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Abstract—The large-scale integration of renewable generation and flexible loads enable adaptive energy absorption and
directly affects the reliability of power grids. We investigate the puffering to counter the fluctuation in renewable generatio
problem of power balancing in a general renewable-integratd In this paper, we investigate the problem of power balancing

power grid with storage and flexible loads. We consider a powe . I ble-int ted id with st
grid that is supplied by one conventional generator (CG) andnul- in a general renewable-integrated power grid with storage a

tiple renewable generators (RGs) each co-located with stage, flexible loads, through the coordination of supply, demand,
and is connected with external markets. An aggregator opetteas and storage. Practical power systems are typically operate

the power grid to maintain power balance between supply and under multiple time scales. To model this, we consider power
demand. Aiming at minimizing the long-term system cost, we fst balancing for each time scale separately (elg., [4]). More

propose a real-time centralized power balancing solutiontaking isel f t withi inale ti
into account the uncertainty of the renewable generation,dads, precisely, we focus on energy management within a singie tm

and energy prices. We then provide a distributed implementsion ~ Scale and aim at proposing a distributed real-time algoritbr
algorithm, significantly reducing both computational burden and power balancing. Real-time control is mainly motivated g t
communication overhead. We demonstrate that our proposed ynpredictability of renewable sources, which can potdigtia
algorithm is asymptotically optimal as the storage capacit yender off-line algorithms inefficient. The distributed fife-

increases and the CG ramping constraint loosens. Moreovethe tation is t d th tati | burd fth t
distributed implementation enjoys a fast convergence rateand mentation Is o reduce the computational burden ot the syste

enables each RG and the aggregator to make their own decisisn Operator and also to limit the communication requirement.
Simulation shows that our proposed algorithm outperforms Earlier works on power balancing commonly ignore system
alternatives and can achieve near-optimal performance foe wide  uncertainty by considering a deterministic operationairem-
range of storage capacity. ment. There are many recent works explicitly incorporating
Index Terms—Distributed algorithm, energy storage, flexible system uncertainty into energy management of power grids.
loads, renewable generation, stochastic optimization. Due to page limitation, we are only able to select some
representative papers that are more related to our worlseThe
works emphasize on various issues of the system in energy
- ) ) management (see TaHle | for a summary). For example, the
With increasing environmental concerns, more and MOotgthors of 5] and([6] consider supply side management by
renewable energy sources such as wind and solar are expegi@fiming that all loads are uncontrollable, the author&[pf [
to be integrated into the power grids. Renewable generaionsydy demand side management by optimally scheduling non-
often intermittent with limited dispatchability. Thussitarge- interruptible and deferrable loads of individual users #me
scale integration could upset the b_ala_nce between supply &fthors of [[4], [[8], and[[9] propose to employ energy storage
demand, and affect the system reliability [1]. ~ to clear power imbalance. In some other works, the authors
To mitigate the randomness of renewable generation, of§mbine supply side and demand side managemenits [10], or
can employ fast-responsive generators such as natural @@ply side and storage managemehis [11], or demand side
whose services are nevertheless expensive. Alternative s@nd storage managemerftsi[122[14].
tions include energy storag_e and flexibl_e loads, WhiCh may Among existing works, [[15] and_[16] are mostly related
be Iss costly and meanwhile more envw_onmental!y friendfy our work, in which all three types of energy management
[2] [8]. In particular, storage can be exploited to shift @ (je., supply, demand, and storage) are jointly considéved
across t|me;_many.loads, such as thermostaugally coettollpower balancing. However, i [1L5], although the uncertaint
loads, electric vehicles, and other smart appliances, @n d} the renewable generation is considered and charaaterize
controlled through curtailment or time shift. Togethearape by a polyhedral set, the uncertainty of the loads and energy
_ _ _ _ prices is ignored. Moreover, the algorithm is designed fér o
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TABLE |
COMPARISON WITH EXISTING WORKS
Proposed
Bl 6| 7|6 | @ | @ | [ (A1 [A2) [A3] [14] [T5] [E6]
Supply management | Y Y Y Y Y Y Y
Demand management Y Y Y Y Y Y Y Y
Storage management] Y Y Y Y Y Y Y Y Y Y
Uncertainty/dynamics| Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Ramping constraint | Y Y Y Y Y
Real-time algorithm | Y Y Y Y Y Y Y Y Y Y Y Y Y
Distributed algorithm Y Y Y Y Y
system operator. focuses on the problem of power balancing, and additionally

In this paper, we include all issues listed in Tallle | wheimcludes the control of flexible loads in energy management.
studying the problem of power balancing. In particular, wa traditional approach for storage control is to formuldte t
consider a general power grid supplied by a CG and multipigoblem as a linear-quadratic regulator (LQR) (e.n..| [20])
RGs, and each RG is co-located with an energy storage ud@bmpared with the Lyapunov optimization approach employed
An aggregator operates the grid by coordinating supply, de- this paper, the LQR approach is different in terms of its
mand, and storage units to maintain the power balancing. Gapplication and the derivation of the control action at each
goal is to minimize the long-term system cost subject to thiene step. Specifically, the LQR approach applies when the
operational constraints and the quality-of-service regjuent system states evolve according to a set of linear equations
of flexible loads. and the objective function is quadratic. Obtaining the ropti

Our formulated optimization problem is stochastic in nafurcontrol action analytically is generally hard and requisgs-
and is technically challenging especially for real-timetrol. tem statistics. In contrast, the Lyapunov optimizationrapph
First, owing to the practical operational constraints,isas has no such requirements on the problem structure, and can
the finite storage capacity and the CG ramping constraiat, tAdditionally deal with long-term time-averaged constisin
control actions are coupled over time, which complicates tiFurthermore, in the Lyapunov optimization approach, the
real-time decision making. Second, centralized controbofcontrol action at each time step is derived by solving an
potentially large number of RGs by the aggregator may leagtimization problem with no need for system statistics.
to large communication overhead and heavy computation. ToA preliminary version of this work has been presented in
overcome the first difficulty, we leverage Lyapunov optimizg[24]. In this paper, we significantly extend [24] in two ways:
tion [17] and develop special techniques to tackle our @bl first, we offer a distributed algorithm for practical implenta-

To address the second challenge, we exploit the structuretioh; second, we provide more in-depth performance aralysi
the optimization problem and employ the alternating dicect of the proposed algorithm both theoretically and numelgical
method of multipliers (ADMM) [18] to offer a distributed and reveal insights into the interactions of supply, denemdl
algorithm. Our main contribution is summarized as follows.storage units in maintaining the power balancing of a grid.

« We formulate a stochastic optimization problem for The remainder of this paper is organized as follows. In
power balancing by taking into account all design issuekection[I), we describe the system model and formulate the
listed in Tabldll. problem of power balancing. In Sectibnllll, we propose a-real

o We propose a distributed real-time algorithm for théme algorithm and analyze its performance theoreticdty.
power balancing optimization problem. We characterizgection[1M, we provide a distributed algorithm for solving
the performance gap of the proposed algorithm awale real-time problem. In Sectidn] V, we present simulation
from an optimal algorithm, and show that the propose@sults. Finally, we conclude and discuss some future direc
algorithm is asymptotically optimal as the storage caions in Sectiof_MI. The main symbols used in this paper are
pacity increases and the CG ramping constraint loosegsimmarized in Tablg]ll.

