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Abstract—The operating status of power systems is influenced error between the limiting expected value and the eigemvalu
by growing varieties of factors, resulting from the developng sizes  statistics will be decreasing as a function of data size. For
and complexity of power systems; in this situation, the mode more details on the convergence rate, we refeﬂto [4].

based methods need be revisited. A data-driven method, ase&h M tudi big dat Vi h b hi d
novel alternative, on the other hand, is proposed in this paer: it any studies on big data analyics have been achieve

reveals the correlations between the factors and the systestatus N power Syste_mSDjﬂﬂ- In our pfeViQUS work, a universal
through statistical properties of data. An augmented matrk, as architecture with big data analytics is proposé]}l [8], and

the data source, is the key trick for this method,; it is formulated applied successfully in many fields, such as the anomaly
by two parts: 1) status data as the basic part, and 2) factor d@  etection[[D], and the 3D power map for situational awarenes

as the augmented part. The random matrix theory (RMT) is . . - . m .
applied as the mathematical framework. The linear eigenvale [IE]' This paper is built upon our previous papr [8] in that

statistics (LESs), such as the mean spectral radius (MSR), the augmented matrix contains a remarkable rich statistica
are defined to study data correlations through large random information between two (or more) block matrices. The tigck
matrices. Compared with model-based methods, the proposed the observation that a matrix of block random submatrices ar
method is inspired by a pure statistical approach, withouta prior also a (large) random matrix. This simple observation eetiv

knowledge of operation and interaction mechanism models fo int ti Its that fulin | i
power systems and factors. In general, this method is direcn ~Many INteresting results that are usetul in largeé poweesys

analysis, robust against bad data, universal to various faors,
and applicable for real-time analysis. A case study, basednothe A Contribution

standard IEEE 118-bus system, validates the proposed metHo . .
This paper, based on random matrix theory (RMT), proposes

a data-driven method to reveal the correlations betwedorfac
and the power system status. An augmented matrix, formed
in a certain manner, is presented as the data source. For each
factor, the augmented matrix combines status data (as e ba
. INTRODUCTION part), on one hand, and factor data (as the augmented part),
HE operating status of power systems is affected gn the other hand. According to specific researching pusyose
numerous factors. It is fundamental to understand tiséatus data can be voltages, frequencies, currents andr powe
statistical correlations between those factors and power sflows, while factor data can be loads, distributed genematio
tems. These correlations reveal the causes to disturbaneé¥d speed, temperature, electricity price, etc. Themaithe
and faults [[1]. Nowadays, power systems, large in sizes abig data architecture proposed previoubly [8], we condeskr
complex in structure, are penetrated by more and more \aridume analysis based on the augmented matrix, and compare
elements, such as distributed generations, flexible loaad, findings with the RMT theoretical predictions (i.e. Ring Law
electric vehicles. All these elements lead to strong imtitma, and Marchenko-Pastur Law). During this procedure, the mean
multiple coupling, and high randomness in power systems. ®pectral radius (MSR), a special case of LESs, is used to
this occasion, model-based methods, establishing mesthanindicate data correlations; the kernel density estimafiidE)
models with assumptions and simplifications as essentéal pis used as an assisted indicator.
conditions, are questionable. In general, the proposed method extracts the correlations
Data have become a strategic resource in power systefisthe form of the eigenvalue statistics of measured data. Th
The 4Vs datal[2], with great potential value, are hard tmethod involves no knowledge of topologies and paramefers o
handle by conventional model-based methods. This situatipower systems, and is universal to various factors. Besildes
leads to an emerging paradigm—big data analytics—for poweethod is robust against random fluctuations in power system
systems. Big data analytics aims to work out statisticalfies and measuring errors in data. Furthermore, the proposed
measured by the eigenvalue statistics, without estahlishimethod is practical for both real-time analysis and ofelin
mechanism models. The linear eigenvalue statistics (LEfs) analysis, depending on the split-window.
of central interest in statistic$| [3]. When the matrix size i
sufficiently large, LESs tend to deterministic limiting uek B, Related Work
(expected values). Various forms of the central limit tieaos
are also established in recent statistical papers. Thiststat

Index Terms—correlation analysis, power systems, big data
analytics, augmented matrix, random matrix theory, linear eigen-
value statistics

