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Abstract—In this paper, we investigate a practical demand side
management scenario where the selfish consumers compete to
minimize their individual energy cost through scheduling their
future energy consumption profiles. We adopt an instantaneous
load billing scheme to effectively convince the consumers to
shift their peak-time consumption and to fairly charge the
consumers for their energy consumption. For the considered
DSM scenario, an aggregative game is first formulated to model
the strategic behaviors of the selfish consumers. By resorting
to the variational inequality theory, we analyze the conditions
for the existence and uniqueness of the Nash equilibrium (NE)
of the formulated game. Subsequently, for the scenario where
there is a central unit calculating and sending the real-time
aggregated load to all consumers, we develop a one timescale
distributed iterative proximal-point algorithm with prov able
convergence to achieve the NE of the formulated game. Finally,
considering the alternative situation where the central unit does
not exist, but the consumers are connected and they would like
to share their estimated information with others, we present
a distributed synchronous agreement-based algorithm and a
distributed asynchronous gossip-based algorithm, by which the
consumers can achieve the NE of the formulated game through
exchanging information with their immediate neighbors.

Index Terms—Smart grid, demand side management, aggrega-
tive game, Nash equilibrium, distributed iterative proximal-point
method, distributed agreement (consensus) method, distributed
gossip-based algorithm.

I. I NTRODUCTION

Recently, demand side management (DSM) has emerged
as one of the key techniques to transform today’s aging
power grid into a more efficiently and more reliably operated
smart grid [1], [2]. Thanks to the two-way communication
capabilities of smart grid, real-time pricing [3] has been
regarded as a promising technique to implement DSM due
to its ability to effectively convince consumers to shift their
peak-time energy consumption to non-peak time. In real-time
pricing schemes, the energy price for a certain operation period
is normally designed to be proportional to the aggregated
load of all consumers during the considered period [3]–[6].
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As a result, the consumers would prefer to consume more
energy during non-peak times rather than peak times in order
to decrease their energy cost. This can improve the operation
efficiency of the whole grid since its demand is flattened.

In a real-time pricing based DSM framework, the billing
mechanism (i.e., how to charge the consumers for their energy
usage) is of great importance since it may significantly affect
the consumers’ motivation to participate in the DSM program.
However, there has only been limited work investigating this
important billing issue. [4] proposed a simple billing approach,
where the consumers were charged in proportional to their
total energy consumption for the next operation period. This
total load billing method can minimize the whole grid energy
cost. However, the consumers are charged the same amount if
they consume the same total amount of electricity, regardless
in peak or off-peak times, which leads to unfair charging
for the consumers who use less electricity in peak times
[5]. To address this problem, [5], [6] proposed a new billing
approach, where each consumer is charged based on his/her
instantaneous load in each time slot during the next operation
period. As a result, the consumers will be charged more if
they consume more during peak times and this can effectively
improve the fairness of charging between different consumers
[5]. In this paper, the billing approach proposed in [5], [6]is
termed as instantaneous load billing, in contrast to the total
load billing in [4]. Based on the proposed billing approach,
[6] also developed a classical non-cooperative game for the
DSM scenario where the traditional consumers as well as
consumers owing distributed energy sources and/or energy
storage compete to reduce their energy bills. However, the
main analysis and results in [5], [6] are only valid when
the energy price is alinear function of the total load of all
consumers in each time slot. Very recently, [7] extended [6]
to the scenario with ageneral energy price function. Based
on the proximal decomposition method [8], synchronous and
asynchronous algorithms were respectively developed in [6]
and [7] for the consumers to achieve their optimal strategies
in a distributed manner.

In this paper, we develop three novel distributed algorithms
for autonomous DSM scenario, which enable the selfish con-
sumers to optimize their own energy payment through schedul-
ing their future energy consumption. The key contributionsof
this paper, with a particular emphasis on the differences with
[6], [7], are summarized as follows:

(1) Inspired by [5]–[7], we adopt the instantaneous load
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billing scheme to effectively convince the consumers to shift
their peak-time energy consumption and fairly charge the
consumers. In this paper, we are interested in a practical
polynomialenergy price model instead of the general energy
price model considered in [7], since the polynomial model
has been widely adopted in power systems (e.g., spot market
price model [9], [10]). By exploring the aggregative property
of the instantaneous load billing scheme that the energy
cost of each consumer only depends on its own and all
consumers’ aggregated energy consumption profiles [6], [7],
we develop a novel aggregative game1 to model the strategic
behaviors of the selfish consumers. Additionally, we perform
new theoretical analysis for the Nash equilibrium (NE) of the
formulated game. This analysis will be facilitated by using
advanced variational inequality theory [14]. As shown in this
paper, the formulation of the aggregative game can facilitate
the game analysis, the algorithm design and the convergence
proof for the proposed algorithms. In our previous work [15],
a distributed and parallel gradient projection algorithm was
proposed for the considered DSM framework.

(2) For the algorithm design, we first consider the same
setup as in [6], [7] where a central unit exists and broadcasts
the real-time aggregated energy consumption profile to all
consumers. In this case, the synchronous and asynchronous
proximal decomposition algorithms proposed in [6], [7] can
be directly applied to compute the NE of the formulated game.
It should be noted that the algorithms in [6], [7] aretwo
timescale, which is due to the nature of the problem (i.e.,
the mapping function associated with distributed generation
and storage is monotone) in [6], [7]. However, as shown later,
the formulated problem in this paper can be guaranteed to
possess strictly monotone mapping. Thus, we may not need
to apply the two timescale algorithms, which are generally
harder to implement in online settings than theone timescale
algorithms [16]. Motivated by this, we develop a distributed
iterative proximal-point algorithm to achieve the NE of the
formulated game. This new algorithm is a parallel and one
timescale algorithm and the choice of algorithm parameters
does not depend on the system arguments.

(3) Considering the alternative situation without a central
unit but where the consumers are connected and they ex-
change their estimated information with others, we developa
distributed agreement (consensus)-based algorithm, by which
the consumers can achieve the NE of the formulated game
through exchanging information with their immediate neigh-
bors. Although information exchanges are required between
the consumers in this algorithm, no private information (e.g.,
the exact energy consumption profile of each consumer) is
shared between the consumers, thus effectively protecting
the consumers’ privacy. Moreover, the parameters of this
algorithm can also be chosen without knowing the system’s
arguments a priori.