The algorithm can be implemented in a distributed way,

by which each RG and the aggregator can make their || gygrEM MODEL AND PROBLEM STATEMENT

own decisions. The distributed implementation enjoys a

fast convergence rate and requires limited communicatin System Model

between the aggregator and each RG. As shown in Fig[lL, we consider a power grid supplied by

o We compare the proposed algorithm with alternativene CG (e.g., nuclear, coal-fired, or gas-fired generata\an
algorithms by simulation. We show that our proposeRGs (e.g., wind or solar generators). Each RG is co-located
algorithm outperforms the alternatives and is near-ogdtimaith one on-site energy storage unit. The grid is connected
even with small energy storage. to external energy markets and is operated by an aggregator,

Energy storage has been used widely in power grids faho is responsible for satisfying the loads by managingggner
combating the variability of renewable generation. A largigom various sources. The information flow and the energy
amount of works have been reported in literature on storaffew are also depicted in FidJ 1. Assume that the system
control and the assessment of its role in renewable integratoperates in discrete time with time slote {0,1,2,---}.
(e.g., [19]-23]). Compared with these references, thigepa For notational simplicity, throughout the paper we workhwit
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L,STOFT,\AA?\I,"ES”YMBOLS The control of flexible loads needs to meet certain quality-
of-service requirement. In this work, we impose an upper
N number of RGs bound on the portion of unsatisfied flexible loads. Formally,
lps requested amount of base loads during time slot we introduce a long-term time-averaged constraint
Ly requested amount of flexible loads during time glot
It total amount of satisfied loads during time slot . 1= loe +1re =l
: . — . lim sup — Z E {—] <« (2)
« portion of unsatisfied flexible loads Ty — lf,t
a; renewable generation amount of théh RG during time slot
aimax | Maximum amount of renewable generation of thth RG | wherea € [0, 1] is a pre-designed threshold with a small value
during each time slot indicating a tight quality-of-service requirement.

Tt charging/discharging amount of theth storage unit during 2) RG and On-Site StorageAt the i-th RG. denote the
time slott . . L
. . . amount of the renewable generation during time st a; ; €
|£; min|| Maximum discharging amount . . ’
- - [0, @i max], Wherea; max is the maximum generated energy
Zimax | Maximum charging amount ' ’ .
amount. Due to the stochastic nature of renewable sources,

bit contributed energy amount by thie¢h RG during time slot .
- - — - a; ¢ 1S random.

Sit energy state of the-th storage unit at the beginning of time ’ . . .

slot We assume that each RG is co-located with one on-site
D;(-) | degradation cost function of thith storage unit energy storage L_mit capable O.f charging and discharging.
gt output of the CG during time slat Denote the charging or discharging energy amount ofitthe
gmax | maximum output of the CG during each time slot storage U_mt_dU'_"ng time _Sldt by xi,t;_th Tit > 0 (resp.
” ramping coefficient z;+ < 0) indicating charging (resp. discharging). Because of
() generation cost function of the CG the battery design and hardware constraints, the valug of
Dot unit buying price of external energy markets at time slot is bounded as follows:
Ds,t unit selling price of external energy markets at time glot

. nin < it < Time i -

ept amount of energy bought from external energy markets dufing Timin S Tit S Timax,  (Timin <0 < Zimax) 3)

time slot¢ . . .
es,t amount of energy sold to external energy markets during tme\’\lherewivr’fin| andxi=max represent the maximum dISChargmg

slot ¢ and charging amounts, respectively. For ik storage unit,
as system states at time slot denote its energy state at the beginning of time sloy s; .
a control actions at time slat Due to charging and discharging operations, the evolutfon o
wy system cost at time slat s;¢ is given b

energy units instead of power units. The details of each Sit1 = Sit + Tt )

component in the power grid are described below. Furthermore, the battery capacity and operational cangstra

require the energy statg ; be bounded as follows:

External energy markets Si,min < Sit < Si max (5)

----* Information flow
— Energy flow

wheres; nin is the minimum allowed energy state, asd,ax
is the maximum allowed energy state and can be interpreted
as the storage capacity. It is known that fast charging or
- ‘ 4 Flexible loads | discharging can cause battery degradation, which shortens
[[storage N |RG N o g battery lifetime [25]. To model this cost on stqrage, we use
D;(-) to represent the degradation cost function associated
with the charging or discharging amoun;.
During every time slot, the RG supplies energy to the
1) Loads: The loads include base loads and flexible load@dgregator. Denote the amount of the contributed energy by
The base loads represent critical energy demands suchthgsi-th RG during time slot by b; ;. Since the energy flows
lighting, which must be satisfied once requested. The flexif?f the RG should be balanced, we have
loads here represent some controllable energy requedts tha
can be partly curtailed if the energy provision cost is high.
time slott, denote the amount of the total requested base Ioa(g,{s
it

/¥ Base loads

ra e nggoat

Fig. 1. Schematic representation of the considered power gr

bit =air— iy, bit>0. (6)

particular, if x; » > 0 (charging), the contributed energy
directly comes from the renewable generationgif < 0
(discharging) p; » comes from both the renewable generation
the storage unit.

by lp.+ € [Ib,min, Ib,max], @nd the amount of the total requeste
flexible loads byls; € [lf min,!fmax]- The amountd,; and

ly. are generated by users based on their own needs and
considered random. Let the amount of the total satisfiedsloa
be lm’t’ which should SatISfy 1in this work we use a simplified energy storage model. The emas-
(1) ical framework carries over when other modeling factorshsas charging

lot < lmt < ot + s efficiency, discharging efficiency, and storage efficienoy @nsidered.
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3) CG: Different from the RGs, the energy output of theCG, and the cost for exploiting the external energy markets,
CG is controllable. Denote; as the energy output of the CGgiven bﬁ:

during time slott, satisfying N

0 < gt < gmax 7) wEC(gr) + Posen — Psiest + Y Dilwin).
=1

WHere gunax is the.maxmu.m ‘."‘m"“m of the energy OUtputhased on the system model described in Sedfionl Il-A, we
Due to the operational limitations of the CG, the change . )
ormulate the problem of power balancing as a stochastic

the outputs in two consecutive time slots is bounded. This 88 iization problem below
typically reflected by aamping constrainbn the CG outputs P P '

[26]. Assuming that the ramp-up and ramp-down constraints T—1
are identical, we express the overall ramping constraint as P1: mir; lim sup T Z Elw;] s.t. [1)- @0)
ug T—o00 =0
|gt - gt71| < Tmax (8)

where the expectations in the objective dnd (2) are taken ove
where the coefficient € [0,1] indicates the tightness of the randomness of the system staie&[a;, Iy, ¢, .+, Do.t, Ps.i]
the ramping requirement. In particular, for= 0, the CG wherea;2[a1 ¢, --- ,an ], and the possible randomness of the
produces a fixed output over time, while for= 1, the ramping control actions.
requirement becomes non-effective. Furthermore, we d@enot To keep mathematical exposition simple, we assume that the
the generation cost function of the CG by(-). cost functionsC(-) and D;(-) are continuously differentiable