Current researches on correlation analysis are mainly
model-based methods, for which the mechanism models are
This work was supported by the National Natural Science Hation of e_ssent'al preconditions. These me(_:han.@m .mOdels are-estab
China (Grant No. 51577115, 61571296). lished based on assumptions and simplifications, and used fo
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specific power systems and factors. Lian studied the effectAccording to RMT, when the dimensions of a random
of dynamic load characteristics on the voltage stability ammatrix are sufficiently large, the empirical spectral dimition
sensitivity in power systems, using the P-V and the Q—ESD) of its eigenvalues converges to some theoreticatdjmi
curves|[[11]. In Lian’s method, the power system is equivialesuch as Ring Law and Marchenko-Pastur Law (M-P Law)
to an decentralized system; dynamic loads are approximaﬂ@]. For details on the Ring Law and M-P Law, please
as differential equations. These processes increase the ceefer to Appendix A. It is noted that although the asymptotic
plexion and inaccuracy of the analysis. Parinya proposednvergence in RMT is considered under infinite dimensions,
a stochastic stability index to investigate the small signthe asymptotic results are remarkably accurate for reltiv
stability of power systems incorporating wind pow@ [12]moderate matrix sizes such as tens. This is the very reason
The status space equations and energy functions need toMby RMT can be used in practical world.
rewritten when the grid changes, and the test system is too
small in scale to convince. B. Real-time Data Processing for RMT

Also, some data-driven methods for correlation analyss ar
proposed recently, such as the principal components asalyeo
the artificial neural networks, the support vector macHE.[
Eltigani utilizes artificial neural networks (ANNS) in assing
the transient stabilitm4] In his approach, the powet&ysis
described by an equivalent single machine infinite bus syste
which cannot reflect accurately the actual state of the syst
Moreover, with the scale-up of the system and increase
training samples, the training speed of ANNs progressive
slows down.

Currently, there exists no general standardized definition
r big data. In this paper, we use a mathematical definition
proposed in our previous workl [8]. In a power system, assume
that there arex kinds of measurable status variables. At the
sampllng timet;, measured data of these varlables are formed
as a column vectok(t;) = (&1, %s,...,4,)" [L7]. For a
r|es of time, we can arrange these veciom; chronological
fder to form a matrix as a data souiQefor further analysis

W|th|n 2, we can obtain a raw data matriX € CVxT
arbitrarily by using a split-window. Then, we convert itona
Il. RANDOM MATRIX THEORY AND DATA PROCESSING  standard non-Hermitian matriX with following algorithms.

The frequently used notations in this section are given in _ . . o (%) _
Table.[]. Ti 5= (84,5 — (X)) x e +p(X;) 1)

TABLE I: Notations for RMT and data processing wherex; = (&1, 2i,2,...,%i7), p(Xi) =0, o(x;) =1 for
i=1,2,...,Nandj=1,2,...,T. The matrixX, e CV*" is

Notations Means . _introduced as the singular value equivalentoby
X, x, z, x;; a matrix, a vector, a single value, an entry of a matrix
XH xH transpose of a matrix and a vector S o<
x P X, = VXXHU )

w(x), o2(x) mean, variance fox
Q

the data source
where U € CV*N is a Haar unitary maitrix anX, X =

CchxT N x T dimensional complex space i
N, T the row size and the column size of the split window XX
X a raw data matrix For multiple arbitrarily assigned standard non-Hermitian
§ a Sta_”dafld nO“I'Hefm't_'a”I mtag'(x matricesX (z =1,2,...,L), the matrix product is obtained
w e singular value equivalen
; the matrix product by 7= H Xoi Then Z is converted to the standard matrix
Z the standard matrix product productZ by R
Az eigenvalues ofZ = _ Z; 3)
BY radius of eigenvalue\ on the complex plane Zi = \/Na(i-)
KMSR the mean spectral radius v
the sample covariance matrix wherez; =(Z;1,%i 2, . .. ’gi,N) andz;,=(2;1,2i2,... ,5’1',N)-
For the standard matrix produ, the sample covariance
matrix is obtained by
A. Random Matrix Theory S_LyyH_g7H @)
N

