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Abstract—The operating status of power systems is influenced
by growing varieties of factors, resulting from the developing sizes
and complexity of power systems; in this situation, the model-
based methods need be revisited. A data-driven method, as the
novel alternative, on the other hand, is proposed in this paper: it
reveals the correlations between the factors and the systemstatus
through statistical properties of data. An augmented matrix, as
the data source, is the key trick for this method; it is formulated
by two parts: 1) status data as the basic part, and 2) factor data
as the augmented part. The random matrix theory (RMT) is
applied as the mathematical framework. The linear eigenvalue
statistics (LESs), such as the mean spectral radius (MSR),
are defined to study data correlations through large random
matrices. Compared with model-based methods, the proposed
method is inspired by a pure statistical approach, withouta prior
knowledge of operation and interaction mechanism models for
power systems and factors. In general, this method is directin
analysis, robust against bad data, universal to various factors,
and applicable for real-time analysis. A case study, based on the
standard IEEE 118-bus system, validates the proposed method.

Index Terms—correlation analysis, power systems, big data
analytics, augmented matrix, random matrix theory, linear eigen-
value statistics

I. I NTRODUCTION

T HE operating status of power systems is affected by
numerous factors. It is fundamental to understand the

statistical correlations between those factors and power sys-
tems. These correlations reveal the causes to disturbances
and faults [1]. Nowadays, power systems, large in sizes and
complex in structure, are penetrated by more and more various
elements, such as distributed generations, flexible loads,and
electric vehicles. All these elements lead to strong interaction,
multiple coupling, and high randomness in power systems. On
this occasion, model-based methods, establishing mechanism
models with assumptions and simplifications as essential pre-
conditions, are questionable.

Data have become a strategic resource in power systems.
The 4Vs data [2], with great potential value, are hard to
handle by conventional model-based methods. This situation
leads to an emerging paradigm—big data analytics—for power
systems. Big data analytics aims to work out statistical features
measured by the eigenvalue statistics, without establishing
mechanism models. The linear eigenvalue statistics (LESs)are
of central interest in statistics [3]. When the matrix size is
sufficiently large, LESs tend to deterministic limiting values
(expected values). Various forms of the central limit theorems
are also established in recent statistical papers. The statistical
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error between the limiting expected value and the eigenvalue
statistics will be decreasing as a function of data size. For
more details on the convergence rate, we refer to [4].

Many studies on big data analytics have been achieved
in power systems [5–7]. In our previous work, a universal
architecture with big data analytics is proposed [8], and
applied successfully in many fields, such as the anomaly
detection [9], and the 3D power map for situational awareness
[10]. This paper is built upon our previous paper [8] in that
the augmented matrix contains a remarkable rich statistical
information between two (or more) block matrices. The trickis
the observation that a matrix of block random submatrices are
also a (large) random matrix. This simple observation delivers
many interesting results that are useful in large power systems.

A. Contribution

This paper, based on random matrix theory (RMT), proposes
a data-driven method to reveal the correlations between factors
and the power system status. An augmented matrix, formed
in a certain manner, is presented as the data source. For each
factor, the augmented matrix combines status data (as the basic
part), on one hand, and factor data (as the augmented part),
on the other hand. According to specific researching purposes,
status data can be voltages, frequencies, currents and power
flows, while factor data can be loads, distributed generation,
wind speed, temperature, electricity price, etc. Then, using the
big data architecture proposed previously [8], we conduct real-
time analysis based on the augmented matrix, and compare
findings with the RMT theoretical predictions (i.e. Ring Law
and Marchenko-Pastur Law). During this procedure, the mean
spectral radius (MSR), a special case of LESs, is used to
indicate data correlations; the kernel density estimation(KDE)
is used as an assisted indicator.

In general, the proposed method extracts the correlations
in the form of the eigenvalue statistics of measured data. The
method involves no knowledge of topologies and parameters of
power systems, and is universal to various factors. Besides, the
method is robust against random fluctuations in power systems
and measuring errors in data. Furthermore, the proposed
method is practical for both real-time analysis and off-line
analysis, depending on the split-window.