(4) Although the central unit is not necessary for the
aforementioned agreement-based algorithm, synchronization
between the consumers and coordination in terms of algorithm

1An aggregative game is a special kind of the non-cooperativegame where
each player’s payoff is parameterized by its own action and the aggregative
of the actions taken by all players [11], [12] [13, Ch. 4].

step sizes are still required, which are challenging in very
large networks. Motivated by this, we develop a distributed
asynchronous gossip-based algorithm for computing the NE
of the formulated game without the need of a central unit.
In this developed algorithm, synchronization is not required
between the consumers. Besides the asynchronous updates,
the consumers are allowed to use uncoordinated step sizes that
are based on the frequency of the consumer update. Note that
although the distributed consensus and gossip algorithms are
well-known techniques, their application to achieve the NEof
the formulated game is not straightforward at all and is not
feasible without the formulation of the aggregative game in
this paper.

Notations: All the vectors, except as specially stated, are
column vectors.xT and‖x‖2 =

√
xTx denote the transpose

and Euclidean norm of a vectorx, respectively.A×B is the
cartesian product of setsA andB. x = (xn)

N

n=1 denotes the
operation of concatenating all vectorsx1, . . . ,xN into a single
column vector, i.e.,x =

(
xT
1 , . . . ,x

T
N

)T
. To emphasize then-

th element withinx, we sometimes write(xn,x−n) instead
of x with x−n = (xm)Nm=1,m 6=n. We use[ · ]K to denote
the Euclidean projection operator onto a setK. ∇xf (x) and
∇2

xf (x) respectively denote the gradient vector and Hessian
matrix of a scalar functionf (x), while JxF (x) denotes the
Jacobian matrix of a vector functionF (x).

The rest of this paper is organized as follows. The system
model and the instantaneous load billing scheme are described
in Section II. Section III formulates the aggregated game
and analyzes the existence and uniqueness for the NE of
the formulated game. The three new distributed algorithms
are proposed in Section IV-VI, respectively. In section VII,
numerical results are presented to illustrate and validatethe
theoretical analysis. Finally, Section VIII concludes this paper.

II. SYSTEM MODEL

We consider an electricity network comprised ofN con-
sumers, which are served by a common energy provider.
We denote the set of these consumers asN = {1, . . . , N}.
Each consumer is equipped with an energy management
controller unit, which has full responsibility for scheduling
the consumer’s energy consumption. In addition, there exists a
two-way communications network connecting each consumer
to the energy provider. Similar to [4], [17], we assume that the
energy requirement of each consumer is determined in advance
for H future time slots. Each time slot can represent different
timing horizons, e.g., one hour of a day.

A. Energy Consumption Model

We consider an energy consumption model as in [17], where
the nth (n ∈ N ) consumer’s energy consumption profile can
be formulated as

qn =
(
q1n, . . . , q

H
n

)T
, (1)

whereqhn is the energy consumption of consumern in thehth
time slot and it is subject to the following constraints:

qh,min
n ≤ qhn ≤ qh,max

n and
∑H

h=1
qhn =En, (2)
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whereqh,min
n andqh,max

n denote consumern’s minimum and
maximum energy levels2 in time sloth, respectively, andEn

is the total energy requirement of consumern over all time
slots. Therefore, the individual feasible energy consumption
set of consumern can be expressed as

Qn =

{

qn :
∑H

h=1
qhn =En, and

qh,min
n ≤ qhn ≤ qh,max

n , ∀h ∈ H
}
,

(3)

whereH = {1, . . . , H} is the set of all futureH time slots.
The feasible energy consumption set of all consumers can thus
be expressed as

Q = Q1 × . . .×QN . (4)

B. Instantaneous Load Billing

To effectively convince the consumers to shift their peak-
time energy consumption and fairly charge the consumers for
their energy consumption, we adopt the instantaneous load
billing scheme [5]–[7], where the energy price (the cost of
one unit energy) of a certain time slot is set as an increasing
and smooth function of the total demand in that time slot, and
the consumers are charged based on the instantaneous energy
price as well as the energy amount they consume in each time
slot. Instead of the general price model [7], we focus on a
practical and specific polynomial energy price model in this
paper, which has been widely adopted in power systems (e.g.,
the spot market price model [9], [10]). Specifically, the energy
price of thehth time slot is given by:

ph (Lh) = ah(Lh)
bh + ch, (5)

where ah, bh, ch are time slot-specific parameters with
ah > 0, bh ≥ 1, ch ≥ 0, andLh is the total energy consumed
by all consumers in time sloth. It is should note that the
price function in (5) can readily account for the important
characteristics of energy prices that are needed for DSM in
smart grid. For example, the increasing and convex price
function ensures that the energy price will grow more rapidly
as the aggregated load increases. This can effectively convince
the consumers to shift their peak-time consumption to non-
peak hours, thereby flattening the overall demand curve and
reducing the need for carbon-intensive and expensive peaking
power plants. Therefore, the considered energy price model
can improve the efficiency of the energy provider, and motivate
and engage the energy provider to enforce such price model.

Follow the adopted energy price model, the total energy
cost for consumern over all futureH time slots can thus be
given by:

Bn (qn,q−n) =
∑H

h=1

[

ph

(
∑N

m=1
qhm

)

qhn

]

, (6)

whereq−n = (qm)
N

m=1,m 6=n denotes the(N−1)H×1 vector
of all consumers’ energy consumption profiles, except thenth

2Note that the minimum and maximum energy levels can be estimated in
practice by sophisticated predictive techniques, such as machine learning and
stochastic signal processing [17]. Moreover, the approaches presented in this
work can be easily extended to the appliance-level energy consumption model
[4].

one. This is in contrast to the total load billing method in [4],
where the energy payment of thenth consumer is calculated by

BTLB
n (qn,q−n) =

En
∑N

m=1 Em

H∑

h=1

[

ph

(
N∑

m=1

qhm

)
N∑

m=1

qhm

]

.

