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Abstract—The large-scale integration of renewable generation
directly affects the reliability of power grids. We investigate the
problem of power balancing in a general renewable-integrated
power grid with storage and flexible loads. We consider a power
grid that is supplied by one conventional generator (CG) andmul-
tiple renewable generators (RGs) each co-located with storage,
and is connected with external markets. An aggregator operates
the power grid to maintain power balance between supply and
demand. Aiming at minimizing the long-term system cost, we first
propose a real-time centralized power balancing solution,taking
into account the uncertainty of the renewable generation, loads,
and energy prices. We then provide a distributed implementation
algorithm, significantly reducing both computational burden and
communication overhead. We demonstrate that our proposed
algorithm is asymptotically optimal as the storage capacity
increases and the CG ramping constraint loosens. Moreover,the
distributed implementation enjoys a fast convergence rate, and
enables each RG and the aggregator to make their own decisions.
Simulation shows that our proposed algorithm outperforms
alternatives and can achieve near-optimal performance fora wide
range of storage capacity.

Index Terms—Distributed algorithm, energy storage, flexible
loads, renewable generation, stochastic optimization.

I. I NTRODUCTION

With increasing environmental concerns, more and more
renewable energy sources such as wind and solar are expected
to be integrated into the power grids. Renewable generationis
often intermittent with limited dispatchability. Thus, its large-
scale integration could upset the balance between supply and
demand, and affect the system reliability [1].

To mitigate the randomness of renewable generation, one
can employ fast-responsive generators such as natural gas,
whose services are nevertheless expensive. Alternative solu-
tions include energy storage and flexible loads, which may
be less costly and meanwhile more environmentally friendly
[2] [3]. In particular, storage can be exploited to shift energy
across time; many loads, such as thermostatically controlled
loads, electric vehicles, and other smart appliances, can be
controlled through curtailment or time shift. Together, storage
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and flexible loads enable adaptive energy absorption and
buffering to counter the fluctuation in renewable generation.

In this paper, we investigate the problem of power balancing
in a general renewable-integrated power grid with storage and
flexible loads, through the coordination of supply, demand,
and storage. Practical power systems are typically operated
under multiple time scales. To model this, we consider power
balancing for each time scale separately (e.g., [4]). More
precisely, we focus on energy management within a single time
scale and aim at proposing a distributed real-time algorithm for
power balancing. Real-time control is mainly motivated by the
unpredictability of renewable sources, which can potentially
render off-line algorithms inefficient. The distributed imple-
mentation is to reduce the computational burden of the system
operator and also to limit the communication requirement.

Earlier works on power balancing commonly ignore system
uncertainty by considering a deterministic operational environ-
ment. There are many recent works explicitly incorporating
system uncertainty into energy management of power grids.
Due to page limitation, we are only able to select some
representative papers that are more related to our work. These
works emphasize on various issues of the system in energy
management (see Table I for a summary). For example, the
authors of [5] and [6] consider supply side management by
assuming that all loads are uncontrollable, the authors of [7]
study demand side management by optimally scheduling non-
interruptible and deferrable loads of individual users, and the
authors of [4], [8], and [9] propose to employ energy storage
to clear power imbalance. In some other works, the authors
combine supply side and demand side managements [10], or
supply side and storage managements [11], or demand side
and storage managements [12]–[14].

Among existing works, [15] and [16] are mostly related
to our work, in which all three types of energy management
(i.e., supply, demand, and storage) are jointly consideredfor
power balancing. However, in [15], although the uncertainty
of the renewable generation is considered and characterized
by a polyhedral set, the uncertainty of the loads and energy
prices is ignored. Moreover, the algorithm is designed for off-
line use such as in day-ahead scheduling, and therefore cannot
be implemented in real time. In [16], a real-time algorithm is
proposed to minimize the cost of a conventional generator
(CG) only. Furthermore, the ramping constraint of the CG is
not considered in the algorithm design. As we will see in this
paper, the incorporation of such a constraint can significantly
complicate the analysis of the real-time algorithm. In addition,
the energy management there is performed centrally by a
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TABLE I
COMPARISON WITH EXISTING WORKS

[5] [6] [7] [8] [9] [4] [10] [11] [12] [13] [14] [15] [16]
Proposed

Supply management Y Y Y Y Y Y Y
Demand management Y Y Y Y Y Y Y Y
Storage management Y Y Y Y Y Y Y Y Y Y
Uncertainty/dynamics Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Ramping constraint Y Y Y Y Y
Real-time algorithm Y Y Y Y Y Y Y Y Y Y Y Y Y
Distributed algorithm Y Y Y Y Y

system operator.
In this paper, we include all issues listed in Table I when

studying the problem of power balancing. In particular, we
consider a general power grid supplied by a CG and multiple
RGs, and each RG is co-located with an energy storage unit.
An aggregator operates the grid by coordinating supply, de-
mand, and storage units to maintain the power balancing. Our
goal is to minimize the long-term system cost subject to the
operational constraints and the quality-of-service requirement
of flexible loads.

Our formulated optimization problem is stochastic in nature,
and is technically challenging especially for real-time control.
First, owing to the practical operational constraints, such as
the finite storage capacity and the CG ramping constraint, the
control actions are coupled over time, which complicates the
real-time decision making. Second, centralized control ofa
potentially large number of RGs by the aggregator may lead
to large communication overhead and heavy computation. To
overcome the first difficulty, we leverage Lyapunov optimiza-
tion [17] and develop special techniques to tackle our problem.
To address the second challenge, we exploit the structure of
the optimization problem and employ the alternating direction
method of multipliers (ADMM) [18] to offer a distributed
algorithm. Our main contribution is summarized as follows.

• We formulate a stochastic optimization problem for
power balancing by taking into account all design issues
listed in Table I.

• We propose a distributed real-time algorithm for the
power balancing optimization problem. We characterize
the performance gap of the proposed algorithm away
from an optimal algorithm, and show that the proposed
algorithm is asymptotically optimal as the storage ca-
pacity increases and the CG ramping constraint loosens.
The algorithm can be implemented in a distributed way,
by which each RG and the aggregator can make their
own decisions. The distributed implementation enjoys a
fast convergence rate and requires limited communication
between the aggregator and each RG.

• We compare the proposed algorithm with alternative
algorithms by simulation. We show that our proposed
algorithm outperforms the alternatives and is near-optimal
even with small energy storage.

Energy storage has been used widely in power grids for
combating the variability of renewable generation. A large
amount of works have been reported in literature on storage
control and the assessment of its role in renewable integration
(e.g., [19]–[23]). Compared with these references, this paper

focuses on the problem of power balancing, and additionally
includes the control of flexible loads in energy management.
A traditional approach for storage control is to formulate the
problem as a linear-quadratic regulator (LQR) (e.g., [20]).
Compared with the Lyapunov optimization approach employed
in this paper, the LQR approach is different in terms of its
application and the derivation of the control action at each
time step. Specifically, the LQR approach applies when the
system states evolve according to a set of linear equations
and the objective function is quadratic. Obtaining the optimal
control action analytically is generally hard and requiressys-
tem statistics. In contrast, the Lyapunov optimization approach
has no such requirements on the problem structure, and can
additionally deal with long-term time-averaged constraints.
Furthermore, in the Lyapunov optimization approach, the
control action at each time step is derived by solving an
optimization problem with no need for system statistics.

A preliminary version of this work has been presented in
[24]. In this paper, we significantly extend [24] in two ways:
first, we offer a distributed algorithm for practical implementa-
tion; second, we provide more in-depth performance analysis
of the proposed algorithm both theoretically and numerically,
and reveal insights into the interactions of supply, demandand
storage units in maintaining the power balancing of a grid.