B. Related Work

Current researches on correlation analysis are mainly
model-based methods, for which the mechanism models are
essential preconditions. These mechanism models are estab-
lished based on assumptions and simplifications, and used for
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specific power systems and factors. Lian studied the effect
of dynamic load characteristics on the voltage stability and
sensitivity in power systems, using the P–V and the Q–V
curves [11]. In Lian’s method, the power system is equivalent
to an decentralized system; dynamic loads are approximated
as differential equations. These processes increase the com-
plexion and inaccuracy of the analysis. Parinya proposed
a stochastic stability index to investigate the small signal
stability of power systems incorporating wind power [12].
The status space equations and energy functions need to be
rewritten when the grid changes, and the test system is too
small in scale to convince.

Also, some data-driven methods for correlation analysis are
proposed recently, such as the principal components analysis,
the artificial neural networks, the support vector machine [13].
Eltigani utilizes artificial neural networks (ANNs) in assessing
the transient stability [14]. In his approach, the power system is
described by an equivalent single machine infinite bus system,
which cannot reflect accurately the actual state of the system.
Moreover, with the scale-up of the system and increase of
training samples, the training speed of ANNs progressively
slows down.

II. RANDOM MATRIX THEORY AND DATA PROCESSING

The frequently used notations in this section are given in
Table. I.

TABLE I: Notations for RMT and data processing

Notations Means
X, x, x, xi,j a matrix, a vector, a single value, an entry of a matrix
XH , xH transpose of a matrix and a vector
µ(x), σ2(x) mean, variance forx
Ω the data source
CN×T N × T dimensional complex space
N , T the row size and the column size of the split window
X̂ a raw data matrix
X̃ a standard non-Hermitian matrix
Xu the singular value equivalent ofX
Ẑ the matrix product
Z̃ the standard matrix product
λZ eigenvalues ofZ
|λ| radius of eigenvalueλ on the complex plane
κMSR the mean spectral radius
S the sample covariance matrix

A. Random Matrix Theory

The random matrix theory (RMT), developed from several
different sources in the early 20th century, is one of the
statistical foundations for big data analytics. It is used as an
important mathematical tool in various fields, namely, physics,
finance, wireless communication engineering, etc.

Massive data can be naturally represented by large random
matrices [15]. The random matrix model is the most general:
rectangular and complex. In our formulation, we view theN

variables as space samples of a random network (or graph). For
each variable, we makeT observations. As a result, a random
matrix of N × T is obtained as our data matrix, which is the
starting part for our analysis.

According to RMT, when the dimensions of a random
matrix are sufficiently large, the empirical spectral distribution
(ESD) of its eigenvalues converges to some theoretical limits,
such as Ring Law and Marchenko-Pastur Law (M-P Law)
[16]. For details on the Ring Law and M-P Law, please
refer to Appendix A. It is noted that although the asymptotic
convergence in RMT is considered under infinite dimensions,
the asymptotic results are remarkably accurate for relatively
moderate matrix sizes such as tens. This is the very reason
why RMT can be used in practical world.

B. Real-time Data Processing for RMT

Currently, there exists no general standardized definition
for big data. In this paper, we use a mathematical definition
proposed in our previous work [8]. In a power system, assume
that there aren kinds of measurable status variables. At the
sampling timeti, measured data of these variables are formed
as a column vector̂x(ti) = (x̂1, x̂2, . . . , x̂n)

H [17]. For a
series of time, we can arrange these vectorsx̂ in chronological
order to form a matrix as a data sourceΩ for further analysis
(x̂ ∈ Ω).

Within Ω, we can obtain a raw data matrix̂X ∈ CN×T

arbitrarily by using a split-window. Then, we convert it into a
standard non-Hermitian matrix̃X with following algorithms.

x̃i,j=(x̂i,j−µ(x̂i))×
σ(x̃i)

σ(x̂i)
+µ(x̃i) (1)

where x̂i = (x̂i,1, x̂i,2, . . . , x̂i,T ), µ(x̃i) = 0, σ(x̃i) = 1 for
i=1, 2,. . ., N and j=1, 2,. . ., T . The matrixX̃u ∈CN×N is
introduced as the singular value equivalent ofX̃ by