(7)
It has been shown in [5] that the adopted billing method in (6)
is fairer than the total load billing method given in (7). This
will also be validated by the simulation results in this paper.

Note that (6) can be further rewritten as

Bn (qn,qΣ) =
∑H

h=1

[
ph
(
qhΣ
)
qhn
]
, (8)

whereqΣ =
∑N

m=1 qm denotes the aggregated energy con-
sumption profile of all consumers over futureH time slots
and qhΣ =

∑N

m=1 q
h
m is the hth element ofqΣ. From (8),

we can see that the calculation of the total energy cost of
each consumer only requires the knowledge of the aggregated
energy consumption profile of all consumers (qΣ), and that
the individual consumption profile of each consumer (q−n) is
not required any more.

III. G AME FORMULATION AND ANALYSIS

In this section, we formulate an aggregative game for the
considered DSM scenario. By employing variational inequality
theory, we then analyze the existence and uniqueness of the
NE for the formulated aggregative game.

A. Aggregative Game Formulation

We consider the scenario where all consumers are selfish. In
particular, each consumer aims to minimize his/her total cost
through energy consumption scheduling. Mathematically, this
will involve the nth consumer (n ∈ N ) solving the following
optimization problem:

min
qn

Bn (qn,qΣ)

s. t. qn ∈ Qn

. (9)

We can observe from (9) that the consumers solve opti-
mization problems which are coupled with the aggregated
energy consumption of all consumers. Hence, this energy
consumption control scenario can be modeled by the following
aggregative game [11], [12] [13, Ch. 4]:

• Players: TheN consumers.
• Actions: Each consumer selects its energy consumption

qn ∈ Qn to minimize his/her total energy cost.
• Payoffs: The total energy costBn (qn,qΣ) defined in (8).
For convenience, we denote this Nash equilibrium (NE)

problem asG = 〈N , {Qn} , {Bn (qn,qΣ)}〉. In the following
subsection, we will employ variational inequality theory [14]
to analyze the formulated game.

B. NE Analysis

Before proceeding, it is convenient to first present the
following lemma regarding the properties of the formulated
game’s action sets and payoff functions:

Lemma 1:For eachn = 1, . . . , N , the setQn ∈ R
H

is convex and compact, and each functionBn (qn,qΣ) is
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continuously differentiable inqn. For eachn ∈ N and each
fixed tupleq−n, the functionBn

(

· , · +
∑N

m=1,m 6=n qm

)

is
convex inqn over the setQn.

Proof: See Appendix A.
Under Lemma 1 and according to [14, Prop. 1.4.2], we have

the following lemma:
Lemma 2:The NE of the formulated gameG is equivalent

to the solution of the variational inequality (VI) problem3

denoted by VI(Q,F) whereQ = Q1 × . . .×QN and

F (q) = (Fn (qn,qΣ))
N

n=1 , (10)

with
Fn (qn,qΣ) = ∇qn

Bn (qn,qΣ) . (11)

By investigating the monotonicity property of the mapping
F (q), we can derive the following proposition:

Proposition 1: If the price parameterbh satisfiesbh < 3 +
4/ (N − 1) for any h ∈ H, then the formulated aggregative
game admits a unique NE.

Proof: See Appendix B.
Remark 1:As can be seen from Proposition 1, only a

specific relationship between the exponential factor of the
polynomial price function and the number of consumers is
required to guarantee the uniqueness of the NE. Specifically,
the exponential factor of the price function is subject to an
upper bound, which is inversely proportional to the number of
consumersN . �

One could consider to solve the aforementioned game in a
centralized manner, where a central unit adopts the algorithms
proposed in [14, Ch. 12] to solve the associated VI problem.
However, such an approach requires each consumer to release
detailed information about their energy consumption feasible
set, which may lead to consumers’ privacy and security
concerns. To overcome this issue, in the following sections, we
will develop three different distributed algorithms to achieve
the NE of the formulated aggregative game for the scenarios
with and without a central unit, which calculates the aggre-
gated load and broadcasts it to consumers in each iteration of
the algorithm.

IV. D ISTRIBUTED ITERATIVE PROXIMAL -POINT

ALGORITHM WITH A CENTRAL UNIT

In this section, we consider the same setting as in [6], [7]
where there is a central unit, which can provide the consumers
with the latest information of the aggregated energy consump-
tion profile after all consumers update their individual ones.
In this case, we develop a distributed iterative Proximal-point
algorithm to achieve the NE of the formulated aggregative
game.

Before presenting our algorithm, it is worth mentioning that
the formulated game can also be solved by the synchronous
and asynchronous proximal decomposition algorithms pro-
posed in [6] and [7], which were guaranteed to converge under
some conditions on the algorithm parameters. The distributed

3Given a subsetK of the EuclideanN -dimensional spaceRN and a
mappingF: K → R

N , the variational inequality problem, denoted VI(K,F),
is to find a vectorx∗ ∈ K such that(y − x∗)TF (x∗) ≥ 0, ∀y ∈ K.

Algorithm 1 : Distributed Iterative Proximal-point Algorithm
1: Set t = 1 and each consumern ∈ N chooses a randomqn(1)

from their feasible setQn and sends it to the central unit. The
central unit calculatesqΣ(1) =

∑N

n=1
qn(1) and broadcasts it

to the consumers. Given the values of the step-sizeγ(t) and the
parameterθ > 0.

2: If a suitable termination criterion is satisfied:STOP.
3: For each consumern ∈ N :

3.1: ReceiveqΣ(t) from the central unit.
3.2: Update the energy consumption profile by

qn (t+ 1) = [qn (t)− γ (t) (Fn (qn (t) ,qΣ(t)))+

θ (qn (t)− qn (t− 1)))]
Qn

.