The random matrix theory (RMT), developed from several
different sources in the early 20th century, is one of thehereY = VNZ, ando?(y;) = 02(vV/Nz;) = 1.
statistical foundations for big data analytics. It is usedaa In order to conduct real-time analysis, we use a specific
important mathematical tool in various fields, namely, pty;s split-window to obtain the raw data matrk from 2, namely,
finance, wireless communication engineering, etc. the real-time split-window. The real-time split-windowufr-
Massive data can be naturally represented by large randoates measured data at continuous sampling times, where the
matrices |L_115] The random matrix model is the most generdst sampling time is the current time. In other words, at the
rectangular and complex. In our formulation, we view thie sampling timet;, the raw data mathtl is formed by
variables as space samples of a random network (or graph). Fo 5 N
each variable,pwe maKEpobservations. As a resuI'E, agranr:jhczm X(t:) = &ltiors1), X(timr42), -, X (1) ()
matrix of N x T' is obtained as our data matrix, which is thevhere x(t;) = (&1, %2,...,4n5)" is measured data at the
starting part for our analysis. sampling timet;.



The data processing procedure above is organized as fol-  TABLE Il: Notations for correlation analysis

lowing steps. The standard matrix prodtNZcis calculated for
Ring Law; the sample covariance mati$xis calculated for
M-P Law. For simplicity, we sef.=1 in the matrix product
Z.

Notations  Means

the number of status variables of power systems
the number of influential factors in power systems
the study duration

the sampling time

the status matrix

a factor vector

the matrix duplicatingc for k times

the noise matrix

the magnitude of white noise

the factor matrix

the signal-to noise ratio

the augmented matrix

Steps of Data Processing for Ring Law

1) At the sampling time;, obtain the raw data matriX(¢;) € CV*T
from the data sourc€.

2) ConvertX(t;) into the standard non-Hermitian matri(t;).
3) Calculate the singular value equivaléXt, (t;) of X(t;).

4) Form the matrix producZ(t;) = X, (t;).

5) ConvertZ(t;) into the standard matrix produ@(t;).

6) Calculate the sample covariance maitt;) = Z(t;)Z(t;)™

®
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Ill. A CORRELATION ANALYSIS METHOD FORPOWER
SYSTEMS BASED ONAUGMENTED MATRICES

C. Linear Eigenvalue Statistics and Kernel Density Estimation The frequently used notations are given in Tafle.Il

b L|_near E|genvalue Stat|s_t|c_s . .. A. Augmented Matrix Method for Power Systems
The linear eigenvalue statistics (LESs), major focusehig t ) .
paper, indicate the statistical characteristics of lamedom  Different factors have different effects on power systems

matrices. The linear eigenvalue statistic of a random matf]) their own ways. According to big data analytics, the rela-
X is defined as|IJl8] tionships between factors and power systems can be revealed

. by data correlations. Based on RMT, it is feasible to extract
correlations from a data source including both status dada a
Na(p) = Z (i) ) factors data, namely, augmented matrix.
=t In a power system, assume that thereargypes of status
where); (i=1,2,...,n) are eigenvalues dX, andy(-) is a variables andn types of influential factors, both of which are
test function. measurable. In a study period(i=1, 2,.. ., t), measured data
The mean spectral radius (MSR), a special case of LES$,each factor are formed as a row vectgr € C!*! (j =
is used to reflect the eigenvalue distribution of the stashdat,2,...,m) (i.e. factor vector), and measured data of status
matrix productZ; it is defined as the mean distribution radiugariables for the power system are formed as a md#ix

of eigenvalues, formulated by C™*t (i.e. status matrix).
N In order to balance the proportion of factors data and status
R 1 Z s | ) data in th_e data source, we form a faqtor matrix for. each facto
N Zi vector. First, for the factot;, we duplicate it fork times to

i=1 .
' construct a matriXD;, formulated by

where); ; (i=1,2,...,N) are eigenvalues o, and|\z .| is

the radius of the eigenvalue, , on the complex plane. Based EJ

on MSR, we define the variance of spectral radius (VSR) as D, = / (G=1,2,...,m) (10)
a further reflection of eigenvalue distribution; it refle¢te :

dispersion degree of the eigenvaluesZpfformulated by Ci s

1 N wherek has the similar size with. Then, we introduce white
2 . . . .
KVSR = 37 E (IAz.;| — £msr) (8) noise intoD; to reduce the correlations among its own rows.
i=1 The noise matrix iSE = {e; ;}ix¢, Wheree, ; is random