X̃u =
√
X̃X̃HU (2)

whereU ∈ CN×N is a Haar unitary matrix and̃XuX̃
H
u =

X̃X̃H .
For multiple arbitrarily assigned standard non-Hermitian

matricesX̃i (i=1, 2, . . . , L), the matrix product is obtained
by Ẑ=

∏L

i=1
X̃u,i. Then,Ẑ is converted to the standard matrix

productZ̃ by

z̃i =
ẑi√

Nσ(ẑi)
(3)

wherez̃i=(z̃i,1, z̃i,2, . . . , z̃i,N) and ẑi=(ẑi,1, ẑi,2, . . . , ẑi,N).
For the standard matrix product̃Z, the sample covariance

matrix is obtained by

S=
1

N
YYH = Z̃Z̃H (4)

whereY =
√
N Z̃, andσ2(yi) = σ2(

√
N z̃i) = 1.

In order to conduct real-time analysis, we use a specific
split-window to obtain the raw data matrix̂X fromΩ, namely,
the real-time split-window. The real-time split-window trun-
cates measured data at continuous sampling times, where the
last sampling time is the current time. In other words, at the
sampling timeti, the raw data matrix̂Xti is formed by

X̂(ti) = (x̂(ti−T+1), x̂(ti−T+2), . . . , x̂(ti)) (5)

where x̂(tj) = (x̂1, x̂2, . . . , x̂N )H is measured data at the
sampling timetj .
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The data processing procedure above is organized as fol-
lowing steps. The standard matrix productZ̃ is calculated for
Ring Law; the sample covariance matrixS is calculated for
M-P Law. For simplicity, we setL=1 in the matrix product
Ẑ.

Steps of Data Processing for Ring Law
1) At the sampling timeti, obtain the raw data matrix̂X(ti)∈CN×T

from the data sourceΩ.
2) ConvertX̂(ti) into the standard non-Hermitian matrix̃X(ti).
3) Calculate the singular value equivalentX̃u(ti) of X̃(ti).
4) Form the matrix product̂Z(ti) = X̃u(ti).
5) ConvertẐ(ti) into the standard matrix product̃Z(ti).
6) Calculate the sample covariance matrixS(ti) = Z̃(ti)Z̃(ti)

H

C. Linear Eigenvalue Statistics and Kernel Density Estimation

1) Linear Eigenvalue Statistics:
The linear eigenvalue statistics (LESs), major focuses in this

paper, indicate the statistical characteristics of large random
matrices. The linear eigenvalue statistic of a random matrix
X is defined as [18]

Nn(ϕ) =

n∑

i=1

ϕ(λi) (6)

whereλi (i=1, 2,. . ., n) are eigenvalues ofX, andϕ(·) is a
test function.

The mean spectral radius (MSR), a special case of LESs,
is used to reflect the eigenvalue distribution of the standard
matrix product̃Z; it is defined as the mean distribution radius
of eigenvalues, formulated by

κMSR =
1

N

N∑

i=1

|λ
Z̃,i

| (7)

whereλ
Z̃,i

(i=1, 2,. . ., N) are eigenvalues of̃Z, and|λ
Z̃,i

| is
the radius of the eigenvalueλ

Z̃,i
on the complex plane. Based

on MSR, we define the variance of spectral radius (VSR) as
a further reflection of eigenvalue distribution; it reflectsthe
dispersion degree of the eigenvalues ofZ̃, formulated by

κVSR =
1

N − 1

N∑

i=1

(|λ
Z̃,i

| − κMSR)
2 (8)

Note that since these complex eigenvaluesλ
Z̃,i

(i =
1, 2,. . ., N) are highly correlated random variables (each is
a complicated matrix function of random matrices̃Xi (i =
1, 2,. . ., L), κMSR andκVSR are both random variables.

2) Kernel Density Estimation:
The kernel density estimation (KDE) depicts the ESD of

the sample covariance matrixS by following PDF

fKDE(λS) =
1

Nh

N∑

i=1

K(
λS − λS,i

h
) (9)

whereλS,i (i=1, 2,. . .N) are eigenvalues ofS, andK(·) is
the kernel function for the bandwidth parameterh.