3.3: Send the updateqn(t+ 1) to the central unit.
4: t← t+ 1; go to STEP 2.

algorithms in [6], [7] were proposed based on the proximal
decomposition method [8] and solved a sequence of regulated
versions of the original problem, each of which may need a
distributed iterative process in itself. This is actually atwo
timescale approach (i.e., the proximal method updates at a
slower timescale while solutions of the regularized problems
change at a faster timescale) and is generally harder to
implement in online settings [16]. Additionally, the regulation
parameter of such kind of algorithms has to be chosen centrally
since it is normally dependent on the system arguments.
It should be noted that the two-timescale property of the
algorithms in [6], [7] is due to the nature of the problem (i.e.,
the mapping function associated with distributed generation
and storage is monotone). However, as shown in Section III,
the formulated problem in this paper can be guaranteed to
possess strictly monotone mapping. Thus, we may not need
to apply the two timescale algorithms. Motivated by this, we
present a single timescale distributed algorithm based on the
iterative regulation technique [16], [18], which requiresonly
one projection step in each iteration. This algorithm is formally
described inAlgorithm 1 .

The convergence property of Algorithm 1 is summarized in
the following proposition:

Proposition 2: Assume that the condition in Proposition 1
holds. Then, the sequence of the energy consumption profile
{q(t)} generated by Algorithm 1 converges to the unique NE
of the gameG if the step-sizeγ(t) satisfies the following:

∑∞

t=1
γ (t) = ∞ and

∑∞

t=1
γ2 (t) < ∞. (12)

Proof: See Appendix C.
As shown above, Algorithm 1 can converge to the NE of the

formulated game when there is a central unit that calculates
the aggregated energy consumption profileqΣ and broadcasts
it to all consumers in each iteration. However, the developed
Algorithm 1 and the algorithms in [6], [7] cannot be directly
implemented for situations where the central unit does not
exist, in which case the consumers thus do not have ready
access to the aggregated energy consumption profile. Moti-
vated by this issue, we will develop a distributed synchronous
agreement-based algorithm and a distributed asynchronous
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gossip-based algorithm to achieve the NE of the formulated
game in the following sections.

V. D ISTRIBUTED SYNCHRONOUSAGREEMENT-BASED

ALGORITHM WITHOUT A CENTRAL UNIT

In this section, we consider an alternative scenario where
the central unit does not exist, but the consumers are connected
in some manner and they are willing to share their estimated
information through local communication. For this setting,
we develop a distributed agrement-based algorithm, through
which the consumers can achieve the NE of the gameG via
exchanging information with their immediate neighbors. In
the developed algorithm, the connection topology of the con-
sumers is modeled as an undirected (not necessarily complete)
static graph. In practice, such a connection can be established
through either wired or wireless communication techniques.
Specifically, the connection can be implemented by employing
the power line communication technique or using the resources
of cellular networks to establish a virtual private network.
As these techniques are widely deployed, the connection of
a large number of consumers in large areas is feasible. Since
only immediate connected consumers exchange information,
the amount of data to be exchanged at each iteration of
the developed algorithm is proportional to the numbers of
connections between the consumers.

Recall that, in the formulated aggregative game, each con-
sumer’s payoff is only determined by his/her own energy
consumption profile and the aggregated energy consumption
profile of all consumers. Hence, the unique NE of the for-
mulated game is achieved when the consumers reach an
agreement (consensus) on the aggregated energy consumption
profile. Following this equivalence and inspired by [13, Ch.4],
we develop a distributed agreement-based algorithm to achieve
the unique NE of the considered aggregative game. In each
iteration of this algorithm, each consumern ∈ N executes
the following three steps:

• Step 1: Estimate the average energy consumption of all
consumers through a weighted combination of his/her
own estimation and the estimation of the immediate
neighbors in the last iteration. We useq̂A

n (t) to denote the
average energy consumption of all consumers estimated
by the consumern in the tth iteration. Then, the aggre-
gated load of the whole network estimated by consumer
n is N q̂A

n (t).
• Step 2: Update his/her energy consumption profile based

on the estimated aggregated load through executing a
Euclidean projection operation.

• Step 3: Update his/her own estimation of the average
energy consumption.

To proceed, it is convenient to first model the connection
topology between consumers. For simplicity but without loss
of generality, we model the connection topology of the con-
sumers as an undirected static graphM (N , E) with N being
the set of all consumers andE being the set of undirected
edges among the consumers. The notation{n, k} ∈ E means
that consumern and consumerk are immediate neighbors,
and Dn denotes the set of consumern’s neighbors, i.e.,

Algorithm 2 : Synchronous Agreement-based Algorithm
1: Set t = 1. Choose any feasible starting pointq (1) =

(qn (1))N
n=1

and setq̂A
n (1) = qn (1) for everyn ∈ N . Given

the weight parameterswn,k and the step-sizeα (t).
2: If a suitable termination criterion is satisfied:STOP.
3: Each consumern ∈ N updates his/her energy consumption

profile and the estimated average energy consumption of all
consumers via executing

q̂A
n (t) = wn,nq̂

A
n (t) +

∑
k∈Dn

wn,kq̂
A

k
(t) ,

qn (t+ 1) = [qn (t) − α (t)Fn (qn (t) , N q̂A
n (t))]

Qn
,

q̂A
n (t+ 1) = q̂A

n (t) + qn (t+ 1)− qn (t) .

4: t← t+ 1; go to STEP 2.

Dn = {k ∈ N| {k, n} ∈ E}. Now we are ready to present
the distributed agreement-based algorithm, which is formally
described inAlgorithm 2 , where the notationwn,k denotes the
nonnegative weight that consumern assigns to the estimate of
consumerk, which is set to zero ifk /∈ Dn andn 6= k.

In terms of the convergence of Algorithm 2, we have the
following proposition:

Proposition 3: Assume that the undirected graphM (N , E)
is connected, the step-size{α(t)} is monotonically decreasing
with t and satisfies the following:

∑∞

t=0
α (t) = ∞, and

∑∞

t=0
[α (t)]

2
< ∞, (13)

and the weights adopted by the consumers meets the follow-
ing4:

∑N

k=1
wn,k = 1, ∀n, and

∑N

n=1
wn,k = 1, ∀k, (14)

and the condition in Proposition 1 holds. Then the sequence
{q(t)} generated by Algorithm 2 converges to the unique NE
of the formulated gameG.

