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Abstract—Smart meters, designed for information collection
and system monitoring in smart grid, report fine-grained power
consumption to utility providers. With these highly accurate

profiles of energy usage, however, it is possible to identify

consumers’ specific activities or behavior patterns, therey giving

concerns of security regarding attacks [4] and data privacy
[5], especially for residential consumers.

The privacy of smart meter data has recently garnered much
attention. Recent work [5] provides an overview of the priva

rise to serious privacy concerns. This paper addresses thisimplications of fine-grained power consumption monitoring

concern by designing a cost-effective and privacy-preseivg
energy management technique that uses a rechargeable batie
From a holistic perspective, a dynamic programming framewaok
is designed for consumers to strike a tradeoff between smart
meter data privacy and the cost of electricity. In general, anajor
challenge in solving dynamic programming problems lies in lie
need for the knowledge of future electricity consumption eents.
By exploring the underlying structure of the original problem,
an equivalent problem is derived, which can be solved by usm
only the current observations. An online control algorithmiis then
developed to solve the equivalent problem based on the Lyapov
optimization technique. It is shown that without the knowledge
of the statistics of the time-varying load requirements andthe
electricity price processes, the proposed online controllgorithm,
parametrized by a positive valueV, is within O(1/V) of the
optimal solution to the original problem, where the maximum
value of V' is limited by the battery capacity. The efficacy of the
proposed algorithm is demonstrated through extensive numiéal
analysis using real data.

Index Terms—Smart Meter, Smart Grid, Data Privacy, Load
Monitor, Cost Saving, Battery

|. INTRODUCTION

From the information collected by smart meters, complex
usage patterns, such as residential occupancy and sotbié ac
ties, can be extracted without a priori knowledge of houktho
activities [6]. Multiple methods [7]-[14] have been propds

to protect smart meter data privacy. One common approach
is to introduce uncertainty in individual power consumptio
by perturbing the load measurements [7], [8]. However, this
approach requires modification of the metering infrastreest
which may not be logistically and economically viable, with
millions of smart meters already installed. Besides, th&l-mo
ification of usage data could result in inaccurate billingl an
grid controls, thereby undermining grid management.

In this paper, we address the threats to electricity con-
sumer privacy by using energy storage devices (such as a
rechargeable battery) [15]. In particular, a battery can be
used to protect the usage patterns of electricity consumers
Ideally, all usage patterns can be perfectly masked by agrg
and discharging the battery to maintain a constant metered
load, such that all load measurements equal to the average
consumer’s load. Moreover, the rechargeable battery cam al
be used to reduce the cost of electricity, as the electricity

Traditional power grids are being transformed into smabfice is time-varying. It is likely that consumers may taker

grids using advanced information control and communicati

technologies to offer higher reliability, security and effncy

in power systems [1]-[3]. To support both dynamic pricin
and a two-way flow of electricity between homes (or micr
grids) and power grids, smart meters are being widely d
ployed. Compared to conventional analog meters, smartrmeté®

some degree of information leakage to reduce their elégtric

costs by adapting their needs to the time-varying eleetrici

price. However, it is challenging to control the battery
harging/discharging to achieve this, without the knowkedf
iture electricity consumption events, not to mention fhest
rying load requirements and electricity prices with jlags

measure power consumption at a much finer granularity. SUSAKNOWn statistics. To tackle this challenge, an onlinetrasn

fine-grained information, however, may give rise to seriod’g
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of Engineering and Ap-

gorithm with low computational complexity is developed t
Jointly protect smart meter data privacy and reduce the cost
of electricity, while taking into account the cost of repszht

charging and discharging on the battery’s lifetime.

A. Summary of Main Contributions
Our main contributions are summarized as follows:

o« We develop a dynamic programming framework that
can protect smart meter data privacy in a cost-effective
manner, while taking into account the impact of repeated
charging and discharging on the battery’s lifetime. One
major challenge in solving this problem is the need for



the knowledge of future electricity consumption events. Smart Home
Moveover, due to the finite battery capacity, the control ’E(’); Battery
actions at all slots are coupled. It turns out that had Utility P(0) || Smart || Power |£,(1)<

the charging/discharging constraints been relaxed, the Meter | | Controller 10, Bloctmical
average battery charging and discharging power would Appliances
be evened out. By exploiting this structure, we recast the

original problem as a decoupled optimization problem Fig. 1: System model.
with a larger feasible set, such that the optimal control
action at each slot can be solved by using only the

current observations, and it is also optimal for the origina ) )
problem, if it is feasible for the original problem. Recent work [13] proposes a Monte Carlo simulation based