TABLE II: Notations for correlation analysis

Notations Means
n the number of status variables of power systems
m the number of influential factors in power systems
t the study duration
ts the sampling time
B the status matrix
c a factor vector
D the matrix duplicatingc for k times
E the noise matrix
me the magnitude of white noise
C the factor matrix
ρ the signal-to noise ratio
A the augmented matrix

III. A C ORRELATION ANALYSIS METHOD FORPOWER

SYSTEMS BASED ONAUGMENTED MATRICES

The frequently used notations are given in Table.II.

A. Augmented Matrix Method for Power Systems

Different factors have different effects on power systems
in their own ways. According to big data analytics, the rela-
tionships between factors and power systems can be revealed
by data correlations. Based on RMT, it is feasible to extract
correlations from a data source including both status data and
factors data, namely, augmented matrix.

In a power system, assume that there aren types of status
variables andm types of influential factors, both of which are
measurable. In a study periodti (i=1, 2,. . ., t), measured data
of each factor are formed as a row vectorcj ∈ C1×t (j =
1, 2,. . .,m) (i.e. factor vector), and measured data of status
variables for the power system are formed as a matrixB ∈
Cn×t (i.e. status matrix).

In order to balance the proportion of factors data and status
data in the data source, we form a factor matrix for each factor
vector. First, for the factorcj , we duplicate it fork times to
construct a matrixDj , formulated by

Dj =




cj
cj
...
cj




k×t

(j = 1, 2, . . . ,m) (10)

wherek has the similar size withn. Then, we introduce white
noise intoDj to reduce the correlations among its own rows.
The noise matrix isE = {ei,j}k×t, where ei,j is random
variable according with the normal distribution. Finally,the
factor matrix is formulated by

Cj = Dj +me,jE (j = 1, 2, . . . ,m) (11)

whereme,j is the magnitude of white noise for the factor
matrixCj . The signal-to-noise ratio (SNR) of the factor matrix
Cj is defined as

ρj =
Tr(DjD

H
j )

Tr(EEH)×m2
e,j

(j = 1, 2, . . . ,m) (12)

where Tr(·) is the trace of the matrix. The value ofρj ,
requiring careful selections, will affect the performanceof
correlation analysis. In this paper, we set the same SNR for
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all factors, to ensure the consistency of correlation analysis.
Therefore, for eachDj(j =1, 2,. . .,m), the value ofme.j is
calculated by

me,j =

√
Tr(DjD

H
j )

Tr(EEH)× ρ
(j = 1, 2, . . . ,m) (13)

For each factorcj , we can construct an augmented matrix
for parallel correlation analysis, formulated by

Aj =

[
B

Cj

]
(j = 1, 2, . . . ,m) (14)

B. Status Data and Factor Data

1) Status Variables of Power System:
The operating status of power systems can be estimated

by various types of status variables, such as frequencies,
voltages, currents and power flows. One or more types of
these status variables can form the status matrixB. In this
paper, we use magnitudes of bus voltages as status data for
the following considerations:
a) The voltage magnitude is one of the most basic parameters in
power systems. It is measurable and available on every bus with
common measuring devices. Therefore, magnitudes of bus voltages
have considerable redundancy and accuracy for correlationanalysis.
b) The voltage magnitude does not involve the topology of power
systems. Therefore, we can conduct analysis without thea prior
knowledge of network structures and parameters.

2) Factors in Power Systems:
The operating status of power systems is mainly affected

by electrical factors, climatic factors and economic factors.
a) Electrical factors–nodal loads and distributed generations, etc.
b) Climatic factors—temperature, wind speed, light intensity, etc.
c) Economic factors—electricity price, gross domestic product, etc.

Since data normalization is used during data processing,
factor data and status data in the augmented matrix can have
different units and magnitudes. In consideration of different
sampling frequencies for status data and factor data, it canbe
assumed that data with lower sampling frequency are the same
values in a sampling interval.

C. Correlation Analysis Method and Its Advantages

Based on RMT and the augmented matrix method, a cor-
relation analysis method for power systems is designed as
following steps.

Step 2) is conducted for the anomaly detection, where the
κMSR − t curve of the status matrix discovers the signals
in power systems [9]. Step 3)–4), analyzing the correlations
between the system status and each factor, aim to determine
the causes to the signals. During the analysis procedure,κMSR

andfKDE are calculated as correlation indicators.
The proposed correlation analysis method is driven by

measured data, and based on statistical theories. The procedure
involves no mechanism models for power systems and factors;
it eliminates the interference brought by assumptions and

Steps of Correlation Analysis for Power Systems
1) In a study period, form the status matrixB∈Cn×t and factor vectors
cj ∈C1×t (j=1, 2, . . . ,m).
2) At each sampling time,

2a) acquire the standard matrix productZ̃ from B.
2b) calculateκMSR andκVSR of Z̃.