Proof: See Appendix D.
Remark 2: In this paper, we use the following formula for

the weights [13, Ch. 4]:

wn,k =

{
τ/[maxn |Dn|] if n 6= k
1− |Dn| τ/[maxn |Dn|] if n = k

, (15)

where|Dn| denotes the cardinality of the setDn, and0 < τ <
1 is used to measure the relative proportion of the neighbors’
estimates in each consumer’s estimation of the average energy
consumption. It is straightforward to validate that the weights
in (15) satisfy the conditions in (14). Other choices of the
weights can be found in [19].

Although information exchanges are required between the
consumers in Algorithm 2, the consumers only need to share
their estimations of the average energy consumption of all
consumers instead of their exact energy consumption profiles
with their immediate neighbors. Thus, the developed algorithm
can avoid the consumers’ security and privacy concerns.�

4Note that the summations in the following equations are actually equivalent
to that over the setDn. This is because thatwn,k = 0 if consumerk is not
a neighbor of consumern.
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Algorithm 3 : Asynchronous Gossip-based Algorithm
1: Set t = 1. Choose any feasible starting pointq (1) =

(qn (1))N
n=1

and set̂qA
n (1) = qn (1) for everyn ∈ N .

2: If a suitable termination criterion is satisfied:STOP.
3: Each consumern ∈

{

It, Jt
}

counts the number of updates
that he/she has executed up to timet inclusively (denoted by
ǫn(t)), sets the step size asαn(t) = 1/ǫn(t), and updates his/her
energy consumption profile and the estimated average energy
consumption of all consumers via executing

q̂A
n (t) =

q̂A

It
(t) + q̂A

Jt
(t)

2
,

qn (t+ 1) = [qn (t) − αn (t)Fn (qn (t) , N q̂A
n (t))]

Qn
,

q̂A
n (t+ 1) = q̂A

n (t) + qn (t+ 1)− qn (t) .

4: t← t+ 1; go to STEP 2.

Note that although the central unit is not necessary for
the developed Algorithm 2, synchronization between the con-
sumers and coordination in terms of algorithm step sizes are
still required, which are challenging in very large networks.
Motivated by this, we will develop a distributed asynchronous
algorithm in next section.

VI. D ISTRIBUTED ASYNCHRONOUSGOSSIP-BASED

ALGORITHM WITHOUT A CENTRAL UNIT

In this section, we develop a distributed asynchronous
gossip-based algorithm for computing the NE of the formu-
lated game without the need of a central unit. The consumers
perform their estimations and updates in the same way as
in the Algorithm 2, but the updates occur asynchronously
instead of synchronously. The developed algorithm allows
the consumers to use uncoordinated step size values. More
specifically, the consumers can choose the step size based on
their own information-update frequency. The graph model for
the connection topology of the consumers in Section V is also
applicable in this section.

To allow for asynchronous updates, we adopt the gossip
protocol [20] to model the consumers’ exchange of their
estimations for the average energy consumption of all con-
sumers. In this protocol, each consumer is assumed to have
a clock which ticks according to a Poisson process with
rate 1. At a tick of his/her clock, consumern contacts a
randomly selected5 neighbork ∈ Dn to exchange information.
With reference to [20], the consumers’ clocks processes can
be equivalently modeled as a single virtual clock that ticks
according to a Poisson process with rateN . We assume that
only one consumer communicates with its neighbor at each
tick of the virtual clock and we useZt to denotetth tick
of the virtual Poisson process. We discretize time so that the
instantt corresponds to the time-slot

[
Zt−1, Zt

)
. At each time

t, every consumern has his/her consumption profileqn(t) and
estimation of the average energy consumption of all consumers
q̂A

n (t). Let It ∈ N denote the consumer whose local clock

5Here, we consider that each neighbor has an equal chance of being
selected.

ticked at timet. Note thatIt is uniformly distributed in the set
N since the Poisson clocks at each consumer are independent.
Moreover, the memoryless property of the Poisson arrival
process ensures that the process{It} is independent and iden-
tically distributed. We useJ t to denote the consumer randomly
contacted by the consumerIt, whereJ t is a neighbor of the
consumerIt, i.e., J t ∈ DIt . Then, these two consumers will
exchange their estimations of average energy consumption and
update their own energy profiles. The developed asynchronous
gossip-based algorithm is formally described inAlgorithm 3 .
As can be seen from Algorithm 3, the consumers perform the
same updates as in the synchronous Algorithm 2, but only
two randomly selected consumers update their estimations of
average energy consumption and their own energy profiles at
each iteration, while the other consumers do not update.

For the convergence of Algorithm 3, we have the following
proposition and the proof follows from Appendixes B-D, the
adopted step sizes and [13, Ch. 4, Prop. 12]:

Proposition 4: Assume that the condition in Proposition
1 holds and the undirected graphM (N , E) is connected.
Then, the sequence of the energy consumption profile{q(t)}
generated by Algorithm 3 converges to the unique NE of the
gameG almost surely.

Remark 3: In this developed algorithm, synchronization is
not required between the consumers. Besides the asynchronous
updates, the consumers are allowed to use uncoordinated step
sizes that are based on the frequency of the consumers’
updates. Specifically, consumern uses the step size

αn(t) =
1

ǫn(t)
, n ∈

{
It, J t

}
, (16)

at thetth iteration, whereǫn(t) denotes the numbers of updates
that consumern has performed up to timet inclusively. In
addition, analogous to Algorithm 2, no private informationis
required to exchange between the consumers in Algorithm 3.

It is worth mentioning that the pairwise gossip protocol
(i.e, only a random pair of consumers is chosen to update
at each iteration) is adopted for simplicity in this paper. The
developed algorithm can be extended to the general setup
where a random subset of consumers (more than one pair)
exchange their estimations and update their energy profilesat
each iteration. This will be considered in our future work.�

VII. N UMERICAL RESULTS

In this section, we present some numerical results to validate
the above theoretical analysis and illustrate the performance
of the developed algorithms.

