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Abstract—In this paper, we investigate a practical demand side As a result, the consumers would prefer to consume more
management scenario where the selfish consumers compete tanergy during non-peak times rather than peak times in order
minimize their individual energy cost through scheduling heir to decrease their energy cost. This can improve the oparatio

future energy consumption profiles. We adopt an instantaneas . . . .
load billing scheme to effectively convince the consumersot efficiency of the whole grid since its demand is flattened.

shift their peak-time consumption and to fairly charge the In a real-time pricing based DSM framework, the billing
consumers for their energy consumption. For the considered mechanism (i.e., how to charge the consumers for their gnerg

DSM scenario, an aggregative game is first formulated to mode ysage) is of great importance since it may significantlycffe
the strategic behaviors of the selfish consumers. By resont the consumers’ motivation to participate in the DSM program

to the variational inequality theory, we analyze the condiions L . . .
for the existence and uniqueness of the Nash equilibrium (NE However, there has only been limited work investigating thi

of the formulated game. Subsequently, for the scenario wher important billing issue[[4] proposed a simple billing apach,
there is a central unit calculating and sending the real-tine where the consumers were charged in proportional to their

aggregated load to all consumers, we develop a one timescaleotal energy consumption for the next operation periodsThi
distributed iterative proximal-point algorithm with prov able total load billing method can minimize the whole grid energy

convergence to achieve the NE of the formulated game. Fingll t H th h dth tif
considering the alternative situation where the central uiit does cosl. However, the consumers are charge € same amount |

not exist, but the consumers are connected and they would k& they consume the same total amount of electricity, regasdle
to share their estimated information with others, we presen in peak or off-peak times, which leads to unfair charging

3_ di_sbtribL(thed syr;lchronous agre%mené-b?seq halgolgithmhrsnﬁ a for the consumers who use less electricity in peak times
istributed asynchronous gossip-based algorithm, by whit the ; i
consumers can achieve the NE of the formulated game through [5]. To ar(]jdrehss this p;]obler‘rEI[S]:I[.B] p;oposgdba n(cajw b”rl]'.n?h
exchanging information with their immediate neighbors. approac » Where e"’_lc cons_umer IS C arge ased on 'S_ er
instantaneous load in each time slot during the next omerati

tive game, Nash equilibrium, distributed iterative proximal-point period. As a result, the consumers will be charged more if

method, distributed agreement (consensus) method, disputed €Y consume more during peak times and this can effectively
gossip-based algorithm. improve the fairness of charging between different congame

[5]. In this paper, the billing approach proposed[ih [5], [6]
termed as instantaneous load billing, in contrast to thal tot

, load billing in [4]. Based on the proposed billing approach,
Recently, demand side management (DSM) has emerggf 5155 developed a classical non-cooperative game for the

as one of the key techniques to transform today's agilgs\ scenario where the traditional consumers as well as
power grid into a more efficiently and more reliably operateg,nsumers owing distributed energy sources and/or energy

smart grid [1], [2]. Thanks to the two-way communication,age compete to reduce their energy bills. However, the
capabilities of smart grid, real-time pricing![3] has beef, i analysis and results inl[5]1[6] are only valid when

regarded as a promising technique to implement DSM dyg energy price is dinear function of the total load of all

to its ability to effectively co_nvince consumers to shifehh_ consumers in each time slot. Very recently, [7] extendéd [6]
peak-time energy consumption to non-peak time. In reattiny, the scenario with @eneralenergy price function. Based
pricing schemes, the energy price for a certain operatiooge ;. the proximal decomposition methdd [8], synchronous and

is normally designed to be proportional to the aggregated, nchronous algorithms were respectively developed]in [6
load of all consumers during the considered peridd [3]-[6}q [7] for the consumers to achieve their optimal stragegie
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billing scheme to effectively convince the consumers tdtshistep sizes are still required, which are challenging in very
their peak-time energy consumption and fairly charge tharge networks. Motivated by this, we develop a distributed
consumers. In this paper, we are interested in a practieslynchronous gossip-based algorithm for computing the NE
polynomialenergy price model instead of the general energf the formulated game without the need of a central unit.
price model considered in[7], since the polynomial modéh this developed algorithm, synchronization is not regdir
has been widely adopted in power systems (e.g., spot marketween the consumers. Besides the asynchronous updates,
price model[[9], [10]). By exploring the aggregative prager the consumers are allowed to use uncoordinated step sies th
of the instantaneous load billing scheme that the energye based on the frequency of the consumer update. Note that
cost of each consumer only depends on its own and although the distributed consensus and gossip algorithms a
consumers’ aggregated energy consumption profiles [6], [Well-known techniques, their application to achieve the NE
we develop a novel aggregative gﬂ”ﬂle model the strategic the formulated game is not straightforward at all and is not
behaviors of the selfish consumers. Additionally, we penforfeasible without the formulation of the aggregative game in
new theoretical analysis for the Nash equilibrium (NE) o ththis paper.
formulated game. This analysis will be facilitated by using Notations: All the vectors, except as specially stated, are
advanced variational inequality theofy [14]. As shown iis th column vectorsx” and | x|, = vx”x denote the transpose
paper, the formulation of the aggregative game can faiglitaand Euclidean norm of a vectar, respectivelyA x B is the
the game analysis, the algorithm design and the convergeneaetesian product of setd and B. x = (xn)fj:l denotes the
proof for the proposed algorithms. In our previous warkl [15pperation of concatenating all vectoxs, . .., xy into a single
a distributed and parallel gradient projection algorithrasw column vector, i.e.x = (x{, . ,x%)T_ To emphasize the-
proposed for the considered DSM framework. th element withinx, we sometimes writéx,,,x_,,) instead