3) Meanwhile, for each factorcj , construct the augmented matrixAj .
4) At each sampling time,

4a) acquire the standard matrix productZ̃ from Aj .
4b) calculateκMSR andκVSR of Z̃.
4c) acquire the sample covariance matrixS from Z̃.
4d) calculatefKDE of S and draw thefKDE − λ curve.

5) Draw κMSR−t curves of the status matrix and the augmented matrix
for each factor.

simplifications. Compared with model-based methods, the pro-
posed method is data-driven, and universal for various factors.
Meanwhile, the proposed method has strong robustness against
random fluctuations in systems and measuring errors in data.
Besides, the method is practical for real-time analysis by using
a specific split-window. The advantages above will be verified
in case studies.

IV. CASE STUDIES

The proposed method is tested with simulated data in the
standard IEEE 118-bus system. Detailed information of the
system is referred to the case118.m in Matpower package
and Matpower 4.1 User’s Manual [19]. In the simulations, we
regard the active load of each bus as a factor; each change of
a factor is considered as a signal.

Four cases are designed in different scenarios to validate
the effectiveness of the proposed method. In case 1, case 2
and case 3, three kinds of signals are added into single factor
to affect the operating status of the test system. In case 4,
multiple factors with different kinds of signal produce effects
on the system status.

In order to determine the causes to the signals, simulated
data of each factor are used to conduct correlation analysis.
It is a parallel analysis procedure, and we can only pay our
attention to potential factors. Here, we just illustrate the results
with the load of bus 117 and bus 54 to show the performance
of the proposed method.

Assume that status data are sampled at each time interval,
while factor data are sampled every 50 time intervals. Besides,
white noise is introduced into both status data and factor data
to represent random fluctuations and measuring errors.

For all cases, letn=118, t=1000, N =118, T =240, k=
1

2
N=59, ρ=500.

A. Correlation Analysis for Single Factor

1) Case 1 - Step signal in the load of bus 117:
In case 1, assumed signals for each factor are shown in

Tab. III. The correlation analysis results are shown in Fig.6.
It is noted that the correlation analysis begins atts = 240,
because the real-time split-window needsT = 240 times of
sampling data, including the present sampling and 239 times
of historical sampling.



5

TABLE III: Assumed Signals for Each Factor in Case 1

Bus Sampling Time Active Load(MW)

117
ts = 1 ∼ 500 20.0

ts = 501 ∼ 1000 120.0
Others ts = 1 ∼ 1000 Unchanged

In Fig. 6a, based on theκMSR− t curve, we can detect
signals based on analyses below:
I. During the sampling timets = 240∼ 500, κMSR of status matrix
remains constant around 0.86, between the outer and inner circle; it
means the system status is normal without signals.
II. At ts = 501, κMSR starts to decline (from 0.8638 to 0.7002),
and deviates from the predicted ring (the inner radius is 0.7130); it
means there exist signals that change the system status.
III. κMSR increases back to 0.8662 atts = 740 and remains constant
inside the ring afterwards.

First, we can tell that the signals occur right atts = 501.
Moreover, in our method, the impact of a signal to MSR will
delay for a duration ofT , due to historical sampling data in the
real-time split-window. In Fig. 6a, the signal area (U-shaped
curve) is ts = 501 ∼ 740, so we can calculate the actual
duration of signals as740−501+1−T = 0. Therefore, we
can speculate that there are instantaneous signals occurring at
ts=501.

In order to find out the causes to above signals, we conduct
correlation analysis for each factor. In Fig. 6b, when we
augment load data of bus 117,κMSR of the signal area
(ts = 501 ∼ 740) decreases dramatically (from 0.7812 to
0.2998), below the inner circle (0.5123); it indicates strong
correlations between the load of bus 117 and the system
status. On the other hand, in Fig. 6c,κMSR remains inside the
ring throughout the signal area; it indicates poor correlations
between the load of bus 54 and the system status.