The remainder of this paper is organized as follows. In
Section II, we describe the system model and formulate the
problem of power balancing. In Section III, we propose a real-
time algorithm and analyze its performance theoretically.In
Section IV, we provide a distributed algorithm for solving
the real-time problem. In Section V, we present simulation
results. Finally, we conclude and discuss some future direc-
tions in Section VI. The main symbols used in this paper are
summarized in Table II.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

As shown in Fig. 1, we consider a power grid supplied by
one CG (e.g., nuclear, coal-fired, or gas-fired generator) andN
RGs (e.g., wind or solar generators). Each RG is co-located
with one on-site energy storage unit. The grid is connected
to external energy markets and is operated by an aggregator,
who is responsible for satisfying the loads by managing energy
from various sources. The information flow and the energy
flow are also depicted in Fig. 1. Assume that the system
operates in discrete time with time slott ∈ {0, 1, 2, · · · }.
For notational simplicity, throughout the paper we work with
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TABLE II
L IST OF MAIN SYMBOLS

N number of RGs

lb,t requested amount of base loads during time slott

lf,t requested amount of flexible loads during time slott

lm,t total amount of satisfied loads during time slott

α portion of unsatisfied flexible loads

ai renewable generation amount of thei-th RG during time slott

ai,max maximum amount of renewable generation of thei-th RG
during each time slot

xi,t charging/discharging amount of thei-th storage unit during
time slot t

|xi,min| maximum discharging amount

xi,max maximum charging amount

bi,t contributed energy amount by thei-th RG during time slott

si,t energy state of thei-th storage unit at the beginning of time
slot t

Di(·) degradation cost function of thei-th storage unit

gt output of the CG during time slott

gmax maximum output of the CG during each time slot

r ramping coefficient

C(·) generation cost function of the CG

pb,t unit buying price of external energy markets at time slott

ps,t unit selling price of external energy markets at time slott

eb,t amount of energy bought from external energy markets during
time slot t

es,t amount of energy sold to external energy markets during time
slot t

qt system states at time slott

ut control actions at time slott

wt system cost at time slott

energy units instead of power units. The details of each
component in the power grid are described below.

Information flow

Energy flow

Aggregator

CG

Storage 1 RG 1

External energy markets

Storage N RG N

Storage 2 RG 2

Flexible loads

Base loads

Power grid

Fig. 1. Schematic representation of the considered power grid.

1) Loads: The loads include base loads and flexible loads.
The base loads represent critical energy demands such as
lighting, which must be satisfied once requested. The flexible
loads here represent some controllable energy requests that
can be partly curtailed if the energy provision cost is high.At
time slott, denote the amount of the total requested base loads
by lb,t ∈ [lb,min, lb,max], and the amount of the total requested
flexible loads bylf,t ∈ [lf,min, lf,max]. The amountslb,t and
lf,t are generated by users based on their own needs and are
considered random. Let the amount of the total satisfied loads
be lm,t, which should satisfy

lb,t ≤ lm,t ≤ lb,t + lf,t. (1)

The control of flexible loads needs to meet certain quality-
of-service requirement. In this work, we impose an upper
bound on the portion of unsatisfied flexible loads. Formally,
we introduce a long-term time-averaged constraint

lim sup
T→∞

1

T

T−1
∑

t=0

E

[

lb,t + lf,t − lm,t

lf,t

]

≤ α (2)

whereα ∈ [0, 1] is a pre-designed threshold with a small value
indicating a tight quality-of-service requirement.

2) RG and On-Site Storage:At the i-th RG, denote the
amount of the renewable generation during time slott by ai,t ∈
[0, ai,max], whereai,max is the maximum generated energy
amount. Due to the stochastic nature of renewable sources,
ai,t is random.

We assume that each RG is co-located with one on-site
energy storage unit capable of charging and discharging.
Denote the charging or discharging energy amount of thei-th
storage unit during time slott by xi,t, with xi,t > 0 (resp.
xi,t < 0) indicating charging (resp. discharging). Because of
the battery design and hardware constraints, the value ofxi,t

is bounded as follows:

xi,min ≤ xi,t ≤ xi,max, (xi,min < 0 < xi,max) (3)

where|xi,min| andxi,max represent the maximum discharging
and charging amounts, respectively. For thei-th storage unit,
denote its energy state at the beginning of time slott by si,t.
Due to charging and discharging operations, the evolution of
si,t is given by1

si,t+1 = si,t + xi,t. (4)

Furthermore, the battery capacity and operational constraints
require the energy statesi,t be bounded as follows:

si,min ≤ si,t ≤ si,max (5)

wheresi,min is the minimum allowed energy state, andsi,max

is the maximum allowed energy state and can be interpreted
as the storage capacity. It is known that fast charging or
discharging can cause battery degradation, which shortens
battery lifetime [25]. To model this cost on storage, we use
Di(·) to represent the degradation cost function associated
with the charging or discharging amountxi,t.

During every time slot, the RG supplies energy to the
aggregator. Denote the amount of the contributed energy by
the i-th RG during time slott by bi,t. Since the energy flows
of the RG should be balanced, we have

bi,t = ai,t − xi,t, bi,t ≥ 0. (6)

In particular, if xi,t > 0 (charging), the contributed energy
bi,t directly comes from the renewable generation; ifxi,t < 0
(discharging),bi,t comes from both the renewable generation
and the storage unit.

1In this work we use a simplified energy storage model. The mathemat-
ical framework carries over when other modeling factors such as charging
efficiency, discharging efficiency, and storage efficiency are considered.
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3) CG: Different from the RGs, the energy output of the
CG is controllable. Denotegt as the energy output of the CG
during time slott, satisfying

0 ≤ gt ≤ gmax (7)

where gmax is the maximum amount of the energy output.
Due to the operational limitations of the CG, the change of
the outputs in two consecutive time slots is bounded. This is
typically reflected by aramping constrainton the CG outputs
[26]. Assuming that the ramp-up and ramp-down constraints
are identical, we express the overall ramping constraint as

|gt − gt−1| ≤ rgmax (8)

where the coefficientr ∈ [0, 1] indicates the tightness of
the ramping requirement. In particular, forr = 0, the CG
produces a fixed output over time, while forr = 1, the ramping
requirement becomes non-effective. Furthermore, we denote
the generation cost function of the CG byC(·).

4) External Energy Markets:In addition to the internal
energy resources, the aggregator can resort to the external
energy markets if needed. For example, the aggregator can
buy energy from the external energy markets in the case of
energy deficit, or sell energy to the markets in the case of
energy surplus. At time slott, denote the unit prices of the
external energy markets for buying and selling energy by
pb,t ∈ [pb,min, pb,max] andps,t ∈ [ps,min, ps,max], respectively.
To avoid energy arbitrage, the buying price is assumed to be
strictly greater than the selling price, i.e.,pb,t > ps,t. The
pricespb,t and ps,t are typically random due to unexpected
market behaviors. Denote

eb,t ≥ 0, es,t ≥ 0 (9)

as the amounts of the energy bought from and sold to the
external energy markets during time slott, respectively. The
overall system balance requirement is

gt + eb,t +
∑N

i=1 bi,t = es,t + lm,t. (10)

B. Problem Statement

The aggregator operates the power grid and aims to min-
imize the long-term time-averaged system cost by jointly
managing supply, demand, and storage units. With an increas-
ing integration of renewable generation and energy storage
into power grids, the business models of electric utilitiesare
evolving. From the study in [27], one suggested model of
future electric utilities is termed as “energy services utility.”
Such utilities are expected to provide similar services as those
described in Section II-A. Precisely, besides serving loads,
these utilities would actively provide a platform for demand
response, manage generation assets, and coordinate energy
sales with external energy markets.

We define the control actions at time slott by

ut, [bt,xt, lm,t, gt, eb,t, es,t]

wherebt,[b1,t, · · · , bN,t] andxt,[x1,t, · · · , xN,t]. The sys-
tem cost at time slott includes the costs of all RGs and the

CG, and the cost for exploiting the external energy markets,
given by2:

wt,C(gt) + pb,teb,t − ps,tes,t +

N
∑

i=1

Di(xi,t).