(2) For the algorithm design, we first consider the samsf x with x_,, = (xm)fx:l_m#n_ We use|[ - ], to denote
setup as in[[6],[[7] where a central unit exists and broadcagiie Euclidean projection operator onto a &&tV, f (x) and
the real-time aggregated energy consumption profile to &R f (x) respectively denote the gradient vector and Hessian
consumers. In this case, the synchronous and asynchrongigrix of a scalar functiorf (x), while JF (x) denotes the
proximal decomposition algorithms proposed [in [6], [7] cagacobian matrix of a vector functidh (x).
be directly applied to compute the NE of the formulated game. The rest of this paper is organized as follows. The system
It should be noted that the algorithms inl [6].] [7] at@0 model and the instantaneous load billing scheme are destrib
timescale which is due to the nature of the problem (i.ein Section Il. Section Il formulates the aggregated game
the mapping function associated with distributed genematiand analyzes the existence and uniqueness for the NE of
and storage is monotone) inl [6]/[7]. However, as shown Jatgéhe formulated game. The three new distributed algorithms
the formulated problem in this paper can be guaranteeddfe proposed in Section IV-VI, respectively. In section, VIl
possess strictly monotone mapping. Thus, we may not neggmerical results are presented to illustrate and valitiee
to apply the two timescale algorithms, which are generaltjieoretical analysis. Finally, Section VIII concludessthaper.
harder to implement in online settings than tivee timescale
algorithms [16]. Motivated by this, we develop a distrikaite Il. SYSTEM MODEL
iterative proximal—point algorithm Fo achieve the NE of the We consider an electricity network comprised &F con-
formulated game. This new algorithm is a parallel and osz%mers, which are served by a common energy provider.

timescale algorithm and the choice of algorithm paramete\ﬁe denote the set of these consumers\as= {1,..., N}.
does not depend on the system arguments.

(3) Considering the alternative situation without a centra":[aCh consumer 1S equipped  with an energy man{;\gement
controller unit, which has full responsibility for scheahg

unit but where the consumers are connected and they &% ; . " .
. . . . . e consumer’s energy consumption. In addition, there®zis
change their estimated information with others, we develop e K . h
distributed agreement (consensus)-based algorithm, hghw htwo-way commun|f:at|on_s n_etwor connecting each consumer
. ’ to the energy provider. Similar tbl[4], [17], we assume tiat t
the consumers can achieve the NE of the formulated game : . . .

o . . o . 2~ energy requirement of each consumer is determined in advanc
through exchanging information with their immediate nelgqt
bors. Although information exchanges are required betwe
the consumers in this algorithm, no private informatiory (e.
the exact energy consumption profile of each consumer) is )
shared between the consumers, thus effectively protectifig Energy Consumption Model
the consumers’ privacy. Moreover, the parameters of thisWe consider an energy consumption model as’in [17], where
algorithm can also be chosen without knowing the systentise nth (n € N) consumer’s energy consumption profile can

onr H future time slots. Each time slot can represent different
ﬁming horizons, e.g., one hour of a day.

arguments a priori. be formulated as
(4) Although the central unit is not necessary for the o T 1
aforementioned agreement-based algorithm, synchramizat an = (q”""’q") ’ @

between the consumers and coordination in terms of algoritwhereg” is the energy consumption of consumein the hth
1 . . . _ time slot and it is subject to the following constraints:

An aggregative game is a special kind of the non-cooperatrae where
each player's payoff is parameterized by its own action dedaggregative homi h h. H h

of the actions taken by all players J11[, J12] 13, Ch. 4]. ¢ < g < g™ and thl qn =En, 2



whereg™mi* and ¢"™m2* denote consumet’s minimum and one. This is in contrast to the total load billing method[ii, [4
maximum energy levdisin time slot &, respectively, andv,, where the energy payment of théh consumer is calculated by

is the total energy requirement of consumepver all time P " N N
slots. Therefore, the individual feasible energy consuwmpt gTLB (A, Qn) = n Dh q" g |.
set of consumen can be expressed as " Z,],Vlzl En, hz::l mz::l " mz::l "
)
H
9, = {qn : Z ¢" =E,, and It has been shown in[5] that the adopted billing methodin (6)
- hz; . () s fairer than the total load billing method given [ (7). $hi
gt < g < g™, Vhe HY will also be validated by the simulation results in this pape
whereH = {1,..., H} is the set of all futured time slots. ~ Note that[(6) can be further rewritten as
The feasible energy consumption set of all consumers can thu H R\ h
n ns = mnJ 8
be expressed as Bu(anaz) =D, [pn (o) an] ®)
Q=0 x...x On. () whereqy = Zﬁizl a.. denotes the aggregated energy con-

sumption profile of all consumers over futuré time slots

and ¢i = S_ ¢l is the hth element ofqs. From [8),

_ i ) ) we can see that the calculation of the total energy cost of
To effectively convince the consumers to shift their peakssch consumer only requires the knowledge of the aggregated

time energy consumption and fairly charge the consumers @rﬁergy consumption profile of all consumetg:}, and that

their energy consumption, we adopt the instantaneous 19a@ individual consumption profile of each consumer () is

billing scheme [[5]4[V], where the energy price (the cost gfy¢ required any more.

one unit energy) of a certain time slot is set as an increasing

and smooth function of the total demand in that time slot, and 1. GAME FORMULATION AND ANALYSIS

the consumers are charged based on the instantaneous energy .. . .
) : . this section, we formulate an aggregative game for the
price as well as the energy amount they consume in each time

slot. Instead of the general price modg) [7], we focus on considered DSM scenario. By employing variational inetyal

. i . ; . Iﬁeory, we then analyze the existence and uniqueness of the
practical and specific polynomial energy price model in th

paper, which has been widely adopted in power systems (e.gl._:, for the formulated aggregative game.

the spot market price modéll[9], [10]). Specifically, the rgye
price of thehth time slot is given by:

