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Abstract—The main goal of this study is to design a market
operator (MO) and a distribution network operator (DNO) for a
network of microgrids in consideration of multiple objectives.
This is a high-level design and only those microgrids with
nondispatchable renewable energy sources are considered. For a
power grid in the network, the net value derived from providing
power to the network must be maximized. For a microgrid, it
is desirable to maximize the net gain derived from consuming
the received power. Finally, for an independent system operator,
stored energy levels at microgrids must be maintained as close
as possible to storage capacity to secure network emergency
operation. To achieve these objectives, a multiobjective approach
is proposed: the price signal generated by the MO and power
distributed by the DNO are assigned based on a Pareto optimal
solution of a multiobjective optimization problem. By using the
proposed approach, a fair scheme that does not advantage one
particular objective can be attained. Simulations are provided to
validate the proposed methodology.

Index Terms—Distribution network operator (DNO), mar-
ket operator (MO), microgrids, multiobjective approach, multi-
microgrid design, Pareto optimality, smart grid, utility maximiza-
tion.

I. INTRODUCTION

Dynamic pricing in the smart grid is an approach that

helps reshape or reduce the power demands by varying the

cost of power service over time. Power consumers who are

sensitive to the energy price may change their power use in

response to the varying price signals [1]. Dynamic pricing has

been extensively discussed and explored in the literature [2]–

[15]. For instance, a pricing scheme can be used as an area

control method [2]–[5] or a home-scale method [6] for energy

management. A grid node may store energy in a local energy

storage system when the price is low, and use the stored energy

when the price increases [7]. When shiftable loads are involved

in the grid, power users may vary their power demands

according to the price [8], [9]. This further indicates that the

pricing scheme is capable of lowering the peak load [10] so

that the maximum system capacity and thus the cost can be

reduced.
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For a successful application of dynamic pricing, elements

such as active participation of consumers in demand re-

sponse [16], robust energy management [17], [18], and proper

power distribution [19] are needed in the smart grid. To

include these elements for further investigation on the grid,

we consider a network of microgrids, an independent system

operator (ISO) that consists of a market operator (MO) and a

distribution network operator (DNO), and a power grid [20].

In the network, microgrids are locally connected with non-

dispatchable renewable energy sources (RESs) [21], and some

of them possess energy storage systems.

The microgrids take advantage of the power supply from the

power grid, RESs, and their local energy storage systems to

meet their respective power demand. The MO generates a price

signal that is related to the power supply, power demand and

stored energy in the network. The DNO distributes the power

generated at the power grid to microgrids. The MO and DNO

in the ISO are positioned at the highest control level in the

multi-microgrid environment, which allows these two entities

to have a substantial impact on the grid operation.

To facilitate ensuing discussions, we refer to the network

and the participants of the network as the multi-microgrid

system. Furthermore, we refer to determining the price signal

generated by the MO and the power distribution performed

by the DNO as a high-level design of the multi-microgrid

system, i.e., the multi-microgrid system design includes both

an electricity market design and a power distribution design.

In the multi-microgrid system, the power grid and microgrids

desire their respective asset utilization to be optimized, and

the ISO desires that the multi-microgrid system should store as

much energy as possible to secure emergency operation. From

this perspective, an optimal multi-microgrid system design

leads to optimizing interests of the microgrids, power grid,

and ISO simultaneously. This suggests the consideration of a

multiobjective optimization problem (MOP).

In contrast, most existing approaches related to high-level

grid system designs consider solely utility maximization by

maximizing certain aggregate benefits, sometimes termed the

social welfare [22]. For instance, the associated aggregate

function can be a sum of all utility functions of microgrids

minus the cost of power generation at the power grid [23], [24].

These formulations lead to a single-objective optimization

problem (SOP). Market price generation, power distribution,

or efficient energy consumption can then be characterized as

the solution to the SOP.

Although able to produce a reasonable design, existing

approaches can suffer from at least one of the following

drawbacks. First, optimizing a system performance index
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related to emergency operation is often neglected. Maximizing

the aggregate utility of the power grid and microgrids is

the only objective that must be attained. Second, the mutual

relationship between the utility maximization of the power

grid and of the microgrids is seldom addressed. Third, system

operation schemes resulting from maximizing the aggregate

function may favor a particular participant [25]–[28]1, e.g.,

the power grid or microgrids, depending on the weighting

coefficients used in the aggregate function and on the con-

flicting relationship among objectives of participants. In a fair

and transparent setting joined by active participants, this bias

should be generally avoided.