Based on the system model described in Section II-A, we
formulate the problem of power balancing as a stochastic
optimization problem below.

P1 : min
{ut}

lim sup
T→∞

1

T

T−1
∑

t=0

E[wt] s.t. (1)− (10)

where the expectations in the objective and (2) are taken over
the randomness of the system statesqt,[at, lb,t, lf,t, pb,t, ps,t]
whereat,[a1,t, · · · , aN,t], and the possible randomness of the
control actions.

To keep mathematical exposition simple, we assume that the
cost functionsC(·) andDi(·) are continuously differentiable
and convex. This assumption is mild since many practical
costs can be well approximated by such functions. Denote
the derivatives ofC(·) and Di(·) by C′(·) and D′

i(·), re-
spectively. Based on the assumption, we have the derivative
C′(gt) ∈ [C′

min, C
′
max], ∀gt ∈ [0, gmax], and D′

i(xi,t) ∈
[D′

i,min, D
′
i,max], ∀xi,t ∈ [xi,min, xi,max].

Remarks: Compared to a practical power system, the model
considered in Section II-A is simplified, in which power losses,
network constraints, and some other practical operational
constraints are ignored. Despite the simplifications, we will
show that the proposed formulation leads to an implementable
control algorithm with a provable performance bound on
suboptimality. For future work, we will consider incorporating
more practical power system constraints into the problem
formulation.

III. R EAL-TIME ALGORITHM FOR POWER BALANCING

Solving P1 is challenging, due to the stochastic nature of
the system, as well as constraints (2), (5), and (8), resulting in
coupled control actions over time. In this section, we propose
a real-time algorithm forP1 and analyze its performance
theoretically.

A. Description of Real-Time Algorithm

To propose a real-time algorithm, we employ the Lyapunov
optimization approach [17]. Lyapunov optimization can be
used to transform some long-term time-averaged constraints
such as (2) into queue stability constraints, and to provide
efficient real-time algorithms for complex dynamic systems.
Unfortunately, the time-coupled constraints (5) and (8) are not
time-averaged constraints, but are hard constraints required at
each time slot. Therefore, the Lyapunov optimization frame-
work cannot be directly applied. To overcome this difficulty,

2For the RGs and the CG, the payment for supplying energy couldbe settled
by additional contracts offered by the aggregator, or be calculated based on
the actual provided energy. For these cases, the payment is transferred inside
the system hence not affecting the system-wide cost.
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we take a relaxation step and propose the following relaxed
problem:

P2 : min
{ut}

lim sup
T→∞

1

T

T−1
∑

t=0

E[wt]

s.t. (1)− (3), (6), (7), (9), (10),

lim
T→∞

1

T

T−1
∑

t=0

E[xi,t] = 0, ∀i. (11)

Compared withP1, in P2 the energy state constraints (4) and
(5) are replaced with a new time-averaged constraint (11), and
the ramping constraint (8) is removed. It can be shown that
P2 is indeed a relaxation ofP1 (see Appendix A).

The above relaxation step is crucial and enables us to
work under the standard Lyapunov optimization framework.
However, we emphasize that, giving solution toP2 is not
our purpose. Instead, the significance of proposingP2 is to
facilitate the design of a real-time algorithm forP1 and the
performance analysis. Note that due to this relaxation, the
solution to P2 may be infeasible toP1. Motivated by this
concern, we next provide a real-time algorithm which can
guarantee that all constraints ofP1 are satisfied.

To meet constraint (2), we introduce a virtual queue backlog
Jt evolving as follows:

Jt+1 = max{Jt − α, 0}+ lb,t + lf,t − lm,t

lf,t
. (12)

From (12), the virtual queueJt accumulates the portion of
unsatisfied flexible loads. It can be shown that maintaining the
stability of Jt is equivalent to satisfying constraint (2) [17].
We initialize Jt asJ0 = 0.

At time slot t, define a vectorΘt,[s1,t, . . . , sN,t, Jt],
which consists of the energy states of all storage units and
the virtual queue backlogJt. Using Θt, we define a Lya-
punov functionL(Θt),

1
2J

2
t + 1

2

∑N
i=1(si,t − βi)

2, where
βi is a perturbation parameter designed for ensuring the
boundedness of the energy state, i.e., constraint (5). In ad-
dition, we define the one-slot conditional Lyapunov drift as
∆(Θt),E [L(Θt+1)− L(Θt)|Θt]. Instead of directly mini-
mizing the system cost objective, we consider the drift-plus-
cost function given by∆(Θt) + V E[wt|Θt]. It is a weighted
sum of ∆(Θt) and the system cost at time slott with V
serving as the weight.

In our algorithm design, we first consider an upper bound
on the drift-plus-cost function (see Appendix B for the upper
bound), and then formulate a real-time optimization problem to
minimize this upper bound at every time slott. As a result, at
each time slott, we have the following optimization problem:

P3 : min
ut

[

N
∑

i=1

V Di(xi,t) + (si,t − βi)xi,t

]

+ V C(gt)

+ V pb,teb,t − V ps,tes,t −
Jt
lf,t

lm,t

s.t. (1), (3), (6)− (10).

We will show in Section III-B that the design of the real-
time problemP3 can lead to some analytical performance

Algorithm 1: Real-time algorithm for power balancing.
Initialize J0 = 0. At each time slott, the aggregator
executes the following steps sequentially.

1) Observe the system statesqt, energy statessi,t, ∀i, and
queue backlogJt.

2) SolveP3 and obtain an optimal solutionu∗
t .

3) Useu∗
t to updatesi,t, ∀i, andJt based on (4) and (12),

respectively.

guarantee. Moreover, to ensure the feasibility ofgt, we take
a natural step and move the ramping constraint (8) back into
P3.

SinceDi(·) andC(·) are convex,P3 is a convex optimiza-
tion problem and can be efficiently solved by standard convex
optimization software packages. Denote an optimal solution of
P3 at time slott by u∗

t,

[

b∗
t ,x

∗
t , l

∗
m,t, g

∗
t , e

∗
b,t, e

∗
s,t

]

. At each
time slot, after obtainingu∗

t , we updatesi,t, ∀i, andJt based
on their evolution equations.

In the following proposition we prove that, despite the
relaxation toP2, by appropriately designing the perturbation
parameterβi we can ensure the boundedness of the energy
states and hence the feasibility of the control actions{u∗

t } to
P1.

Proposition 1: For thei-th storage unit, set the perturbation
parameterβi as

βi,V (pb,max +D′
i,max)− xi,min + si,min (13)

whereV ∈ (0, Vmax] with

Vmax, min
1≤i≤N

{

si,max − si,min + xi,min − xi,max

pb,max − ps,min +D′
i,max −D′

i,min

}

. (14)

Then the control actions{u∗
t } derived by solvingP3 at each

time t are feasible toP1.
Proof: See Appendix C.

Remarks: For Vmax in (14) to be positive, the range of the
energy state should be larger than the sum of the maximum
charging and discharging amounts. This is generally true ifthe
length of each time interval is not too long, for example, up
to several minutes.

We summarize the proposed real-time algorithm in Algo-
rithm 1. We can see that, Algorithm 1 is simple and does not
require any statistics of the system states. The latter feature
is especially desirable in practice, where accurate statistics
of the system states are difficult to obtain but instantaneous
observations are readily available.

B. Performance Analysis

We now analyze the solution provided by Algorithm 1
with respect toP1. Under Algorithm 1, to emphasize the
dependency of the cost objective value on the ramping coeffi-
cient r and the control parameterV , we denote the achieved
cost objective value byw∗(r, V ). Denote the minimum cost
objective value ofP1 by wopt(r), which only depends onr.
The main results are summarized in the following theorem.

Theorem 1:Assume that the random system statesqt of
the grid are i.i.d. over time. Then under Algorithm 1 we have
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1) w∗(r, V )− wopt(r) ≤ (1− r)gmax max{pb,max, C
′
max}

+B/V , where B is a constant defined by
B, 1

2 (1 + α2) + 1
2

∑N
i=1 max{x2

i,min, x
2
i,max}; and

2) wopt(r) ≥ w∗(1, V )−B/V .
Proof: See Appendix D.