Note that since these complex eigenvalugg. (i = variable according with the normal distribution. Finaltire
K3

1,2,...,N) are highly correlated random variables (each factor matrix is formulated by

a complicated matrix function of random matricXs (i = C,=D;+m. ;E (j=12,...,m) (11)

1,2,..., L), kmsr and kysr are both random variables. . . ) )
2) Kernel Density Estimation: where m. ; is the magnitude of white noise for the factor

The kernel density estimation (KDE) depicts the ESD (Wat_riij_. The signal-to-noise ratio (SNR) of the factor matrix
the sample covariance matri by following PDF C, is defined as
Tr(D, D)
As — As.i e

N P —
.fKDE(/\S) = ﬁ ZK(T) (9) Pi TI"(EEH) X mz_’j
1=1

(j=1,2,....,m) (12)

where Tr(-) is the trace of the matrix. The value gf;,
whereXs; (i=1,2,...N) are eigenvalues o8, andK(-) is requiring careful selections, will affect the performanck
the kernel function for the bandwidth parameter correlation analysis. In this paper, we set the same SNR for



all factors, to ensure the consistency of correlation aigly _Steps of Correlation Analysis for Power Systemst
- . I nX
Therefore, for eaciDj (j =1,2,..., m), the value Ofme.j is i) Ien(ca1 iu?y p(lerlgd, form)the status matike C and factor vectors
J J=L44...,m).

calculated by 2) At each sampling time, B

7 2a) acquire the standard matrix~ prod&trom B.

Tr(Dij ) ) 2b) calculaterysg and kysg of Z.
Tr(EEH) < (J =L2,... m) (13) 3) Meanwhile, for each factoe;, construct the augmented matri;.
P 4) At each sampling time,

For each factor;, we can construct an augmented matrix j‘g) aclq“ilret the Sta”‘]('ja'd matf”’%p“’d‘z:mm Aj:
for parallel correlation analysis, formulated by ) calculaterysg and rysg of Z. -
4c) acquire the sample covariance matiXrom Z.
B 4d) calculatefkpe of S and draw thefkpe — A curve.
A= (j =1,2,..., m) (24) 5) Draw kumsr—t curves of the status matrix and the augmented matrix
’ C j for each factor.

Me,j =

B. Status Data and Factor Data S _
1) Status Variables of Power Systerm simplifications. Compared with model-based methods, tbe pr

The operating status of power svstems can be estima%ogsed method is data-driven, and universal for variousfact
P 9 P y .Meanwhile, the proposed method has strong robustnesssagain

bglt;aggui tr);g(natss jngtatgse\r/afﬁ?bgesbﬁgcgr amsol;ree?uegé:l?s dom fluctuations in systems and measuring errors in data.
voltages, cu pow WS. ypes g sides, the method is practical for real-time analysisdigg

these status variables can form the status mddixn this o L : .
. sPecmc split-window. The advantages above will be vetifie
paper, we use magnitudes of bus voltages as status dataﬁoCase studies

the following considerations:
a) The voltage magnitude is one of the most basic paramaters i

power systems. It is measurable and available on every btis wi IV. CASE STUDIES
common measuring devices. Therefore, magnitudes of buaged
have considerable redundancy and accuracy for correlatiatysis.
b) The voltage magnitude does not involve the topology of grow
systems. Therefore, we can conduct analysis withoutatharior
knowledge of network structures and parameters.

The proposed method is tested with simulated data in the
standard IEEE 118-bus system. Detailed information of the
system is referred to the casell8.m in Matpower package
and Matpower 4.1 User’s Manumw]. In the simulations, we
regard the active load of each bus as a factor; each change of
a factor is considered as a signal.
eolFour cases are designed in different scenarios to validate
the effectiveness of the proposed method. In case 1, case 2
and case 3, three kinds of signals are added into singlerfacto
to affect the operating status of the test system. In case 4,
multiple factors with different kinds of signal produce exfts
on the system status.