« By carefully constructing the Lyapunov function, weAPProach to jointly optimize the cost of electricity andvagy.
develop an online control algorithm to solve the deFurthermore, [11] proposes wallet-friendly privacy paiien
coupled optimization problem based on the Lyapuncff?r smart meters py using stochastic dynamic programming.
optimization technique [16], [17], such that the controflong a different I|r_1e, recent work [12.] protects smart rmetg
action always lies in the feasible region of the origindfat@ privacy by using energy harvesting and storage devices
problem. The proposed online control algorithm requiré&om_ an information theoretic perspective. All these_ works
solution of a mixed-integer nonlinear program, in ordeieduire the knowledge of the statistics of the load requénets:
to consider the cost of repeated charging and dischargigthe electricity prices, which may not be readily avaieabl
on the battery’s lifetime. By decomposing the problerfyloreover, the solution to dynamic programming requires so-
into multiple cases, a closed-form solution to each cak#ion of a value function that can be computationally difftc
of the mixed-integer nonlinear program is derived. when the state space of t.he system is large and hence suffers

« We show that the proposed online control algorithnffom the curse of dimensionality.
parametrized by a positive valiig, is within O(1/V) of ~ Unlike the prior works, this study proposes a low com-
the optimal solution to the original problem, where th@!€xity online control algorithm that is within)(1/V') of the
maximum value of// is limited by the battery capacity. °Ptimal solution, without the knowledge of the statistids o
In this way, we quantify the impact of the battery calhe time-varying load requirements and the electricityceri
pacity on the performance of the proposed online contrB{0C€SSES. . . _
algorithm. Using real data, we demonstrate the efficacy of The rest of the paper is organized as follows. In Section
our online control algorithm through extensive numericdl: We describe the system model. In Section Ill, we propose
exploration. The results corroborate that our algorith@ cost-effective and privacy-preserving energy managéemen

can protect smart meter data privacy in a cost-effectifg@@mework. In Section IV, we propose an optimal online
manner. control algorithm. In Section V, we evaluate the performanc

of the proposed online control algorithm using real datee Th
B. Related Work paper is concluded in Section VI.

Smart meter data privacy protection has been studied in a
number of papers. Heuristic algorithms are developed td¢ac Il. SYSTEM MODEL

this challenge (see, e.g., [9], [10], [14] and [13]). Kalo® e consider a discrete-time system, in which the length of
et al. [9] proposes a “best-effort” algorithm against powegach time slot matches the typical sampling and operatioa ti
load changes by charging/discharging the battery to maintacaje of the smart meter. An overview of the system model
the current load equal to the previous load. McLaughlig given in Fig. 1. We assume that a smart home contains
et al. [10] proposes a non-intrusive load leveling (NILL)an energy storage device (battery) and a power controller
algorithm to mask appliance features that are used by NQRat can control the combination of power drawn from the
intrusive load monitoring (NILM) algorithms (e.g., [18R4]) iility and the battery to satisfy the load requirementsthe

to detect appliance switch-on/off events. None of these&®/0rqowing, the model of each component in Fig. 1 is described
have considered optimal control algorithms to protect $mag detail, aiming to optimize the load profile to mask indivéd

meter data privacy. Moreover, as pointed out in [14], th@onsumption events in a cost-effective manner.
methods proposed in [9] and [10] suffer from precise load

change recovery attacks, due to the leakage of load-change

information. The information leakage is mainly due to thetfaA- Battery Model

that the “best-effort” algorithm in [9] attempts to maintahe We denote byB™* the battery capacity, bi(¢) the energy
current load at all times, and that the NILL algorithm in [10]evel of the battery at slat and byPg(¢) the power charged to
often encounters a period of peak loads. In contrast, theenl(when Pg(t) > 0) or discharged from (whe#®z(t) < 0) the
control algorithm proposed here determines the obsenaat! Idattery during slot. Assume that the battery energy leakage is
profile by solving a well-designed optimization problemtwit negligible, which is a reasonable assumption, since the tim
unobservable parameters, without which the original loagtale over which the loss takes place (e.g., about 3-20% a
profile cannot be recovered. Therefore, the proposed approanonth for lead-acid batteries) is much larger than the neinut
does not suffer from precise load change recovery attaeKs [1llevel time scale. Then, the dynamics of the battery enengl le



can be expressed as C. Electricity Pricing Model

B(t+1) = B(t) + Pp(t). (1) Since the electricity price is time-varying, e.g., time-of

) ) ) ) use electricity pricing, the rechargeable battery offers a

Since the charging and discharging rates of the battery @jgyortunity to reduce the cost of electricity, in additian t

physically constrained, we denote byz™* the maximum yacy protection. Let(t) denote the cost per unit of power
charging rate and by’;™" the maximum discharging rate.qrawn from the grid at slot. We assume that(t) evolves

Pgp®* and Pg™ are positive constants depending on thg.cqrding to an.i.d. process with some unknown distribution

physical properties of the battery. Therefore, we have g is deterministically bounded by a finite constaft*, so
following constraint onPg (t): thate(t) < cmax,