B. Instantaneous Load Billing

A. Aggregative Game Formulation

by We consider the scenario where all consumers are selfish. In
pr (Ln) = an(Ln)™ + cn, ®) particular, each consumer aims to minimize his/her totat co
where aj,, by, ¢, are time slot-specific parameters witihrough energy consumption scheduling. Mathematicéilg, t
ap >0, by > 1, ¢, >0, and L, is the total energy consumedwill involve the nth consumer € N) solving the following
by all consumers in time slok. It is should note that the optimization problem:

price function in [[) can readily account for the important min B, (qn, qs)
characteristics of energy prices that are needed for DSM in an (9)
smart grid. For example, the increasing and convex price 5.t dn € Qn

function ensures that the energy price will grow more rapidl We can observe fron{{9) that the consumers solve opti-
as the aggregated load increases. This can effectivelyircmav mization problems which are coupled with the aggregated
the consumers to shift their peak-time consumption to noenergy consumption of all consumers. Hence, this energy
peak hours, thereby flattening the overall demand curve acshsumption control scenario can be modeled by the follgwin
reducing the need for carbon-intensive and expensive pgakaggregative gamé [11], [12[ [13, Ch. 4]:

power plants. Therefore, the considered energy price model Players The N consumers.

can improve the efficiency of the energy provider, and megiva , Actions Each consumer selects its energy consumption
and engage the energy provider to enforce such price model. g, € Q,, to minimize his/her total energy cost.

Follow the adopted energy price model, the total energy, payoffs The total energy cods,, (an, qx) defined in[(B).
cost for consumen over all future H time slots can thus be  Eor convenience. we denote this Nash equilibrium (NE)

given by: problem asG = (N, {Qx}, {Bn (an,as)}). In the following

el NN\ subsection, we will employ variational inequality theof4]
B (An, a-n) = thl [ph <Z 1 qm) qn} ®) 1o analyze the formulated game.

whereq_,, = (qm)f:i:l,m#n denotes thé N —1)H x 1 vector g g Analysis

of all consumers’ energy consumption profiles, exceptitie ) o ] ]
Before proceeding, it is convenient to first present the

2Note that the minimum and maximum energy levels can be ewiima following lemma regarding the properties of the formulated

practice by sophisticated predictive techniques, suchashime learning and game’s action sets and payoff functions:

stochastic signal processirig [17]. Moreover, the appreagresented in this . H
work can be easily extended to the appliance-level energgwaption model Lemma 1:For eachn = 1,..., N, the setQ, € R

[]. is convex and compact, and each functiBpn (q,,qx) is



continuously differentiable iny,,. For eachn € A/ and each
fixed tupleq_,, the functions,, ( , -+ Zfi:l’m?&n qm) is

convex '”‘_1" over the S?Q"' from their feasible set,, and sends it to the central unit. The
Proof: See AppendiA. . u central unit calculatesys(1) = -~ q,(1) and broadcasts it
Under Lemméall and according {0 [14, Prop. 1.4.2], we have to the consumers. Given the values of the step-siz¢ and the
the following lemma: parameter > 0.
Lemma 2:The NE of the formulated gam@ is equivalent 2: If a suitable termination criterion is satisfie8TOP.
to the solution of the variational inequality (VI) problBm 3: For each consumer ¢ \:

3.1: Receiveqs (t) from the central unit.
denoted by VIQ, F) whereQ = Q; x ... x Qy and 3.2: Update the energy consumption profile by

Algorithm 1 : Distributed Iterative Proximal-point Algorithm
1: Sett = 1 and each consumer € N chooses a random, (1)

F(q) = (Fu (an,gs))n_; » (10) an (t+1) =[an (1) =7 () (Fn(an (t) ,ax(t))) +
with 0(an (t) —an (t—1))]g, -
F, (dn,ds) = Vg, Bn (dn, qs) - (11) 3.3: Send the updatg, (¢ + 1) to the central unit.

4:t<«t+1;, go toSTEP 2.
By investigating the monotonicity property of the mapping
F (q), we can derive the following proposition:
Proposition 1: If the price parametel;, satisfiesh;, < 3 +

4/ (N —1) for any h € H, then the formulated aggregativeaigorithms in [6], [7] were proposed based on the proximal
game admits a unique NE. decomposition method[8] and solved a sequence of regulated
Proof: See AppendikB. B versions of the original problem, each of which may need a

Remark 1:As can be seen from Propositidd 1, only &jistributed iterative process in itself. This is actuallytveo
specific relationship between the exponential factor of thgnescale approach (i.e., the proximal method updates at a
polynomial price function and the number of consumers igower timescale while solutions of the regularized protge
required to guarantee the uniqueness of the NE. Specificallifange at a faster timescale) and is generally harder to
the exponential factor of the price function is subject to &fplement in online setting§ [16]. Additionally, the regtibn
upper bound, which is inversely proportional to the numter @arameter of such kind of algorithms has to be chosen céntral
consumersV. U since it is normally dependent on the system arguments.