4) External Energy Markets:In addition to the internal and convex. This assumption is mild since many practical
energy resources, the aggregator can resort to the extewwts can be well approximated by such functions. Denote
energy markets if needed. For example, the aggregator ¢he derivatives ofC(-) and D,(-) by C’(-) and Di(-), re-
buy energy from the external energy markets in the case gfectively. Based on the assumption, we have the derivative
energy deficit, or sell energy to the markets in the case 6f(g;) € [C) i1 Cliax): V9t € [0, gmax), and Di(z;¢) €
energy surplus. At time slat, denote the unit prices of the [D] .., D ,ax), Y%t € [%imin, Ti max]-
external energy markets for buying and selling energy by Remarks: Compared to a practical power system, the model
Dot € [Pb.mins Pb.max) @NAPs ¢ € [Ps min, Ps.max], r€SPectively. considered in SectidnIHA is simplified, in which power less
To avoid energy arbitrage, the buying price is assumed to betwork constraints, and some other practical operational
strictly greater than the selling price, i.ey: > ps:. The constraints are ignored. Despite the simplifications, wk wi
pricespy: and p,, are typically random due to unexpectedhow that the proposed formulation leads to an implemeatabl
market behaviors. Denote control algorithm with a provable performance bound on
suboptimality. For future work, we will consider incorptiray
more practical power system constraints into the problem
fremulation.

et >0, esr >0 9)

as the amounts of the energy bought from and sold to t
external energy markets during time slotrespectively. The

overall system balance requirement is l1l. REAL-TIME ALGORITHM FOR POWER BALANCING

gr +eps + ZZN:I bit =est+ L. (20) Solving P1 is challenging, due to the stochastic nature of
the system, as well as constrairik (B), (5), and (8), resyiti
coupled control actions over time. In this section, we psg0

a real-time algorithm forP1 and analyze its performance
The aggregator operates the power grid and aims to miaeoretically.

imize the long-term time-averaged system cost by jointly
managing supply, demand, and storage units. With an increas o . _
ing integration of renewable generation and energy storafje Description of Real-Time Algorithm

into power grids, the business models of electric utilites To propose a real-time algorithm, we employ the Lyapunov
evolving. From the study in([27], one suggested model @ftimization approach [17]. Lyapunov optimization can be
future electric utilities is termed as “energy servicedityfl  sed to transform some long-term time-averaged consiraint
Such utilities are expected to provide similar serviceshase¢ g, ch as [2) into queue stability constraints, and to provide
described in Section TJA. Precisely, besides serving $packfficient real-time algorithms for complex dynamic systems
these utilities would actively provide a platform for demanUnfortunately, the time-coupled constrairifs (5) did (&) ot
response, manage generation assets, and coordinate engkg®.averaged constraints, but are hard constraints redjait
sales with external energy markets. each time slot. Therefore, the Lyapunov optimization frame
We define the control actions at time stoby work cannot be directly applied. To overcome this difficulty

B. Problem Statement

A
U= [bt’ Xt, lm,t, 9t, €.t es’t] 2For the RGs and the CG, the payment for supplying energy dmikkttled

A A by additional contracts offered by the aggregator, or beutated based on
Wherebt:[blzta s 7b1\{,t] andx;=[z1,¢, -+, xn]. The SYs- e actual provided energy. For these cases, the paymenanisférred inside
tem cost at time slot includes the costs of all RGs and thehe system hence not affecting the system-wide cost.
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we take a relaxation step and propose the following relaxedligorithm 1: Real-time algorithm for power balancing.

problem: Initialize J, = 0. At each time slot, the aggregator
L 11 executes the following steps sequentially.
P2: min limsup — Z E[w] 1) Observe the system statgs energy states; ;, Vi, and
R = gueue backlog/;.
st. [A)- @), ©), @), @), @9), 2) SolveP3 and obtain an optimal solution;.
. | Tl ' 3) Useu; to updates; ., Vi, and J; based on[{4) and(12),
Jim ; Elz; =0, Yi. (11) respectively.

Compared withP1, in P2 the energy state constrainks (4) anguarantee. Moreover, to ensure the feasibilitygaf we take

(@) are replaced with a new time-averaged constrhift (Y, 8 natural step and move the ramping constréiht (8) back into

the ramping constrainf}8) is removed. It can be shown thag

P2is indeed a relaxation d?1 (see Appendih). Since D;(-) andC(-) are convexP3is a convex optimiza-
The above relaxation step is crucial and enables us t{en problem and can be efficiently solved by standard convex

work under the standard Lyapunov optimization frameworlgptimization software packages. Denote an optimal saiutio

However, we emphasize thlat,.giving solution R@ i; not  p3 4t time slott by w2 [br,x;, 1%, gt e, e t}_ At each

our purpose. Ins_tead, the S|gn_|f|cance qf propoghyis to time slot, after obtaining;, we updatesi t,%’, a{nd J; based

facilitate the design of a real-time algorithm f&rl and the on their evolution equations. '

performance analysis. Note that due to this relaxation, theIn the following proposition we prove that, despite the

solution to P2 ma}[y be _|(rj1fea5|ble| tt(Pl N:Otlv.?:]ecj bﬁ_tz's relaxation toP2, by appropriately designing the perturbation
concern, we next provide a real-time aigorithm whic Caﬁ'arameterﬂi we can ensure the boundedness of the energy
guarantee that all constraints B are satisfied.

. . . states and hence the feasibility of the control acti to
To meet constrainE{2), we introduce a virtual queue bacqugl 4 bas}

J; evolving as follows:

Proposition 1: For thei-th storage unit, set the perturbation
bitlpi=lme g,y PATaMeter; as

lf"t ﬁiév(pb,max + D;,max) — L4,min + S¢,min (13)
From [12), the virtual queud; accumulates the portion of .