Besides, we can also determine the correlations byfKDE−λ

curves in Fig. 4 and Fig. 5. In Fig. 4, atts = 620 (inside the
signal area), when we augment load data of bus 117,fKDE

deviates fromfMP; it indicates strong correlations between the
load of bus 117 and the system status. However, in Fig. 5,
fKDE with the load of bus 54 accords withfMP at ts = 620;
it indicates poor correlations between the load of bus 54 and
the system status.

As a result, we deduce that the load of bus 117, but not
bus 54, is the cause for instantaneous signals atts=501. This
analysis result accords with assumed signals in Tab. III. Infact,
we only add signals to the active load of bus 117. Specifically,
the active load of bus 117 increases from 20 MW to 120 MW
right at ts=501.

2) Case 2 - Peak and dip signals in the load of bus 117:
In case 2, assumed signals for each factor are shown in

Tab. IV. The correlation analysis results are shown in Fig. 7.

TABLE IV: Assumed Signals for Each Factor in Case 2

Bus Sampling Time Active Load(MW)

117

ts = 1 ∼ 300 60.0
ts = 301 ∼ 350 120.0
ts = 351 ∼ 650 60.0
ts = 651 ∼ 700 20.0
ts = 701 ∼ 1000 60.0

Others ts = 1 ∼ 1000 Unchanged
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Fig. 1: Eigenvalue distributions of standard matrix products in
case 1: the data source is the status matrix.
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(b) ts = 620

Fig. 2: Eigenvalue distributions of standard matrix products
in case 1: the data source is the augmented matrix, including
load data of bus 117.
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Fig. 3: Eigenvalue distributions of standard matrix products
in case 1: the data source is the augmented matrix, including
load data of bus 54.

In Fig. 7a, based on theκMSR − t curve, we can detect
signals below:

I. From ts=301 to ts=590, theκMSR−t curve is U-shaped
beyond the predict ring. It indicates that the signals occurat
ts=301, and the signal area ists=301 ∼590.

II. From ts = 650 to ts = 940, the κMSR − t curve is U-
shaped beyond the predict ring. It indicates that the signals
occur atts=650, and the signal area ists=650 ∼940.

In consideration of the delayed effect of a signal to MSR,
we can calculate actual durations of above signals as590−
301+1−T = 50 and 940−651+1−T = 50. Therefore, we
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data of bus 54

Fig. 6: κMSR − t curves of standard matrix products in Case 1
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Fig. 4:κKDE −λ curves of standard matrix products in case 1:
the data source is the augmented matrix, including load data
of bus 117
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Fig. 5:κKDE −λ curves of standard matrix products in case 1:
the data source is the augmented matrix, including load data
of bus 54

can speculate that there are continuous signals occurring at

ts=301∼351 and ts=651∼701.
In Fig. 7b, when we augment load data of bus 117,κMSR

inside two signal areas declines remarkably and deviates from
the predicted ring (from 0.7858 to 0.3538 and from 0.7830 to
0.3846); it indicates strong correlations between the loadof
bus 117 and the system status. On the other hand, in Fig. 7c,
when we augment load data of bus 54,κMSR inside both signal
areas remains in the predicted ring throughout the signal area;
it indicates poor correlations between the load of bus 54 and
the system status. As a result, we deduce that the load of bus
117, but not bus 54, is the cause for continuous signals during
ts=301∼351 and ts=651∼701.

Above analyses accord with assumed signals in Tab. IV. In
this case, we only add signals to the active load of bus 117.
To be specific, the active load of bus 117 has a peak during
ts=301∼351, and a dip duringts=651∼701.

3) Case 3 - gradual signals in the load of bus 54:
In case 3, assumed signals for each factor are shown in

Tab. V. The correlation analysis results are shown in Fig. 8.