One could consider to solve the aforementioned game intashould be noted that the two-timescale property of the
centralized manner, where a central unit adopts the algosit a|gorithms in [6], [7] is due to the nature of the problem.(i.e
proposed in[[I4, Ch. 12] to solve the associated VI problefhe mapping function associated with distributed genenati
However, such an approach requires each consumer to relegs¢ storage is monotone). However, as shown in SeEfibn 11,
detailed information about their energy consumption felesi the formulated problem in this paper can be guaranteed to
set, which may lead to consumers’ privacy and securipbssess strictly monotone mapping. Thus, we may not need
concerns. To overcome this issue, in the following sectia@s to apply the two timescale algorithms. Motivated by this, we
will develop three different distributed algorithms to &le present a single timescale distributed algorithm basechen t
the NE of the formulated aggregative game for the scenari@srative regulation techniqué [1L6], 18], which requiresly

with and without a central unit, which calculates the aggreme projection step in each iteration. This algorithm isrfatly
gated load and broadcasts it to consumers in each iteratioryescribed inAlgorithm 1.

the algorithm. The convergence property of Algorithm 1 is summarized in
the following proposition:
IV. DISTRIBUTED ITERATIVE PROXIMAL -POINT Proposition 2: Assume that the condition in Propositibh 1
ALGORITHM WITH A CENTRAL UNIT holds. Then, the sequence of the energy consumption profile

In this section, we consider the same setting a$7in [6], [ffi(!)} generated by Algorithm 1 converges to the unique NE
where there is a central unit, which can provide the consam@& the gameg if the step-sizey(¢) satisfies the following:
with the latest information of the aggregated energy comsum o0 _ o,
tion profile after all consumers update their individual ®ne Zt:l 7(t) = o0 and Zt:l 7 (t) < oo (12)
In this case, we develop a distributed iterative Proxinaihp Proof: See AppendifL. -

algorithm to achieve the NE of the formulated aggregative og shown above, Algorithm 1 can converge to the NE of the
game. _ _ N o formulated game when there is a central unit that calculates
Before presenting our algorithm, it is worth mentioningtthgpe aggregated energy consumption prafifeand broadcasts
the formulated game can also be solved by the synchrongug, 4|l consumers in each iteration. However, the devedope
and asynchronous proximal decomposition algorithms praigorithm 1 and the algorithms i [6]]7] cannot be directly
posed in([6] and[7], which were guaranteed to converge undgfpiemented for situations where the central unit does not
some conditions on the algorithm parameters. The d'smbmexist, in which case the consumers thus do not have ready

3Given a subsetC of the EuclideanN-dimensional spac&®” and a access to the aggregate_d energy Consumptlon profile. Moti-
mappingF: K — RY, the variational inequality problem, denoted(Xd, F), vated by this issue, we will develop a distributed synchreno

is to find a vectorx* € K such that(y — x*)TF (x*) > 0, Vy € K. agreement-based algorithm and a distributed asynchronous



gossip-based algorithm to achieve the NE of the formulated
game in the following sections. Algorithm 2 : Synchronous Agreement-based Algorithm

1:Sett = 1. Choose any feasible starting poirf(l) =

X (an (1)), and setda (1) = qx (1) for everyn € N. Given
V. DISTRIBUTED SYNCHRONOUSAGREEMENTBASED the weig"ht parameters,, , and the step-size (¢).

ALGORITHM WITHOUT A CENTRAL UNIT 2: If a suitable termination criterion is satisfie§TOP.
In this section, we consider an alternative scenario wher® Each consumem € N updates his/her energy consumption
the central unit does not exist, but the consumers are ctemhec Eg?gﬁmae?g Vtigeef:é'ggiitgd average energy consumption of all
in some manner and they are willing to share their estimated

information through local communication. For this setfing an (t) = wnnGn (t)+Zk€Dn wn, kG (1),
we develop a distributed agrement-based algorithm, throug an (t+1) = [an (t) — o (t) Fn (an (), N&& ())]g, »
which the consumers can achieve the NE of the ggmaa an (t+1) =&z () +an (t+1) —an (1).

exchanging information with their immediate neighbors. In

the developed algorithm, the connection topology of the-corf: t <~ t +1; go to STEP 2.

sumers is modeled as an undirected (not necessarily caplet

static graph. In practice, such a connection can be edtablis

through either wired or wireless communication techniques

Specifically, the connection can be implemented by emptpyi®» = {k € N[{k,n} € £}. Now we are ready to present

the power line communication technique or using the ressurdhe distributed agreement-based algorithm, which is fdyma

of cellular networks to establish a virtual private networkdescribed irAlgorithm 2, where the notation, , denotes the

As these techniques are widely deployed, the connectionfsinnegative weight that consumeassigns to the estimate of

a large number of consumers in large areas is feasible. Sige@sumerk, which is set to zero ik ¢ D,, andn # k.

only immediate connected consumers exchange information|n terms of the convergence of Algorithm 2, we have the

the amount of data to be exchanged at each iteration feflowing proposition:

the developed algorithm is proportional to the numbers of Proposition 3: Assume that the undirected grapt (\, £)

connections between the consumers. is connected, the step-siZe(t)} is monotonically decreasing
Recall that, in the formulated aggregative game, each cowith ¢ and satisfies the following:

sumer’s payoff is only determined by his/her own energy oo 0o

consumption profile and the aggregated energy consumption thoo‘ () = oo, and tho [ (8)]* < o0, (13)

profile of all consumers. Hence, the unique NE of the fo5,4 \he weights adopted by the consumers meets the follow-

mulated game is achieved when the consumers reach ;am.

agreement (consensus) on the aggregated energy consamptio

profile. Following this equivalence and inspired by|[13, @}. ZN W = 1,Yn, and ZN wo =1,k (14)

we develop a distributed agreement-based algorithm t@eaehi k=1 n=1

the unique NE of the considered aggregative game. In eaahd the condition in Propositidd 1 holds. Then the sequence

iteration of this algorithm, each consumerc N executes {q(t)} generated by Algorithm 2 converges to the unique NE

the following three steps: of the formulated gamé§.