. e . . - h max th
unsatisfied flexible loads. It can be shown that maintairfireg tW ereV € (0, Vinax] wi

stability of .J; is equivalent to satisfying constrairi (2) [17]. A { Si.max — Si.min + Timin — Ti.max } (14)

Vmax: min
/ /
Pb,max — Ps,min + Di,max - Di,min

Jip1 = max{J; —a,0} +

We initialize J; as.Jy = 0. 1<i<N
At time slot ¢, define a vector@té[slyt,...,sNyt,Jt],

which consists of the energy states of all storage units ahBien the control actiongu;} derived by solvingP3 at each

the virtual queue backlog;. Using ®,, we define a Lya- timet are feasible td>1..

punov function L(©,)2172 + 1SV (siy — f;)% where Proof: See Appendik L. N [

B; is a perturbation parameter designed for ensuring theRemarks: For Vi,.x in (I4) to be positive, the range of the

boundedness of the energy state, i.e., constrEint (5). in &fergy state should be larger than the sum of the maximum

dition, we define the one-slot conditional Lyapunov drift agharging and discharging amounts. This is generally treeeif

A(O)AE[L(O.41) — L(©,)|®,]. Instead of directly mini- length of each time interval is not too long, for example, up

mizing the system cost objective, we consider the drifspluto several minutes.

cost function given byA(©,) + VE[w,|©;]. It is a weighted ~ We summarize the proposed real-time algorithm in Algo-

sum of A(®,) and the system cost at time slotwith 1 rithm [. We can see that, Algorithinl 1 is simple and does not

serving as the weight. require any statistics of the system states. The latteufeat

In our algorithm design, we first consider an upper bourld especially desirable in practice, where accurate statis
on the drift-plus-cost function (see Appendix B for the u,ppé)f the system states are difficult to obtain but instantaseou
bound), and then formulate a real-time optimization proble Observations are readily available.
minimize this upper bound at every time slotAs a result, at
each time slot, we have the following optimization problem:B. Performance Analysis

N We now analyze the solution provided by AlgoritHoh 1
P3: min ZVDZ-(:CM) + (sit — Bi)wie| +VC(gt) with respect toP1. Under Algorithm[l, to emphasize the
u i—1 dependency of the cost objective value on the ramping coeffi-
Ji cientr and the control parametéf, we denote the achieved
+Vpoieor = Vpsieor = lf_tlmvt cost objective value by*(r, V). Denote the minimum cost
o) @), @) — (0) ’ objective value ofP1 by w°PY(r), which only depends on.
The main results are summarized in the following theorem.
We will show in Sectior II[-B that the design of the real- Theorem 1:Assume that the random system statgsof
time problemP3 can lead to some analytical performancehe grid are i.i.d. over time. Then under Algoritfith 1 we have

S.t.
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1) w*(r, V) — w(r) < (1 = 7)gmax Max{Pp max, Chax } Proposition 3: Under Algorithm[1 the following results
+B/V, where B is a constant defined by hold.
BAl1+a?)+3i%N, max {7 i TF max ) @nd 1) The queue backlogd; is uniformly bounded from above
2) wOpI(T) > ’U}*(l, V) - B/V as Jt < Vpb,maxlf,max + 1.
Proof: See AppendiXD. B 2) The amounts of the external transactiarfg and e;,
Remarks: satisfyej ek, = 0. '
o Theorem[lL.1 characterizes an upper bound on the per- Proof: See AppendikT. ]

formance gap away from°P(r). The upper bound has Remarks:
two terms reflecting the ramping constraint and storage, In Propositiof 8.1, the upper bound éf is deterministic

capacity limitation. It indicates that Algorithial 1 pro-  and does not change over time. Moreover, the fact that
vides an asymptotically optimal solution as the ramping  J, is upper bounded implies that the accumulated portion
constraint becomes loose (i.e.,— 1) and the control of unsatisfied flexible loads is upper bounded.

parameterl’ increases (or the storage capacityimax « PropositiorB.2 implies that the aggregator does not buy
increases based on th&,.. expression in[(14)). This is energy from or sell energy to the external energy markets

consistent with our intuition. Using this insight, in order simultaneously.
to minimize the gap to the minimum system cost, we

should setV’ = Vi in Algorithm 1. C. Discussion on Multiple CGs

« Theorenil.2 provides a lower bound of(r) in terms ,
of the special case where the ramping constraint is Ioose,'” the current system model, apart from multiple renewable
ie., r = 1. Since solvingP1 to obtain the minimum generators, we incorporate one conventional generato) (CG

objective valuew®!(r) is difficult, we will use this into the supply side. If there are multiple CGs with the same

lower bound as a benchmark for performance comparisGfia7acteristics, i.e., the same maximum outpi;, ramping

in simulation. The gap between the performance undgpefficientr, and cost functiorC'(-), for mathematical analy-

Algorithm [ and this lower bound serves as an upp&fs: W€ can comb!ne them into one generator. In this case, the

bound on the performance gap between Algorifim 1 af4ent mathematical framework and the performance aisalys

an optimal control algorithm. apply _dlr_e<_:tly with the combined generator. The_ output of
« The ii.d. assumption of the system staigs can be each individual CG can then be obtained by dividing the

relaxed to accommodatg, evolving based on a finite output of the combined generator equally over all individua
state irreducible and aperiodic Markov chain. SimilaP"€S- On the other hand, if these CGs have heterogeneous
conclusions can be shown. which are omitted for brevitgharacteristics and therefore cannot be combined into one,
In the above analysis, the storage capagitya is assumed he proposed algorithm can still be used. In particularhia t
ysIs, g€ capaciiyax original problemP1, we would have constraint§l(7) and (8)

to be fixed, so that the control parametérshould be upper L .
bounded byV,,..,. in (I@) for ensuring the feasibility of the for each individual generator; the total output of the gaimns

. M . H
solution. Alternatively, if the storage capacity can beigiesd, n ](EII]) S Zi:l 95 and the total cost of the generators is
the question is what its value should be in order to achievej=1 Ci(9i.¢). The resultant relaxed problem2 would be -
certain required performance. In the following propositiwe SiMilar to the current one, in which the ramping constraint
provide an answer to this question by giving an upper bouff@ is removed for each individual CG. For the real-time
on the energy state , (hence an upper bound on the minimunzf‘lgor'thm' the formulation of the per-slot optimizationopr

required energy capacity) for an arbitrary positiethat can Ie_m .follows. the current.mathematical fr_amework. Moreove_r,
be greater thaW.. distributed implementation of the algorithm (shown later i

Proposition 2: For anyV > 0, the energy state; ; of the Section[1V) can be developed using the same approach we
i-th storage unit at time slot under Algorithm[1 satisfies PfOPOSE-

it € [Si,mina Si,up] where
IV. DISTRIBUTED IMPLEMENTATION OF REAL-TIME

$iup=V (Pb.max — Ps.min + Df max — D min) ALGORITHM
+ Zi,max — %i,min T Si,min- (15) At each time slot, our proposed algorithm (Algorithin 1) can
Proof: See AppendikE. m Deimplemented by the aggregator centrally. However, the RG

The expression of, ., in (I5) is informative and reveals may not pe wil!ing to rglinquish direct control of storage or
some insights into the dependency of the design of the stordg Offer private information to the aggregator. In addititne
capacity on some system parameters. Fissy, increases co_mputatlonal complexity of cer_1tral|zed control_ Would_\gro
linearly with the control parametéf. Seconds, ., is larger if quickly as the number of RGs increases. In this section, we

the energy prices are more volatile or the marginal degimiatProvide a distributed algorithm for solvirg3, by which each
cost increases fast. Third, the minimusn,, is given by RG and the aggregator can make their own control decisions.