Since data normalization is used during data processin ’In order to determine the causes fo the signal§, simulatgd
factor data and status data in the augmented matrix can h R of each factor are used to conduct correlation analysis
It is a parallel analysis procedure, and we can only pay our

different units and magnitudes. In consideration of ddfer attention to potential factors. Here, we just illustrate tasults
sampling frequencies for status data and factor data, ibean®"’ : ’
ping 1req the load of bus 117 and bus 54 to show the performance

assumed that data with lower sampling frequency are the sa

values in a sampling interval. of the proposed method. ) )
Assume that status data are sampled at each time interval,

_ _ while factor data are sampled every 50 time intervals. Besid
C. Correlation Analysis Method and Its Advantages white noise is introduced into both status data and factta da
Based on RMT and the augmented matrix method, a céf- represent random fluctuations and measuring errors.
relation analysis method for power systems is designed agor all cases, let =118,¢=1000, N =118, T =240, k=
. IaT— _
following steps. 3N =359, p=500.
Step 2) is conducted for the anomaly detection, where the

kmsr — t curve of the status matrix discovers the signal . .
in power systems[tg]. Step 3)-4), analyzing the correla;tior/;i' Correlation Analysis for Single Factor
between the system status and each factor, aim to determin&) Case 1- Step signal in the load of bus 117:

2) Factors in Power Systems:
The operating status of power systems is mainly affect
by electrical factors, climatic factors and economic fasto
a) Electrical factors—nodal loads and distributed gernmraf etc.
b) Climatic factors—temperature, wind speed, light inign®tc.
¢) Economic factors—electricity price, gross domesticdpiai, etc.

the causes to the signals. During the analysis procedyks, In case 1, assumed signals for each factor are shown in
and fkpe are calculated as correlation indicators. Tab.[IIl. The correlation analysis results are shown in Bg.

The proposed correlation analysis method is driven Byis noted that the correlation analysis beginstat= 240,
measured data, and based on statistical theories. Thedunmecebecause the real-time split-window ne€fis= 240 times of
involves no mechanism models for power systems and factosampling data, including the present sampling and 239 times
it eliminates the interference brought by assumptions anod historical sampling.



TABLE I1I: Assumed Signals for Each Factor in Case 1

- Eigenvalue - - Inner Radius—— MSR - Eigenvalue - - Inner Radius —— MSR

Sampling Time=500

Sampling Time=620

Bus Sampling Time Active Load(MW) 1

ts =1~ 500 20.0
17 ts = 501 ~ 1000 120.0 o -
Others  ¢s =1~ 1000 Unchanged

Imaginary Axis
o
Imaginary Axis
o

In Fig. [64, based on thewsgr —t curve, we can detect S\
signals based on analyses below: o T\
I. During the sampling times = 240 ~ 500, kumsr Of status matrix
remains constant around 0.86, between the outer and inrobe;di T L
means the system status is normal without signals. E o e : N o5 o 05 !

Il. At t; = 501, kusr Starts to decline (from 0.8638 to 0.7002), (@) £ = 500 (b) te = 620

and deviates from the predicted ring (the inner radius i430Y, it =T =T

means there exist signals that change the system status. Fig. 1: Eigenvalue distributions of standard matrix prastio
lll. kusr increases back to 0.8662 @at= 740 and remains constant -5ce 1: the data source is the status matrix.

inside the ring afterwards.

First, we can tell that the signals occur righttat= 501. . |  Samping Tine=s00 ‘ . | . Sampling Time=620
Moreover, in our method, the impact of a signal to MSR will e e A )
delay for a duration of’, due to historical sampling datainthe . - " .
real-time split-window. In Fig[_8a, the signal area (U-shdp o
curve) ists = 501 ~ 740, so we can calculate the actual
duration of signals ag40—501+1—T = 0. Therefore, we N
can speculate that there are instantaneous signals otgatri o5 il
ts="501. ncertl : )

In order to find out the causes to above signals, we conduc == 5~ e i
correlation analysis for each factor. In Fig.]6b, when we
augment load data of bus 11%usg of the signal area
(ts = 501 ~ 740) decreases dramatically (from 0.7812 té19. 2: Eigenvalue distributions of standard matrix praguc
0.2998), below the inner circle (0.5123); it indicates 8tjo in case 1: the data source is the augmented matrix, including
correlations between the load of bus 117 and the systé@qd data of bus 117.
status. On the other hand, in Fig] 66,sg remains inside the
ring throughout the signal area; it indicates poor coriehet
between the load of bus 54 and the system status. I RSN

