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Very-Short-Term Probabilistic Wind Power

Forecasts by Sparse Vector Autoregression
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Abstract—A spatio-temporal method for producing very-short-
term parametric probabilistic wind power forecasts at a large
number of locations is presented. Smart grids containing tens,
or hundreds, of wind generators require skilled very-short-term
forecasts to operate effectively, and spatial information is highly
desirable. In addition, probabilistic forecasts are widely regarded
as necessary for optimal power system management as they
quantify the uncertainty associated with point forecasts. Here we
work within a parametric framework based on the logit-normal
distribution and forecast its parameters. The location parameter
for multiple wind farms is modelled as a vector-valued spatio-
temporal process, and the scale parameter is tracked by modified
exponential smoothing. A state-of-the-art technique for fitting
sparse vector autoregressive models is employed to model the
location parameter and demonstrates numerical advantages over
conventional vector autoregressive models. The proposed method
is tested on a dataset of 5 minute mean wind power generation
at 22 wind farms in Australia. 5-minute-ahead forecasts are
produced and evaluated in terms of point and probabilistic

forecast skill scores and calibration. Conventional autoregressive
and vector autoregressive models serve as benchmarks.

Index Terms—Probabilistic forecasting, wind power, power
system operations, renewable energy.

I. INTRODUCTION

THE large-scale integration of wind power presents op-

erational challenges for both power systems [1] and

electricity markets [2] due to the stochastic nature of the

wind itself. As a result, the reliable and economic operation

of power systems with high wind penetration depends on

wind power forecasts, not least in the smart grid paradigm of

distributed and highly interconnected generation. Applications

of very-short-term forecasts include balancing and the optimal

operation of reserves [3], and wind farm control [4]. Further-

more, the stochastic nature of the wind and complexity of the

problem calls for a spatio-temporal probabilistic treatment in

order to make optimal decisions under inherent uncertainty.

A review of the state-of-the-art in short-term (<12 hours)

wind power forecasting can be found in [5] and [6]; of

particular relevance to this work is the conclusion that for

forecast horizons of less than approximately 6 hours statistical

methods using local information are superior to physical

models (i.e. numerical weather predictions), which require

hours of computation time and introduce imprecision as a

result of spatial interpolation. Such statistical methods are

typically non-spatial (for individual locations), examples in-

clude autoregressive modelling [7], Markov chains [8] and
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data mining [9], among others, plus various hybrid approaches

such as [10], [11]. Examples of very-short-term (<1 hour)

forecasting include Markov switching [12] and parametric

probabilistic forecasting [13], both of which rely on autore-

gressive techniques.

Several spatial predictors have been proposed to capitalise

on the spatio-temporal relationship between wind power gener-

ation at a few wind farms in a small region. Spatial correlation

between wind speed and direction has been exploited in [14]

by regressing on different spatial information depending on

the wind direction, and in [15] by fitting vector autoregressive-

type models. Using multiple wind farms as ‘spatial sensors’

was shown to improve wind power forecast skill at a target

site in [16]. Recent contributions have sought to build efficient

probabilistic spatial models with sparse Gaussian random

fields, but are limited to modest spatial dimension [17], [18].

However, with the abundance of wind farms on many power

systems today it is desirable to build a spatial predictor for

tens, or hundreds, of wind farms, making computational cost

and automated model fitting serious considerations.

In this paper we present a single predictor for very-short-

term probabilistic forecasting on large, previously intractable,

spatial scales. The model fitting procedure is completely data

driven making it ideal for smart grid applications where many

generators share a single, highly interconnected power system

and capturing spatial dependence is desirable. We combine two

state-of-the-art statistical techniques: a parametric probabilistic

framework based on the logit-normal distribution, as in [13],

[19], and model the location parameter of that distribution

as a sparse vector autoregressive process [20]. Further, we

propose a novel exponential smoothing scheme with dynamic

forgetting factor to track the scale parameter and compare it

to the boundary weighted scheme described in [13].