« Step 1: Estimate the average energy consumption of all  Proof: See AppendixD. =
consumers through a weighted combination of his/her Remark 2:In this paper, we use the following formula for
own estimation and the estimation of the immediat&e weights[[1B, Ch. 4]:
neighbors in the last iteratiqn. We ugg () to denote t_he 7/[maxn | Dal] ifn £k
average energy consumption of all consumers estimated Wn,k = { 1 — |Dp| 7/[maxy, D] ifn=k °
by the consumer in the tth iteration. Then, the aggre-
gated load of the whole network estimated by consumethere|D,,| denotes the cardinality of the sBf,, and0 < 7 <
n is N@2 (t). 1 is used to measure the relative proportion of the neighbors’

« Step 2: Update his/her energy consumption profile basegbtimates in each consumer’s estimation of the averageyener
on the estimated aggregated load through executingc@sumption. It is straightforward to validate that the gtes

(15)

Euclidean projection operation. in (18) satisfy the conditions i _(14). Other choices of the
« Step 3: Update his/her own estimation of the averagweights can be found in [19].
energy consumption. Although information exchanges are required between the

To proceed, it is convenient to first model the connectidiPnsumers in Algorithm 2, the consumers only need to share
topology between consumers. For simplicity but withouslogheir estimations of the average energy consumption of all
of generality, we model the connection topology of the cofonsumers instead of their exact energy consumption pofile
sumers as an undirected static graph(\V, &) with A" being with the|_r immediate neighbors. 'I_'hus, the (_jeveloped allgori
the set of all consumers andl being the set of undirected€an avoid the consumers’ security and privacy concerfs.

edges among the consumers. The notafionk} € £ means o , . .
hat d & . diat iahb Note that the summations in the following equations areadlgtequivalent
that consumern and consumef: are immediate neig OIS, {0 that over the seDy,. This is because that,, ; = 0 if consumerk is not

and D,, denotes the set of consumers neighbors, i.e., a neighbor of consumes.



ticked at timet. Note thatl? is uniformly distributed in the set

Algorithm 3 : Asynchronous Gossip-based Algorithm N since the Poisson clocks at each consumer are independent.
1:Sett = 1. Choose any feasible starting poinf(1) = Moreover, the memoryless property of the Poisson arrival
(an (1)),,—, and setgz (1) = qn (1) for everyn € N, process ensures that the procégs is independent and iden-

2: If a suitable termination criterion is satisfie§iTOP. ; it t
3: Each consumen € {I',J'} counts the number of updatestlcaIIy distributed. We usd® to denote the consumer randomly

. .
that he/she has executed up to timénclusively (denoted by contacted E)y_the ctonsuméi', where.J* is a neighbor of the
en (1)), Sets the step size as,(t) = 1/e.(t), and updates his/her consumeri®, i.e., J* € Dr:. Then, these two consumers will
energy consumption profile and the estimated average eneexchange their estimations of average energy consumptithn a

consumption of all consumers via executing update their own energy profiles. The developed asynchsonou
. ay ) +as gossip-based algorithm is formally describedAlgorithm 3.
Gn (1) = T S As can be seen from Algorithm 3, the consumers perform the
an (t+1) = [qn (t) — on (t) Fu (an (1) , NGz (t)]g,, » same updates as in the synchronous Algorithm 2, but only
an(t+1)=qn () +an(t+1) —an(t). two randomly selected consumers update their estimatibns o

average energy consumption and their own energy profiles at
each iteration, while the other consumers do not update.

For the convergence of Algorithm 3, we have the following
proposition and the proof follows from AppendiXef B-D, the
o adopted step sizes and [13, Ch. 4, Prop. 12]:

Note that although the central unit is not necessary for prgnosition 4: Assume that the condition in Proposition
the developed Algorithm 2, synchronization between the €99 holds and the undirected grapht (A, &) is connected.
sumers and coordination in terms of algorithm step sizes 3Ren, the sequence of the energy consumption prédle)}

still required, which are challenging in very large netwairk generated by Algorithm 3 converges to the unique NE of the
Motivated by this, we will develop a distributed asynchroso gameg almost surely.

4:t<t+1; go toSTEP 2.

algorithm in next section. Remark 3:In this developed algorithm, synchronization is
not required between the consumers. Besides the asynalgono
VI. DISTRIBUTED ASYNCHRONOUSGOSSIPBASED updates, the consumers are allowed to use uncoordinaed ste
ALGORITHM WITHOUT A CENTRAL UNIT sizes that are based on the frequency of the consumers’

In this section, we develop a distributed asynchronoH?dateS' Specifically, consumeruses the step size

gossip-based algorithm for computing the NE of the formu- an(t) = 1
lated game without the need of a central unit. The consumers " en(t)’

perform their estimations and updates in the same way &Sheyth iteration, where,, (¢) denotes the numbers of updates
in the Algorithm 2, but the updates occur asynchronousfiat consumen has performed up to time inclusively. In
instead of synchronously. The developed algorithm  allowyition, analogous to Algorithm 2, no private informatisn

the consumers to use uncoordinated step size values. MQI§ ired to exchange between the consumers in Algorithm 3.
specifically, the consumers can choose the step size based qp is worth mentioning that the pairwise gossip protocol

their own information-update frequency. The graph model fg; o ' only a random pair of consumers is chosen to update
the connection topology of the consumers in Sedfion V is al3¢ gach iteration) is adopted for simplicity in this papeneT

applicable in this section. developed algorithm can be extended to the general setup

To allow for asynchronous updates, we adopt the gosgifere a random subset of consumers (more than one pair)
protocol [20] to model the consumers’ exchange of thelfychange their estimations and update their energy prailes

estimations for the average energy consumption of all cogsch jteration. This will be considered in our future wark.
sumers. In this protocol, each consumer is assumed to have

a clock which ticks according to a Poisson process with VII. NUMERICAL RESULTS
rate 1. At a tick of his/her clock, consumer contacts a
randomly select&heighbork € D,, to exchange information.
With reference to[[20], the consumers’ clocks processes ¢
be equivalently modeled as a single virtual clock that ticky . g ) .
according to a Poisson process with rafe We assume that In the following simulation results, we consider the res-

only one consumer communicates with its neighbor at eat ntial scenarlodcton3|§t|ngthozf_\f = 90 consumerst! wr}ereth
tick of the virtual clock and we us&’ to denotetth tick € consumers determine their energy consumption for the

of the virtual Poisson process. We discretize time so that tf?”owmg whole day, Wh!Ch starts from 8 AM' Each time
instantt corresponds to the time-slpz’~!, Z*). At each time slot is set as one hour, i.eff = 24 and the first time SlOt.
¢, every consumen has his/her consumption profidg, (¢) and corresponds to the hour between 8 AM and 9 AM. In Fig.