Besides, we can also determine the correlationgdpy — A N
curves in Fig[¥ and Fidll5. In Fifl 4, & = 620 (inside the e
signal area), when we augment load data of bus Ik@e
deviates fromfyp; it indicates strong correlations between the S\
load of bus 117 and the system status. However, in [Big. 5, «s = N0 -
fxoe with the load of bus 54 accords witfyp att, = 620; T TR S
it indicates poor correlations between the load of bus 54 anc +—————"—= T s i
the system status. e e

As a result, we deduce that the load of bus 117, but not
bus 54, is the cause for instantaneous signatsat;01. This Fig. 3: Eigenvalue distributions of standard matrix praguc
analysis result accords with assumed signals in[Tab. Ifadh in case 1: the data source is the augmented matrix, including
we only add signals to the active load of bus 117. Specificallpad data of bus 54.
the active load of bus 117 increases from 20 MW to 120 MW
right at¢, =501.

2) Case 2-Peak and dip signals in the load of bus 117: In Fig.[7a, based on theysg — ¢ curve, we can detect

In case 2, assumed signals for each factor are shownsignals below:

Tab.[IM. The correlation analysis results are shown in Hig. 7 | From¢, =301 to ¢, =590, the smsr—t curve is U-shaped
beyond the predict ring. It indicates that the signals oatur

TABLE 1V: Assumed Signals for Each Factor in Case 2 t,=301, and the signal area is =301 ~590.

Il. From t, = 650 to t, = 940, the kuysr — t curve is U-

Imaginary Axis
o
Imaginary Axis
o

@) ts = 500 (b) ts = 620

[ Eigenvalue = = Inner Radius—— MSR - Eigenvalue - - Inner Radius —— MSR

Sampling Time=50

Sampling Time=620

ol

Imaginary Axis
Imaginary Axis
o

@) ts = 500 (b) ts = 620

Bus Sampling Time Active Load(MW)

ts = 1 ~ 300 60.0 shaped beyond the predict ring. It indicates that the sgnal
ts = 301 ~ 350 120.0 occur att; =650, and the signal area is =650 ~ 940.
117 t5 =351 ~ 650 60.0 . . .
te = 651 ~ 700 20.0 In consideration of the delayed effect of a signal to MSR,
ts = 701 ~ 1000 60.0 we can calculate actual durations of above signal$%s—

Others ¢, =1~ 1000 Unchanged 301+1—7 =50 and 940 —651+1—T = 50. Therefore, we




- Outer Radius = = = Inner Radius MSR '=-='VSR

- Outer Radius = = = Inner Radius

MSR '=-= VSR

- Outer Radius = = = Inner Radius MSR '=-='VSR

x:200
Y- 08601

X200 x50 e x 20 X740
Y-07805 Y.oze12 v Y7803 v-o7a27 Y-078
os ‘ ‘ os L. LIS B . : el
SRS B R IO i i
| i) x:s01 X739
0.6 0.6 [ 0.6 .
X620
1% - 0 g s s 1% o 21T
u xem w o sor 4o
Y-0s123 Y-0403 V05123
0.4 0.4 H 0.4
.
x.620
V0299
0.2 0.21 0.2
x620 . X620
. L] v 500 ¥:005506 | 740 x 500 006709 [ 74
ket A e (400 /001067 v min menrera V00202 jareem WS s Y 002044
R Ml ; ] o B e 1 ; e ] onpeimae T ; e e
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sampling Time Sampling Time Sampling Time

(a) Data source: status matrix
data of bus 117

(b) Data source: augmented matrix including l@@dData source: augmented matrix including load

data of bus 54

Fig. 6: kmsr — t curves of standard matrix products in Case 1

Sampling Time=500

0 I I I
[¢] 0.5 15

Eigenvalue

[N
[Ny

Sampling Time=620

15
Eigenvalue

ts=301~351 andt; =651 ~701.

In Fig.[7B, when we augment load data of bus 14¢sr
inside two signal areas declines remarkably and deviates fr
the predicted ring (from 0.7858 to 0.3538 and from 0.7830 to
0.3846); it indicates strong correlations between the load
bus 117 and the system status. On the other hand, il Big. 7c,
when we augment load data of bus Bfsr inside both signal
areas remains in the predicted ring throughout the sigrea;ar
it indicates poor correlations between the load of bus 54 and
the system status. As a result, we deduce that the load of bus
117, but not bus 54, is the cause for continuous signals glurin
ts=301~351 andt;=651~701.