To address these drawbacks, we propose a multiobjective

approach to multi-microgrid system design. Three objectives

are considered, introducing a three-dimensional objective func-

tion space2. The first objective is to maximize the overall net

value derived from consuming power at microgrids, i.e., the

utility maximization for the microgrids. The second objective

is to maximize net revenue derived from providing power at

the power grid, i.e., the utility maximization for the power grid.

Finally, to secure the emergency operation, the third objective

is to maximize a sum of the stored energy levels within the

multi-microgrid network, corresponding to maximizing the

interest of the ISO. The consideration of the third objective

in our formulation addresses the first drawback mentioned

previously.

The proposed multiobjective approach leads to solving an

MOP. Since multiple objectives are involved, Pareto domina-

tion is adopted. A multiobjective immune algorithm (MOIA)

is developed to solve the problem by searching for feasible

points in the decision variable space that represent prices and

the amount of power distributed to microgrids. During the

solving process, dominated or infeasible points are gradually

removed. In other words, nondominated and feasible points

are maintained, yielding a set of approximated Pareto optimal

solutions at the end of the process. Each solution associates

with an approximated Pareto optimal design. The whole set

corresponds to an approximated Pareto front (APF). The APF

is of importance because it can clearly illustrate how one

objective affects the others, which cannot be achieved when

an SOP is formulated and solved for utility maximization. The

ability to produce the APF addresses the second drawback.

Based on the APF, a design for the DNO and MO that

does not favor a particular participant can be derived. In our

framework, if a vector on the APF has an entry with an

extreme value, then the associated design favors one particular

participant. To achieve a fair design, we fully explore the

obtained APF: An optimization process is performed over

the improvement of the associated objective function values

1In general, to avoid favoring a particular participant, the weighting
coefficients used in the aggregate function can be set equal to each other
and normalized objective functions can be used. However, such a method is
invalid when the MOP in which the objectives form the aggregate function
of participants has a nonconvex Pareto front (PF). Even if the PF is convex,
other difficulties can be introduced by using aggregate functions derived from
different weights to approximate the PF, as discussed in the references.

2We use the terms decision variable space and objective function space to
describe the domain and codomain, respectively, of the vector-valued objective
function consisting of the three scalar-valued objective functions.
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Fig. 1. System operation model of a network of microgrids.

in three dimensions. The vector on the APF that maximizes

the minimum value of the normalized improvement in all

dimensions is selected. The associated solution is then used to

characterize the design. The exploration of the APF that leads

to a fair design addresses the third drawback.

The main contributions of this paper are summarized as fol-

lows. The proposed methodology for multi-microgrid system

designs can avoid the drawbacks introduced by using aggre-

gate functions. To the best of our knowledge, in recent litera-

tures related to the multi-microgrid system design, few efforts

have been devoted to addressing a multiobjective approach

for price generation and power distribution. We thus propose

a multiobjective formulation, which can provide a framework

for future exploration of multiobjective methodology in related

fields. As the formulation leads to solving an MOP, we develop

an MOIA so that an APF can be produced. Finally, we devise

a simple method that can yield a fair multi-microgrid system

design based on the APF obtained.

The rest of this paper is organized as follows. Section II

describes the network components. In Section III, a multiob-

jective formulation is proposed, leading to an MOP, and related

analysis is performed. In Section IV, an algorithm that can

solve the MOP is developed. Simulation results are presented

in Section V. Finally, Section VI concludes this paper.

II. SYSTEM MODEL

This section describes the system operation model of a net-

work of N microgrids in Fig. 1. Without loss of generality, we

assume that there is no power exchange between microgrids

because if some microgrids are connected with links and can

exchange power, then we simply combine them as one mi-

crogrid. An information and communication technology (ICT)

system has been implemented so that network information,

e.g., the price signal and power demand, can be exchanged

among the microgrids, power grid, and ISO, consisting of the
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TABLE I
SYMBOLS

Symbol Description

N the number of microgrids
N the set of microgrid indices, i.e., N = {1, 2, ...,N}
Ns the number of microgrids that have a local energy

storage system
Ns the index set for the microgrids that have a local

energy storage system (we assume Ns = {1, 2, ...,Ns})
k time index

sn(k) stored energy level of nth microgrid at time k

s̄n and sn maximum storage capacity and secure energy level for
emergency operation, respectively (s̄n ≥ sn(k) ≥ sn > 0)

