and her true incentive.
Moreover, let{

∆ω = 1
ω ·
∑ω
j=1

rvi(δj)
tvi(δj)

∆j = ρ ·∆j−1 + (1− ρ) · rvi(δj)tvi(δj)
, for j > ω

(23)

where ω ∈ N is the initial learning length parameter and
ρ ∈ [0, 1] is the decaying parameter to discount previous
observations. Then, we define:{

γji = γ0i , for j ≤ ω
γji = ∆j−1 · γj−1i , for j > ω

(24)

We restrict the minimum value of γji to 0 and its maximum
value to 1. In this model, customer i reduces γji of her true
consumption during DR event δj , i.e.,

li(δj) = (1− γji ) · b
∗
i (δj). (25)

The larger the ratio between customer’s received incentive and
her true incentive, the higher her γ for the next DR event.

IV. ACCURACY AND BIAS

A. Setup

For our analysis, we use the Irish CER smart metering trial
dataset [26]. This dataset contains measurements of around
5,000 customers over 1.5 years. The customers consist of
residential houses and small and medium-sized enterprises.
The measurements started in July 2009 and ended in December
2010. Since the trial was about dynamic pricing, we use
only the data from the control group, composed of customers
who are not affected by the different pricing schemes. More
specifically, we choose residential customers that belong to the
control group and have no missing values. This results in the
selection of 782 customers. In order to take into account the
seasonal variation in customers’ loads, we use a full year of
measurement data, from January 1st to December 31st 2010.

We analyze the hourly accuracy and bias of each baseline.
Let C be the set of our 782 customers, D be the set of all days
in 2010, and T be the set of hourly timeslots in a day. We
measure baseline accuracy in terms of Mean Absolute Error
(MAE): ∑

i∈C
∑
d∈D

∑
t∈T |bi(d, t)− `i(d, t)|

|C| · |D| · |T |
. (26)
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Fig. 2: Mean Average Error (MAE) and bias of different
baselines in kWh. Average hourly load over all customers is
0.97 kWh.

The lower the MAE, the higher the accuracy. And we define
baseline bias as:∑

i∈C
∑
d∈D

∑
t∈T

(
bi(d, t)− `i(d, t)

)
|C| · |D| · |T |

. (27)

Baseline methods which have positive bias tend to overes-
timate customers’ actual consumption (or true baseline when
DR events occur), and vice versa.

B. Analysis
Figure 2 shows the accuracy and bias of each baseline in

kWh. As expected, the HighXofY baselines whose X < Y ,
have a more positive bias than the others, whereas our
LowXofY baselines have more negative bias than the others.

One interesting point here is that our LowXofY base-
lines are able to provide better accuracy than more sophis-
ticated baselines such as ISONE (exponential moving aver-
age) and Reg1/Reg2 (regression).5 The accuracy gained by
our LowXofY baselines is driven by the days when a day
with unusually high consumption is followed by days with
normal (and thus much lower) consumption. In this case,
LowXofY baselines will most likely exclude this unusually
high consumption day from the next day’s (or days’) baseline
computation(s). However, other baselines take this unusual day
into account. For example, using CAISO, this unusual day will
be carried through in the next 10 baseline computations (if the
unusual day happens on a weekday, or 4 if it happens on the
weekend). This is also the case with the exponential moving
average and regression baselines, which both take into account
this unusual day in their models.

V. NET BENEFIT ANALYSIS

A. Setup

Baselines To analyze customer and company profit we focus
on five representative baseline methods: ISONE, Low4of5,
Mid4of6, Reg2, and NYISO. We chose them such that they
use different baseline methods, and have different accuracy
and bias profiles. Table II shows the details of their profiles.

5However, one should not conclude that LowXofY is better than regres-
sion models in general. Adding some additional explanatory variables to
Reg1/Reg2 could increase their predictive power and improve their accuracy.

TABLE II: Detailed characteristics of ISONE, Low4of5,
Mid4of6, Reg2, and NYISO (ordered by MAE).

Baseline Baseline family MAE (kWh) Bias (kWh)

ISONE Exponential moving average 0.51362 -0.00259
Low4of5 LowXofY 0.51645 -0.07293
Mid4of6 MidXofY 0.53163 -0.01416
Reg2 Regression 0.53368 0.00893
NYISO HighXofY 0.60611 0.14796
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(b) Additional profit

Fig. 3: Received incentive and additional profit in the naive
customer model. Both are calculated as the sum of customers
over all 52 DR events.