—Z4,min + Lj,max + S¢,min if we havepb,max = Ps,min and o ) ]
D} o =Dl A. Distributed Algorithm Design

Other properties regarding flexible loads and externabtran To facilitate the algorithm development, we first transform
actions are summarized in the following proposition. P3into an equivalent problem. For notational simplicity we
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drop the time index. We define a new optimization vector Ageregator

y&[y1,- -+, yn+4], which relates to the optimization variables update yf T (N + 1 < i < N +4) and "+

of P3 by Yi = T; for 1 <1 < N, YN+1 = lm,yN+2 = /,"‘\\ I" v\\\

—g,yn+3 = —ep, andyy44 = 5. Then, the objective oP3 e S

can be rewritten as the sum of certain functions of eggh R . ¥ T IR
which are denoted by’ (y;) but whose details are omitted for : o

brevity. In addition, we replacg; in the constrains oP3 by tpdate b

a; —y; for 1 <i < N based on constrairfl(6). Consequently;ig. 2

Information flow of distributed implementation.
P3 can be rewritten in a generic forP4 below.
N+4 N4 N Remarks: Following the proof of Theorem 2 in [28], we can
P4: min Z Fi(y:) sty € Yy, Vi, Z Y = Z a; Show that the above updates lead to a worst-case convergence
y =1 =1 =1 rateO(1/k). Compared with the subgradient-based algorithm,
which presents a worst-case convergence €te/\/k), the
proposed distributed algorithm is much faster and thus it we

suited for real-time implementation.

where the constraint sefd);} are derived from constrain{s] (1),
@), and [B)I®), given by [2i min, min{a;, ¥; max}],i €
{1, N} YnvprE[l, by + 1], Y22 [ — min{gmax, g:—1 +
TOmax }s — MaX{gt—1 — TGmax, O}} , Yni32(—00,0], and
Yn142[0, +00). B. Distributed Implementation

Next, we introduce an auxiliary vectaras a copy ofy and ~ Now we discuss the implementation of the proposed dis-
further transformP4 into the following equivalent problem. tributed algorithm in terms of both computation and commu-

N+4 N+4 N nication. In Fig.[2, we depict the information flow between
P5: min Z [Fi(yi) + 1(y: € V)] + 1( Z 2 = Zaz) the aggregator and the RGs for the updatedin (20) land (21)
A i=1 =1 at the (k + 1)-th iteration.
st. y—z=0 (16) Note that the minimization problems ih{20) can be solved

individually at each RG for 1 < i < N, and at the aggregator
where 1(:) is an indicator function that equal8 if the for N 11 < i < N + 4, while the update in[{21) can be
enclosed event is true and infinity otherwise. Through tr&mputed by the aggregator. At the initial iteratin= 0,
above transformations, the optimization probl®®now fits c5ch RGi needs to send its renewable generation amesint
the two-block form of the alternating direction method oflmu g the aggregator. At each iteration, the aggregator sends a
tipliers (ADMM) [18], enabling us to develop the distribdte signalv* to each RGi. Then RGi obtains the updatg’*!
optimization algorithm. and sends it back to the aggregator. We see that, the RGs
_Following a general ADMM approach [18], we assogg not have to release any other private information to the

ciate the equality constrainf (IL6) iRS with dual variables aggregator, and the required information exchange is it
d=[dy, -+, dy+a]. Denoteyy, zF, and df as the respective 1o gne variable in each direction per RG.
variable values at thé-th iteration. Then, based on ADMM,  Note that the minimization problems ii{20) are all strictly
these values are updated as follows. convex and admit a unique (and sometimes closed-form)

o dE o . solution. Furthermore, effectively, only one dual var@ald re-
(yi -z + j) lvi € yz} ) Vi, quired to be updated if_(R1). This is because the transfaomat

nyrl = argmin {Fl(yz) +
from P3 to P4 by introducing the new optimization vectgr

NI

N N v (17) permits all dual variables to share the same updating sireict
+ k + ; ;
d: 2 hence reducing the number of the effective dual updates as
k+1 . k1 J— . . I .
z = argm { Z (2 o Vi )l Z %= Z al} » well as simplifying the calculation.
=1 =1 1=1
(18)
A5 = @b 4 p(yhtt — 2R v (19) V. SIMULATION RESULTS

In this section, we evaluate the proposed real-time algo-

where p > 0 is a penalty parameter, which needs to bgthm and compare it with alternatives using an idealizet! bu
carefully adjusted for good convergence performafhce [18]. representative power grid setup.

After further algebraic manipulation (see Appendikx G), we
can eliminate the vectors andd and simplify the updates , i
(2)-(0) as follows: A. Simulation Setup
e ' Unless otherwise specified, the following parameters dre se
(i —v)lyi € yz'} ,Vi, (20) as default. The length of each time slotimin. The amounts
N of the base loadg,; and the flexible load$;; are uniformly
A =gk 4 <yk+1 _ 1 Z“Z) _ (21) distributed betweers and 25 kWh, and the portion of un-
N +4 = satisfied flexible loads is 0.5. The aggregator is connected
v ko —n . N with N = 30 RGs. For each on-site storage unit, we set the
In (20), we havev;=y; — 7" — - + 57 >_;21 @ Where  maximum discharging and charging amounts tolbe kWh
ykéﬁ Zﬁf{“ y¥ andd* is a scalar updated as i {21). by assuming that the discharging and charging rateGskW

yF 1l = argn;in {Fi(yi) +

NI
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i
@
o

(three-phase, level 1) 29]. Since the model of the degtiada

—*— Proposed
cost function of storage is usually proprietary and unaixd, 5 140 _‘?‘_f;;%‘jybound
in simulation, we setD;(z) = 1022 as an example. The gm
renewable generatiom; ; is uniformly distributed betweef ?:mo
and1.1 kWh. For the CG, we set the generation cost function § 80
to be C(z) = 8z, the maximum outpuy,,.. = 50 kWh, and e
the ramping coefficient = 0.1. The unit buying energy price F X\M
po,¢ 1S uniformly distributed between0 and 12 cents/kWh, pos i it bt il el
which is around the current mid-peak energy price in Ontario 2% % Contol paramerten > 7 O
[30]. The unit selling energy pricgs ; is uniformly distributed Fig. 3. System cost vs. control parametér
betweent and6 cents/kWh, which is slightly below the current 140 e
off-peak energy price in Ontari6_[80]. The control paramete 120 oGreety

V is set tol, s; min = 0, and s; max is given by [I5).