∆sn maximum rate of storage charging and discharging
(|sn(k + 1) − sn(k)| ≤ ∆sn)

vn(k) power supply from nondispatchable RESs to nth microgrid
at time k

pgn (k) power distribution between the power grid and the nth
microgrid at time k

pg(k) total power distribution, i.e., pg(k) =
∑N

n=1
pgn (k)

pdn (k) power demand of the nth microgrid at time k

λ(k) market price at time k

Ug(·) utility function of the power grid
Ud(·) utility function of microgrids
Uc(·) constraint function
[·]i the ith entry of a vector
:= assignment operator

MO and DNO. In this study, we consider a high-level multi-

microgrid system design. Because the balance of current and

voltage is managed at a lower level, the associated balance

equations are not explicitly shown in the following discussions.

For clarity, the section is divided into three subsections, and

Table I summarizes the notation used throughout this paper.

Sections II-A, II-B, and II-C describe mathematical models

of the microgrids, power grid, and ISO, respectively. The

respective utility maximization problem is examined.

A. Microgrids

Let N = {1, 2, ..., N} be the set of microgrid indices and

Ns be the index set for the microgrids that have a local energy

storage system. Without loss of generality, we assume Ns =
{1, 2, ..., Ns} where Ns ≤ N . Referring to Fig. 1, we let

pgn(k) denote the power transmission between the power grid

and microgrid n. If pgn(k) > 0, then microgrid n receives

power from the power grid; otherwise, microgrid n sells power

to the grid.

If n ∈ N \Ns, i.e., microgrid n does not possess an energy

storage system, then we have

pgn(k)− pdn
(k) + vn(k) = 0 (1)

where pdn
(k) > 0 represents the power demand, and vn(k) >

0 represents the power generated from the RESs, such as

solar panels or wind turbines. In our model, we consider

microgrids that have only nondispatchable RES penetration

(without dispatchable DG units).

If n ∈ Ns, then sn(k) denotes the stored energy at

microgrid n and satisfies

0 ≤ sn(k) ≤ s̄n (2)

where s̄n represents the maximum storage capacity. The maxi-

mum capacity is determined by the media used to store energy.

For instance, if batteries are used to construct the energy

storage system, then the maximum capacity may depend on

the chemicals in the batteries and the size of the batteries. The

dynamics of the energy storage system can be expressed as

sn(k + 1) = sn(k) + pgn(k)− pdn
(k) + vn(k). (3)

The associated limits on the rate of charging and discharging

can be modeled as

|sn(k + 1)− sn(k)| ≤ ∆sn. (4)

In grid operation, we consider shiftable loads [8], [29] and

model the power demand pdn
(k) in (1) and (3) as

pdn
(k) = fdn

(λ(k), bn(k)) (5)

where bn(k) > 0 represents a nominal value of the base load.

Since in practice base loads have little elasticity, high-accuracy

load forecasting can be attained and we thus assume bn(k)
in (5) is a known quantity.

To maximize the overall utility of microgrids, we consider

max
λ(k)

Ud(pd1
(k), . . . , pdN

(k), λ(k)) (6)

where the utility function Ud(·) in (6) represents the net value

derived from consuming power pdn
(k), n = 1, 2, . . . , N, when

the price is λ(k).

B. Power Grid

Let pgn(k) be the power distributed between the power grid

and microgrid n, and denote

pg(k) =

N
∑

n=1

pgn(k). (7)

Let Ug(pg(k), λ(k)) denote the utility function of the power

grid. To maximize the interest of the power grid, we consider

max
pgn (k),λ(k)

Ug(pg(k), λ(k)). (8)

The utility function Ug(·) in (8) is interpreted as the net value

derived from pg(k) when the price is λ(k).

C. ISO

Eastern U.S. ISOs such as New York ISO and PJM Intercon-

nection provide emergency demand response programs [30].

To feature those programs in our model, we determine λ(k)
and pgn(k) by solving

max
λ(k),pgn (k)

Ns
∑

n=1

sn(k + 1)

subject to sn ≤ sn(k + 1) < s̄n, n = 1, 2, ..., Ns

(9)

where sn > 0 represents the minimum energy level required

for emergency operation. In (9), maximizing the sum of stored

energy levels aims to store as much energy within the multi-

microgrid network as possible so that a safer secure level can

be achieved.