Remarks:
• Theorem 1.1 characterizes an upper bound on the per-

formance gap away fromwopt(r). The upper bound has
two terms reflecting the ramping constraint and storage
capacity limitation. It indicates that Algorithm 1 pro-
vides an asymptotically optimal solution as the ramping
constraint becomes loose (i.e.,r → 1) and the control
parameterV increases (or the storage capacitysi,max

increases based on theVmax expression in (14)). This is
consistent with our intuition. Using this insight, in order
to minimize the gap to the minimum system cost, we
should setV = Vmax in Algorithm 1.

• Theorem 1.2 provides a lower bound onwopt(r) in terms
of the special case where the ramping constraint is loose,
i.e., r = 1. Since solvingP1 to obtain the minimum
objective valuewopt(r) is difficult, we will use this
lower bound as a benchmark for performance comparison
in simulation. The gap between the performance under
Algorithm 1 and this lower bound serves as an upper
bound on the performance gap between Algorithm 1 and
an optimal control algorithm.

• The i.i.d. assumption of the system statesqt can be
relaxed to accommodateqt evolving based on a finite
state irreducible and aperiodic Markov chain. Similar
conclusions can be shown, which are omitted for brevity.

In the above analysis, the storage capacitysi,max is assumed
to be fixed, so that the control parameterV should be upper
bounded byVmax in (14) for ensuring the feasibility of the
solution. Alternatively, if the storage capacity can be designed,
the question is what its value should be in order to achieve
certain required performance. In the following proposition, we
provide an answer to this question by giving an upper bound
on the energy statesi,t (hence an upper bound on the minimum
required energy capacity) for an arbitrary positiveV that can
be greater thanVmax.

Proposition 2: For anyV > 0, the energy statesi,t of the
i-th storage unit at time slott under Algorithm 1 satisfies
si,t ∈ [si,min, si,up] where

si,up,V (pb,max − ps,min +D′
i,max −D′

i,min)

+ xi,max − xi,min + si,min. (15)

Proof: See Appendix E.
The expression ofsi,up in (15) is informative and reveals

some insights into the dependency of the design of the storage
capacity on some system parameters. First,si,up increases
linearly with the control parameterV . Second,si,up is larger if
the energy prices are more volatile or the marginal degradation
cost increases fast. Third, the minimumsi,up is given by
−xi,min + xi,max + si,min if we have pb,max = ps,min and
D′

i,max = D′
i,min.

Other properties regarding flexible loads and external trans-
actions are summarized in the following proposition.

Proposition 3: Under Algorithm 1 the following results
hold.

1) The queue backlogJt is uniformly bounded from above
asJt ≤ V pb,maxlf,max + 1.

2) The amounts of the external transactionse∗b,t and e∗s,t
satisfye∗b,te

∗
s,t = 0.

Proof: See Appendix F.
Remarks:
• In Proposition 3.1, the upper bound ofJt is deterministic

and does not change over time. Moreover, the fact that
Jt is upper bounded implies that the accumulated portion
of unsatisfied flexible loads is upper bounded.

• Proposition 3.2 implies that the aggregator does not buy
energy from or sell energy to the external energy markets
simultaneously.

C. Discussion on Multiple CGs

In the current system model, apart from multiple renewable
generators, we incorporate one conventional generator (CG)
into the supply side. If there are multiple CGs with the same
characteristics, i.e., the same maximum outputgmax, ramping
coefficientr, and cost functionC(·), for mathematical analy-
sis, we can combine them into one generator. In this case, the
current mathematical framework and the performance analysis
apply directly with the combined generator. The output of
each individual CG can then be obtained by dividing the
output of the combined generator equally over all individual
ones. On the other hand, if these CGs have heterogeneous
characteristics and therefore cannot be combined into one,
the proposed algorithm can still be used. In particular, in the
original problemP1, we would have constraints (7) and (8)
for each individual generator; the total output of the generators
in (10) is

∑M
j=1 gj,t; and the total cost of the generators is

∑M

j=1 Cj(gi,t). The resultant relaxed problemP2 would be
similar to the current one, in which the ramping constraint
(8) is removed for each individual CG. For the real-time
algorithm, the formulation of the per-slot optimization prob-
lem follows the current mathematical framework. Moreover,
distributed implementation of the algorithm (shown later in
Section IV) can be developed using the same approach we
propose.

IV. D ISTRIBUTED IMPLEMENTATION OF REAL-TIME

ALGORITHM

At each time slot, our proposed algorithm (Algorithm 1) can
be implemented by the aggregator centrally. However, the RGs
may not be willing to relinquish direct control of storage or
to offer private information to the aggregator. In addition, the
computational complexity of centralized control would grow
quickly as the number of RGs increases. In this section, we
provide a distributed algorithm for solvingP3, by which each
RG and the aggregator can make their own control decisions.

A. Distributed Algorithm Design

To facilitate the algorithm development, we first transform
P3 into an equivalent problem. For notational simplicity we



IEEE TRANSACTIONS ON SMART GRID 7

drop the time indext. We define a new optimization vector
y,[y1, · · · , yN+4], which relates to the optimization variables
of P3 by yi = xi for 1 ≤ i ≤ N, yN+1 = lm, yN+2 =
−g, yN+3 = −eb, andyN+4 = es. Then, the objective ofP3
can be rewritten as the sum of certain functions of eachyi,
which are denoted byFi(yi) but whose details are omitted for
brevity. In addition, we replacebi in the constrains ofP3 by
ai − yi for 1 ≤ i ≤ N based on constraint (6). Consequently,
P3 can be rewritten in a generic formP4 below.

P4: min
y

N+4
∑

i=1

Fi(yi) s.t.yi ∈ Yi, ∀i,
N+4
∑

i=1

yi =

N
∑

i=1

ai

where the constraint sets{Yi} are derived from constraints (1),
(3), and (6)-(9), given byYi,[xi,min,min{ai, xi,max}], i ∈
{1, · · · , N},YN+1,[lb, lb+ lf ],YN+2,

[

−min{gmax, gt−1+

rgmax},−max{gt−1 − rgmax, 0}
]

,YN+3,(−∞, 0], and
YN+4,[0,+∞).

Next, we introduce an auxiliary vectorz as a copy ofy and
further transformP4 into the following equivalent problem.

P5: min
y,z

N+4
∑

i=1

[

Fi(yi) + 1(yi ∈ Yi)
]

+ 1
(

N+4
∑

i=1

zi =

N
∑

i=1

ai

)

s.t. y − z = 0 (16)

where 1(·) is an indicator function that equals0 if the
enclosed event is true and infinity otherwise. Through the
above transformations, the optimization problemP5 now fits
the two-block form of the alternating direction method of mul-
tipliers (ADMM) [18], enabling us to develop the distributed
optimization algorithm.

Following a general ADMM approach [18], we asso-
ciate the equality constraint (16) inP5 with dual variables
d,[d1, · · · , dN+4]. Denoteyki , z

k
i , and dki as the respective

variable values at thek-th iteration. Then, based on ADMM,
these values are updated as follows.

yk+1
i = argmin

yi

{

Fi(yi) +
ρ

2

(

yi − zki +
dki
ρ

)2|yi ∈ Yi

}

, ∀i,

(17)

zk+1 = argmin
z

{

N+4
∑

i=1

(

zi −
dki
ρ

− yk+1
i

)2|
N+4
∑

i=1

zi =

N
∑

i=1

ai

}

,

(18)

dk+1
i = dki + ρ(yk+1

i − zk+1
i ), ∀i (19)

where ρ > 0 is a penalty parameter, which needs to be
carefully adjusted for good convergence performance [18].