TABLE V: Assumed Signals for Each Factor in Case 3

Bus Sampling Time Active Load(MW)

54

ts = 1 ∼ 300 113.0
ts = 301 ∼ 350 135.6
ts = 351 ∼ 400 158.2
ts = 401 ∼ 450 180.8
ts = 451 ∼ 500 203.4
ts = 501 ∼ 550 226.0
ts = 551 ∼ 600 248.6
ts = 601 ∼ 650 271.2
ts = 651 ∼ 700 293.8
ts = 701 ∼ 1000 316.4

Others ts = 1 ∼ 1000 Unchanged

In Fig. 8a, the U-shaped curve is fromts=301 to ts=940.
It indicates signals occurring atts=301. In consideration of
the delayed effect of a signal to MSR, we can calculate actual
durations of above signals as940−301+1−T=400. Therefore,
we can speculate that there are continuous signals occurring
at ts=301∼701.

In Fig. 8c, when we augment load data of bus 54,κMSR

inside the signal area declines remarkably and deviates from
the predicted ring (from 0.7803 to 0.4227); it indicates strong
correlations between the load of bus 54 and the system status.
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On the other hand, in Fig. 8b, when we augment load data of
bus 117,κMSR remains in the predicted ring throughout the
signal area; it indicates poor correlations between the load of
bus 117 and the system status. As a result, we deduce that the
load of bus 54, but not bus 117, is the cause for continuous
signals duringts=301∼701.

Above analyses is in accordance with assumed signals in
Tab. V. In this case, we only add signals to the active load of
bus 54. In detail, the active load of bus 54 increase gradually
during ts=301∼701.

B. Correlation Analysis for Multiple Factors

In case 4, assumed signals for each factor are shown in
Tab. VI. The correlation analysis results are shown in Fig. 9.

TABLE VI: Assumed Signals for Each Factor in Case 4

Bus Sampling Time Active Load(MW)

117

ts = 1 ∼ 300 60.0
ts = 301 ∼ 350 120.0
ts = 351 ∼ 650 60.0
ts = 651 ∼ 700 20.0
ts = 701 ∼ 1000 60.0

54

ts = 1 ∼ 300 113.0
ts = 301 ∼ 350 135.6
ts = 351 ∼ 400 158.2
ts = 401 ∼ 450 180.8
ts = 451 ∼ 500 203.4
ts = 501 ∼ 550 226.0
ts = 551 ∼ 600 248.6
ts = 601 ∼ 650 271.2
ts = 651 ∼ 700 293.8
ts = 701 ∼ 1000 316.4

Others ts = 1 ∼ 1000 Unchanged

Based on theκMSR−t curve in Fig. 9a, two kinds of signals
are detected:

I. Two U-shaped curves are found duringts = 301 ∼ 590
and ts = 651 ∼ 940. Referring to the analysis in case 2, it
indicates two continous signals duringts = 301 ∼ 351 and
ts=651∼701.

I. The Third curve are found duringts = 301 ∼ 940.
Referring to the analysis in case 3, it indicates continuous
signals duringts=301∼700.

During the first two signal areas (ts =301∼ 590 and ts =
651 ∼ 940), when we augment the load of bus 117,κMSR

deviates from Ring Law, shown in Fig. 9b. During the third
signal area (ts = 301 ∼ 940), when we augment the load of
bus 54, the deviation ofκMSR is shown in Fig. 9c. As a result,
we can achieve following speculations:

I. The load of bus 117 affects the system status duringts=
301∼351 and ts=651∼701.

II. The load of bus 54 affects the system status duringts=
301∼700.

These speculations are validated by Table. VI.

C. More Discussions in Details

Through above four cases, the effectiveness and perfor-
mance of the correlation analysis method is verified under
different scenarios. However, there are still some interesting
details left.

First, we can observe thatκMSR− t curves in case 4 are
approximately superposed by corresponding curves in case 2
and case 3. In fact, the assumed signals in case 4 are combined
with those in case 2 and case 3. In conclusion, there should
be some relationships between phenomena in power systems,
and LES in mathematics.

Secondly, when data become more correlated, the VSR
increases as well. This phenomenon can be explained based
on the eigenvalue distributions of standard matrix products.
In Fig. 1a, Fig. 2a and Fig. 3a, atts = 500, the eigenvalues
distribute between the outer circle and the inner circle, con-
forming to the Ring Law; it indicates poor correlations in data.
During the signal area (such asts=620), when we augment
data of correlated factors, all the eigenvalues gather towards
the circle center, shown in Fig. 2b. When we augment data of
irrelevant factors, only some of the eigenvalues gather towards
the circle center, shown in Fig. 3b.