Remark 1: According to (3), the value of sn(k + 1) de-

pends on the values of pgn(k) and pdn
(k), and the value of
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pdn
(k) further depends on the value of λ(k), as shown in (5).

Therefore, the distributed power pgn(k), n = 1, 2, ..., Ns, and

the price λ(k) are the decision variables in (9).

Remark 2: A scenario related to the model described by

Fig. 1 is discussed as follows. In a few universities of Taiwan,

students who live in dormitories are required to pay their own

electricity bills for the use of washing machines, dryers, air

conditioner, light, etc. At present, a fixed price for electricity is

adopted. If the price can change over time and is transparent

to students, then students may adjust their behavior so that

less/more power is consumed when the price is high/low. In

this case, shiftable load, e.g., running washing machines and

dryers, can be rearranged. A win-win situation can thus be

created: universities can benefit by leveling the load curve,

which reduces costs and energy losses within the campus,

while the students can reduce their expenses.

In the scenario, universities act as an agent who buys

electricity from a power company and then sells it to students

with a time-varying price. A dormitory implemented with

batteries can be regarded as a microgrid, which possesses

certain storage capacity. Some universities of Taiwan already

have solar panels installed on rooftops, which connects micro-

grids with RESs. Most students in Taiwan have smart phones,

providing a foundation for building up the underlying ICT

system. A real-time price for electricity can thus be readily

accessed if desired. Once an advanced metering infrastructure

(AMI) system has been implemented in universities, with the

help of the aforementioned facilities, the office of general

affairs can function as the ISO. (As a matter of fact, Yuan Ze

University in Taiwan already possesses an AMI system [31]. In

the UK, smart meters are being massively rolled out. By 2020,

British homes can start to benefit from smart pricing [32],

[33]. In the US, experimental projects using online feedback

systems to help reduction in demand in dormitories have been

launched [34]–[36].) Therefore, the model is practical and suits

the smart grid environment that involves active participants.

III. PROBLEM FORMULATION AND RELATED ANALYSIS

This section presents a multiobjective formulation for the

multi-microgrid system design, leading to an MOP. Related

analysis on the MOP is performed. In our scenario, a real-time

market settlement is considered, and the associated optimiza-

tion is performed hourly. In this setting, the RES output vn(k)
can be forecasted with high accuracy and thus is assumed to

be known during the optimization process.

To address the objectives (6), (8), and (9) simultaneously,

we formulate the multi-microgrid system design problem as

the MOP

min
λ(k)

−Ud(pd1
(k), . . . , pdN

(k), λ(k))

min
λ(k),pgn (k)

−Ug(pg(k), λ(k))

min
λ(k),pgn (k)

−
Ns
∑

n=1

sn(k + 1)

(10)

subject to

|sn(k + 1)− sn(k)| ≤ ∆sn, sn ≤ sn(k + 1) ≤ s̄n, n ∈ Ns

(11)

where

sn(k + 1) = sn(k) + pgn(k)− pdn
(k) + vn(k), n ∈ Ns

sn ≤ sn(0) ≤ s̄n, n ∈ Ns

pgn(k)− pdn
(k) + vn(k) = 0, n ∈ N \ Ns

pdn
(k) = fdn

(λ(k), bn(k)) and

pg(k) =

N
∑

n=1

pgn(k).

In (10), the decision variables λ(k) and pgn(k), n =
1, 2, . . . , Ns, related to the MO and DNO, respectively, must

be determined. When the dynamic pricing, RESs, and energy

storage system are implemented during the same period, it

is reasonable to consider the implementation costs of the

RESs and the storage system when the price is adjusted

dynamically. However, if they were constructed in different

projects launched in distinct time periods, then those costs

and the dynamic pricing may become less relevant. In our

formulation, we consider the situation in which infrastructures

such as the RESs and energy storage system already exist. We

regard the dynamic pricing as a high-level method for energy

management using the existing infrastructures. The costs of

implementing RESs and storage systems are thus not included

in the objectives of (10).

We interpret the system stability as the feasibility of the

MOP described by (10) and (11) for all k. If the MOP

is feasible, then it is possible to find a price and a way

to distribute power generated from the power grid to the

microgrids in each time slot so that the underlying physical

constraints are satisfied. Under this interpretation, we have the

following result.

Theorem 1: The multi-microgrid system is stable.