—PRin < Pp(t) < PRex. 2) Given the system model, our goal is to design a control
algorithm that jointly optimizes the cost of power and smart
Since the battery energy level should always be nonnegatjy@ter data privacy, while meeting all the constraints. Fsee
and cannot exceed the battery capacity, we need to ensurre §i@xposition, the load process and the electricity pricepss
in each slot, are assumed to bid.d. over slots. The algorithm developed
0 < B(t) < B, (3) for this case can be applied to nand. scenarios, as shown
Based on constraints (1), (2) and (3), we have the followirg Secthn V, where numerical studies are car.rled out in non
equivalent constraints in each slofor Py (t): ||d enwronments. Our results can be generallzed for the non
i.i.d. case by using the delayed Lyapunov drift diglot drift

Pgp(t) > —min{ P31, B(t)}, (4) techniques developed in [16] and [17].
Pp(t) < min{PEax, Bmax — B(t)). (5)

IIl. COSTEFFECTIVEAND PRIVACY-PRESERVING

For simplicity, a basic battery model (cf. [21]) is used ENERGY MANAGEMENT

to model the cost of repeated charging and discharging. It

is assumed that the number of charging/discharging cycleBased on the system model above, we now study cost-

for each battery is limited. Given the battery’s cost and theffective and privacy-preserving energy management.

number of charging/discharging cycles, the cost of repkate

charging and discharging on the battery’s lifetime can be

calculated using the battery’s cost divided by the number 8 Control Objective

charging/discharging cycles, i.e., an amortized a@st (in With the use of a battery, the original load profilgt)

unit of dollars) incurred with each_ charging or d_ischargingJecomesp(t> = L(t) + Pp(t). Intuitively, in order to mask

Therefore, at each slqt, an operatmg costChf is mcurr_ed energy usage profiles, the modified load profitét) needs

whenever the battery is charging£(¢) > 0) or discharging g pe as “flat” as possible, as the privacy information is con-

(Ps(t) < 0). Nevertheless, the results in the paper can Bgined in appliance switch-on/off events, i.e., the dferes

easily generalized to more complicated battery models.  petween successive power measurementB(4 is equal to a
constant value representing the average residential thad,

B. Load Model all individual consumption events would be perfectly makke

We denote byL () the residential load generated at stot L6t L = Jlim £ 327, L(r) denote the average residential
L(t) is assumed to be independent and identical distributisdd. In real time, by charging/discharging the batteryt)
(i.i.d.) over time slots with some unknown probability distrineeds to be controlled with as little deviation from as
bution. Assume thaf(t) is deterministically bounded by apossible. Equivalently, the control objective is to mirzeihe

finite constantZ™#*, so that “variance” of P(t), i.e.,

L(t) < L™ma>, V. (6) 1 _

_ _ lim =Y "E{(P(r) - L)*}. 9)
L™** can be determined by the total power consumption of too b e~

all electrical appliances in the home.
With the battery, the total power used to serve the load
given by

li, can be seen that minimizing (9) generally requires the
knowledge of all future consumption events dud.tdHeuristic

L(t) = P(t) — Pg(t), @) algorithms (e.g., [9]_and_[10]) hgve been devised to midgat

this issue by charging/discharging the battery to m&Ke)
where P(t) denotes the power drawn from the grid at siot achieve a target load determined heuristically, which itaély
Assume that the maximum amount of power that can be dragacrifices performance. As discussed later in Propositjdry 1
from the grid in any slot is upper bounded B/, i.e., exploring the problem structure, this issue can be solved by
max transforming (9) into an equivalent problem.

0= P(t) < PR, vt ®) Beyond privacy protection, the rechargeable battery cam al
Note that for the original scenario where the battery is nbe used to reduce the cost electricity, by utilizing the time
used, P™** must be larger tha™** in order to satisfy all varying electricity price. In this paper, we jointly optinei
residential loads. Therefore, we hagpgax > [max, the cost of electricity and smart meter data privacy. The



corresponding objective function can be expressed as Thus, we have the following relaxed problem:
N P2:
tli>r£10¥ > E{ e(t)P(t) + 1p(r)Cp ;
=1 N—— —— . . —
Electricity cost  Battery operation cost (10) mlntlg& % Z—:l E{C(T)P(T) + 1B(7')CB + B(P(T) - L)Q}

+ B(P(r)-T) } s.t. constraintg2), (7), (8)
—_——— —

Smart meter data privacy PB =0. (15)
where_the indicator func@ionB(t) corresponds to the battery one main challenge of solving2 is that it requires the
operation, i.e.15(t) = 1 if Pp(t) # 0 (the battery is charg- nowledge of all future consumption events to compite
ing/discharging), otherwisgs(¢) = 0. 8 > 0 is a parameter N that P, = 0, the average charging power is equal to the
chosen by the customer to trade off between reducing th¢.rage discharging power, indicating that the batterg e
cost of electricity and protecting smart meter data prive®  .onsume energy on average. By exploiting this structure, we
example, wherns = 0, the customer optimizes only the oSy in the following proposition that the decision varibl
of electricity; wheng is large, the customer focuses more Ofp(4) js independent of . ThereforeP2 can be solved without
protecting smart meter data privacy. Assuming that the’tlinﬂsing the knowledge oF.
exists in (10), our goal is to design a control algorithm that pygnostion 1: Consider the following stochastic optimiza-
can minimize this time averaged cost subject to the comsrai; problem:
described in the system model. .