estimation of the average energy consumption of all consslm@’ \_’;e ?.“?V'de a tall Energzy;gnsurggtlog mt_erv;L ctn‘ a
aa (t). Let I' € N denote the consumer whose local cloc esidentia consumef [P1, Figs. -T1J[22]. Consgitha .
ifferent consumers may have different energy consumption

5Here, we consider that each neighbor has an equal chance i pdnterval in practice,_the ‘Low limit" and ‘Upper ”mit’. of eeh _
selected. consumer in each time slot are formed by respectively adding

ne{I',J'}, (16)

In this section, we present some numerical results to valida
above theoretical analysis and illustrate the perfacea
the developed algorithms.



for the algorithms are chodgms follows:~ (¢) = =% and

6 = 0.2 for Algorithm 1, anda (t) = t=%% and7 = 0.5

for Algorithm 2. Finally, a randomly generated connection
structure of the consumers for Algorithm 2 and 3 are given
in Fig.[d, where two consumers are directly linked means that
they are immediate neighbors, who can exchange information
in the iterations of the algorithms.

Fig. [3 plots the total energy cost for three different con-
—————— sumers versus the number of iterations of the developed
algorithms. It can be observed from Figl 3 (a) that both
Algorithm 1 and Algorithm 2 converge to the NE of the

Upper limit ||
= = = Low limit

Energy Consumption (kWh)

O gam  12pm  3pm  6pm  9pm 1zam 3am  6am formulated game very quickly. Specifically, the energy aifst

each consumer has already achieved a relatively stablke stat
after the first 10 iterations, which verifies the validness of
both Propositiod 12 and Propositiéh 3, as well as displaying
the high efficiency of the developed algorithms. Hi@. 3 (b)
is plotted to illustrate the convergence performance of the
Algorithm 3. As can be observed from Figl 3 (b) that the
total energy cost of different consumers approach to cdeci
with that obtained by Algorithm 1 and 2 aftef0 iterations.
This validates the results given in Propositidn 4. Note theg

to space limitations, we only show results in Hig. 3 for three
randomly selected consumers, although it can be shown that
similar results also hold for the other consumers and a wide
range of settings with different parameters.

In Fig[4, we compare the aggregated energy consumption
profiles of all consumers corresponding to the situatiorisriee
and after DSM program. We clearly observe from Hig. 4
that the proposed DSM scheme effectively encourages the
consumers to shift their energy consumption from peak to

Figo-l § hThe connection toréology dfolr) th(; Conslumersdusr?d_ iiigm 2 non-peak hours. We also investigate the peak-to-averdige ra
an . The consumers are denote y the circles and theiecooms are :
represented by the solid lines. (PAR) of the aggregated load defined as

Hmaxhqg
H h
h=19x%

PAR = (17)

a random real number to the corresponding value in [Hig. 1.

Then, the initial energy consumption of a certain consuma1e simulation results shov:)/ tTat thz I:AR degre?tses ;rom
in each time slotg” (1), is uniformly chosen between his/her>-3189 0 1.6161 _(|.e.., 30'31/? ess) before and after the
corresponding ‘Low limit' and ‘Upper limit. The numerical DSM program. Thls will result in a generally flattened demand
results show that the selected consumption parameterd yi@fomf' WS'Ch ‘]f””hnOt ‘f’ff"_y reducfe tr:we ccr:nfumers eng(rjgytcos
the total energy consumption of every consumer in the ord%ll’t also benefit the efficiency Q_t € whole power grid.

of 10 kWh to 30 kWh, which is representative of a residential 1© Show that the adopted billing method can fairly charge
consumer[[22]. the consumers, we plot the energy consumption profiles of

. . . . . 4 d ft lying th d
According to Fig.[1, we classify the whole time horizo gonsumerds and consumet after applying the propose

into three segments: off-peak hours (12 AM to 7 AM). midq_DSM program in Fig[b. Their total daily energy requirements

reEy3 = 20.63 (KWh) andE5g = 19.99 (kWh), respectively.
peak hours (7 AM to 4 PM and 10 PM to 12 AM), an .
on-peak hours (4 PM to 10 PM). We also set equal to Oﬁ the total load billing method[]4] was used, consumier

. would be charged more than consumérsince Ey3 > Exp.
0.003, 0.004 and O'.005 for the off-peak, mid-peak and 0pfowever, as can be observed from Hifj. 5, the on-peak energy
peak hours, respectively, and parametigrsand ¢; are set

) i usage of consume§0 is larger than that of consumeis.
equal to 1.2 and 0O fovh € H,'respectlvely. In the con5|dered.|.hiS can also be reflected by the PAR values of these two
DSM scenario, the valug-™" for the nth consumer is set

. ) . . " consumers, i.e.PARs; = 1.9438 and PAR4s = 1.7863.
to his/her hLoyv limit Qf the hth time slot. In addition, the Thus, it may be not fair to charge consumir more than
values ofg™#* for mid-peak and on-peak hours are set t

80nsumer50 simply because he/she consumes more ener
his/her maximum value of the ‘Upper limit’, while the value Py 24

£ homax for the off kh formlv ch f th%otally. In contrast, our numerical results show that consu
ot g, Torthe ofi-peak hours are unitormly Chosentromthgs o, consumero will finally be chargedBs; = 10.56

interval [0.4,0.6]. The values ofF,, are chosen to be equal to

the sum of the consumers’ initial energy consumption prefile 6We refer the readers to [1L8] for more discussion on the chafigégorithm
before applying the DSM program. Moreover, the parametgrgameters.
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120

I
I Before DSM
100 - [ JAfter DSM [

80 —

1 8 16 24

Time Slot (h)

60

A

o

|

2

o

|

o

Aggregated Energy Consumption (kWh!