Proof: Consider the power distribution pgn(k) =
pdn

(k) − vn(k) for all k and all n ∈ N . We thus have

sn(k + 1) = sn(k), n ∈ Ns. Since sn ≤ sn(0) ≤ s̄n, the

conditions in (11) are satisfied. Therefore, regardless of the

value of λ(k) being assigned, λ(k) and pgn(k) = pdn
(k) −

vn(k), n = 1, 2, ..., Ns, form a feasible point of the MOP, i.e.,

the multi-microgrid system is stable.

To facilitate the solving process of the MOP described

by (10) and (11), we introduce an additional function

Uc(p(k)) =

Ns
∑

n=1

{

max{|sn(k + 1)− sn(k)| −∆sn, 0}

+max{sn − sn(k + 1), 0}

+max{sn(k + 1)− s̄n, 0}
}

(12)

to replace the constraints in (11), where

p(k) =
[

λ(k) pg1(k) pg2(k) · · · pgNs
(k)

]T
. (13)

In (12), Uc(·) is a function of p(k) because the function value

depends on the stored energy levels that are affected by p(k),
as discussed in Remark 1. A point p(k) satisfies the conditions

in (11) if and only if Uc(p(k)) = 0. With the help of (12), we
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define the vector-valued function

F (p(k)) =
[

−Ud(p(k)) −Ug(p(k))

−
∑Ns

n=1 sn(k + 1) Uc(p(k))
]T (14)

and introduce Pareto optimality [37], [38] for the ensuing

discussions.

Definition 1 (Pareto dominance): Let [·]i denote the ith
entry of a vector. Consider an MOP with H as the vector-

valued objective function. In the objective function space, a

vector u dominates another vector v (denoted by u � v)

if the condition [u]i ≤ [v]i holds true for all i and at least

one inequality is strict. In the decision variable space, a point

a dominates another point b with respect to H if H(a) �
H(b).

Definition 2 (Pareto optimal solution): A point p in the

decision variable space is a Pareto optimal solution if p is

feasible and there does not exist a feasible point that dominates

it.

Definition 3 (Pareto optimal set and Pareto front):

The set of all Pareto optimal solutions is termed the Pareto

optimal set. The image of the Pareto optimal set through the

objective function H is termed the Pareto front.

The following theorem shows the equivalency of the MOP

described by (10) and (11) and an unconstrained MOP that

has the vector objective function in (14).

Theorem 2: A point p∗(k) is a Pareto optimal solution of

min
p(k)

F (p(k)) (15)

and satisfies the condition Uc(p
∗(k)) = 0 if and only if (“⇔”)

p∗(k) is a Pareto optimal solution of the MOP described

by (10) and (11).

Proof: “⇒” Since p∗(k) satisfies the condi-

tion Uc(p
∗(k)) = 0, p∗(k) is a feasible point of the

MOP described by (10) and (11). Let us denote

F (p(k)) =
[

GT (p(k)) Uc(p(k))
]T

(16)

in (14).

We proceed by contraposition. Suppose that there ex-

ists a feasible point p′ dominating p∗(k) in the MOP de-

scribed by (10) and (11), i.e., G(p′) � G(p∗(k)). Because

Uc(p
∗(k)) = Uc(p

′) = 0, we have F (p′) � F (p∗(k)), which

contradicts the fact that p∗(k) is a Pareto optimal solution

of (15).

“⇐” Since p∗(k) satisfies the conditions in (11), we

have Uc(p
∗(k)) = 0. It suffices to show that p∗(k) is Pareto

optimal in (15). We use contraposition. Suppose that there

exists a point p′ which satisfies the condition Uc(p
′) =

0 and dominates p∗(k), i.e., F (p′) � F (p∗(k)). Since

Uc(p
∗(k)) = Uc(p

′) = 0, we have G(p′) � G(p∗(k)) in

which G is defined in (16). However, this gives contradiction

because p∗(k) is Pareto optimal in the MOP described by (10)

and (11).

Based on Theorem 2, we can solve (15) for a set of Pareto

optimal solutions, and then remove the points p that violate

the condition Uc(p) = 0 to obtain Pareto optimal solutions of

the MOP described by (10) and (11). The remaining work is

to develop an algorithm to solve the MOP in (15), which is

addressed in the next section.

IV. PROPOSED ALGORITHM FOR MULTI-MICROGRID

SYSTEM DESIGN

Artificial immune system (AIS) algorithms have been

proven successful in searching for Pareto optimal solu-

tions [39], [40]. In this section, we adopt their basic structures

to develop our algorithm used to solve (15). The terminology

in an AIS is thus used: a point in the decision variable space

is termed an antibody.