P3: min lim E{CTPT 1 TCB+5PT2}
B. Problem Formulation t—o0 ¢ TX::; (P(r) ) )

The cost-effective and privacy-preserving energy manage- st ?g:onitroamtﬁ), (7). (8)

ment problem can be formulated as the following stochastic B =" (16)

dynamic programming problem: Any optimal solution toP3 is also optimal forP2 and vice

P1: versa.
— ¢ - Proof: Since any feasible solution 83 is also feasible
1 _ 2
mlntliglo ¢ TZ:IE{C(T)P(T) +1s(r)Cp +B(P(7) — L) } for P2 and vice versa, it is sufficient to show that the
s.t. constraintg4), (5), (7), (8). objective functions oP3 and P2 differ by at most a constant

(11) independent ofP(t). Equivalently, it is sufficient to show that
One major challenge of solvirglis the lack of knowledge

of future time-varying load requirements and electricitices. lim % Zt: E{ZQ —2LP(7)} (17)
Moreover, due to thénite battery capacity constraints (4) and t=o0 " 121
(5), the current control action would impact the future coht s 5 constant independent of the choiceR(t). Sincel is a

actions, making it more challenging to sol&. Note that constant depending only ab(t), it is sufficient to show that
the traditional approach based on dynamic programming, (e.g

the approach in [11]) is difficult to apply, because it regsir lim L Zt: E{P(r)} (18)
the statistics of load requirements and electricity pricesl t—oo b2

the computational complexity may suffer from the curse of , -onstant independent of the choiceRit).

dimensionality. As the statistics of load requirements and SinceP(t) = L(t) + Pg(t), summing over alt, taking the

electricity prices may not be known, in this paper, we depelQypectation of both sides, dividing both sideszbgnd taking
an online control algorithm to solve this problem by using _, . \ve have

only the current observations, while taking into accourd th

finite battery capacity constraints 1o 1o
- it R PO} = i 2 10

C. Problem Relaxation + lim 1 Xt: E{Ps(r)} (19)

To solveP1, we first consider a relaxed version Bf, by B ZHC% 7=1
using (2) to relax the constraints (4) and (5). Define theayer =L+
expected charging or discharging rate of the battery as SincePy = 0, we have

Pp=lim +3°°_ E{P : ¢ _
= lm g2 E{Pe ()} (12) lim 1 Y E{P(r)} =T, (20)

Since the battery energy evolves based on (1), summing e tr=n

over allt and taking expectation of both sides, we have thereby concluding the proof. ]

: From Proposition 1, any feasible solution BR1 is also a
E{B(t+1)} - B(1) = -, E{Pp(7)}, (13) feasible solution tdP3, sinceP2 is equivalent toP3 and the
whereB(1) is the initial battery energy level. Since the batterfeasible set oP2 is larger than that oPL Let ¢,..; and ¢t
capacity is finite, dividing both sides by and takingt —+ oo denote the optimal objective value of the relaxed probR3n
in (13) yields and that ofP1, respectively. Sinc®3 is less constrained than
Pp=0. (14) P13, the optimal value o3 will not exceed that ofP1 by



more than a constarﬁif2 that can be computed based on Following the drift-plus-penalty framework [17], our oné
Proposition 1, i.e.¢re < ¢opt — ﬂZQ. control algorithm is designed to minimize an upper bound on

Note thatP3 is a decoupled control problem, in the senste following function, in order to achieve the optimal s
that the optimal control action®(¢) and Pg(t) at each slot to P1:

can be determined purely by the current stafe) and c(¢). AUt VEL(DP() + 1n()C P2|U(t
Specifically, it can be shown that there exists a stationary, (U(0) + VE{e()P () + 15(1)Cs + SPE)IU( )}'(24)

randomized policy that can achieve the optimal solutioR30 The following lemma provides an upper bound for (24).

as presented in the following Iem.ma' . Lemma 2:(Drift Bound) For any control policy that satis-
Lemma 1:If L(t) andc(t) arei.i.d. over time slots, then 4.¢ ihe constraints &3 we have

there exists a stationary, randomized policy that maketr@bon )
decisions Pstet(¢) and Pg(t) at every slot purely as a A(U(t) + VE{c(t)P(t) + 15(t)Cp + BP(t)*|U(1)}
function (possibly randomized) of the current stdtg) and < K+UGE{Pe()|U(t)}

c(t), while satisfying the constraints &f3 and providing the + VE{c(t)P(t) + 1p(t)Cr + BP(1)*|U(1)},
following guarantees:

E{PF(t)} =0,

E{e( P (1) + 1(parar()20y O + FP (1)} = drar, Proof: Squaring both sides of (22), dividing by 2, and
where the expectations above are with respect to the stayionrearranging, we have

istributi domized control 2 2
gleit;?ski)grt::_ns of L(t) and ¢(t), and the ran U(t+1)2—U(t) — LPy()? + U(H)Palt).