After further algebraic manipulation (see Appendix G), we
can eliminate the vectorsz and d and simplify the updates
(17)-(19) as follows:

yk+1
i = argmin

yi

{

Fi(yi) +
ρ

2

(

yi − vki )
2|yi ∈ Yi

}

, ∀i, (20)

dk+1 = dk + ρ

(

yk+1 − 1

N + 4

N
∑

i=1

ai

)

. (21)

In (20), we havevki ,yki − yk − dk

ρ
+ 1

N+4

∑N
i=1 ai where

yk, 1
N+4

∑N+4
i=1 yki anddk is a scalar updated as in (21).

update yk+1

i

update yk+1

i
(N + 1 ≤ i ≤ N + 4) and dk+1

yk+1

i
v
k

i

· · · · · ·

RG 1

RG i

RG N

Aggregator

Fig. 2. Information flow of distributed implementation.

Remarks: Following the proof of Theorem 2 in [28], we can
show that the above updates lead to a worst-case convergence
rateO(1/k). Compared with the subgradient-based algorithm,
which presents a worst-case convergence rateO(1/

√
k), the

proposed distributed algorithm is much faster and thus is well
suited for real-time implementation.

B. Distributed Implementation

Now we discuss the implementation of the proposed dis-
tributed algorithm in terms of both computation and commu-
nication. In Fig. 2, we depict the information flow between
the aggregator and the RGs for the updates in (20) and (21)
at the(k + 1)-th iteration.

Note that the minimization problems in (20) can be solved
individually at each RGi for 1 ≤ i ≤ N , and at the aggregator
for N + 1 ≤ i ≤ N + 4, while the update in (21) can be
computed by the aggregator. At the initial iterationk = 0,
each RGi needs to send its renewable generation amountai
to the aggregator. At each iteration, the aggregator sends a
signal vki to each RGi. Then RGi obtains the updateyk+1

i

and sends it back to the aggregator. We see that, the RGs
do not have to release any other private information to the
aggregator, and the required information exchange is limited
to one variable in each direction per RG.

Note that the minimization problems in (20) are all strictly
convex and admit a unique (and sometimes closed-form)
solution. Furthermore, effectively, only one dual variable is re-
quired to be updated in (21). This is because the transformation
from P3 to P4 by introducing the new optimization vectory
permits all dual variables to share the same updating structure,
hence reducing the number of the effective dual updates as
well as simplifying the calculation.

V. SIMULATION RESULTS

In this section, we evaluate the proposed real-time algo-
rithm and compare it with alternatives using an idealized but
representative power grid setup.

A. Simulation Setup

Unless otherwise specified, the following parameters are set
as default. The length of each time slot is10 min. The amounts
of the base loadslb,t and the flexible loadslf,t are uniformly
distributed between5 and 25 kWh, and the portion of un-
satisfied flexible loadsα is 0.5. The aggregator is connected
with N = 30 RGs. For each on-site storage unit, we set the
maximum discharging and charging amounts to be1.1 kWh
by assuming that the discharging and charging rate is6.6 kW
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(three-phase, level II) [29]. Since the model of the degradation
cost function of storage is usually proprietary and unavailable,
in simulation, we setDi(x) = 10x2 as an example. The
renewable generationai,t is uniformly distributed between0
and1.1 kWh. For the CG, we set the generation cost function
to beC(x) = 8x, the maximum outputgmax = 50 kWh, and
the ramping coefficientr = 0.1. The unit buying energy price
pb,t is uniformly distributed between10 and 12 cents/kWh,
which is around the current mid-peak energy price in Ontario
[30]. The unit selling energy priceps,t is uniformly distributed
between4 and6 cents/kWh, which is slightly below the current
off-peak energy price in Ontario [30]. The control parameter
V is set to1, si,min = 0, andsi,max is given by (15).

B. Benchmark Algorithms

As discussed in Section I, compared with previous works
(e.g., [4]–[16]), this paper is built on a more general system
model in which all issues listed in Table I are incorporated
into the problem formulation. Therefore, mathematically,the
problem we study is new and different from all previous ones.
As a result, the proposed algorithm cannot be directly com-
pared with the algorithms presented in [4]–[16]. To overcome
this difficulty, we employ two alternative algorithms as well
as the lower bound on the minimum system cost derived in
Theorem 1.2 for comparison.

The first alternative is a greedy algorithm, which only
minimizes the current system cost. The optimization problem
of the greedy algorithm at time slott is formulated as follows:

min
ut

wt

s.t. (3), (6)− (10),

lb,t + (1− α)lf,t ≤ lm,t ≤ lb,t + lf,t,

−si,t ≤ xi,t ≤ si,max − si,t.

The second alternative is suggested mainly to show the ef-
fect of the ramping constraint. In particular, at each time slot t,
we solve an optimization problem that is the same asP3except
without the ramping constraint (8). Therefore, the resultant
CG output may be infeasible toP1. To maintain feasibility,
whenever the CG output violates the ramping constraint, the
aggregator only uses the external energy markets to augment
the CG output. We call it “naive algorithm” below.

C. Comparison under ParametersV andα

In Fig. 3, we depict the time-averaged system cost under
various values of the control parameterV . For the proposed
algorithm, the system cost drops quickly and then remains
stable as it drops close to the lower bound. This observation
demonstrates the efficiency of the algorithm and implies that
using small storage may be enough to achieve near-optimal
performance. In contrast, the performance of the greedy al-
gorithm barely changes withV . In particular, the system cost
under the greedy algorithm is about1.7 times that under the
proposed algorithm whenV ≥ 0.1.

In Fig. 4, we illustrate the effect ofα, the portion of
unsatisfied flexible loads. As expected, the system cost goes
down asα rises, since less load is to be satisfied. For the
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Fig. 3. System cost vs. control parameterV .
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Fig. 4. System cost vs. portion of unsatisfied flexible loadsα.
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Fig. 5. System cost vs. ramping coefficientr (small loads).

proposed algorithm, the marginal system cost decreases with
α, which indicates that the benefit of curtailing loads keeps on
falling. We also notice that the greedy algorithm is comparable
with the proposed algorithm forα = 1. But for general cases
of α, the proposed algorithm is observed to have a noticeable
advantage. In addition, the proposed algorithm is close to the
minimum system cost for all cases.

D. Effect of Ramping Constraint

In Fig. 5 we first consider a scenario with small loads. The
system cost is shown to be non-increasing with respect to
the ramping coefficientr. This is easy to understand since a
looser ramping constraint implies less usage of the expensive
external energy markets. Furthermore, for all algorithms,the
system cost cannot be decreased any further forr ≥ 0.3.
This indicates that the CG supply is already sufficient at
this point, and therefore a further relaxation of the ramping
constraint is unnecessary. We observe that, the proposed
algorithm outperforms both alternatives for all cases. However,
the proposed and naive algorithms coincide whenr ≥ 0.3.
This happens because with sufficient supply and a relaxed
ramping constraint, the need for augmenting the CG output
in the naive algorithm is small. That is, the control actions
under the naive algorithm are consistent with those under the
proposed algorithm in most cases.

In Fig. 6, we study a more stressed power grid by increasing
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Fig. 6. System cost vs. ramping coefficientr (large loads).
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Fig. 7. Performance gap vs. number of iterations for distributed algorithm.

the loads. We assume thatlb,t andlf,t are distributed between
20 and 40 kWh. For the proposed and naive algorithms,
the ramping constraint now has a more noticeable impact.
First, the system cost under these two algorithms keeps on
dropping for largerr, and second, the proposed algorithm
always outperforms the naive algorithm. In addition, for small
r, the naive algorithm is unsatisfactory as its performance is
close to that of the greedy algorithm. This observation shows
the importance of jointly exploiting the system resources,
especially under a stressful system environment.