Here is a brief discussion on how the proposed MOIA

works. Our algorithm uses gene operations to preserve the

diversity of antibodies so that the search space can be ex-

plored. During the iteration, dominated antibodies are removed

gradually and thus nondominated antibodies are maintained

in the population. At the end of the iteration, nondominated

antibodies with Uc(p(k)) = 0 serve as the approximation

of Pareto optimal solutions. The solution that maximizes the

minimum improvement (after normalization) in all dimensions

among the approximated Pareto optimal solutions is selected

as the output. Price generation and power distribution are

performed accordingly.

Fig. 2 presents the pseudo code of the proposed algorithm,

which is performed at each k. To shorten our notation, we

omit the time index k when referring to antibodies. The set

A(tc) denotes the current population, and its size is denoted

by |A(tc)|. The Nnom and Nmax represent the nominal and

maximum population sizes, respectively. The tc and tmax

represent the algorithm counter and the maximum iteration

number, respectively. The assignment operator “:=” is used,

e.g., A := B means that we assign a new value B to A.

Detailed discussions on the pseudo code are given as follows.

Step 1: Randomly generate the initial population

A(0) = {p1,p2, ...,pNnom
} (17)

where pj is a random vector over [p, p̄]. The lower bound p

and upper bound p̄ can be set using (3) and (4), which will

be illustrated in our simulations.

Steps 2 and 5: Dominated antibodies with respect to F are

removed and nondominated antibodies are kept. In this way,

nondominated vectors F (A(tc)) can gradually approach the

Pareto front as the algorithm counter tc increases.

Step 3: Let Np(tc) = |A(tc)|. By applying the gene

operation to the current population

A(tc) = {p1,p2, . . . ,pNp(tc)} (18)

we obtain a set of newly produced antibodies denoted by

C = {p1
1,p

2
1, . . . ,p

R(tc)−1
1 } ∪ {p1

2,p
2
2, . . . ,p

R(tc)−1
2 } ∪ . . .

∪ {p1
Np(tc)

,p2
Np(tc)

, . . . ,p
R(tc)−1
Np(tc)

}

(19)

where

R(tc) = xNmax/Np(tc)y

represents the clonal rate (x·y represents the floor function).

After the gene operation, we let

A(tc) := A(tc) ∪ C.
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Input:

• MOP (15).

• Nnom, Nmax, and tmax.

Step 1) Initialize population A(0) over [p, p̄].
Step 2) Remove dominated antibodies from A(0). Let tc = 0.

While tc ≤ tmax

Step 3) Apply gene operation to A(tc) over [p, p̄].
Step 4) Remove the antibody p that yields the highest

positive value of Uc(p) from A(tc) successively until the

condition

|A(tc)| ≤ Nnom or Uc(p) = 0 ∀p ∈ A(tc)

holds true.

Step 5) Remove dominated antibodies from A(tc).
Step 6) Remove the antibody that yields the least fitness

from A(tc) successively until the condition |A(tc)| ≤
Nnom holds true.

Let A(tc + 1) := A(tc) and tc := tc + 1.

End While

Step 7) Remove antibodies p that yield Uc(p) > 0
from A(tmax).
Output:

• The antibody

p∗ =
[

λ∗ p∗g1 p∗g2 · · · p∗gNs

]T

that maximizes the minimum normalized improvement in

all dimensions.

Fig. 2. Pseudo code of the proposed MOIA for the MO and DNO design.

From (18) to (19), each pi is cloned and then mutates to

p
j
i . The mutant p

j
i is constructed according to

p
j
i = δpi + (1− δ)pi′ (20)

where δ represents a random number from [0, 1] and pi′ is a

random vector over [p, p̄].

Steps 4–6: To maintain a manageable size of the popula-

tion A(tc), we must remove low-quality antibodies. In Step 4,

antibodies that have Uc(p) > 0, i.e., infeasible antibodies for

the MOP described by (10) and (11), are removed from the

population successively. The removing procedure is performed

as follows: If Uc(p1) > Uc(p2) > 0, then p1 is removed first.

The procedure stops when all the antibodies p with Uc(p) > 0
have been removed or the size of the population becomes its

nominal size Nnom. After steps 4 and 5, if |A(tc)| is still

too large, then in Step 6 we adopt the antibody population

updating process proposed in [39] to shrink the size of A(tc).
In [39], antibodies are assigned with smaller fitness values

when the associated objective vectors are in a crowded region

and are not “end” vectors in F (A(tc)).