The framework for producing spatial probabilistic forecasts

based on the logit-normal distribution and transformation is

outlined in Section II. The spatio-temporal modelling of the

location parameter and the procedure for fitting sparse vector

autoregressive models are described Section III. The tracking

of the scale parameter is addressed in Section IV. In Section V

the proposed method is tested on to a case study of 22 wind

farms in southeastern Australia and results are presented and

discussed. Conclusions are drawn in Section VI.

II. SPATIAL PROBABILISTIC FORECAST FRAMEWORK

The power generated by a wind farm at any given time

is bounded between zero, when no turbines are operating,

and nominal, when all turbines are generating their rated

power output. As a result, wind power cannot be directly
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modelled using conventional unbounded Gaussian distribu-

tions. Truncated Gaussian, censored Gaussian and generalised

logit-normal distributions have all been proposed to model the

conditional density of wind power motivated by the desire to

work in a linear Gaussian framework [13]. In what follows,

data are normalised by their corresponding nominal power

such that they occupy the range [0, 1].
In the proceeding derivation we assume logit-normal dis-

tributed wind power observations and transform the measure-

ment data along the lines of [13]. The complete distribution is

a discrete-continuous mixture of the logit-normal distribution

with the possibility of probability masses on the bounds of the

interval [0, 1].
The logit-normal transformation is given by

y = γ(x) = ln
( x

1− x

)

, x ∈ (0, 1) , (1)

with inverse

x = γ−1(y) =
(

1 + e−y
)

−1

, y ∈ R . (2)

Assuming that the variable X is logit-normal distributed, the

transformed variable Y = γ(X) is normally distributed. The

logit-normal distribution has density function

f(x) =
1

σ
√
2π

1

x(1− x)
exp

[

− 1

2

{γ(x)− µ

σ

}2]

, (3)

where location and scale parameters µ and σ2 are directly

connected the mean and variance of Y ∼ N(µ, σ2). The

location parameter can be interpreted as the expected value of

wind power, and the scale parameter as a measure of spread.

Consider now the stochastic process {Xt} and its trans-

formation {Yt} with realisations {xt} and {yt}, respectively.

The full predictive distribution of Xt, including probability

masses on the bounds, is given by the sum of the logit-normal

distribution, L(µt, σ
2
t ), and probability masses w0

t and w1
t

corresponding to zero and nominal power, respectively. It is

written as

Xt ∼ δ0w
0
t + δ1w

1
t + (1− w0

t − w1
t )L(µt, σ

2
t ) , (4)

with

w0
t = Φ

{γ(η)− µt

σt

}

,

w1
t = 1− Φ

{γ(1− η)− µt

σt

}

, (5)

where δx is the Dirac delta function at x, Φ is the cumulative

distribution function of a standard normal variable, and η is

the order of the measurement precision. Wind power values

less than η, or greater than 1− η, are considered to be 0 or 1,

respectively. The key result is that the predictive density of

{Xt} is parametrized by the conditional mean and variance

of {Yt} ∼ N(µt, σ
2
t ) only.

In order to calculate density forecasts for the wind power at

some future time, {Xt+k}, we need only forecast the location

and scale parameters of the predictive distribution, which are

the mean and variance of the transformed process {Yt+k}. We

therefore proceed by modelling {Yt+k} as an autoregressive

process (AR), or a vector autoregressive process (VAR) in the

spatial case. Indeed, the spatial case is the main focus of this

paper.

The wind power measurements from multiple wind farms

are logit-normal transformed and embedded in a vector-valued

time series, and the expected future value for each vector

element provides the forecast of the location parameter for

the predictive distribution at the corresponding site. The scale

parameter could be similarly modelled, but for simplicity it is

assumed to be slowly varying and is tracked by an exponential

smoothing scheme on a site-by-site basis.

For a vector-valued process, such as a series of mea-

surements made at multiple locations, dependencies between

vector elements may exist on a range of scales. Such spatio-

temporal dependence can be captured by VAR models and

produce more skilful forecasts than independent AR models.

However, as the spatial dimension becomes large, VAR models

quickly become difficult to estimate as the number of param-

eters increases with the square of the dimension, and useful

spatial information is increasingly diluted. We therefore pursue

a sparse parametrisation of VAR models whereby coefficients

linking sites that exhibit spatial co-dependence are retained in

the model, and those that do not are omitted. The resulting

sparse-VAR (sVAR) is a refined parametrisation of the full

VAR model and requires a fewer training data compared to

the full VAR equivalent.