Above analyses accord with assumed signals in [Tab. IV. In
this case, we only add signals to the active load of bus 117.
To be specific, the active load of bus 117 has a peak during
ts=301~351, and a dip durings=651~701.

Fig. 4: kkpe — A curves of standard matrix products in case 1: 3) Case 3-gradual signals in the load of bus 54:
the data source is the augmented matrix, including load datan case 3, assumed signals for each factor are shown in

of bus 117

Sampling Time=500

0 I I I
15

Eigenvalue

N

Sampling Time=620
15
—-P Law
——PDF

12

0 I I I
0 0.5 15

Eigenvalue

25 3

2

[N

Tab.[M. The correlation analysis results are shown in [Hig. 8.

TABLE V: Assumed Signals for Each Factor in Case 3

Bus Sampling Time Active Load(MW)
ts =1~ 300 113.0
ts = 301 ~ 350 135.6
ts = 351 ~ 400 158.2
ts = 401 ~ 450 180.8
54 ts = 451 ~ 500 203.4
ts = 501 ~ 550 226.0
ts = 551 ~ 600 248.6
ts = 601 ~ 650 271.2
ts = 651 ~ 700 293.8
ts = 701 ~ 1000 316.4

Others  ts =1 ~ 1000 Unchanged

In Fig.[84, the U-shaped curve is fram= 301 to ¢, = 940.
It indicates signals occurring @t =301. In consideration of
the delayed effect of a signal to MSR, we can calculate actual

Fig. 5: kkoe — A curves of standard matrix products in case Hurations of above signals 880-301+1-T'=400. Therefore,
the data source is the augmented matrix, including load d&¥g& can speculate that there are continuous signals ocgurrin

of bus 54

att,;=301~701.

In Fig.[8d, when we augment load data of bus Bgsr
inside the signal area declines remarkably and deviates fro
the predicted ring (from 0.7803 to 0.4227); it indicate® sty

can speculate that there are continuous signals occurtingcarrelations between the load of bus 54 and the system status



On the other hand, in Fi§._Bb, when we augment load data ofFirst, we can observe thatysg —t curves in case 4 are
bus 117,xusr remains in the predicted ring throughout th@pproximately superposed by corresponding curves in case 2
signal area; it indicates poor correlations between thd fwfa and case 3. In fact, the assumed signals in case 4 are combined
bus 117 and the system status. As a result, we deduce thatvifitt those in case 2 and case 3. In conclusion, there should
load of bus 54, but not bus 117, is the cause for continuobie some relationships between phenomena in power systems,
signals duringts =301~ 701. and LES in mathematics.

Above analyses is in accordance with assumed signals irSecondly, when data become more correlated, the VSR
Tab.[M. In this case, we only add signals to the active load fcreases as well. This phenomenon can be explained based
bus 54. In detail, the active load of bus 54 increase gragluatin the eigenvalue distributions of standard matrix prosluct

duringt; =301~ 701. In Fig.[13d, Fig[2h and Fid._Ba, at = 500, the eigenvalues
distribute between the outer circle and the inner circley-co
B. Correlation Analysis for Multiple Factors forming to the Ring Law; it indicates poor correlations irtala

In case 4, assumed signals for each factor are shownDlhIrlng the signal area (such as—=620), when we augment

Tab.[Vl. The correlation analysis results are shown in i ata of correlated factors, all the eigenvalues gather ratsva
— y 9 the circle center, shown in Fig._Rbh. When we augment data of

TABLE VI: Assumed Signals for Each Factor in Case 4 irrelevant factors, only some of the eigenvalues gatheatds
' the circle center, shown in Fif. 3b.

Bus Sampling Time  Active Load(MW) Thirdly, to represent random fluctuations in the system and
ts =1~ 300 60.0 measuring errors in sampling data, white noise is introduce
117 iz _ gg} N 228 1620%0 into both status data and factor data throughout the simulat
ts = 651 ~ 700 20.0 Observations in case studies indicate thaisr does not
ts = 701 ~ 1000 60.0 change dramatically in a system dominated by white noise.
t:s:géleggo gg:g Therefore xusr is a reliable indicator to identify signals from
ts = 351 ~ 400 158.2 random fluctuations and measuring errors.
ts = 401 ~ 450 180.8
54 ts = 451 ~ 500 203.4
ts = 501 ~ 550 226.0 V. CONCLUSION
ts = 551 ~ 600 248.6
ts = 601 ~ 650 271.2 This paper proposes a data-driven method to reveal the
tt:::760511: . 258 correlations between factors and the power system statss. F
Others . = 1 ~ 1000 Unchanged for each factor, we construct an augmented matrix as a data

source, combining status data and factors data reasonably.