In the following simulation results, we consider the res-
idential scenario consisting ofN = 50 consumers, where
the consumers determine their energy consumption for the
following whole day, which starts from 8 AM. Each time
slot is set as one hour, i.e.,H = 24 and the first time slot
corresponds to the hour between 8 AM and 9 AM. In Fig.
1, we provide a typical energy consumption interval of a
residential consumer [21, Figs. 2.5-2.7], [22]. Considering that
different consumers may have different energy consumption
interval in practice, the ‘Low limit’ and ‘Upper limit’ of each
consumer in each time slot are formed by respectively adding
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Fig. 1. The typical energy consumption interval of a residential consumer.

Fig. 2. The connection topology for the consumers used in Algorithm 2
and 3. The consumers are denoted by the circles and their connections are
represented by the solid lines.

a random real number to the corresponding value in Fig. 1.
Then, the initial energy consumption of a certain consumer
in each time slot,qhn(1), is uniformly chosen between his/her
corresponding ‘Low limit’ and ‘Upper limit’. The numerical
results show that the selected consumption parameters yield
the total energy consumption of every consumer in the order
of 10 kWh to 30 kWh, which is representative of a residential
consumer [22].

According to Fig. 1, we classify the whole time horizon
into three segments: off-peak hours (12 AM to 7 AM), mid-
peak hours (7 AM to 4 PM and 10 PM to 12 AM), and
on-peak hours (4 PM to 10 PM). We also setah equal to
0.003, 0.004 and 0.005 for the off-peak, mid-peak and on-
peak hours, respectively, and parametersbh and ch are set
equal to 1.2 and 0 for∀h ∈ H, respectively. In the considered
DSM scenario, the valueqh,min

n for the nth consumer is set
to his/her ‘Low limit’ of the hth time slot. In addition, the
values ofqh,max

n for mid-peak and on-peak hours are set to
his/her maximum value of the ‘Upper limit’, while the values
of qh,max

n for the off-peak hours are uniformly chosen from the
interval [0.4, 0.6]. The values ofEn are chosen to be equal to
the sum of the consumers’ initial energy consumption profiles
before applying the DSM program. Moreover, the parameters

for the algorithms are chosen6 as follows:γ (t) = t−0.51 and
θ = 0.2 for Algorithm 1, andα (t) = t−0.51 and τ = 0.5
for Algorithm 2. Finally, a randomly generated connection
structure of the consumers for Algorithm 2 and 3 are given
in Fig. 2, where two consumers are directly linked means that
they are immediate neighbors, who can exchange information
in the iterations of the algorithms.

Fig. 3 plots the total energy cost for three different con-
sumers versus the number of iterations of the developed
algorithms. It can be observed from Fig. 3 (a) that both
Algorithm 1 and Algorithm 2 converge to the NE of the
formulated game very quickly. Specifically, the energy costof
each consumer has already achieved a relatively stable state
after the first 10 iterations, which verifies the validness of
both Proposition 2 and Proposition 3, as well as displaying
the high efficiency of the developed algorithms. Fig. 3 (b)
is plotted to illustrate the convergence performance of the
Algorithm 3. As can be observed from Fig. 3 (b) that the
total energy cost of different consumers approach to coincide
with that obtained by Algorithm 1 and 2 after200 iterations.
This validates the results given in Proposition 4. Note thatdue
to space limitations, we only show results in Fig. 3 for three
randomly selected consumers, although it can be shown that
similar results also hold for the other consumers and a wide
range of settings with different parameters.

In Fig 4, we compare the aggregated energy consumption
profiles of all consumers corresponding to the situations before
and after DSM program. We clearly observe from Fig. 4
that the proposed DSM scheme effectively encourages the
consumers to shift their energy consumption from peak to
non-peak hours. We also investigate the peak-to-average ratio
(PAR) of the aggregated load defined as

PAR =
Hmaxhq

h
Σ

∑H

h=1 q
h
Σ

. (17)

The simulation results show that the PAR decreases from
2.3189 to 1.6161 (i.e., 30.31% less) before and after the
DSM program. This will result in a generally flattened demand
profile, which will not only reduce the consumers’ energy cost
but also benefit the efficiency of the whole power grid.

To show that the adopted billing method can fairly charge
the consumers, we plot the energy consumption profiles of
consumer43 and consumer50 after applying the proposed
DSM program in Fig. 5. Their total daily energy requirements
areE43 = 20.63 (kWh) andE50 = 19.99 (kWh), respectively.
If the total load billing method [4] was used, consumer43
would be charged more than consumer50 sinceE43 > E50.
However, as can be observed from Fig. 5, the on-peak energy
usage of consumer50 is larger than that of consumer43.
This can also be reflected by the PAR values of these two
consumers, i.e.,PAR50 = 1.9438 and PAR43 = 1.7863.
Thus, it may be not fair to charge consumer43 more than
consumer50 simply because he/she consumes more energy
totally. In contrast, our numerical results show that consumer
43 and consumer50 will finally be chargedB43 = 10.56

6We refer the readers to [18] for more discussion on the choiceof algorithm
parameters.
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Fig. 3. The convergence of the developed algorithms in termsof the consumers’ total energy cost.
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Fig. 4. The aggregated energy consumption profiles of all consumers before and after the DSM program.

and B50 = 10.66 (i.e., B43 < B50) after the proposed
DSM program. This result is understandable since the adopted
billing method considers not only how much the consumers
consume the energy totally but also when the consumers
use the energy. By this example, we show that the adopted
billing approach can charge the consumers more fairly, thereby
motivating the consumers to participate in the DSM program.

Fig. 6 compares the total energy cost of all consumers for
three different cases with different number of consumers. As
expected, it can be observed from Fig. 6 that the total energy
cost is significantly reduced after the proposed DSM program.
We also compare the performance of the proposed game-
theoretical DSM program with the optimal one obtained by
solving the following social welfare optimization problem:

min
{q1,...,qN}

∑N

n=1 Bn (qn,q−n)

s.t. qn ∈ Qn, ∀n ∈ N
. (18)

From Fig. 6, we can observe that the total energy cost achieved
by the proposed DSM program is almost the same with the
optimal one7. Thus, we can claim that the proposed DSM
framework qualifies as a practically appealing candidate for
the DSM of future smart grid.