Step 7: Since infeasible antibodies of the MOP described

by (10) and (11) are not desired and they can be identified

as those p that have Uc(p) > 0, we remove them from the

population A(tmax) in this step.

1 2 3 4 5 6

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

λ(k)

h
1
(λ
(k
))

%

Fig. 3. Graph of h1 in (24).

Output: The solution p∗ is selected according to

p∗ = arg max
p∈A(tmax)

min
j=1,2,3

F̄j − [F (p)]j
F̄j − F j

(21)

where

F̄j = max
p∈A(tmax)

[F (p)]j and F j = min
p∈A(tmax)

[F (p)]j . (22)

The ratio related to index j in (21) can represent the normal-

ized improvement in the jth dimension [41]. The antibody p∗

selected by (21) can be characterized as follows: it maximizes

the minimum improvement in order not to advantage one

particular objective.

V. NUMERICAL RESULTS

In this section, we describe numerical simulations that

have been carried out to illustrate our proposed multiobjective

methodology. Suppose that we have N = 3 and Ns = 2, i.e., 3

microgrids in a network and among them, 2 microgrids possess

energy storage systems. Let s̄1 = 250 and s̄2 = 200 (kWh)

be the maximum storage capacity in (2). Let ∆sn = 10%s̄n
be the limits on the rate in (4) for n = 1, 2, and s1 = 125 and

s2 = 100 (kWh) be the secure energy levels in (9).

For the microgrids, the power demand function fdn
(·) in (5)

has been set as

fdn
(λ(k), bn(k)) = (1 + hn(λ(k)))bn(k) (23)

where

h1(λ(k)) = 0.01λ(k)2 − 0.12λ(k) + 0.26

h2(λ(k)) = − 0.01λ(k)2 + 0.13

h3(λ(k)) = − 0.01λ(k)2 + 0.02λ(k) + 0.08.

(24)

In (24), the values of the functions hn(·) are positive/negative

(in percentage) at a low/high price λ(k). See Fig. 3 for a

graphic illustration of h1. Therefore, the power demand in (23)

increases/decreases by |hn(λ(k))|bn(k) when a low/high price

signal occurs. The curve in Fig. 3 is termed a demand

curve [42], [43] and in practice, it can be constructed using

collected data and the regression analysis. The base load bn(k)
from [31] has been used, shown in Fig. 4.
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Fig. 5. APFs and nondominated vectors F (p∗) sampled at (a) time k = 12; (b) time k = 24; and (c) time k = 36. The p∗

j is the point that achieves the

minimum F j defined in (22).
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Fig. 4. Base load of microgrids bn(k) in our simulations.

For the overall utility of microgrids, we let [22], [23], [44]

Ud(pd1
(k), . . . , pdN

(k), λ(k))

=

N
∑

n=1

(U(pdn
(k), ωn)− λ(k)pdn

(k))
(25)

where

U(pdn
(k), ωn)

=

{

ωnpdn
(k)− α

2 pdn
(k)2, if 0 ≤ pdn

(k) ≤ ωn

α
,

ωn

α
, if pdn

(k) ≥ ωn

α
.

(26)

The terms U(pdn
(k), ωn) and λ(k)pdn

(k) in the summation

are interpreted as the value and the cost derived from consum-

ing power pdn
(k) at microgrid n, respectively. For the power

grid, the utility function in (8) has been set as [11], [22], [23]

Ug(pg(k), λ(k)) = λ(k)pg(k)−(a(k)pg(k)
2+b(k)pg(k)+c(k))

(27)

where the first and second terms on the right-hand side

represent the value derived from power generation and the

generation cost, respectively. The values of ωn, α, a(k), b(k),
and c(k) in (26) and (27) can be found in [23] and in practice,

they can be obtained by statistical analysis [45]. For the ISO,

the secure energy level sn = s̄n/2 in (9) has been chosen.

The values Nnom = 80, Nmax = 320, and tmax = 200
have been chosen as the inputs to the proposed algorithm

presented in Fig. 2. The bounds p and p̄ have been assigned

as follows. Because there are strong regulations on market

pricing in practice, we suppose that

λ(k) ∈ [λ, λ̄] (28)

with λ = 1.5 and λ̄ = 5.5 to mimic such regulations in the

simulations. Note that for n ∈ Ns, (3) and (4) imply that

pgn(k) ≤ ∆sn + pdn
(k)− vn(k) and

pgn(k) ≥ −∆sn + pdn
(k)− vn(k).