B. Benchmark Algorithms

As discussed in Sectidi |, compared with previous works
(e.g., [4]-18]), this paper is built on a more general syste
model in which all issues listed in Tab[é | are incorporated

Time-averaged system cost

0 0.2 0.4 0.6 0.8 1
into the problem formulation. Therefore, mathematicathe o (Portion of unsatisfied flexible loacs)
problem we study is new and different from all previous one5ig. 4. System cost vs. portion of unsatisfied flexible loads
As a result, the proposed algorithm cannot be directly com- & —=—
pared with the algorithms presented [in [4]2[16]. To overeom 5% D
this difficulty, we employ two alternative algorithms as el 555 - - - Lower bound
as the lower bound on the minimum system cost derived in 50
Theoren{]L.2 for comparison. §45

The first alternative is a greedy algorithm, which only § 40
minimizes the current system cost. The optimization pnoble = SSK
of the greedy algorithm at time slots formulated as follows: 300’""0'2' B ?
. r (Ramping coefficient)
min Wy . . .
uy Fig. 5. System cost vs. ramping coefficien{small loads).
st. 3)@ - @0).

proposed algorithm, the marginal system cost decreasés wit
«, which indicates that the benefit of curtailing loads keeps o
=Sit < Tt < Simax — Sit- falling. We also notice that the greedy algorithm is compbra

The second alternative is suggested mainly to show the ¥fth the proposed algorithm far = 1. But for general cases

fect of the ramping constraint. In particular, at each tinae ©f @, the proposed algorithm is observed to have a noticeable

we solve an optimization problem that is the sam@aexcept advantage. In addition, the proposed algorithm is closéeo t

without the ramping constrainEl(8). Therefore, the resultaMinimum system cost for all cases.

CG output may be infeasible tB1. To maintain feasibility,

whenever the CG output violates the ramping constraint, tiie Effect of Ramping Constraint

aggregator only uses the external energy markets to augme

the CG output. We call it “naive algorithm” below.

oy + A=)l <lms <lps+1s,

Mh Fig.[3 we first consider a scenario with small loads. The
system cost is shown to be non-increasing with respect to
the ramping coefficient. This is easy to understand since a
C. Comparison under Parametet$ and o looser ramping constraint implies less usage of the expensi
In Fig.[3, we depict the time-averaged system cost undexternal energy markets. Furthermore, for all algorithths,
various values of the control paramelér For the proposed system cost cannot be decreased any furtherrfor 0.3.
algorithm, the system cost drops quickly and then remaif&is indicates that the CG supply is already sufficient at
stable as it drops close to the lower bound. This observatitns point, and therefore a further relaxation of the rargpin
demonstrates the efficiency of the algorithm and implie$ theonstraint is unnecessary. We observe that, the proposed
using small storage may be enough to achieve near-optimajorithm outperforms both alternatives for all cases. Elav,
performance. In contrast, the performance of the greedy Hie proposed and naive algorithms coincide whek 0.3.
gorithm barely changes witl'. In particular, the system costThis happens because with sufficient supply and a relaxed
under the greedy algorithm is abou times that under the ramping constraint, the need for augmenting the CG output
proposed algorithm whel > 0.1. in the naive algorithm is small. That is, the control actions
In Fig. [4, we illustrate the effect ofy, the portion of under the naive algorithm are consistent with those under th
unsatisfied flexible loads. As expected, the system cost ggeeposed algorithm in most cases.
down asa rises, since less load is to be satisfied. For the In Fig.[d, we study a more stressed power grid by increasing
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245 the current observations of the system states are employed i

—#— Proposed

2408 o Creedy the algorithm design. In reality, forecasts of the systeatest
‘ = - - Lower bound (e.g., wind generation, loads, and electricity prices)umeally
4 available within a certain time interval. Therefore, it vidbe
interesting to study how to incorporate these forecaststhn
algorithm design and how these forecasts could improve the
algorithm performance. Second, the specific implementatio
of curtailing the flexible loads is not considered in this @ap

° %" Rampingcostivieny How to incentivize individual customers to participate irch

Fig. 6. System cost vs. ramping coefficien{large loads). power balancing service and other demand response programs

is currently open and worth further investigation.

[N
a
T

N ONONN
N @
a_o
i

Time-averaged system cost
N
(=}

APPENDIXA
PROOF OFRELAXATION FROM P1TO P2

Using the energy state update [ (4) we can derive that the
left hand side of constrainf{ll1) equals the following:

T-1

m .1 v Elsir] .. Elsig]
R | A > Blws = fim =i - lim =2 (22)

k (Number of iterations) =0

Fig. 7. Performance gap vs. number of iterations for distetd algorithm. |n m), if s; + is always bounded, i.e., constraink (5) holds, then
o the right hand side of(22) equals zero and thus constfalt (1

the loads. We assume thiat, andi;,; are distributed between s gagisfied. ThereforeP2 is a relaxed problem oP1.

20 and 40 kwh. For the proposed and naive algorithms,

the ramping constraint now has a more noticeable impact. APPENDIXB

First, the system cost under these two algorithms keeps on  UpPER BOUND ON DRIETPLUS-COST FUNCTION

dropping for largerr, and second, the proposed algorithm |, ¢ following lemma, we show that the drift-plus-cost

always outperforms the naive algorithm. In addition, foraim function is upper bounded

r, the naive algorithm is unsatisfactory as its performasce i | emma 1:For all possible decisions and all possible values

close to that of the greedy algorithm. This observation sho; ©,, in each time slot, the drift-plus-cost function is upper
the importance of jointly exploiting the system resourceg, nded as follows:

especially under a stressful system environment. bl —1
A(©,) + VE[w|©;] < B+ J;E w - a‘et]
E. Convergence of Distributed Implementation N Tt

In Fig. [, we exhibit the convergence of the proposed +Z(Si’t — Bi)E[2i4|O¢| + VE[w;|©] (23)
distributed algorithm for a particular system realizatidine i=1
value of the penalty parameter nee_ds to_be adjusted forwhereB is a constant and is given bﬁé%(l +a?) +
good convergence performance and is sét ito our case. For ; .~ (22 2
comparison, we also show the convergence of a subgradiérEl':1 AL mins VimaxS: .

. ) . Proof: Based on the definition of(®,), the difference

algorithm [31]. The vertical axis denotes the gap between
the value of the objective function and the minimum value L(©®;41) — L(©,)
of the objective function ofP5. We see that, the proposed [
algorithm converges fast and exhibits a linear convergence= — [Z(si,tﬂ — Bi)? = (50 — Bi)?

1
[ : . _ g +§(J752+1_J152)'
rate, while the subgradient algorithm is slow and exhibits a i=1

sublinear convergence rate. Moreover, the fast conveggehc (24)
the proposed algorithm is observed in general, and we ofg{lym the iteration o/, in @), (J2, — J?) in @) can be
the curves of the other system realizations for brevity. upper bounded as *
VI. CONCLUSION AND FUTURE WORK J2, - JE <2, (w;lmt - a) +1+a% (25)
fit

We have investigated the problem of power balancing in
a renewable-integrated power grid with storage and flexibfgom the iteration of; ; in @), [(s,i+1 — Bi)* — (si,e — £i)?]
loads. With the objective of minimizing the system cosin (Z4) can be upper bounded as
we have proposed a distributed real-time algorithm, whgch i (Sias1 — Bi)2 — (510 — Bs)?
fast converging and is asymptotically optimal as the sterag ’ ’
capacity increases and the ramping constraint of the CG < 2000 = Bi) + Ml i, 0 - (26)
becomes loose. Applying inequalities[(2b) and (26) t6 (P4), taking the con-