The proof of Lemma 1 follows from the framework in [17] Since—P3i" < Pp(t) < P, we have
and is omitted for brevity. Note that the above stationary, U(t4+1)2—U () N NS a2
randomized policy may not be feasible for the original pewbl 5 < gmax{(Pg")%, (Pg™)"}
P1, as the constraints (4) and (5) may be violated. However, +U(8)Pp(t)-
the existence of such a policy can be used to design our onlinéfaking conditional expectations of the above and adding
control policy that meets all constraints Bfl and derive a VE{c(t)P(t) + 15(t)Cp + BP(t)?|U(t)} to both sides, the
performance guarantee for our algorithm as shown later pinoof is concluded. u
Theorem 1.

(25)
where the constank” is defined as

K = Lmax{(PR™)2, (P}, (26)

B. Online Control Algorithm

IV. OPTIMAL ONLINE CONTROL ALGORITHM The design principle of our online control algorithm is to
In this section, we design an online control algorithm thahinimize the right-hand-side of the drift-plus-penaltyuina
can achieve the optimal solution ®1 asymptotically. The (25) subject to the constraints BB at each slot, by observing
proposed online control algorithm is designed basedP8n the current statd/(t), L(t), and c(t). The online control
and uses a control parametér> 0 to quantify the impact of algorithm chooses the control actiof%; (t) and P(t) as the
the battery capacity on the performance of the algorithm gslution to the following optimization problem:
discussed later. The key idea of our algorithm is to construg, , . . 9
a Lyapunov function with a perturbed weight for determining&‘l' rsntln ngé%;gg@ﬁg? +15()C5 + BP(1)%)
the control actions. By carefully designing the weight, vaa ¢ o 0 <BP(15< pmax B
show that whenever the battery is charged or discharged, the L(_t) _ P(_t) — Pat)
battery energy level always lies in the feasible regiorPaf ' (27)
From Proposition 1, if the optimal solution 8 can be found |t can be observed that for each slgt P4 is a mixed-
and lies in the feasible region 1, it is also optimal oL jnteqer nonlinear program. To solve it, we consider thenoati
To this end, we define a perturbed variabléf) to track the ajyes of the objective i4 for two modes with and without
battery energy level as charging/discharging respectively, and then choose theemo
U(t) = B(t) — V(c™ax 4 9g[max) _ pmin, (21) thatyields the lowest value of the objective. The corresjiom

N ) control actions of the mode can then be implemented in real
Note that B(t) is the actual battery energy level at slot time.

and U(t) is simply a shifted version oB(t) with the same | et Px(¢) and P*(t) denote the optimal solution t&4.

dynamics: For each caseP;; (t) and P*(t) can be characterized by using
Ut+1) =U(t) + Pp(t). (22)  the Karush-Kuhn-Tucker (KKT) conditions [22]. The optimal
solution toP4 is given as follows:
A. Lyapunov Optimization 1) The case without charging/discharginigf(¢) = 0): Let
We define the following Lyapunov functionZ(U(t)) = ¢1(t) denote the optimal value of the objectiveRd without
LU (#)2. The corresponding conditional Lyapunov drift can bgharging/discharging. In this case, we hag(t) = 0 and
defined as follows: P*(t) = L(t). 01(t) can be calculated as

AU®) =E{Z(U(t+1) - ZU)U(H}.  (23) bu(t) = V(c(t)P* () + BP"(1)%). (28)



Algorithm 1 Online control algorithm 2) All control decisions are feasible fét1.
Initialization: Given the initial battery charge levél < 3) If L(t) and ¢(t) arei.i.d. over slots, then the time-
Binit < B™aX sett = 1 and computd/(1) based on (21). average expected cost under the proposed online control
For each time slott algorithm is within K/V" of the optimal value:
1) Computed; (t) andfz(t) based on (28) and (29). .
2) Choose the control decisioi; (¢) and P*(¢) associated lim 1 E{c(r)P(r) +15(7)Cp + BP(T)Q}
with the lower value of); (t) and6s(t). e X
3) UpdatelU (t) according to (22). < Prel + 3s

where K is a constant given in (26).