III. FROM VAR TO SVAR

A. Definitions

First consider the problem of calculating the predictive

density for the wind power generation at a single wind farm.

The power measured at the wind farm at time t is contained

in the time series {xt}. The logit-normal transformation of

{xt} is {yt} and we proceed by modelling this series as

an autoregressive process of order p, denoted AR(p). The

expression relating the future observation yt+k to previous

measurements is written

yt+k =

p
∑

τ=1

aτyt−τ+1 + ǫt+k , (6)

where aτ is the autoregressive coefficient for the τ th lag, and

ǫt is additive Gaussian noise with finite variance σ2. The

expected value of yt+k is

µ̂t+k =

p
∑

τ=1

aτyt−τ+1 (7)

which along with σ2 parametrises the predictive distribution

of {Yt+k} ∼ N(µ̂t+k, σ
2) conditional on the p previous

measurements.

Next consider the problem of calculating the predictive

density for the wind power generation at M spatially separate

wind farms. The power measured at each wind farm at time t

is contained in the vector valued time series {xt} where each

xt ∈ [0, 1]M .

The logit-normal transformation and predictive distributions

of {xt} are all calculated by applying Equations (1)–(5)

element-wise. We may then proceed to work with the trans-

formed vector-valued time series {yt}, where yt ∈ R
M .
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The new time series is modelled as a vector autoregressive

process of order p, VAR(p), expressed as

yt+k =

p
∑

τ=1

Aτyt−τ+1 + ǫt+k , (8)

with matrices Aτ ∈ R
M×M containing the VAR coefficients,

and zero-mean Gaussian noise ǫt ∈ R
M with non-singular

covariance matrix Σǫ. The expected value of yt+k is given by

µ̂t+k =

p
∑

τ=1

Aτyt−τ+1 . (9)

Typically the VAR coefficients and the noise covariance

matrix are determined by maximum likelihood estimation,

yielding the Yule-Walker equations for the case when the

VAR(p) process is Gaussian and no constraints are placed on

the parameters. However, estimating all pM2 VAR coefficients

quickly becomes impractical for models of large spatial dimen-

sion and can lead to noisy coefficient estimates and unstable

predictions, particularly when insufficient training data are

available. We therefore pursue a recently proposed method for

the sparse estimation of the coefficient matrices to overcome

these drawbacks.

B. sVAR Fitting

A 2-stage procedure for fitting a sparse vector autoregressive

model has been proposed by Davis et al. in [20]. The first stage

selects symmetric pairs of coefficients to be included in the

sparse model based on the corresponding pair of time series’

conditional dependence. The second stage refines the initial

selection based on ranking individual coefficients by their t-

statistic. At each stage the set of coefficients selected is that

which minimises the Bayesian information criterion (BIC).

This approach is detailed in the remainder of this section, for

further discussion see Davis et al. [20].

1) Stage 1: The goal of stage 1 is to determine the order

of temporal regression, p, and choose N pairs of off-diagonal

coefficients to be retained in the sparse model. This is achieved

by eliminating pairs of series which are determined to be

conditionally uncorrelated and setting the corresponding VAR

coefficients (at all lags) to zero. All diagonal coefficients, i.e.

those containing auto-covariate information, are retained in

stage 1.

Let {yt,i} denote the ith marginal series of the process

{yt}. If two distinct time series {yt,i} and {yt,j} (i 6= j) are

conditionally uncorrelated then their partial spectral coherence

PSCij(ω) = 0 for ω ∈ (−π, π]. The PSC can be computed

efficiently from the spectral density matrix fY (ω) of the

process {yt}, where the (i, j)th element of fY (ω) is the usual

(cross-)spectrum between {yt,i} and {yt,j}. The PSC is the

negative rescaled inverse of the spectral density matrix, as

demonstrated in [21]. Let gY (ω) = fY (ω)−1, then

PSCij(ω) = −
gYij(ω)

√

gYii (ω)g
Y
jj(ω)

, ω ∈ (−π, π] , (10)

where gYij(ω) denotes the (i, j)th entry of gY (ω).