Fig. 4. The aggregated energy consumption profiles of alsworers before and after the DSM program.

and Bsp = 10.66 (i.e., B4z < Bsg) after the proposed 18
DSM program. This result is understandable since the adopte
billing method considers not only how much the consumers
consume the energy totally but also when the consumers
use the energy. By this example, we show that the adopted
billing approach can charge the consumers more fairlyether
motivating the consumers to participate in the DSM program.
Fig.[8 compares the total energy cost of all consumers for
three different cases with different number of consumess. A

Energy Consumption (kwh)

expected, it can be observed from Hi§. 6 that the total energy 02| — Consumer 43, B; 2 20,63, PAR,, = 1.7663 ]
. . e = — = Consumer 50, E50: 19.99, PARso: 1.9438
cost is significantly reduced after the proposed DSM program e
9am 12pm 3pm 6pm 9pm 12am 3am 6am

We also compare the performance of the proposed game- Hour
theoretical DSM program with the optimal one obtained by

solving the following social welfare optimization problem Fig. 5. The energy consumption profiles of consumer 43 andwuoer 50
after the DSM program.

. N
min _1 Bn (dn,q9-n
{q1,..,an} anl (A0, 9-n) . (18)
st. g, € Qn, VR eEN VIIl. CONCLUSIONS

From Fig[®, we can observe that the total energy cost acxﬂ\ievdeln this paper, we formulated an aggregative game for the

by the proposed DSM program is almost the same with thgmand side management program based on energy con-

umption scheduling and instantaneous load billing, where

optimal onB. Thus, we can claim that the proposed DSI\ﬁh ) oS )
o . . . the consumers are selfish and compete to minimize their
framework qualifies as a practically appealing candidate fo

the DSM of future smart arid individual energy cost. The sufficient condition for the ex-

gnd. istence and uniqueness of Nash equilibrium (NE) of the
; _ _ _ o _ formulated game was subsequently given and proved. Based
The theoretical analysis of this observation (i.e., theerof anarchy

analysis for the formulated game) is out of the scope of thisep and will on the TormU|ation of .the aggregat?ve game, we developed
be considered in future work. three distributed algorithms to achieve the NE of the for-



for anyq = (qn)fj:l y 8= (Sn)gzl €Q.

700

ol %En;?gﬁtg) S | Letl" = (¢f,...,q%)" andj" = (sh,...,s%)", then we
: . can be re-write[{20) as
O A . |
s H
w0l > [0 =5 (Ve () = VBl ()] >0,
5300' (21)
ém, ol where B! (1") = p,(¢%) ¢, and VBl (1Y)
g T

| |HH HH W W | (Vo Bl (1) Vg BE(17) ... V0 BE (1))

HH We observe that a sufficient condition fer{21) to hold is if

30 32 34 36 38 40 42 44 46 48 50
Number of Consumers (N)

B s\ T h <h
(1" —j")" [gn (1) —gn (3")] >0, YheH,  (22)
Fig. 6. Comparison of total energy cost of all consumers figetbe DSM 5 b (1A L .
program, after the DSM program, and obtained by social weliptimization. Wheregy, (1 ) =VnB, (1 ), which is defined for the sake of
notation.

Recall the definition of a strictly monotone mapping, we can

mulated game, corresponding to the two scenarios where ggain thatl2R) holds if the mapping, (1") is strictly mono-
consumers can or cannot access the real-time informationt@fe: With reference td_[8, Eq. (4.8)], the condition inl(22)
the aggregated load. In these algorithms, the choice for f1 be shown to be equivalent to proving the Jacobian matrix
algorithm parameters do not depend on the arguments of feg» (I") is positive definite. Since the transpose operation
system and no private information is required to exchange 0€s not change the definite property of a given matrix, what
tween consumers. Numerical results showed that the deselo/® Only to prove is that the transpose of the Jacobian matrix
algorithms can quickly converge to the NE of the formulatedf & (1"), denoted byGy, (1") = Vg ("), is positive
game and efficiently convince the consumers to shift their ofl€finite.

peak consumption, which are beneficial to both the consumerd© proceed, we have the:,m)th entry of Gy, (1*) after

and the whole grid. some algebraic manipulation given by
h h :
APPENDIX h _foon 26+ (=1 qp], ifn=m
[Gh(l )}n,m { Oh qg]—i_(bh_l)QZ]a 1fn7ém

A. Proof of Lemmall (23)

It is evident that the statements in the first part of Lemmgheres;, = ahbh(qg)bh‘?
[ holds. Hence, we only need to prove the convexity of Since the matrixGy, (1) may not be symmetric, we can
B, ( , -+ Zﬁizl,m# qm) in q,, for every fixedq_,,. This prove its positive definiteness by showing that the symmetri
can be achieved by proving that the Hessia8piq,,, qx) is Mmatrix
positive semidefinite [23]. After some algebraic manipiolat

we have T T
G, (1")+Gr(1") =0y [ 217 +1(2") +2¢41 |, (29)
Vi, B (an,az) = ding { ol (a8) + 200" ()], ] —
b

(19)

Since [I) is a diagonal matrix with all diagonal element§ Positive definite[[25], where" = ¢&1 + (b, — 1)1", 1 is
being positive, the Hessian matrix B, (q., q_,) is positive a N x 1 vector with every element of 1. This is equivalent to

semidefinite. This completes the proof. showing that the smallest eigenvalue of this matrix is paesit
After some appropriate calculatioris [25], the two non-zero
B. Proof of Propositiofi ]l eigenvalues of the matrig, in (24) are given by