Proof: 1) Proof of Part 1:To show0 < B(t) < B™* for

2) The case with charging/dischargind () = 1):  all ¢, it suffices to show that V(c™™* 4 28Lmax) — pmin <
Let 6>(t) denote the optimal value of the objective R4 [/(t) < Bmax _/(¢max 23, max) — Pmin for all ¢, according
with charging/discharging. Letting B = min{ P, P™* — {0 (22). As0 < By,;; < B™*, it is easy to verify—V (¢™* +
L(t)} andLB = max{—Pg"", —L(t)}, P5(t) and P*(¢) can g3 max) — pmin < [J(1) < B — V(M@ 4 23[max) —

(31)

T=1

be calculated as follows: pPin,
o If SOHVEDELW) . /B, then Pi(t) = UB and  Then, we show—V/(¢™® 4 2BL™%) — PRin < U(t) <
P*(t) = Pj(t) + L(t). Bmax _ |/ (emax 4 g3 max) _ pmin by induction. Suppose that
o If LB < ~HORVEDEPLO) < pp, then Pj(t) = —V(e™™ 4 26L™) — PRi® < U(t) < B™™ — V(e +
_ U(t>+V(c$)+2BL(t)) and P*(t) = Pi(t) + L(t). 26L™>*) — PR holds for slott. We need to show that it also

2
U@+ V(c(t)+2BL(1)) i holds for slott + 1. '
- 25 < LB, thenP5(t) = LB and g Nt 0 < p(r) < Bmax _ y(emax 4 ggpmax) _ pin

,P (t) = P3(t) + L(2). then P};(t) < 0 based on Lemma 3. Therefore, using (22), we
Given P} (t) and P*(t), 62(t) can be calculated as f0||0WSIhaveU(t+ 1) < U(t) < Bmax — |/ (¢max 4 28[max) — pnin,
O2(t) = U(t) P (t) + V(Cp + c(t)P*(t) + BP*(t)?). If U(t) <0, then U(t +1) < pPpex based on (22), since
(29) the maximum charging rate Bg**. Using (30), for any0 <
After computingd; (£) andés(t), we choose the lower value V' < V™ we haveB™®* — Pptt — V(¢ + 25L7m%) >
of 01(t) and 62(t) and the corresponding control actions. AB™* — PR — VW& (e  26Lme) = P, Therefore,
detailed description of the online control algorithm isegivin - We haveU (¢ + 1) < B™® — Pt — V(¢ 4 2BL™Mex),
Algorithm 1. Second, if —V(c™® + 28LM) — ppit < U(t) <
=V (e™®* + 2BL™**), then P;(t) > 0 based on Lem-
ma 3. Then, using (22), we ha&(t + 1) > U(t) >
) ) o -V max+2 [ max _Pmin_ |f U(t) > -V max+2 [ max ,
In this section, we analyze the feasibility and performan%a(tgi 1) > fv(cmaz(JrQ%Lmax)i(zggin ba(sced on (gZ) si21ce
of our online control algorithm. We define an upper bounfp]e maximum discharging rate B2™". Therefore, we have
Vmax on parameted” as follows: —V(emex 4 2BL™ax) — pmin < [7(¢ 4 1), which concludes
pmax _ pmax _ pmin 30 the proof.
cmax | 93] max (30) 2) Proof of Part 2:From the proof above, the constraint on
Next, the optimal solution t&4 has the following properties B(Lf) IS Sﬁt'iﬁed for albf.. Smce thg ﬁoerI demsmnsﬂg{efmake
that are useful for the performance analysis. Sﬁtlsfy”aht € consFram_ts I3, W:t 0 S_ ? (Q ShB ‘ or
Lemma 3:The optimal solution toP4 has the following all ¢, all t e_c_onstralnts |rm are also satisfied. Therefore, our
properties: control decisions are feasible féxl.
. 3) Proof of Part 3: The proposed online control algorithm
* :; ggg i %JT:Q;;BE%EL&'M) then P5 (£) > 0 is designed to minimize the right-hand-side of (25) over
* S ' . BAY = . all possible feasible control policies, including the opmi,
Proof: If (gj(t()tlv( (zt)ﬁé)i(t)t)hen _PB(t) can be ei- stationary policy given in Lemma 1. Therefore, we have the
ther LB or — gwa . Since LB < 0 and following:
_ VOV +28L1) o we haveP*(t) < 0.
£ Ly e bAER() <0 AUM) + VE{ct)P(H) + 1s()Cs + BPOIU () < K
(t) < =V(e™™ + 2BL™*), then Pg(t) can be stat stat (4)2
either UB or 7U(t)+V(g$)B+26L(t)). SinceUB > 0 and FVE{c(t)P***(t) + Lpgrar (1) 20()Cp + BP* () |U (¢) }.

fU(t)JrV(g%”BL(”) >0, we haveP;(t) > 0. m  Taking the expectation of both sides, using the law of
Then, we have the following results. iterative expectation, and summing over @allwe have
Theorem 1: Suppose the initial battery charge levg},,;; ‘

satisfies0 < B, < B™**. Implementing the above online V 3" E{c(r)P(7) + 15(7)Cp + BP(1)?} < Kt

control algorithm with any fixed parametér< V. < ymax =1

for all ¢, vge have the follgwing peprformance guarantees: + Vidre —E{Z(U(t)} + E{Z(U(1))}.
1) The battery energy leveB(¢) is always in the range Dividing both sides byl’¢, taking the limit ast — co and

0 < B(t) < B™* for all ¢. using the facts thaE{Z(U(t))} is finite andE{Z(U (1))} is