In practice, however, the estimated PSC will not be exactly

zero for a finite number of samples. We therefore rank each

pair of time series by a summary statistic, Ŝij , calculated from

the estimated PSC, which is denoted PŜCij(ω), taken to be

the supremum of the squared PSC estimate, i.e.,

Ŝij = sup
ω

|PŜCij(ω)|2 . (11)

Large values of Ŝij indicate pairs of series which are likely

to be conditionally correlated; we therefore consider the

constrained VAR models containing the top N pairs of off-

diagonal coefficients plus the M diagonal coefficients, all other

coefficients are zero. This reduces the number of parameters

to be estimated from pM2 to (M + 2N)p.

Finally, we calculate the maximum likelihood estimate of

the constrained VAR models for predetermined sets of values

for p and N . When VAR parameters are constrained the

parameter estimates and covariance matrix Σǫ are commingled

and their estimates must be updated iteratively until conver-

gence, see [22] for details. We choose the pair of parameters

(p̃, Ñ) that minimise the BIC to take forward to stage 2.

2) Stage 2: The first stage selects VAR coefficients based

on conditional correlation according to the BIC, however, it is

unable to discriminate between the 2p̃ coefficients associated

with each pair of series, nor between the p̃ diagonal coeffi-

cients associated with each individual series. The aim of the

second stage is therefore to refine the selection of coefficients

made by stage 1.

We proceed by ranking the non-zero VAR coefficient esti-

mates from the stage 1 model [Aτ ]ij , τ = 1, ..., p̃ by their

t-statistic, which is

∆i,j,τ =
[Aτ ]ij

s.e.([Aτ ]ij)
. (12)

The standard error, s.e.(·), of [Aτ ]ij is computed from the

asymptotic distribution of the constrained maximum likelihood

estimator of the stage 1 model, see [22].

Large values of ∆i,j,τ imply significance in the model so

we retain the n coefficients with the largest t-statistic values.

Once again we calculate the BIC for a set of values of n

and choose n = ñ which gives the minimum BIC value. The

resulting sVAR model has an autoregressive order of p̃ and

contains ñ non-zero coefficients; it is denoted sVAR(p̃,ñ).

C. Implementation of sVAR

The spectral density matrix used in the calculation of partial

spectral coherence must be estimated from available training

data. The periodogram smoothed by a modified Daniell kernel

is used here, as in [20], though alternative spectral density

estimates could be employed.

The BIC is a smooth convex function of the number of

parameters being estimated which allows for efficient imple-

mentation of the sVAR procedure: once the turning point of

the function has been found, the minimum is known and the

fitting algorithm can advance. Since the parameter estimation

and BIC calculation are relatively expensive this represents a

significant speed-up over a naive approach.
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It is well documented that the properties of meteorological

time series, including wind speed, change slowly over time

with changes of season and climate; therefore, it is appropriate

to allow the parameters of time series models to track this

variation, if it is not modelled directly. The same applies

to wind power as a weather-dependant process. Recursively

updating AR parameters is frequently practised and can easily

extend to VAR models; however, it is not possible to modify

the sparsity structure of the proposed sVAR model in a simple

way. Indeed, the idea of slowly varying parameters conflicts

with abruptly choosing to include or remove a coefficient.

In order to capture these gradual changes the sVAR is

trained on a window of the most recent measurements, and

then re-trained in the same way periodically, i.e., at any time

t, the model is trained on based on the past observations

between t − L and t − 1, where L is the training window

length. For comparison, the AR and VAR benchmarks are

trained in the same fashion. Note that the parameters of an

sVAR (with a fixed sparsity structure) could be updated in a

recursive framework (such as a least squares update [23]) in

the same way as a conventional AR or VAR model, but this

would distract from our main investigation so is not done here.

The scale parameter should also be allowed to track changes

in dynamics resulting meteorological variation, and that is the

subject of the next section.

IV. DYNAMIC TRACKING OF SCALE PARAMETER

The scale parameter σ2
t+k,i of {Yt+k,i} is estimated recur-

sively by exponential smoothing for each site i ∈ {1, ...,M}
independently, i.e. assuming no spatial dependence. To avoid

notational clutter the second index is dropped in this section.