E. Convergence of Distributed Implementation

In Fig. 7, we exhibit the convergence of the proposed
distributed algorithm for a particular system realization. The
value of the penalty parameterρ needs to be adjusted for
good convergence performance and is set to5 in our case. For
comparison, we also show the convergence of a subgradient
algorithm [31]. The vertical axis denotes the gap between
the value of the objective function and the minimum value
of the objective function ofP5. We see that, the proposed
algorithm converges fast and exhibits a linear convergence
rate, while the subgradient algorithm is slow and exhibits a
sublinear convergence rate. Moreover, the fast convergence of
the proposed algorithm is observed in general, and we omit
the curves of the other system realizations for brevity.

VI. CONCLUSION AND FUTURE WORK

We have investigated the problem of power balancing in
a renewable-integrated power grid with storage and flexible
loads. With the objective of minimizing the system cost,
we have proposed a distributed real-time algorithm, which is
fast converging and is asymptotically optimal as the storage
capacity increases and the ramping constraint of the CG
becomes loose.

There are several possible directions for the future work.
For example, first, in the proposed real-time algorithm, only

the current observations of the system states are employed in
the algorithm design. In reality, forecasts of the system states
(e.g., wind generation, loads, and electricity prices) areusually
available within a certain time interval. Therefore, it would be
interesting to study how to incorporate these forecasts into the
algorithm design and how these forecasts could improve the
algorithm performance. Second, the specific implementation
of curtailing the flexible loads is not considered in this paper.
How to incentivize individual customers to participate in such
power balancing service and other demand response programs
is currently open and worth further investigation.

APPENDIX A
PROOF OFRELAXATION FROM P1 TO P2

Using the energy state update in (4) we can derive that the
left hand side of constraint (11) equals the following:

lim
T→∞

1

T

T−1
∑

t=0

E[xi,t] = lim
T→∞

E[si,T ]

T
− lim

T→∞

E[si,0]

T
. (22)

In (22), if si,t is always bounded, i.e., constraint (5) holds, then
the right hand side of (22) equals zero and thus constraint (11)
is satisfied. Therefore,P2 is a relaxed problem ofP1.

APPENDIX B
UPPER BOUND ON DRIFT-PLUS-COST FUNCTION

In the following lemma, we show that the drift-plus-cost
function is upper bounded.

Lemma 1:For all possible decisions and all possible values
of Θt, in each time slott, the drift-plus-cost function is upper
bounded as follows:

∆(Θt) + V E[wt|Θt] ≤ B + JtE

[

lb,t + lf,t − lm,t

lf,t
− α

∣

∣

∣
Θt

]

+

N
∑

i=1

(si,t − βi)E
[

xi,t|Θt

]

+ V E[wt|Θt] (23)

where B is a constant and is given byB, 1
2 (1 + α2) +

1
2

∑N

i=1 max{x2
i,min, x

2
i,max}.

Proof: Based on the definition ofL(Θt), the difference

L(Θt+1)− L(Θt)

=
1

2

[

N
∑

i=1

(si,t+1 − βi)
2 − (si,t − βi)

2

]

+
1

2
(J2

t+1 − J2
t ).

(24)

From the iteration ofJt in (12), (J2
t+1 − J2

t ) in (24) can be
upper bounded as

J2
t+1 − J2

t ≤ 2Jt

(

lb,t + lf,t − lm,t

lf,t
− α

)

+ 1 + α2. (25)

From the iteration ofsi,t in (4), [(si,t+1 −βi)
2 − (si,t − βi)

2]
in (24) can be upper bounded as

(si,t+1 − βi)
2 − (si,t − βi)

2

≤ 2xi,t(si,t − βi) + max{x2
i,min, x

2
i,max}. (26)

Applying inequalities (25) and (26) to (24), taking the con-
ditional expectation givenΘt, and adding the termV E[wt|Θt]
yields the upper bound in (23).
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APPENDIX C
PROOF OFPROPOSITION1

To prove the feasibility under Algorithm 1, we are left to
show that the long-term constraint (2) and the energy state
constraint (5) are satisfied.

For constraint (2), under the Lyapunov optimization frame-
work, it suffices to show that the virtual queueJt is mean
rate stable, i.e.,limT→∞

E[Ji,T ]
T

= 0 (see Section 4.4 in [17]).
Using Proposition 3.1 thatJt is upper bounded we can easily
prove this identity.

To prove that constraint (5) is satisfied, we first show
the following lemma which gives a sufficient condition for
charging or discharging.

Lemma 2:

1) If si,t < −xi,min + si,min, thenx∗
i,t = min{ai,t, xi,max}.

2) If si,t > βi − V (ps,min +D′
i,min), thenx∗

i,t = xi,min.

Proof: To show Lemma 2.1), we first transformP3 to an
equivalent problemP3a) by eliminating the variableseb,t and
bi,t, ∀i, and the constant terms.

P3a) : min
[
∑N

i=1 V Di(xi,t) + (si,t − βi)xi,t

]

+ V C(gt)

+V pb,t
(

es,t + lm,t − gt +
∑N

i=1 xi,t

)

− V ps,tes,t − Jt

lf,t
lm,t

s.t. (1), (7), (8), es,t ≥ 0

xi,min ≤ xi,t ≤ min{ai,t, xi,max} (27)

xi,t ≥
∑N

i=1 ai,t −
∑N

j 6=i xj,t − lm,t + gt − es,t. (28)

We solveP3a)by the partitioning method. Specifically, we first
fix the variables

(

(xj,t)j 6=i, lm,t, gt, es,t
)

and minimizeP3a)
over xi,t. Since the objective function ofP3a) is separable
over all variables, an optimal solution ofxi,t can be derived
by the following problem:

min
xi,t

V Di(xi,t) + (si,t − βi)xi,t + V pb,txi,t

s.t. (27), (28).

Under the assumption thatsi,t < βi−V (pb,max+D′
i,max) =

−xi,min + si,min, the objective function above is strictly
decreasing with respect toxi,t. Therefore, the optimal solution
of xi,t is min{ai,t, xi,max}.

The demonstration of Lemma 2.2 is similar to that of
Lemma 2.1. We first transformP3 to an equivalent problem
P3b) by eliminating the variableses,t and bi,t, ∀i, and the
constant terms. To solve the problem, we first fix the variables
(

(xj,t)j 6=i, lm,t, gt, eb,t
)

and minimize P3b) over xi,t. By
some arrangement, an optimal solution ofxi,t can be derived
by the following problem:

min
xi,t

V Di(xi,t) + (si,t − βi)xi,t + V ps,txi,t

s.t. (27)

xi,t ≤
∑N

i=1 ai,t −
∑N

j 6=i xj,t − lm,t + gt + eb,t.

When si,t > βi − V (ps,min +D′
i,min), the objective function

above is strictly increasing with respect toxi,t. Therefore, the
optimal solution ofxi,t is xi,min.

Using Lemma 2, we can show that constraint (5) holds by
mathematical induction.

Lemma 3:For thei-th storage unit, the energy statesi,t is
bounded within the interval[si,min, si,max].

Proof: The basis: For t = 0, we have si,0 ∈
[si,min, si,max] for the initial setup.

The inductive step: Assume thatsi,t ∈ [si,min, si,max]. Then
we need to show thatsi,t+1 ∈ [si,min, si,max]. In the following,
we discuss three cases ofsi,t.

a) si,t ∈ [si,min,−xi,min + si,min). Using Lemma 2.1) and
the iteration of si,t in (4), we havesi,t+1 = si,t +
min{ai,t, xi,max} ≥ si,t ≥ si,min. Also, we havesi,t+1 ≤
si,t + xi,max < si,max where the last inequality is derived
based on the assumption ofsi,t andVmax > 0.

b) si,t ∈ [−xi,min + si,min, βi − V (ps,min +D′
i,min)]. Based

on the iteration in (4), we havesi,t+1 ∈ [si,t+xi,min, si,t+
xi,max]. By the definitions ofβi andVmax we can derive
that si,t+1 ∈ [si,min, si,max].

c) si,t ∈ (βi−V (ps,min+D′
i,min), si,max]. Using Lemma 2.2)

and the iterations in (4), we havesi,t+1 = si,t + xi,min <
si,t ≤ si,max. Also, we havesi,t+1 > si,min according to
the assumption ofsi,t and the definition ofβi.