C. Performance Analysis

Vmax —




nonnegative, we have

t—oo t 1%

L L
20 22 0

lim E ZE{C(T)P(T) +15(1)Cp + BP(1)*} < dret + 5

Time (hour)
] 10000 :

. . s 750” ““““ Original Load Profile - -jOurAI‘gcrilhm‘ (13:10"5)‘ R
Theorem 1 shows that by choosing a lardér the time- & so00f c : L Y|
average expected cost under the proposed online contro & aewf : il
algorithm can be pushed closer to the optimal solution to % ‘ N 0 2 o
P1 Since V™#* is determined by the battery capacity, (31) 10000 [~ Original Load Profile = = Our Algorithm (3=0) _ <
qguantifies the impact of the battery capacity on the perfor- % ol ;o W—%’ i
mance of the proposed online control algorithm. The larger & ooy 1l i‘:‘é‘r .! %ﬂ}: i '
the battery capacity is, the better the proposed onlinerabnt %©"2 h 6 6 1‘Time(hour) 0 2 o
algorithm can optimize smart meter data privacy and the cost
of electricity. (a) The actual load profile.
Remarks: Note that Theorem 1 holds for all sample paths,
including sample paths generated byt) and c(¢) that are S cooo]|_ Oromal Load Prfie - = O Agortom (=1

non i.i.d. over slots. The proposed online control algorithm g 4000}
can be applied to nomi.d. scenarios, as demonstrated in  £*%[-... .. e
Section V, where numerical studies are carried out in non Sime (houy
i.i.d. environments. Our results can be generalized for the non 8°°°l “““ t

i.i.d. case by using the delayed Lyapunov drift ahdlot drift g o0

@ 4000

Original Load Profile = = Our Algorithm (B=10" .

technigues developed in [16] and [17]. & 2000
00 2 = “4 ‘6 ?0 - 1;‘ 1‘4 = 16 18 2‘0 22 O
Time (hour)
V. CASE STUD|ES 8000{ ““““ Original Load Profile - == Our Algorithm (B:O)}v—v—v—vﬁ
. . . £ 6000} ‘ On-peak Frice I""-h
A. Data and Simulation Setting g 4000] : Peri
We evaluate _the performance of the propoged algorithm by T I T TR
using the real-time measurements at a Georgian apartrent [S Time (hour)
and the load profile constructed based on a domestic eiggtric (b) The constructed load profile.

demand model [23]. The time resolution of the load profile.
. . [23] . . P -nﬁlg. 2: Comparison of load profiles given by our algorithm under
is one-minute. The actual load profile given by the real-ti cﬁfferent values of8, where B™* — 12 kWh, andV’ = ymax

measurements represents the case in which the power usage Is

high, while the constructed load profile based on the domesti

electricity demand model [23] represents the case in whieh tynen gmax — 100 kwh ands = 1, where the slow-time-scale
power usage is low. The electricity prices are set accordifgctyations are smoothed out.

to SRP’s residential time—of-usc_a price plan [24]. The oalpg When 8 = 0, our algorithm minimizes only the cost of
price is 21.09 cent per kWh during 1:00 PM to 8:00 PM, whilgectricity. As shown in Fig. 2, the proposed algorithm etor
the off-peak price is 7.04 cent per kWh for the remaining timg,e energy in the battery in the off-peak price period and use

of a day. In the simulation, we fix the parametérg™ = he energy in the battery as much as possible in the on-peak
PR =6 kW, P =10 kW andCp = 0.1 cent. price period to reduce the cost of electricity.

Fig. 5 illustrates the tradeoff between the cost of eleityric
B. Privacy Protection and Power Cost Saving and smart meter data privacy under different values asing

fQS actual load profile. In Fig. 5, the privacy protection is
given by our algorithm under different values of. As quantified by using the standard deviation/tf) given by the

discussed in Section 1|3 strikes a tradeoff between the cosErOpOS(ad algorithm. A$)’.|ncreases, the proposed algorithm
of electricity and smart meter data privacy. As illustratad OCUS?S rrlore on d_ata privacy, and the re§l,_|lﬁﬁg) becomes

Fig. 2, when3 — 1, the proposed algorithm smooths out th ore flat”. Accordingly, the cost of electrlcn)_/ increasegh
original load profile and the appliance switch-on/off ewent Fig. 5 can be used for the user to dgtermme the value of
are masked accordingly. Fig. 3 takes a closer look at the lo d'@‘t he or she would consider appropriate.

profile given by our algorithm during the period between 03:3 ) ] ]

and 14:20, in which the fast-time-scale fluctuations in tHe: Privacy Protection vs. Battery Capacity

original load profile due to the appliance switch-on/offeig&e  As discussed, the privacy information is contained in ap-
are smoothed out. However, one can still observe the slopliance switch-on/off events, i.e., the differences betwe
time-scale fluctuations in Fig. 3, which are due to the smalliccessive power measurements.dBft) = P(t)— P(t—1)
capacity of the battery. With a larger battery capacitydlogv- represent the difference between successive power measure
time-scale fluctuations in Fig. 3 can be smoothed out. Fig.rdents. NILM algorithms (e.g., [18]-[20]) explore the diffe
illustrates the load profile provided by the proposed athatri ences between successive power measurements to ideetify th