We apply two variations on exponential smoothing and

compare their performance. First, the boundary weighted for-

getting factor down-weights of observations when the location

parameter is close to the bounds akin to [13]. The logit-normal

transformation is particularly sensitive in these regions and this

approach is designed to robustify the smoothing scheme. A

second scheme is also proposed with a dynamic forgetting

factor motivated by regime-switching type behaviour often

exhibited by weather-dependent processes.

1) Boundary Weighted Forgetting Factor: In a modification

to standard exponential smoothing, observations are down

weighted by a factor ωt when the expected power γ−1(µ̂t+k)
is close to the bounds due to the sensitivity of the logit-normal

transformation in these regions [13]. The factor ωt is given by

ωt = 4γ−1(µ̂t+k)
(

1− γ−1(µ̂t+k)
)

. (13)

and the smoothing scheme is written

σ̂2
t+k = λ∗

t σ̂
2
t + (1− λ∗

t )(yt − µ̂t)
2 (14)

where λ∗

t = 1− (1− λ)ωt.

2) Dynamic Forgetting Factor: The behaviour of wind

power generation can switch quickly between periods of

smooth generation and periods of volatile generation. In the

event of such a switch it is necessary to briefly but dramatically

reduce the forgetting factor in order to forget out of date, mis-

matched information. Therefore, when the difference between

135 140 145 150

−
4
2

−
4
0

−
3
8

−
3
6

−
3
4

−
3
2

Longitude

L
a
ti
tu

d
e

22

1
20

15

2

11

17

18

3

14

84

19

7
9

12
13

6

16

5
10

21

Fig. 1: Location of 22 sites located in S.E. Australia used in

the data model. Boxed regions correspond to those in Figure 3.

the squared residual, ǫ2t , and estimated scale parameter σ̂2
t is

large, the forgetting factor is reduced. The dynamic forgetting

factor is given by the logit function as follows,

λ∗

t = λ− b

1 + exp[c(a− Et)]
, (15)

where Et = |σ̂2
t − ǫ2t |. The parameters a and b control the

threshold location and the minimum value that λ∗

t can take,

respectively, and c controls the gradient of the transition.

V. APPLICATION AND CASE STUDY

A. Dataset

The proposed approach is tested on 5 minute mean wind

power data provided by the Australian Energy Market Oper-

ator [24], which comprises recordings of wind farm power

generation at 22 wind farms in southeastern Australia. Data

from 2012 and 2013 are available comprising 210 528 mea-

surements at each site; all have been normalised by the

nominal power of the corresponding wind farm so that they

occupy the range [0,1]. Wind farm locations are plotted in

Figure 1. The 2012 data are used as a training set on which the

implementation of the fitting procedure is optimised by cross-

validation, and the parameters of the exponential smoothing

scheme are chosen. The 2013 data are then used to evaluate

the performance of the predictor, the results of which are

presented and discussed in Section V-C. The results comprise

the analysis of more than 2.3 million individual forecasts. The

complete dataset as used in this paper is available to download

from [25]. In this study, we only predict for t + 1 (one step

ahead), though cases with forecast for t+k could be similarly

be considered.

B. Implementation

The size of data window, L, used to train the AR, VAR and

sVAR is determined heuristically, by cross-validation using the

training dataset. The chosen window length is that which min-

imises the point prediction root-mean-squared error (RMSE)

since this is the cost function minimised in the predictors’

estimation. A new model is fit for each calendar month to
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Fig. 2: Variation of root mean squared error (RMSE) of AR,

VAR and sVAR models with training window length.

be forecasts to track changes in the time series dynamics (as

discussed in Section III-C); this choice is somewhat arbitrary

but provides a satisfactory trade-off between accuracy and

computational expense. Results of the window length selection

procedure are illustrated in Figure 2. The optimal window

length is L = 60 days for the AR model and L = 150 days for

the sVAR. As already mentioned, the conventional VAR model

is extremely data-hungry and computationally expensive to fit

and as a result a VAR model cannot be fit with more than

L = 270 days of training data on the computer being used

(64-bit operating system, 8GB of RAM, Intel Core i7-2600

3.4GHz processor). Each VAR model is therefore trained on

the maximum L = 270 days of data.