APPENDIX D
PROOF OFTHEOREM 1

1) Note thatP2 fits the standard Lyapunov optimization
format (see Section 4.3 in [17] for details of the standard
format). The idea of showing performance of Algorithm 1
is to connect Algorithm 1 with the algorithm forP2 that is
designed under the Lyapunov optimization framework. Before
showing performance of Algorithm 1, we give two lemmas,
which will be used later.

In the following lemma, we show the existence of a special
algorithm forP2. Denotew̃ as the optimal system cost ofP2.

Lemma 4:For P2, there exists a stationary and randomized
solutionus

t that only depends on the system statesqt, and at
the same time satisfies the following conditions:

E[ws
t ] ≤ w̃, ∀t, (29)

E[xs
i,t] = 0, ∀i, t, (30)

E

[

lb,t + lf,t − lsm,t

lf,t

]

≤ α, ∀t (31)

where all expectations are taken over the randomness of the
system state and the possible randomness of the decisions.

Proof: The claims above can be derived from Theorem
4.5 in [17]. In particular, that theorem provides sufficient
conditions for the existence of a stationary and randomized
algorithm as described above. It can be checked that these
sufficient conditions are all met in our problem. Therefore,
the conclusion in Lemma 4 holds.

By minimizing the upper bound of the drift-plus-cost func-
tion (i.e., the right hand side of (23)), the real-time sub-
problem forP2 at time slott is given by

P3’ : min
ut

[

N
∑

i=1

V Di(xi,t) + (si,t − βi)xi,t

]

+ V C(gt)
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+ V pb,teb,t − V ps,tes,t −
Jt
lf,t

lm,t

s.t. (1), (3), (6)− (7), (9), (10).

Note thatP3’ is the same asP3 except without the ramping
constraint (8). Denote the optimal objective values ofP3’ and
P3 as f̃t andf∗

t , respectively, and denote an optimal solution
of P3’ and P3 as ũt and u∗

t , respectively. In the following
lemma, we characterizef∗

t in terms off̃t.
Lemma 5:At each time slot,f∗

t is bounded as̃ft ≤ f∗
t ≤

f̃t + ǫ, where

ǫ,V (1− r)gmax max{pb,max, C
′
max}.

Proof: First, sinceP3 has more restricted constraints than
P3’, there isf∗

t ≥ f̃t.
Next, we are to upper boundf∗

t − f̃t. Comparing the
solution g∗t of P3 with the solutiong̃t of P3’ there are three
possibilities:

1) g∗t = g̃t,
2) g∗t < g̃t (less output due to constraint (8)), and
3) g∗t > g̃t (more output due to constraint (8)).

For Case 1), it is easy to show thatf∗
t = f̃t. Thus, we focus

on the latter two cases.
Denote a feasible solution ofP3 asût and its corresponding

objective value asf̂t. Since characterizing the gapf∗
t − f̃t

directly is challenging, we instead consider the gapf̂t − f̃t.
For Case 2), wheng∗t < g̃t, the effective constraint ofgt in

P3 should bemax{gt−1 − rgmax, 0} ≤ gt ≤ gt−1 + rgmax.
Set a feasible solution ofP3 as ût = [b̃t, x̃t, l̃m,t, gt−1 +
rgmax, ẽb,t + g̃t − gt−1 − rgmax, ẽs,t]. That is,ût is the same
as ũt except the solutions ofgt and eb,t. Intuitively, we can
interpretût as that, due to the ramping constraint, the CG is
forced to generate less energy, and the aggregator chooses to
buy more from the external energy markets to balance power.
The gapf̂t − f̃t is given by

f̂t − f̃t

= V
[

C(gt−1 + rgmax)− C(g̃t) + pb,t(g̃t − gt−1 − rgmax)
]

≤ V pb,t(g̃t − gt−1 − rgmax) (32)

≤ V (1− r)gmaxpb,max (33)

where the inequality in (32) holds sincẽgt > gt−1 + rgmax

and the functionC(·) is non-decreasing. From (33), the gap
f∗
t − f̃t is upper bounded by

f∗
t − f̃t ≤ f̂t − f̃t ≤ V (1 − r)gmaxpb,max. (34)

The proof for Case 3) is similar as that for Case 2). In
particular, wheng∗t > g̃t, the effective constraint ofgt in P3
should begt−1 − rgmax ≤ gt ≤ min{gmax, gt−1 + rgmax}.
Set a feasible solution ofP3 as ût = [b̃t, x̃t, l̃m,t, gt−1 −
rgmax, ẽb,t, ẽs,t − g̃t + gt−1 − rgmax]. That is,ût is the same
as ũt except the solutions ofgt and es,t. Intuitively, we can
interpretût as that, due to the ramping constraint, the CG is
forced to generate more energy, and the aggregator chooses
to sell more to the external energy markets to balance power.
The gapf̂t − f̃t is given by

f̂t − f̃t

= V
[

C(gt−1 − rgmax)− C(g̃t) + ps,t(g̃t − gt−1 + rgmax)
]

≤ V
[

C(gt−1 − rgmax)− C(g̃t)
]

(35)

≤ V (gt−1 − rgmax − g̃t)C
′
max (36)

≤ V (1− r)gmaxC
′
max (37)

where the inequality in (35) holds sincẽgt < gt−1 − rgmax,
and the inequality (36) is derived by the mean value theorem.
From (37), we have

f∗
t − f̃t ≤ f̂t − f̃t ≤ V (1− r)gmaxC

′
max. (38)

Combining (34) and (38) yieldsf∗
t ≤ f̃t + V (1 −

r)gmax max{pb,max, C
′
max}, which completes the proof.

Using Lemmas 1, 4, and 5, the drift-plus-cost function under
Algorithm 1 can be upper bounded below:

∆(Θt) + V E[w∗
t |Θt]

≤ B + ǫ+ JtE

[

lb,t + lf,t − l̃m,t

lf,t
− α

∣

∣

∣
Θt

]

+

N
∑

i=1

(si,t − βi)E
[

x̃i,t|Θt

]

+ V E[w̃t|Θt] (39)

≤ B + ǫ+ JtE

[

lb,t + lf,t − lsm,t

lf,t
− α

∣

∣

∣
Θt

]

+
N
∑

i=1

(si,t − βi)E
[

xs
i,t|Θt

]

+ V E[ws
t |Θt] (40)

≤ B + ǫ+ V w̃ (41)

≤ B + ǫ+ V wopt (42)

where (39) is derived by Lemmas 1 and 5, (40) holds sinceP3’
minimizes the right hand side of (39), (41) is derived based on
(29)(30)(31) in Lemma 4 and the fact thatus

t is independent
of Θt, and (42) holds sinceP2 is a relaxed problem ofP1.

Taking expectations overΘt on both sides of (42) and
summing overt ∈ {0, · · · , T − 1} yields

E[L(ΘT )]− E[L(Θ0)] + V

T−1
∑

t=0

E[w∗
t ] ≤ (B + ǫ+ V wopt)T.

(43)

SinceL(ΘT ) is non-negative, after some arrangement, from
(43) there is

1

T

T−1
∑

t=0

E[w∗
t ] ≤

B + ǫ+ V wopt

V
+

E[L(Θ0)]

TV
. (44)

Takinglim sup on both sides of (44) and rearranging the terms
givesw∗ − wopt ≤ B/V + (1 − r)gmax max{pb,max, C

′
max}.

To emphasize the dependence of performance onr andV , we
expressw∗ asw∗(r, V ). Similarly, we expresswopt aswopt(r).

2) The lower bound onwopt(r) can be derived by setting
r = 1 in Theorem 1.1 and recognizing thatwopt(1) ≤ wopt(r).