Based on the two data sets, Fig. 2 compares load profi
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Fig. 3:Load profile given by our algorithm for the actual load prafileFig. 6: System cost under different values of the battery capacity,

where = 1, B™* = 12 kWh, andV = V™,
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Fig. 4:Load profile given by our algorithm for the actual load prafile
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where = 1, B™** =100 kWh, andV = V™,

Electricity Bill ($)

= = Standard Deviation of P(t)

3000

Electricity Bill
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under different values of3 using the actual load profile, where

B™* =12 kWh, andV = V™%,

under different values off and battery capacity3™** with

L
10~

— 1000
10

wheres =1 andV = V™ for each value of the battery capacity.

TABLE [: Feature reduction by different algorithms.

Online Control Algorithm

B B™maX — 12 kWh | B™2X = 24 kWh
0 343 331

108 317 206

10~7 130 79

10=6 60 14

10-5 37 2

Non-intrusive Load Leveling Al

gorithm [10]

B™max =12 kWh

Bmax = 24 kWh

Number of featureg 19

12

Best-Effort Algorithm [9]

B™Max =12 kWh

B™Max = 24 kWh

Number of featureg 11

4

Original Load Profile

Number of featureq

393

are left, compared with 393 features in the original loadifeo
Although in terms of feature reduction, the NILL algorithm
[10] and the best-effort algorithm [9] can perform compédeab
to the proposed online control algorithm, the system cost
given by the proposed online control algorithm is much lower
than these algorithms as demonstrated in the next section.
Moreover, as pointed out in [14], the methods proposed in [9]
and [10] suffer from precise load change recovery attackl su
that the original load profile can be recovered using thedgak

of load-change information from these algorithms. In casitr

the proposed online control algorithm determines the oleskr
load profile by solving a well-designed optimization prohle

with unobservable parametef$((), V', and;3), without which
Fig. 5: Tradeoff between the cost of electricity and privacy protec  the original load profile cannot be recovered.

D. System Cost vs. Battery Capacity

We now study the impact of the battery capacity on the
appliance switch-on/off events. These differences arkedtal performance of the proposed algorithm. As shown in Theorem

features In Table |, we compare the number of features in thk, the system cost under the proposed online control algorit
load profiles given by the proposed online control algorithrmonverges to the optimal value as the battery capacity &isere

es. Based on (30), if the electricity price is givany"®* is

the NILL algorithm [10] and the best-effort algorithm [9h i determined by the battery capacity. For different values of
which the differences less than 50 W (lights) are not aceaedintthe battery capacity, the system cost is evaluated by using
for. From Table |, it is observed that features are signifigan the actual load profile. To examine the convergence of the
reduced by the proposed online control algorithn#ascreas- proposed algorithm, the system cost given by the proposed
es. Whens = 10~° and B™® = 24 kWh, only two features algorithm is normalized by the optimal offline solutionPd.



The optimal offline solution td?1 is solved by assuming that [5]
the load profile and the electricity price are known perfectl
Fig. 6 compares the normalized system cost given by th[e6]
proposed algorithm with the NILL algorithm [10] and the best
effort algorithm [9]. As illustrated in Fig. 6, the normadid [7]
system cost given by the proposed algorithm decreases with
the battery capacity, and converges to 1, indicating that {g]
converges to the optimal system cost. Furthermore, it is
observed from Fig. 6 that the performance of the propos
algorithm with a battery of small capacity is reasonablydjoo
When the battery capacity is 10 kWh, the system cost given bl%
the proposed algorithm is very close to the optimal solutio['l ]
However, the system costs given by the NILL algorithm [10]
and the best-effort algorithm [9] are much higher than tH&!l
proposed algorithm, and do not converge to the optimal value
with the increase of the battery capacity. [12]

VI. CONCLUSION

This paper has studied cost-effective smart meter dzﬁg]
privacy protection by using batteries. A dynamic programgni
framework has been designed for consumers to jointly ptotél’f‘]
smart meter data privacy and reduce the cost of the eldgtrici
By exploring the underlying structure of the original prein, [15]
an equivalent problem has been derived, which can be solved
by using only the current observations. Then an online ebntig)
algorithm has been developed to solve the equivalent pmoble
based on the Lyapunov optimization technique. It has be
shown that without requiring any knowledge of the statssti
of the load requirements and electricity prices, the pregdos
online control algorithm is withinO(1/V) of the optimal [18]
solution to the original problem, where the maximum value of
V is limited by the battery capacity. Using real data, nun@ric
results have corroborated that our algorithm can proteetrsm!
meter data privacy in a cost-effective manner.

For future work, it is of great interest to integrate deman@o]
response management into the current framework. Another
interesting direction is to integrate renewable genenaitibo
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