The optimal window length is directly related to the number

of parameters being estimated in each of the three models. The

AR has pM parameters so only requires a modest amount of

training data, whereas the VAR has pM2 parameters and as

a result requires much more training data to produce reliable

parameter estimates. The sVAR offers a compromise: increase

the number of parameters to take advantage of spatial infor-

mation, but only include those parameters deemed significant.

The basic forgetting factor for both exponential smoothing

schemes is chosen such that the effective memory is 2000

samples (λ = 0.9995). The parameters of the dynamic

forgetting factor exponential smoothing scheme are chosen by

expert judgement such that the forgetting factor does not drop

bellow 0.5 (b = 0.4995), such that the forgetting factor is

reduced when the squared residuals exceed 0.1 (a = 0.1), and

such that the gradient of the logit function is sharp (c = 50).

C. Results

The proposed technique is implemented on the test dataset

in the manor determined by the cross-validation exercise

described above.

The 2-stage method for fitting an sVAR model results in

the inclusion of 5%–10% of the possible pM2 parameters.

The number of lags is typically p̃ = 3. A superposition of the
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Fig. 3: Superposition of January 2013 sVAR coefficient matri-

ces taking absolute values and displaying 1 s.f. Blank entries

correspond to coefficients not included in the sparse model

and are therefore equal to zero at all lags. Boxed regions

correspond to those in Figure 1.

VAR coefficient matrices, taking the absolute value of each

element, from one sVAR model is illustrated in Figure 3. There

is a strong diagonal structure with off-diagonal coefficients

appearing in blocks corresponding to groups sites that are close

to one another geographically, precisely the sites one would

expect to display spatio-temporal dependence.

The 10 minute-ahead sVAR forecasts made over a 24 hour

period, and the behaviour of the variable forgetting factor

are presented in Figure 4. Prediction intervals from 10%–

90% are illustrated by shading. The variable forgetting factor

behaves as intended, decreasing to allow fast learning when

the behaviour switches, and then returning to normal. The

width of the prediction intervals behave accordingly and widen

quickly during volatile periods, and narrowing during periods

of relative calm.

Both point and probabilistic forecast scores are used to

quantify the skill of the proposed and benchmark methods.

Point forecasts are assessed using the familiar root mean

squared error, RMSE =
√

1

T

∑T

t=1
(xt − x̂t)2, and mean

absolute error, MAE = 1

T

∑T

t=1
|xt−x̂t|, where x̂t = γ−1(µ̂t)

is the predicted value of xt.

The skill of the distributional forecasts is quantified by the

continuous rank probability score (CRPS) and log score [26].

The CRPS is given by

CRPS =
1

T

T
∑

t=1

∫ 1

0

{F (x|µ̂t, σ̂t)− 1(x ≥ xt)}2dx (16)
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Fig. 4: Probabilistic forecasts and value of the dynamic for-

getting factor at site 9 for July 11th 2013.

where F is the cumulative form of the predictive distribution

and 1(·) is the indicator function. CRPS rewards sharpness

and reduces to MAE when the forecast is deterministic.

The log score is the mean negative log of the predic-

tive distribution evaluated at the corresponding observation,

Log Score = 1

T

∑T

t=1
− ln

(

f(xt|µ̂t, σ̂t)
)

. Due to its loga-

rithmic nature, the log score is not as robust as the CRPS:

measurements in the tails of the predictive distribution heavily

penalised and the score returns ∞ if a single measurement falls

where the predictive distribution is numerically zero.

Point and probabilistic forecast skill scores are listed in

Table I and probabilistic scores are broken-down by calendar

month in Table II. The persistence point forecast, which is

simply x̂t+k = xt, is also included in Table I. Point forecast

scores show that the sVAR improves on all the benchmarks

in terms RMSE, and all but persistence in terms of MAE.

Persistence does not offer probabilistic information, which is

required for optimal decision making under uncertainty, hence

the move to more sophisticated approaches.

With the boundary weighted tracking of the scale parameter,

TABLE I: Mean skill scores (RMSE, MAE and CRPS as %

of nominal power) across all sites with % improvement (∆%)

for dynamic vs boundary weighted (BW) forgetting factor.