APPENDIX E
PROOF OFPROPOSITION2

Proposition 2 can be shown by mathematical induction. The
proof resembles that of Lemma 3 where the energy capacity
si,max is replaced bysi,up. We omit the proof for brevity.
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APPENDIX F
PROOF OFPROPOSITION3

1) We prove the conclusion by mathematical induction.
The basis: Fort = 0, we haveJt = 0, which is obviously

upper bounded.
The inductive step: Assume thatJt ≤ V pb,maxlf,max + 1.

Then we need to show thatJt+1 ≤ V pb,maxlf,max + 1.
Consider the following two cases ofJt.

a) Jt ≤ V pb,maxlf,max. Based on the update ofJt in (12),
we have Jt+1 ≤ max{Jt − α, 0} + 1 ≤ Jt + 1 ≤
V pb,maxlf,max + 1.

b) Jt ∈ (V pb,maxlf,max, V pb,maxlf,max+1]. For this case, we
will show that the unique solution oflm,t to P3 is lb,t+lf,t.
Hence,Jt+1 = max{Jt−α, 0} ≤ Jt ≤ V pb,maxlf,max+1.
To this end, we consider the equivalent problemP3a). First
fix the variables

(

xt, gt, es,t
)

and minimizeP3a)overlm,t.
After some arrangement, an optimal solution oflm,t can
be derived by the following problem:

min
lm,t

(

V pb,t −
Jt
lf,t

)

lm,t

s.t. lb,t ≤ lm,t ≤ lb,t + lf,t,

lm,t ≥
N
∑

i=1

(ai,t − xi,t) + gt − es,t.

WhenJt > V pb,maxlf,max, the objective function above is
strictly decreasing. Therefore, the optimal solution oflm,t

is lb,t + lf,t.

2) We prove the conclusion by contradiction. Suppose that
under our algorithm the optimal solutions ofeb,t and es,t
satisfye∗b,t > e∗s,t > 0. Then, we can show that there is another

feasible solution̂ut =
[

b∗
t ,x

∗
t , l

∗
m,t, g

∗
t , e

∗
b,t − e∗s,t, 0

]

achiev-
ing a strictly smaller objective value, hence contradicting the
fact thatu∗

t is optimal. The proofs of the other two possible
cases, i.e.,e∗b,t = e∗s,t > 0 and e∗s,t > e∗b,t > 0, are similar,
and are omitted for brevity.

APPENDIX G
SIMPLIFICATION OF (17)-(19)

Define yk, 1
N+4

∑N+4
i=1 yki and d

k
, 1

N+4

∑N+4
i=1 dki as the

averages ofyki anddki overi at thek-th iteration, respectively.
By solving the minimization problem in (18), we can get a
closed-form solution ofzk+1

i below:

zk+1
i =

dki
ρ

+ yk+1
i − d

k

ρ
− yk+1 +

∑N

i=1 ai
N + 4

. (45)

Substituting the right hand side of (45) forzk+1
i in the d-

update (19) yieldsdk+1
i = d

k
+ ρ(yk+1 −

∑N
i=1

ai

N+4 ), which
indicates that the dual variablesdk+1

i are identical for alli at
each iteration. Therefore, we can safely drop the subscripti in
dk+1
i and obtain thed-update in (21). Meanwhile, substituting

the right hand side of (45) forzki in the y-update (17) and
using the fact thatdk−1

i are identical for alli yields (20). Since
the vectorz is not employed in eithery-update ord-update,
it can be eliminated.
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vergence in dual subgradient schemes for convex programming,” Math.
Program., vol. 86, pp. 283–312, 1999.

Sun Sun (S’11) received the B.S. degree in Electri-
cal Engineering and Automation from Tongji Uni-
versity, Shanghai, China, in 2005. From 2006 to
2008, she was a software engineer in the Depart-
ment of GSM Base Transceiver Station of Huawei
Technologies Co. Ltd.. She received the M.Sc. de-
gree in Electrical and Computer Engineering from
University of Alberta, Edmonton, Canada, in 2011.
Now, she is pursuing her Ph.D. degree in the De-
partment of Electrical and Computer Engineering of
University of Toronto, Toronto, Canada. Her current

research interest lies in the areas of stochastic optimization, distributed control,
learning, and economics, with the application of renewablegeneration, energy
storage, demand response, and power system operations.

Min Dong (S’00-M’05-SM’09) received the B.Eng.
degree from Tsinghua University, Beijing, China, in
1998, and the Ph.D. degree in electrical and com-
puter engineering with minor in applied mathematics
from Cornell University, Ithaca, NY, in 2004. From
2004 to 2008, she was with Corporate Research
and Development, Qualcomm Inc., San Diego, CA.
In 2008, she joined the Department of Electrical,
Computer and Software Engineering at University
of Ontario Institute of Technology, Ontario, Canada,
where she is currently an Associate Professor. She

also holds a status-only Associate Professor appointment with the Depart-
ment of Electrical and Computer Engineering, University ofToronto since
2009. Her research interests are in the areas of statisticalsignal processing
for communication networks, cooperative communications and networking
techniques, and stochastic network optimization in dynamic networks and
systems. She served as an Associate Editor for the IEEE TRANSACTIONS
ON SIGNAL PROCESSING (20102014), and as an Associate Editorfor the
IEEE SIGNAL PROCESSING LETTERS (20092013). She was a technical
lead co-chair of the Communications and Networks to Enable the Smart Grid
Symposium at the IEEE International Conference on Smart Grid Commu-
nications (SmartGridComm) in 2014. She has been an elected member of
the IEEE Signal Processing Society Signal Processing for Communications
and Networking (SP-COM) technical committee since 2013. She was the
recipient of the Early Researcher Award from Ontario Ministry of Research
and Innovation in 2012, the Best Paper Award at IEEE ICCC in 2012, and
the 2004 IEEE Signal Processing Society Best Paper Award.

Ben Liang (S’94-M’01-SM’06) received honors-
simultaneous B.Sc. (valedictorian) and M.Sc. de-
grees in Electrical Engineering from Polytechnic
University in Brooklyn, New York, in 1997 and
the Ph.D. degree in Electrical Engineering with
Computer Science minor from Cornell University
in Ithaca, New York, in 2001. In the 2001 - 2002
academic year, he was a visiting lecturer and post-
doctoral research associate at Cornell University. He
joined the Department of Electrical and Computer
Engineering at the University of Toronto in 2002,

where he is now a Professor. His current research interests are in mobile
communications and networked systems. He has served as an editor for
the IEEE Transactions on Wireless Communications and an associate editor
for the Wiley Security and Communication Networks journal,in addition to
regularly serving on the organizational or technical committee of a number
of conferences. He is a senior member of IEEE and a member of ACM and
Tau Beta Pi.

http://arxiv.org/abs/1306.3721
http://www.ontarioenergyboard.ca/OEB/Consumers/Electricity

	I Introduction
	II System Model and Problem Statement
	II-A System Model
	II-A1 Loads
	II-A2 RG and On-Site Storage
	II-A3 CG
	II-A4 External Energy Markets

	II-B Problem Statement

	III Real-Time Algorithm for Power Balancing
	III-A Description of Real-Time Algorithm
	III-B Performance Analysis
	III-C Discussion on Multiple CGs

	IV Distributed Implementation of Real-Time Algorithm
	IV-A Distributed Algorithm Design
	IV-B Distributed Implementation

	V Simulation Results
	V-A Simulation Setup
	V-B Benchmark Algorithms
	V-C Comparison under Parameters V and 
	V-D Effect of Ramping Constraint
	V-E Convergence of Distributed Implementation

	VI Conclusion and Future Work
	Appendix A: Proof of Relaxation from P1 to P2
	Appendix B: Upper bound on drift-plus-cost function
	Appendix C: Proof of Proposition 1
	Appendix D: Proof of Theorem 1
	Appendix E: Proof of Proposition 2
	Appendix F: Proof of Proposition 3
	Appendix G: Simplification of (17)-(19) 
	References
	Biographies
	Sun Sun
	Min Dong
	Ben Liang