There are several possible directions for the future wortlitional expectation give®,, and adding the teriE[w, |©,]
For example, first, in the proposed real-time algorithmyonlields the upper bound in (R3). [ |
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APPENDIXC Lemma 3:For thei-th storage unit, the energy staig; is
PrROOF oFPrROPOSITION]] bounded within the intervdk; min, Si.max-
Proof: The basis: Fort = 0, we haves;, €

To prove the feasibility under Algorithi 1, we are left to >
show that the long-term constrairfl (2) and the energy stafemin, Si,max| for the initial setup.

constraint[[5) are satisfied. The inductive step: Assume th&t: € [S; min, Si,max)- Then
For constraint[(R), under the Lyapunov optimization framd¥e N€€d t0 Show that ;41 € [si,min, Si,max]. In the following,

work, it suffices to show that the virtual queuk is mean W€ discuss three cases @f;.

rate stable, i.elimp_, o ]E[']:,E’T} =0 (see Section 4.4 N [17]). @) Si,t € [Simin, —Timin + Si,min). Using Lemme[R.1) and

Using Propositiofi]3.1 thaf, is upper bounded we can easily the iteration ofs;, in @), we haves;, 1 = si; +

prove this identity. min{a; ¢, Timax} > Sit > Simin. AlSO, We haves; ;1 <
To prove that constrain}5) is satisfied, we first show Sit + Timax < Simax Where the last inequality is derived

the following lemma which gives a sufficient condition for based on the assumption of; and Vi,ax > 0.

charging or discharging. b) sit € [~Timin + Si,min, Bi — V(Ps,min + Dj 11,)]- Based
Lemma 2: on the iteration in[(4), we have ;1 € [si.t+ i min, Sit +
Zimax|. By the definitions ofs; and V,.x we can derive
that Sit+1 S [Si,mina Si,max]-

C) sit € (Bi—=V(Ps,min+ Dj 1nin)s Si.max]- Using LemmaR.2)
and the iterations if{4), we hawg 11 = Si¢ + T min <
Sit < Simax- AlSO, we haves; ;11 > s; min according to
the assumption of; ; and the definition ofJ;.

1) If si4 < = min + S min, thenz, = min{a; ¢, ¥i max }-
2) If s;t > Bi — V(Ds,min + D;ymin), then:c;t = Ti min-
Proof: To show Lemm&]2.1), we first transfor8 to an
equivalent problenf?3a) by eliminating the variables, ; and
bi ¢, Vi, and the constant terms.

P3a): min [vazl VDi(zi1) + (sie — Bi)wie] + VCl(ge) "
+Vpb,t(es,t + e — g + Zfil Izt) — Vps st — li—ttlm,t A b
’ PPENDIX
st. M@, @), es: >0 PROOF OFTHEOREMI]
Timin < iy < min{a; ¢, i max } (27)

N N 1) Note thatP2 fits the standard Lyapunov optimization
Tip > D i Wit — Dy Tjst — byt + Gt — €t (28) format (see Section 4.3 in_[17] for details of the standard
We solveP3a)by the partitioning method. Specifically, we firstformat)' The idea (.)f showmg performapce of A'go”‘”!_m L
. ) L is to connect Algorithni]l with the algorithm fd?2 that is
fix the variables((x;.:);i: L.t g:, s.) and minimizeP3a) designed under the Lyapunov optimization framework. Befor
over z; .. Since the objective function dP3a)is separable g yap b '

. . . . showing performance of Algorithinl 1, we give two lemmas,
over all variables, an optimal solution af ; can be derived 9 P g g

by the following problem: which will be used later.
y gp ' In the following lemma, we show the existence of a special

min  VD;(zit) + (Sit — Bi)@is + VDor@iy algorithm forP2. Denotew as the optimal system cost B2.
s.t. [27) @8). Lemma 4:For P2, there exists a stationary and randomized

solutionuf that only depends on the system stafgsand at

Under the assumption th i — D = . o . .
P 8Lt < B =V (Pmaxt D max) the same time satisfies the following conditions:

—Zimin + Simin, the objective function above is strictly

decreasing with respect tq ;. Therefore, the optimal solution Elwi] <®, Vt, (29)
of z;; is min{a; +, i max }- s )
i, i,t> i max ) o Elxz.1=0. Vi.t 30
The demonstration of Lemm@l 2.2 is similar to that of [x;’t] l? ;; ’ (30)
Lemmal2.1. We first transforr®3 to an equivalent problem E {M] <a, Wt (31)
P3b) by eliminating the variables,, and b;, Vi, and the Ly

constant terms. To solve the problem, we first fix the var@blg here all expectations are taken over the randomness of the
(%)) j#i, lm.t: g, evt) and minimize P3b) over ;. By system state and the possible randomness of the decisions.

some arrangement, an optimal solution:§ can be derived Proof: The claims above can be derived from Theorem
by the following problem: 4.5 in [17]. In particular, that theorem provides sufficient
. ditions for the existence of a stationary and randomized
min  VD;(x;+) + (it — Bi)xit + Vpsia; conar -
it i@it) + (800 = Bi)ie + Voawi algorithm as described above. It can be checked that these
st. [2D) sufficient conditions are all met in our problem. Therefore,
the conclusion in Lemm@ 4 holds. ]

N N
Tit S Lim it = Dot it ~ I + G+ et By minimizing the upper bound of the drift-plus-cost func-
Whens; ; > 3; — V(ps.min + D, i), the objective function tion (i.e., the right hand side of (3)), the real-time sub-
above is strictly increasing with respectig,. Therefore, the problem forP2 at time slott is given by
optimal solution ofz; ¢ IS ; min. [ | N
Using L_emrr_ld:IZ, we can show that constralit (5) holds bypsz' . in ZVDi(xi,t) F (800 — Bi)ais| +VCi(gy)
mathematical induction. ut P
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J N -
+ Vppiept — Vs iest — l_tlm,t = V[O(Qtfl — Tgmax) = C(Jt) + pst(9t — ge—1 + Tgmax)]
fit < V[O(gt—l — Tgmax) - C(gt)] (35)
s.t. s - » &), : < g
ﬂ) @) @ @) @) m) < V(gtfl — T'Jmax — gt)crlnax (36)
Note thatP3’ is the same a3 except without the ramping < V(1 = 7)gmaxCliax (37)

constraint[(B). Denote the optimal objective value$8f and _ o o
P3as f; and f;, respectively, and denote an optimal solutiowhere the inequality in[(35) holds singe < g:—1 — 7gmax,
of P3’ and P3 as i, and uj, respectively. In the following and the inequality[(36) is derived by the mean value theorem.