Secondly, to conduct real-time analysis, we use a specifte sp

. window to obtain the raw data matrix at each sampling time.

are detected: : . .
Then, we conduct correlation analysis for the raw data matri

I. Two U-shaped curves are found during= 301 ~ 590 .
andt, — 651 ~ 940. Referring to the analysis in case 2, itbased on random matrix theory (RMT). The mean spectral

indicates two continous signals duriig = 301 ~ 351 and _rad|us (MSR), @ kind of Im_ear §|g§nvalge statistics (LESS.)
¢ 651701 is calculated as a correlation indicator; the kernel dgnsit

I. The Third curve are found during, = 301 ~ 940. estlmat|_on (KDE) is used as a aSS|§ted_ tool to reveal d.ata

. L L . _correlations. The proposed method is direct, robust agains
Referring to the analysis in case 3, it indicates contmuo%s . - :

signals duringt, =301~ 700, ad data and unlversgl to varieties of factors. Case stgd|es

During the first two signal areag.(= 301 ~ 590 and, demonstrate the effectiveness of the method for both single

651 ~ 940), when we augment the load of bus 1lfsr factor and multiple factors.

deviates from Ring Law, shown in Fif.19b. During the third Th? t_currentlwc_)rIL IS gnly SMEI)_re'\I}Imlrrl]ary eprorauoE of
signal areaf{, — 301 ~ 940), when we augment the load ofcorrelation analysis based on . Much more researches are

bus 54. the deviation of is shown in Figldc. As a result needed along this direction. The degree of correlationslsiee
we can' achieve foIIowinMgSF;peculationS' ' "to be further quantified. For example, in a study period, we

I. The load of bus 117 affects the system status duting can use the integration of MSR to quantify the correlatlons._
301~351 andt, — 651 ~701. Besides, we can use data of subarea to construct the basic

Il. The load of bus 54 affects the system status dufing matrix; in this way we can fix the data missing problems.
301~ 700. Furthermore, the proposed method can be used to reveal

These speculations are validated by TaBI8. V. the corrglqtion be_tween any two typgs of variables, as long
as combining their data reasonably in the data source. Our

) ) ) ) method can be applied for specific issues in power systems,
C. More Discussions in Details such as voltage stability, weak buses identification, atabr

Through above four cases, the effectiveness and perfand fault diagnosis. Combinations with model-based method
mance of the correlation analysis method is verified undand data processing methods will improve the performance,
different scenarios. However, there are still some intargs and uncover more connections between electrical phenomena
details left. and statistical characteristics.

Based on thexsr—t curve in Fig[9h, two kinds of signals
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APPENDIXA
RANDOM MATRIX THEORY

A. Ring Law

matrix product as

(b) Data source: augmented matrix including l@dData source: augmented matrix including load

(16)

Let X e C¥*T be a standard non-Hermitian random mat”XNhereXu ; is the singular value equivalent ;. The matrix
whose entries are independent identically distributedd(. nroductZ can be converted to the standard matrix product
variables with Z, whoseo?(%;) = & in each row. According to Ring Law
[@ |ﬂ] the ESD ofZ converges almost surely to the limit
with a probability density function (PDF) given by

1(E) = 0,02(%) =1 LN)  (15)

2 L
ﬂ'cLl/\Z| g (1_0)_2 S|/\Z|§1
0 otherwise

Where;(i = (ffi_rl,giyg,. .
Hermitian random matriceX, (i=1,2,...,

57ng)' For multiple standard non-

L), we define the (17

frL(Az) = {
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complex plane of eigenvalues, the inner circle radiyd-is;) = “3d power-map for smart grids—an integration of high-

and the outer circle radius is unity. dimensional analysis and visualizatiorai’Xiv preprint
arXiv:1503.00463, 2015.
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B. Marchenko-Pastur Law stability and sensitivity analysis considering dynamic
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