Persistence AR VAR sVAR

RMSE 3.956 3.970 3.962 3.954
MAE 2.308 2.347 2.358 2.343

BW λ
CRPS n/a 1.843 1.837 1.801
Log Score n/a 5.080 5.067 5.909

Dynam. λ
CRPS n/a 1.751 1.751 1.745
Log Score n/a 4.634 4.629 4.622

∆% vs
BW λ

CRPS ∆% n/a 5.0% 4.7% 3.0%

Log Score ∆% n/a 8.8% 8.6% 21.8%

TABLE II: Mean probabilistic forecast skill scores with

dynamic forgetting factor broken down by calendar month

(CRPS as % of nominal power). The best scores are high-

lighted in bold.

Month AR VAR sVAR

January
CRPS 1.910 1.896 1.897

Log Score 4.788 4.788 4.781

February
CRPS 1.826 1.819 1.812

Log Score 4.752 4.755 4.749

March
CRPS 1.796 1.780 1.779

Log Score 4.685 4.691 4.681

April
CRPS 1.375 1.383 1.380

Log Score 4.351 4.355 4.337

May
CRPS 1.617 1.637 1.634

Log Score 4.570 4.565 4.565

June
CRPS 1.486 1.500 1.483

Log Score 4.434 4.435 4.425

July
CRPS 1.544 1.567 1.548

Log Score 4.460 4.449 4.436

August
CRPS 1.831 1.840 1.829

Log Score 4.712 4.697 4.686

September
CRPS 1.717 1.710 1.700

Log Score 4.606 4.595 4.594

October
CRPS 2.001 1.999 1.990

Log Score 4.759 4.739 4.739

November
CRPS 2.020 2.007 2.009

Log Score 4.790 4.778 4.777

December
CRPS 1.883 1.871 1.875

Log Score 4.703 4.697 4.692

All
CRPS 1.751 1.751 1.745

Log Score 4.634 4.629 4.622

the sVAR performs very well in terms of CRPS but has a poor

log score, when compared to the other models. The high log

score is an effect of the very sharp predictive distribution close

to the upper and lower bounds where measurements are more

likely to be found in the tails of the distribution. The AR and

VAR models, with their higher variance and broader predictive

distributions, are not exposed to this affect as frequently and

this is reflected in their comparatively low log scores.

When the scale parameter is tracked by the proposed dy-

namic forgetting factor scheme, all three models see significant

improvement in both CRPS and log score compared to the

boundary weighted scheme. Notably, the improved behaviour

of the predictive distributions close to the bounds has brought

the log score of the sVAR in line with the AR and VAR

models. In this case, the sVAR is performs marginally better

than the two benchmarks in terms of both CRPS and log score.

Reliability (or calibration) of probabilistic forecasts is crit-

ical and can be assessed with quantile-quantile reliability

diagrams, such as in Figure 5. A calibrated forecast with

nominal proportion α should cover the observation α% of the



IEEE TRANSACTIONS ON SMART GRID, ACCEPTED 7

Nominal Proportions

O
b
s
e
rv

e
d
 P

ro
p
o
rt

io
n
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reference

AR−BW

AR−D

VAR−BW

VAR−D

sVAR−BW

sVAR−D

Fig. 5: Reliability diagram for the AR, VAR and sVAR models

with boundary weighted (BW) and dynamic (D) forgetting

factors.

time. In Figure 5 nominal quantiles from 5% to 95% in steps

of 5% are evaluated.

The forecasts produced by the sVAR with the boundary

weighted scale factor smoothing is reliable and the best cali-

brated of the six forecasts, followed by the sVAR with dynamic

smoothing. The boundary weighted smoothing scheme results

in better calibration than the dynamic smoothing scheme for

the sVAR and AR models, but the opposite is true for the

conventional VAR. The calibration of forecasts produced by

the AR model with dynamic smoothing is particularly poor.