7The theoretical analysis of this observation (i.e., the price of anarchy
analysis for the formulated game) is out of the scope of this paper and will
be considered in future work.
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after the DSM program.

VIII. C ONCLUSIONS

In this paper, we formulated an aggregative game for the
demand side management program based on energy con-
sumption scheduling and instantaneous load billing, where
the consumers are selfish and compete to minimize their
individual energy cost. The sufficient condition for the ex-
istence and uniqueness of Nash equilibrium (NE) of the
formulated game was subsequently given and proved. Based
on the formulation of the aggregative game, we developed
three distributed algorithms to achieve the NE of the for-
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Fig. 6. Comparison of total energy cost of all consumers before the DSM
program, after the DSM program, and obtained by social welfare optimization.

mulated game, corresponding to the two scenarios where the
consumers can or cannot access the real-time information of
the aggregated load. In these algorithms, the choice for the
algorithm parameters do not depend on the arguments of the
system and no private information is required to exchange be-
tween consumers. Numerical results showed that the developed
algorithms can quickly converge to the NE of the formulated
game and efficiently convince the consumers to shift their on-
peak consumption, which are beneficial to both the consumers
and the whole grid.

APPENDIX

A. Proof of Lemma 1

It is evident that the statements in the first part of Lemma
1 holds. Hence, we only need to prove the convexity of
Bn

(

· , · +
∑N

m=1,m 6=n qm

)

in qn for every fixedq−n. This

can be achieved by proving that the Hessian ofBn (qn,qΣ) is
positive semidefinite [23]. After some algebraic manipulation,
we have

∇2
qn

Bn (qn,qΣ) = diag
{[

qhnph
′′
(
qhΣ
)
+ 2ph

′
(
qhΣ
)]H

h=1

}

.

(19)

Since (19) is a diagonal matrix with all diagonal elements
being positive, the Hessian matrix ofBn (qn,q−n) is positive
semidefinite. This completes the proof.

B. Proof of Proposition 1

Based on Lemma 2, the proof of this proposition follows
if we can show that the formulated VI(Q,F) in Lemma 2
only possesses one solution. With reference to [8, Thm. 4.1]
[24, Thm. 2.3], the VI(Q,F) admits a unique solution if the
mappingF (q) is strictly monotone8 overQ since the feasible
setQ is compact and convex.

To prove the strict monotonicity of the mappingF (q), it
suffices to show that
∑H

h=1

∑N

n=1

[(
qhn − shn

) (
∇qh

n
Bn (q)−∇sh

n
Bn (s)

)]
> 0,

(20)

8A mappingF (x): K ∋ x → R
N is said to bestrictly monotoneon K if

(x− y)T (F (x)− F (y)) > 0, ∀x,y ∈ K and x 6= y.

for anyq = (qn)
N

n=1 , s = (sn)
N

n=1 ∈ Q.

Let lh =
(
qh1 , . . . , q

h
N

)T
and jh =

(
sh1 , . . . , s

h
N

)T
, then we

can be re-write (20) as

∑H

h=1

[(
lh − jh

)T (∇lhBh
n

(
lh
)
−∇jhBh

n

(
jh
))]

> 0,

(21)

where Bh
n

(
lh
)

= ph
(
qhΣ
)
qhn, and ∇lhBh

n

(
lh
)

=
(

∇qh
1

Bh
1

(
lh
)
,∇qh

2

Bh
2

(
lh
)
, . . . ,∇qh

N

Bh
n

(
lh
))T

.

We observe that a sufficient condition for (21) to hold is if

(
lh − jh

)T [
gh

(
lh
)
− gh

(
jh
)]

> 0, ∀h ∈ H, (22)

wheregh

(
lh
)
= ∇lhBh

n

(
lh
)
, which is defined for the sake of

notation.
Recall the definition of a strictly monotone mapping, we can

obtain that (22) holds if the mappinggh

(
lh
)

is strictly mono-
tone. With reference to [8, Eq. (4.8)], the condition in (22)
can be shown to be equivalent to proving the Jacobian matrix
of gh

(
lh
)

is positive definite. Since the transpose operation
does not change the definite property of a given matrix, what
we only to prove is that the transpose of the Jacobian matrix
of gh

(
lh
)
, denoted byGh

(
lh
)

= ∇lhgh

(
lh
)
, is positive

definite.
To proceed, we have the(n,m)th entry of Gh

(
lh
)

after
some algebraic manipulation given by

[
Gh

(
lh
)]

n,m
=

{
σh

[
2qhΣ + (bh − 1) qhn

]
, if n = m

σh

[
qhΣ + (bh − 1) qhn

]
, if n 6= m

(23)
whereσh = ahbh

(
qhΣ
)bh−2

.
Since the matrixGh

(
lh
)

may not be symmetric, we can
prove its positive definiteness by showing that the symmetric
matrix

Gh

(
lh
)
+Gh

(
lh
)T

= σh




zh1T + 1

(
zh
)T

︸ ︷︷ ︸

Tb

+2qhΣI




 , (24)

is positive definite [25], wherezh = qhΣ1 + (bh − 1) lh, 1 is
a N × 1 vector with every element of 1. This is equivalent to
showing that the smallest eigenvalue of this matrix is positive.

After some appropriate calculations [25], the two non-zero
eigenvalues of the matrixTb in (24) are given by

η1Tb
= (N + 1+bh) q

h
Σ +

√

N (zh)
T
zh − 2qhΣ,

η2Tb
= (N + 1+bh) q

h
Σ −

√

N (zh)
T
zh − 2qhΣ.

(25)

Note thatN ≥ 2 is implicit here.
Since η1Tb

≥ η2Tb
, the smallest eigenvalue of the matrix

Gh

(
lh
)
+Gh

(
lh
)T

can be expressed as

ηmin = σh min

(

(N + 1+bh) q
h
Σ −

√

N (zh)
T
zh, 2qhΣ

)

,

(26)
where the second2qhΣ term in themin function arises because
there areN − 2 zero eigenvalues in the matrixTb.
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To further simplify (26), we have
(
zh
)T

zh =
∑N

n=1

(
qhΣ + (bh − 1) qhn

)2

≤
(

N − 1 + (bh)
2
) (

qhΣ
)2
,

(27)

Substituting (27) into (26), we obtain

ηmin ≥ σh min
(
κhq

h
Σ, 2q

h
Σ

)
, (28)

whereκh = (N + 1+bh)−
√

N
(

N − 1 + (bh)
2
)

.