Based on Lemma]2, the proof of this proposition follows . h T, N
if we can show that the formulated (@, F) in Lemmal2 nr, = (N +14bn) g5 + \/ N (2")" 2" — 2¢5,
only possesses one solution. With reference_io [8, Thm. 4.1] , h N h
[24, Thm. 2.3], the V{Q, F) admits a unique solution if the 7, = (N +14bn) gz = N (2) 2" = 2g5.
mappingF (q) is strictly monotorig over Q since the feasible Note thatN > 2 is implicit here.

se_trQ IS corrlﬂactta.n? convetx. ity of th (), i Since p:. > 72, the smallest eigenvalue of the matrix
o prove the strict monotonicity of the mappif(q), i ) .,
suffices to show that Gy (I") + G (1")" can be expressed as

TS (gl =) (VB V.. B 0 T
Zh:l anl [(qn - Sn) ( qhPn (a) - shPn (S))] >V, Nmin = Op Min ((N + 1+4bp) qg —\/ N (z")" z", 2q§) ,
(20) 26)

8A mappingF (x): K > x — RY is said to bestrictly monotoneon & if ~ Where the secongg term in themin function arises because
(x—y)T (F(x) - F(y) >0, ¥x,y € K and x # y. there areN — 2 zero eigenvalues in the matrik,.

(25)
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To further simplify [26), we have With reference to[[26, Ch. 12], it is straightforward to
deduce that the functiory! (¢2,¢%) in (34) is Lipschitz

T n N )2 : ) : no9s) BL . :
(Z ) z" = E i (QZ + (br — 1) qn) 27 continuous ing! for a fixed ¢& and is Lipschitz continuous
2\ / mr2 @7) i q% for a fixed ¢". That is there exists two real constant
< (N — 1+ (by) ) (¢)", lip = lip " h h
Con1s Cono > 0 such that for any;,: ands;,

Substitutin into[(26), we obtain )
gL Iniet20 F2(ah.a%) — £l (sh.q%)] < by ol — sl

li 2 li (35)
= Cfm \ (gh —sh)” < Cfll.,Dh,l”q - sl|,,
wherery, = (N + 1+b,) — \/N (N -1+ (bh)z)- and for anygZ ands%,

Since o, > 0, we observe from the right hand side hih h hih h i h h
' . . _ < AP _
of (28) that nnim, > 0 if x, > 0, or equivalently [ (sms 0) = £ (s, %) —C"am‘qz 55|

Nmin > o, min (knq%, 2¢%) (28)

. 36)
N + 1+by)? N (N =1+ (by)?), which we can re- i N 2 i (
(N +1+bs)" > ( + (bn)?) < c;{éw\/z (gl = sh)” <P olla—sll,.
written as (1+by) (N —1)b, — (3N +1)) < 0. Thus, a n=
sufficient condition fork, > 0 is By substituting [(3b) antf@aégi intd_(B3), we deduce that it
can always find a real constaf’, > 0 such that[(311) holds
bn <3+4/(N—1). (29) for all q, s € Q. This completes the proof.

This completes the proof.
D. Proof of Propositiod B

C. Proof of Propositiof 12 The sufficient conditions (i.e.[ [13, Ch. 4, Assumptions 8-
The proof for the convergence of a general iterativk3]) @nd the rigorous proofs for the convergence of a general
proximal-point algorithm and the corresponding necess%”bumd agreement-based algorithm have been provided
conditions were presented in]18, Sec. 3]. Therefore, wg o3 Ch. 4.1]. Hence, the proof of the Propositldn 3 follows
need to prove that the formulated NER meets all the if thg _formqlated.aggregatlve game meets all the required
required conditions listed in [18, Assumption (A3)]. conditions Ilstgd_ in[[13, Ch. 4, Assumptions 8-13]. Based
Firstly, it is evident that the se® is compact, and thatq, ©N the analysis in Lemmid 1 and Propositidn 1, the adopted
and |[F (q)|, are both bounded fovq € Q. Secondly, as structure of the weights and the assumption on the step-size
we have proved in AppendixB, the mappilit(q) is strictly W€ can claim that the .C.onsidered aggregative game has glread
monotone ong when the price parametéy, satisfiesb;, < satisfied all the conditions except the one stated_in [13, Ch.
3+4/ (N — 1) for Vh € H. Therefore, we only need to provet ASSumptions 10]. Therefore, the remaining t_a}sk is to rov
thatF (q) is Lipschitz continuous ove®, i.e., show that there that the formulated game also meets the conditionin [13, Ch.

exists a real constam:ffp > 0 such that, for ally, s € O, 4, Assumpt_ions 10]. More_ sp_ecificglly, we need t(_) show that
each mappind,, (q,,qx) is Lipschitz continuous inyy, for

IF (@) = F (s)ll, < 2"lla — sll, - (30) every fixedq, € Q..

be Analogous to the analysis in Appendit €,, (q,,qx) is
Lipschitz continuous ingy, if each element of this function,
I (an,qs), is Lipschitz continuous inqs. The validity
tfor the Lipschitz continuity of f* (q,,qs) follows since
I (an,az) = [ (¢k, ¢%) and 2 (¢%, ¢%) is Lipschitz con-
tinuous ingl for a fixedq” (cf. Appendix Q). This completes
i (@) = £ ()] < b lla = sl (31) the proof.

We now proceed to prové (B1) holds. After some algebraic ACKNOWLEDGEMENT
manipulation, we have

According to the definition of Euclidean norni, {30) can
shown to hold if each element of the functiéihq), denoted
by £ (q) = dB, (q) /dq", is Lipschitz continuous iny, i.e.,
for anyn € N and anyh € H, there exists a real constan
ciP, > 0 such that, for allg, s € Q,
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