Thirdly, to represent random fluctuations in the system and
measuring errors in sampling data, white noise is introduced
into both status data and factor data throughout the simulation.
Observations in case studies indicate thatκMSR does not
change dramatically in a system dominated by white noise.
Therefore,κMSR is a reliable indicator to identify signals from
random fluctuations and measuring errors.

V. CONCLUSION

This paper proposes a data-driven method to reveal the
correlations between factors and the power system status. First,
for each factor, we construct an augmented matrix as a data
source, combining status data and factors data reasonably.
Secondly, to conduct real-time analysis, we use a specific split-
window to obtain the raw data matrix at each sampling time.
Then, we conduct correlation analysis for the raw data matrix
based on random matrix theory (RMT). The mean spectral
radius (MSR), a kind of linear eigenvalue statistics (LESs),
is calculated as a correlation indicator; the kernel density
estimation (KDE) is used as a assisted tool to reveal data
correlations. The proposed method is direct, robust against
bad data and universal to varieties of factors. Case studies
demonstrate the effectiveness of the method for both single
factor and multiple factors.

The current work is only a preliminary exploration of
correlation analysis based on RMT. Much more researches are
needed along this direction. The degree of correlations needs
to be further quantified. For example, in a study period, we
can use the integration of MSR to quantify the correlations.
Besides, we can use data of subarea to construct the basic
matrix; in this way we can fix the data missing problems.
Furthermore, the proposed method can be used to reveal
the correlation between any two types of variables, as long
as combining their data reasonably in the data source. Our
method can be applied for specific issues in power systems,
such as voltage stability, weak buses identification, abnormal
and fault diagnosis. Combinations with model-based methods
and data processing methods will improve the performance,
and uncover more connections between electrical phenomena
and statistical characteristics.
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data of bus 54

Fig. 7: κMSR − t curves of standard matrix products in Case 2
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(a) Data source: status matrix
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(b) Data source: augmented matrix including load
data of bus 117
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Fig. 8: κMSR − t curves of standard matrix products in Case 3
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(b) Data source: augmented matrix including load
data of bus 117
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Fig. 9: κMSR − t curves of standard matrix products in Case 4

APPENDIX A
RANDOM MATRIX THEORY

A. Ring Law

Let X̃∈C
N×T be a standard non-Hermitian random matrix,

whose entries are independent identically distributed (i.i.d.)
variables with

µ(x̃i) = 0, σ2(x̃i) = 1 (i = 1, 2, . . . , N) (15)

where x̃i = (x̃i,1, x̃i,2,. . ., x̃i,T ). For multiple standard non-
Hermitian random matrices̃Xi (i=1, 2,. . ., L), we define the

matrix product as

Ẑ =

L∏

i=1

X̃u,i (16)

whereX̃u,i is the singular value equivalent of̃Xi. The matrix
product Ẑ can be converted to the standard matrix product
Z̃, whoseσ2(z̃i) =

1

N
in each row. According to Ring Law

[20, 21], the ESD of̃Z converges almost surely to the limit
with a probability density function (PDF) given by

fRL(λZ̃
) =

{
1

πcL
|λ

Z̃
| 2

L
−2 (1− c)

L

2 ≤ |λ
Z̃
| ≤ 1

0 otherwise
(17)
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as N, T → ∞ with a constant ratioc = N
T

∈ (0, 1]. On the
complex plane of eigenvalues, the inner circle radius is(1−c)L

2

and the outer circle radius is unity.

B. Marchenko-Pastur Law

Let X={xi,j}N×T be a random matrix, whose entries are
i.i.d. variables with

µ(xi) = 0, σ2(xi) = d (i = 1, 2, . . . , N) (18)

whered < ∞ is a constant, andxi=(xi,1, xi,2,. . ., xi,T ). The
sample covariance matrix ofX is defined as

S =
1

N
XXH (19)

According to M-P Law [22, 23], the ESD ofS converges
to the following PDF

fMP(λS) =

{
1

2πcdλS

√
(b− λS)(λS − a) a ≤ λS ≤ b

0 otherwise
(20)

as N, T → ∞ with a constant ratioc = N
T

∈ (0, 1], where
a = d(1−√

c)2, b = d(1 +
√
c)2.
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