Since σh > 0, we observe from the right hand side
of (28) that ηmin > 0 if κh > 0, or equivalently
(N + 1+bh)

2 > N
(

N − 1 + (bh)
2
)

, which we can re-

written as (1+bh) ((N − 1) bh − (3N + 1)) < 0. Thus, a
sufficient condition forκh > 0 is

bh < 3 + 4/ (N − 1) . (29)

This completes the proof.

C. Proof of Proposition 2

The proof for the convergence of a general iterative
proximal-point algorithm and the corresponding necessary
conditions were presented in [18, Sec. 3]. Therefore, we only
need to prove that the formulated NEPGλλλ meets all the
required conditions listed in [18, Assumption (A3)].

Firstly, it is evident that the setQ is compact, and that‖q‖2
and ‖F (q)‖2 are both bounded for∀q ∈ Q. Secondly, as
we have proved in Appendix B, the mappingF (q) is strictly
monotone onq when the price parameterbh satisfiesbh <
3+4/ (N − 1) for ∀h ∈ H. Therefore, we only need to prove
thatF (q) is Lipschitz continuous overQ, i.e., show that there
exists a real constantclip1 > 0 such that, for allq, s ∈ Q,

‖F (q)− F (s)‖2 ≤ clip1 ‖q− s‖2 . (30)

According to the definition of Euclidean norm, (30) can be
shown to hold if each element of the functionF (q), denoted
by fh

n (q) = dBn (q) /dq
h
n, is Lipschitz continuous inq, i.e.,

for any n ∈ N and anyh ∈ H, there exists a real constant
clipn,h > 0 such that, for allq, s ∈ Q,

∣
∣fh

n (q)− fh
n (s)

∣
∣ ≤ clip

n,h
‖q− s‖2. (31)

We now proceed to prove (31) holds. After some algebraic
manipulation, we have

fh
n (q) = ph

′
(
qhΣ
)
qhn + ph

(
qhΣ
)
= fh

n

(
qhn, q

h
Σ

)
. (32)

Substituting (32) into the left-hand side of (31), we have
∣
∣fh

n (q)− fh
n (s)

∣
∣ =
∣
∣fh

n

(
qhn, q

h
Σ

)
− fh

n

(
shn, s

h
Σ

)∣
∣

≤
∣
∣fh

n

(
qhn, q

h
Σ

)
− fh

n

(
shn, q

h
Σ

)∣
∣+

∣
∣fh

n

(
shn, q

h
Σ

)
− fh

n

(
shn, s

h
Σ

)∣
∣ ,

(33)

whereshΣ =
∑N

n=1 s
h
n and the inequality follows according to

the triangular inequality.
Now by recalling thatph

(
qhΣ
)
= ah

(
qhΣ
)bh + ch, we can

rewrite the functionfh
n

(
qhn, q

h
Σ

)
as

fh
n

(
qhn, q

h
Σ

)
= ah

(
qhΣ
)bh−1 (

bhq
h
n + qhΣ

)
+ ch. (34)

With reference to [26, Ch. 12], it is straightforward to
deduce that the functionfh

n

(
qhn, q

h
Σ

)
in (34) is Lipschitz

continuous inqhn for a fixed qhΣ and is Lipschitz continuous
in qhΣ for a fixed qhn. That is there exists two real constant
clipn,h,1, c

lip

n,h,2 > 0 such that for anyqhn andshn,
∣
∣fh

n

(
qhn, q

h
Σ

)
− fh

n

(
shn, q

h
Σ

)∣
∣ ≤ clipn,h,1

∣
∣qhn − shn

∣
∣

= clipn,h,1

√

(qhn − shn)
2 ≤ clipn,h,1‖q− s‖2,

(35)

and for anyqhΣ andshΣ,
∣
∣fh

n

(
shn, q

h
Σ

)
− fh

n

(
shn, s

h
Σ

)∣
∣ ≤ clipn,h,2

∣
∣qhΣ − shΣ

∣
∣

≤ clipn,h,2

√
∑N

n=1
(qhn − shn)

2 ≤ clipn,h,2‖q− s‖2.
(36)

By substituting (35) and (36) into (33), we deduce that it
can always find a real constantclipn,h > 0 such that (31) holds
for all q, s ∈ Q. This completes the proof.

D. Proof of Proposition 3

The sufficient conditions (i.e., [13, Ch. 4, Assumptions 8-
13]) and the rigorous proofs for the convergence of a general
distributed agreement-based algorithm have been providedin
[13, Ch. 4.1]. Hence, the proof of the Proposition 3 follows
if the formulated aggregative game meets all the required
conditions listed in [13, Ch. 4, Assumptions 8-13]. Based
on the analysis in Lemma 1 and Proposition 1, the adopted
structure of the weights and the assumption on the step-size,
we can claim that the considered aggregative game has already
satisfied all the conditions except the one stated in [13, Ch.
4, Assumptions 10]. Therefore, the remaining task is to prove
that the formulated game also meets the condition in [13, Ch.
4, Assumptions 10]. More specifically, we need to show that
each mappingFn (qn,qΣ) is Lipschitz continuous inqΣ for
every fixedqn ∈ Qn.

Analogous to the analysis in Appendix C,Fn (qn,qΣ) is
Lipschitz continuous inqΣ if each element of this function,
fh
n (qn,qΣ), is Lipschitz continuous inqΣ. The validity

for the Lipschitz continuity offh
n (qn,qΣ) follows since

fh
n (qn,qΣ) = fh

n

(
qhn, q

h
Σ

)
andfh

n

(
qhn, q

h
Σ

)
is Lipschitz con-

tinuous inqhΣ for a fixedqhn (cf. Appendix C). This completes
the proof.
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