DR event We set the DR event to occur once a week on a
random day. In total, we have 52 DR events for a year, between
January 1st and December 31st 2010. The events happen
evening during peak hours, starting at 17:00 and ending at
20:00. As described in Section III-A, we use a type 2 DR
signal, which allows us to analyze how the baseline and the
incentive affect a customer’s decision to reduce her load.

We use a simple cost function as described Eq. 14 with
a1 = 0.0001, a2 = 0, and a3 = 0. Any other cost function
could be used as long as it satisfies the assumption stated in
Section III-C. It will not affect our analysis (the end result
might have different exact numbers, but would show the same
trends). In addition, we assume that the imbalance between
supply and demand occurs during the DR events. Hence, we
focus our analysis exclusively on the time of the DR events.

B. Customers Profit

For each customer model, we analyze customers’ received
incentive and their additional profit when a particular baseline
is used. Note that our cost function is not associated to a
currency. Thus we define the unit of measurement of the
customers’ incentive as an incentive unit.

Received incentive in the naı̈ve and rational customer
models Figure 3a shows the received incentive in the naı̈ve
customer model, and Figure 4a shows the received incentive
in the rational customer model. Both are shown as the sum
of all customers over all 52 DR events with α = 0.1 (defined
in Section III-C). We have the same trends, i.e., the larger the
γ, the larger the received incentive. This is expected since γ
represents the proportion of the intended consumption (true
baseline) that customers reduce. A larger gamma means a
lower actual load (Eq. 21 and 22), thus higher incentives
(Eq. 17).
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(b) Additional profit

Fig. 4: Received incentive and additional profit in the ratio-
nal customer model. Both are calculated as the sum of all
customers over all 52 DR events.

(a) Weekly average of γ (b) Received incentive and additional
profit

Fig. 5: The evolution of γ, received incentive, and additional
profit of adaptive customer model with γ0 = 0.2 and α = 0.1
(defined in Section III-C). Received incentives and additional
profit shown are the sum over all customers and 52 DR events.

The figures show that irrespective of customers’ γ, NY-
ISO delivers them the highest incentives; Reg2, ISONE, and
Mid4of6 come second; and Low4of5 delivers the lowest
incentives. We highlight that this ranking is ordered by their
bias (not accuracy). The more positive the bias, the higher we
set the customers’ predicted baseline loads. As a result, the
customers received higher incentives (Eq. 17). When different
α is used, our analysis does not change. Different α only
introduces a constant shift to the current plots upward or
downward (Eq. 17).

Additional profit of naı̈ve and rational customer model
Figure 3b shows the additional profit of the naı̈ve customer
model, and Figure 4b shows the additional profit of the rational
customer model. See Section III-C for the definition of addi-
tional profit. Similar to the received incentive case, baseline
methods with more positive bias give higher additional profit
to the customers. This can be understood since more positive
bias baseline methods tend to overestimate the customers’
true baseline, thus they give higher additional profit to the
customers.

It is interesting to note how customers receive the highest
additional profit when γ is low, especially when γ = 0 (except
using the Low4of5 baseline on rational customers). Let C+ be
the set of customers whose true consumption is overestimated
and C− be the set whose consumption is underestimated by
a particular baseline for a particular DR event. When γ = 0,

C+ has positive additional profit, whereas C− has 0 additional
profit. When γ > 0, C+ still has positive additional profit
but C− experiences negative additional profit, and the overall
customers’ additional profit decreases. In addition, when γ = 0
the true incentive of C+ is 0, whereas when γ > 0 the true
incentive of C+ is > 0. This also causes the trend of additional
profit going down when γ > 0. Additional profit can also be
thought of as a “free lunch” for the customers.

Customers with γ = 0 have a true incentive equal to 0,
because they do not carry out any reduction in consump-
tion. However, there are some customers whose loads are
overestimated by the baseline methods, and others whose
loads are not. While the non-overestimated customers do not
receive any incentives, the overestimated customers do receive
some incentives (free riders). This is why the total received
incentive (and additional profit) over all customers is positive
when γ = 0. For these customers, in order to receive bigger
incentives, they need to increase their γ, i.e., they cannot
be free riders any more. Even though their additional profits
decrease, their received incentives increase (as the payoff for
reducing their load).

Adaptive customers Figure 5 shows the evolution of cus-
tomers’ γ over time (weekly), their received incentives, and
additional profits, given different baselines with initial gamma,
γ0 = 0.2. We recall that the evolution of a customer’s γ
depends on the ratio between her received incentive and her
true incentive. The higher the ratio, the higher the customer’s
γ for the next DR event.