lemma, we characterizg* in terms of f;. From [3T), we have
_Lemma 5:At each time slot,f; is bounded ay, < < - i < ft —f < V1~ ) gmaxCl (38)
ft + €, where
N , Combining [(3#) and [(38) vyieldsfF < f. + V(1 —
€=V (1 = 7)gmax max{pp max, Cinax } - 7) Gmax MAX{Pp max, Chax +» Which completes the proof. m
Proof: First, sinceP3 has more restricted constraints than USing LemmakIL14, arid 5, the drift-plus-cost function under
P3', there isf; > . Algorithm [T can be upper bounded below:
Ngxt, we are to_ upper bogng!g — f;. Comparing the A(®,) + VE[w!|©,]
solutiong; of P3 with the solutiong, of P3’ there are three -
possibilities: <Bte+JE oo+l —lme a‘@)t]
1) g7 =G, L
2) g; < g: (less output due to constraifi (8)), and N
3) g; > g§: (more output due to constrairi (8)). +) (sie — Bi)E[7:4]©;] + VE[i;|©]  (39)
For Case 1), it is easy to show that = f,. Thus, we focus =1
on the latter two cases. [lbvt tlpe =l ’ ]
SB—FE—FJJE —_— — ®t
Denote a feasible solution &3 asu; and its corresponding Ly
objective value asf;. Since characterizing the gafi — fi N
directly is challenging, we instead consider the gap- f;. +> (sis — BE[z],10,] + VE[w;|©;]  (40)
For Case 2), whep; < g, the effective constraint aj; in i=1
P3 should bemax{g:—1 — "gmax, 0} < gt < gr—1 + TImax- <B+e+tVw (41)
Set a feasible solution oP3 as o, = [by, X, b, 911 + < B+ e+ V™ (42)

TOmax, €bt + Gt — gt—1 — "Gmax, €s,¢). That is, i, is the same
as u; except the solutions o, ande; ;. Intuitively, we can

interpretu, as that, due to the ramping constraint, the CG ; >
forced to generate less energy, and the aggregator chamse (3D in Lemm_4 and _the fact that is independent
{ ©, and [42) holds sincP2 is a relaxed problem oPl

buy more from the external energy markets to balance pow®
Tlr% gapf, — f is giv):en by 9y pow Taking expectations ove®; on both sides of[(42) and

where [39) is derived by LemmBk 1 ddd[5.](40) holds sk@e
inimizes the right hand side df (39], {41) is derived based o

o summing over € {0,---,T — 1} yields

ft - ft T-1

= V[C(gt—l + Tgmax) — C(G¢) + Pot (Gt — G—1 — TgmaX)} E[L(®r)] — E[L(®0)] +V Z Elw;] < (B +e+ Vwopt)T-
< Vpo,e(Gt — gt—1 — TGmax) (32) =0 (43)

< V(1 = 7)gmaxPb,me
maxtb,max Since L(®7) is non-negative, after some arrangement, from

where the inequality in[(32) holds sin@g > g; 1 + rgmax  [@3) there is

and the functionC(-) is non-decreasing. Frorl (33), the gap _— t

f& — ft is upper bounded by % Z Efuwi] < B+ e+ VwP N E[L(G)o)]. (44)
t=0

.z . - 1% TV
ft - .ft S ft - .ft S V(l - T)gmapr,max- (34)
o Takinglim sup on both sides of{44) and rearranging the terms
The proof for Case 3) is similar as that for Case 2). 'BiveSw* — wOP' < B/V + (1 — 1) gamax MAX{Ph.rmaxs Clos }-
particular, whery; > g, the effective constraint of; in P3 T4 emphasize the dependence of performance andV/, we
should beg;—1 — 7gmax < g¢ < Min{gmax, g—1 + T9max}-  expressv* asw*(r, V). Similarly, we express®Pt aswOPi(r).
Set a feasible solution oP3 as i, = [bs, Xy, lm.¢, gr—1 — 2) The lower bound onu®(r) can be derived by setting

TGmax; €o,t: €5t = Gr + gr—1 = Tgmax]. Thatis, o, is the same . 'y jn Theorentl.1 and recognizing that®(1) < woP(r).
as u; except the solutions oj; ande, ;. Intuitively, we can

interpretu, as that, due to the ramping constraint, the CG is APPENDIX E
forced to generate more energy, and the aggregator chooses

PROOF OFPROPOSITIONZ
to sell more to the external energy markets to balance power.P itior P be sh b h ical induction. Th
The gapf, — f, is given by ropositior 2 can be shown by mathematical induction. The

o proof resembles that of Lemnid 3 where the energy capacity
ft — fi Si,max IS replaced bys; ,p. We omit the proof for brevity.
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APPENDIXF

PROOF OFPROPOSITIONT [

1) We prove the conclusion by mathematical induction.

The basis: Fot = 0, we haveJ; = 0, which is obviously
upper bounded.

The inductive step: Assume thal < Vpp max!fmax + 1.
Then we need to show thaf,y1 < Vppmaxlfmax + 1.
Consider the following two cases of.

a) Ji < Vppmaxlfmax. Based on the update of; in (12),
we have J;;1 < max{J; — a,0} +1 < J, +1 <
Vpb,maxlj',max + 1.

b) Ji € (VPbmaxlf.max, VPbmax! f,max + 1]. FOr this case, we
will show that the unique solution @f, ; to P3is {; + +17 +.
Hence,J;+1 = max{J;—a,0} < J; < VDp maxlfmax+ 1.
To this end, we consider the equivalent probléga). First
fix the variables(x;, g:, ;1) and minimizeP3a)overi,,, ;.
After some arrangement, an optimal solution/gf; can

be derived by the following problem: [

J,
min (Vpb,t - —t)lmyt (o]
L.t Lyt
St Uyt <l <ot + sy, [11]
N
mt = z;(ai,t = Tit) + gt — st [12]
=

When.J; > Vpp maxlf.max, the objective function above is [13]

strictly decreasing. Therefore, the optimal solution,gf;

is R IAT

2) We prove the conclusion by contradiction. Suppose th[;}\f[1
under our algorithm the optimal solutions ef . and e, ;
satisfye; , > e%, > 0. Then, we can show that there is anothg#®]

feasible solutiomy; = |b},x}, 1}, ;. 97, €5, — €5, 0] achiev-
ing a strictly smaller objective value, hence contradigtihe
fact thatu; is optimal The proofs of the other two possible

[16]

cases, i.e.g;, = ey, > 0 ande;, > ey, > 0, are similar, [17]
and are omitted for brevity. (18]
APPENDIX G [19]

SIMPLIFICATION OF (1]])—(1'_9)

Define 7" £ 1o N4k and @ 2 1 SN Gk as the ()
averages of/¥ andd® overi at thek-th iteration, respectively.
By solving the minimization problem if_(18), we can get P11
closed-form solution ot below:
—k
+yk+1 d _g g 25\21 di
p p N +4

Substituting the right hand side ¢f(45) fof ™! in the d-

update [(IP) yields/* ™ = d° + pF! — Z]Q;J:;“), which
indicates that the dual variablé§™ are identical for alli at
each iteration. Therefore, we can safely drop the subsciipt [2°]
df“ and obtain thel-update in[(2l1). Meanwhile, substituting
the right hand side of((45) for¥ in the y-update [(II7) and [26]
using the fact thar]if*1 are identical for al yields [20). Since
the vectorz is not employed in eithey-update ord-update,
it can be eliminated.

k1 _
2

(23]
[24]

[27]

] Y. Guo, M. Pan, Y. Fang, and P. Khargonekar,
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