D. Discussions

It has been demonstrated that the proposed approach pro-

duces forecasts that are a non-negligible improvement on two

competitive benchmarks in terms of several skill scores and

reliability, while also offering attractive numerical properties

through sparse parametrisation. The sVAR makes it possible to

model data of high spatial dimension that would be impracti-

cal, or impossible, with a conventional VAR approach. In addi-

tion, the data-driven detection of dependence structures means

that the benefits of a spatial treatment can be realised without

knowledge of precise locations, or in situations where many

generators are located in a small area, as is commonplace in

the smart grid paradigm. This technique is equally applicable

to other forecasting problems where VARs have been used,

such as wind speed [15] and solar power forecasting [27],

including short-term forecasting at other temporal resolutions,

e.g. hourly.

However, the sVAR comes with some limitations: Regres-

sion parameters are commonly updated by a process of re-

cursive estimation [23], or replaced with coefficient functions

of some covariate such as wind direction [14], [28]. While

in principle these techniques could be applied to an sVAR

model, they would not be able to capture possible changes in

the sparsity structure.

Computational cost is of interest: while the MLE of a single

constrained VAR model takes around 2 minutes, compared to 4

for the full VAR, the calculation is repeated making the total

time to fit an sVAR an order of magnitude larger than the

conventional VAR. However, the stopping criterion described

in Section III-C may be refined, and other speed-ups are

possible such as parallelising the fitting procedure. There exist

alternative methods for fitting sparse regression models, such

as quasi-MLE, [29], and penalised linear regression (e.g. lasso

[30]) which can be implemented by very efficient algorithms

which are available in common software packages. However,

reformulating the problem as one of linear regression comes

at a cost as both the temporal ordering of samples and any

error cross-covariance between spatial locations is negated.

Furthermore, retaining full covariance information may of-

fer opportunities for future development. While the deter-

ministic part of the forecast methodology described in this

paper utilises spatial information, the scale parameter, and

by extension the predictive distribution, for each location are

calculated independently. A more general probabilistic forecast

could consider the full joint predictive distribution taking into

account the full covariance structure of observations.

The framework facilitated by the logit-normal transforma-

tion allows us to work in the familiar Gaussian domain,

however, a generalisation of this transformation has been

proposed in [13] for wind power forecasting. By including a

shape parameter to control the skewness of the transformation,

the properties of the transformed data may be improved. The

optimal shape parameter to fit the marginal distribution of

the data can be calculated by standard techniques, however,

the same is not true of the conditional distributions, which

are of concern here. In [13] the optimal shape parameter

for the conditional distributions of a univariate time series is

determined by an iterative process, which would be extremely

time consuming in the spatial case, particularly if individual

shape parameters were assigned to each location. Furthermore,

the effects of using different shaped transformations on the

spatio-temporal dependencies of the transformed data are

unknown. For these reasons we leave the generalised logit-

normal transformation for future investigation.

VI. CONCLUSIONS

This paper develops a large-scale spatial technique for pro-

ducing very-short-term probabilistic forecasts of wind power

generation at multiple locations. A parametric framework for

distributional forecasts based on the logit-normal transforma-

tion and distribution is combined with a spatio-temporal model

for the distribution’s location parameter, and two competing

smoothing schemes for it’s scale parameter are presented. The

location parameter is first modelled as a vector autoregressive

process, and then as a sparse vector autoregressive process

(sVAR), dramatically reducing the number of coefficients

requiring estimation, and by extension the computational ex-

pense of model fitting and the volume training data required.
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In a case study, the proposed sVAR technique has been

used to produce 5 minute ahead probabilistic forecasts of wind

power at 22 wind farms in southeastern Australia for a test

period of 1 year. The performance of the sVAR is compared

to conventional VAR and AR models yielding improvement

in terms of both deterministic and probabilistic skill scores, as

well as in the reliability of the distributional forecasts.

This work was motivated by the desire to produce accurate

very-short-term forecasts at multiple wind farms, ultimately

on a national scale, i.e., at 100s of wind farms. Future work

should extend to spatial dimensions of this order, other forecast

horizons, and consider building an adaptive sVAR, possibly

with a dynamic sparsity structure. The parametric framework

could also be extended by moving to the generalised logit-

normal distribution and transformation which would require

the development of an efficient method for determining the

optimal shape parameter(s) with respect to conditional distri-

butions.
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