The primary motivation for the development of the NY-
ISO baseline was to encourage customer participation. Using
an adaptive customer model, we successfully realized this
phenomenon. Figure 5a shows that using a positive bias
baseline increases customers’ γ more than using a negative
bias baseline (see Table II for the bias of the baseline methods).
This is due to the fact that more positively biased baselines
provide a higher received incentives compared to the true
incentives.

The baseline bias and customer incentive trends seen in both
the naı̈ve and rational customer model can also be found in
this customer models. A baseline with a more positive bias
results in higher received incentive and additional profit (which
encourages customer participation, as we mentioned earlier).

C. Company’s Profit

Figure 6 shows the company’s profit using different cus-
tomer models. We discussed earlier that more positively biased
baselines deliver higher customer profit. However, this is not
the case with the company’s profit. More negatively biased
baselines provide higher company profit because they lower
the amount of incentives allocated to the customers.

In the naı̈ve customer model, and in the relatively high α of
the rational and adaptive customer models, Low4of5 delivers
the highest company profit compared to the other baselines.
Moreover, we can see that the more negative the baseline’s
bias, the higher the company’s profit. This is understandable
since having more negatively biased baseline methods means
that the company tends to set lower predicted baseline load,
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(a) Naive customer model (b) Rational customer model (c) Adaptive customer model with γ0 = 0.2

Fig. 6: Company’s profit under different customer models and various α.

and hence distributes lower incentives to the customers. These
lower total incentives lead to higher company profit. (see
Eq. 20).

More interesting facts are shown in Figures 6b and 6c,
which present some cases in which more positively biased
baselines provide higher profit to the company. This is interest-
ing because positively biased baselines (and, of course, larger
α) are in line with customer preference. In general, negatively
biased baselines, which tend to underestimate customers’ true
consumption, ought to deliver higher profit to the company.
If this were always the case, then there would be a conflict
of interest with the customers. Therefore, a case where more
positively biased baselines deliver higher profit to the company
is attractive because it opens the possibility of satisfying both
stakeholders – the customers and the company.

However, determining the right α becomes crucial. Larger
α results in a higher overall incentive allocated, thus, lower
company profit. Figures 6b and 6c show that NYISO is the
best baseline to use with the rational customer model with α <
0.15 and with the adaptive customer model with α < 0.2. In
these two cases, for some small α, more positive bias baselines
provide better profit for the company. This can be understood
because a more positively biased baseline encourages more
customer participation. Thus, it reduces the overall actual load,
but does not give away too much in terms of incentives, which
potentially increases the company’s profit (see Eq. 20).

VI. CONCLUSION

In this paper, we analyzed the performance of DR base-
lines in the context of residential demand response, whereas
previous works on baseline analysis focused only on large
customers and commercial buildings. Furthermore, the base-
line analyses performed to date were limited to “classic”
analyses, i.e., baseline accuracy and bias. In this paper, we
went beyond these classic analyses by explaining the impact
of DR baselines on the stakeholders’ benefits, i.e., the profit
of both the customers and the company. These are all essential
elements for making residential DR a reality in the future.

As a supplement to the current baseline methods found
in the literature, we proposed a novel yet relatively simple
baseline method: LowXofY. This method has a more negative
bias than other baselines, but it is more accurate. We also
successfully confirmed the fact that positively biased baselines

increase customer participation. While the motivation for
using more positively biased baselines is indeed to encourage
customer participation, little is known about whether overes-
timating customer consumption could benefit the company.
We showed that when the company shares a small portion
of its profit with its customers (i.e., small α), it can actually
increase its profit (and deliver higher profit compared to the
other baselines) due to the increased customer participation.
This opens up the possibility of a win-win solution for both the
customers and the company. In addition, our result provides
a valuable insight for the design of future incentive schemes
for DR, i.e., even though the company can perfectly estimate
a customer’s baseline (which is useful to assess DR success
rate), it might want to increase the baseline’s bias a little to
encourage her participation

As a future study, we plan to incorporate social interaction
into the customer models, since this has been shown to have
an impact on energy conservation awareness [27]–[29] and
more environmentally friendly behavior in general [30]. In
addition, while baseline methods described in this paper use
only non-DR days, designing a DR baseline which take into
account customer’s consumption on DR days could be another
interesting direction. This would be particularly important, in
the future, when DR events are set to run almost everyday.
We also plan to quantify baseline integrity, i.e., how far
customers can manipulate a baseline to their own advantage.
In addition to its economic impact, baseline integrity is another
important aspect that needs to be assessed for a successful and
sustainable DR program.
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