Based on (24) and (28), we have

hn(λ̄) ≤ hn(λ(k)) ≤ hn(λ)

and, therefore,

pgn(k) ≤ ∆sn + (1 + hn(λ))bn(k)− vn(k) and

pgn(k) ≥ −∆sn + (1 + hn(λ̄))bn(k)− vn(k).
(29)

Referring to (13), (28), and (29), we let

[p]1 = λ, [p]j = −∆sj−1 + (1 + hj−1(λ̄))bj−1(k) − vj−1(k), j = 2, 3,

[p̄]1 = λ̄, [p̄]j = ∆sj−1 + (1 + hj−1(λ))bj−1(k) − vj−1(k), j = 2, 3.

be the bounds for antibody generation at time k.

Fig. 5 presents samples of APFs, illustrating how one

objective affects the others. In our scenario, if a vector on

one APF has an entry that achieves an extreme value, then the

associated design is regarded as being in favor of one particular

participant. To yield a fair design, a nondominated vector

after normalization should be positioned away from extremes

equally in all dimensions. This has been achieved using (21)

to obtain the vectors F (p∗) in Figs. 5 (a)–(c). As a result, all

the vectors lie in the “middle” of the APFs graphically and,

therefore, the proposed multiobjective approach can provide a

reasonable way to produce a fair design to all participants.

Fig. 6 provides an overall view on the relation between

pgn(k), pdn
(k) and vn(k). The demand pdn

(k) responses to

the changes of pgn(k) and vn(k), and in most cases, pdn
(k)

is larger than the supply pgn(k) because of the existence

of vn(k). The distributed power pgn(k) has been adjusted
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Fig. 6. Relation between the distributed power pgn (k), power demand pdn(k), power input vn(k) provided by RESs, and price signal λ(k).

according to the power input vn(k): pgn(k) increases upon

decreasing vn(k), and decreases when vn(k) increases.

Fig. 7 shows the energy management at each microgrid. As

shown in the proof of Theorem 1, we can keep the stored

energy sn at a constant level if desired. This implies that

when an SOP regarding the interest of the ISO is considered,

the optimal objective value
∑Ns

n=1 s̄n can always be achieved

after a period of time. In our scenario, however, since multiple

objectives were considered, the stored energy levels sn(k)
vibrated in response to the time-varying pgn(k), pdn

(k), vn(k),
and λ(k).

Finally, as discussed in [4], the vibration of price plays

an important role in energy management at microgrids. It

can be observed from Fig. 8 that the proposed approach

does yield prominent price vibration. Ideally, when a large

portion of the demand is shiftable and an aggregate utility

function is used, high prices yield peak load shaving and

storage discharging while low prices yield valley load filling

and storage charging [7]. These phenomena are not prominent

in our simulations mainly because only a small portion of

the demand was assumed to be shiftable and a multiobjective

approach was used. In a multiobjective scenario, for example,

high prices may not yield storage discharging because the ISO

does not consider price values and simply desires high, secure

energy levels.

The multi-microgrid system operated in consideration of

the interests of all participants. Price generation and power

distribution were performed according to the selected Pareto

solutions. As a result, the physical constraints were satisfied

during the operation, and the power demand and stored energy

levels were adjusted properly. The validity of the proposed

multiobjective approach was thus confirmed.

VI. CONCLUSION

A multi-microgrid system design in consideration of inter-

ests of the microgrids, power grid, and ISO has been consid-

ered in this paper. We believe that a fair scheme can promote

active participation, which provides foundation for new and

interactive service in the future grid. To this end, we have

formulated the design problem as an MOP and proposed the

MOIA to solve it, leading to a multiobjective design approach.

This approach maximizes the utilities of the microgrids, power
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Fig. 7. The stored energy levels sn(k) at the microgrids.
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Fig. 8. Price signal λ(k) generated from the MO using the proposed
multiobjective approach.

grid, and ISO simultaneously. Pareto optimal market prices

and power distribution can then be produced for the MO and

DNO, respectively. Our multiobjective approach is general

and flexible. We have argued that the proposed methodology

can be readily applied to other scenarios with objectives and

constraints different from those considered in this paper. This

is because the proposed MOIA that searches for Pareto optimal

designs is not developed based on particular structures of the

objective and constraint functions.
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