arXiv:1506.00722v2 [math.OC] 29 Feb 2016

A Distributed Algorithm for Demand Response
with Mixed-Integer Variables

Sleiman MhannaStudent MIEEE, Archie C. Chapman,MIEEE and Gregor VerbicSenior MIEEE,

Abstract—This letter presents a distributed algorithm for can (centrally) minimise the total energy cost per scheduli

aggregating a large number of households with mixed-integde horizonT by solving the following problem:
variables and intricate couplings between devices. The pposed

distributed gradient algorithm is applied to the double smathed min Z ct (;Eé) ) (1a)
dual function of the adopted DR model. Numerical results sho zi € X; o1

that, with minimal parameter adjustments, the convergenceof ) . .

the dual objective exhibits a very similar behavior irrespetive subject to Z Ti = Zo, teT. (1b)
system size. i€Z\O0

Index Terms—Dual decomposition, accelerated gradient meth- The local constraints of agents# 0 arise from the operating
ods, demand response, smoothing technique, mixed-integeari-  modes of different flexible loads includirigterruptible (e.g.
ables. PHEVs, pool pumps) andon-interruptible (e.g. washing

machines, dishwashers) loads (as [in [1], [2]). Problém (1)
I. INTRODUCTION can also be written a®* = infzex {C(x): Acx = 0},
) o wherex = {z;},. 7, X = [[;,c7 Xi, and A, is the coupling
FFICIENT load scheduling and aggregation is a problegynstraint matrix.
of growing importance in the area of demand responsepygplem (1) is a mixed-integer program (MIP) that belongs
(DR). However, this problem is particularly difficult for & {5 the class of NP-hard problems which are notorious for
main reasons. First, many household electrical devices hq¥nding to be intractable (if solved centrally) when they
discrete operating points that can only be represented goy in size. However, relaxing the coupling constraints
mixed-integer variables, and moreover, household de\ses U(TR)  through the Lagrangian relaxation method, bestows a
are often coupled, thus giving household electricity detn@n separable structure on problef (1). The problem can then be
combinatorial structure. Therefore, solving this probleem- gecomposed intd + 1 independent subproblems that can be

trally may spell intractability when the number of housel®l ¢q1ved in parallel. The partial Lagrangian of probldm (1) ca
is large. Second, solving this problem centrally would ig8U pe \written as

sending all of the households’ private information to the

aggregator, which entails substantial communication ueed

aﬁg p?ivacy concerns. Ll@A) =3 C () + D XN | D wi=ah |, @
Against this background, this letter proposes a distrithute

gradient algorithm applied to a double smoothed dual fencti where A = [A7,...,A"*7~!] is the vector of Lagrange

This work is not the first attempt to solve a DR problem witlmultipliers. Therefore, the Lagrange dual function woutd b

mixed-integer variables in a distributed fashion. Thishem ]

is decomposed in terms of devices and solved in a distributBd*) = mlg& L(x,A) =Do (A) + Z Di(A), where (3)

teT teT 1€Z\0

fashion using the proximal bundle method lin [1]. In contrast i€IN\O

to [1], the DR problem in this work is decomposed in terms @, (A) = inf (C* (zf) — A'zf), and 4)
households. Doing so, allows for a more expressive houdehol zo€Xo {7

model, which can incorporate the intricate couplings betweDi A) = inf Nzt ieT\o. (5)
storage devices, appliances and renewable energy resource ®i € X £

Finally, the dual problem isnaxx-o D (X). However, in
[I. DR MODEL AND PROBLEM DESCRIPTION this DR scenario, the concave dual functibri)) is typically
nondifferentiable. Specifically, as the subproblems[ind&h

where0 is the aggregator and each 0 is a household agent. have.multiple optimal solutions for a given vectdy the duall
Letz! € R, be the demand for electric energy for every ageffnction D(A) can be nonsmooth. Consequently, applying
i #0at time-slott € T := {r,...,7+T—1}. The aggregator a conventional gradient method]| [3] to this problem would
faces a set of cost function®' : R, — R, whereC? (zf) ©xhibit a very slow convergence.
is the cost of supplying:, units of energy to the households
at time-slott. I1l. DOUBLE SMOOTHING METHOD

Given the households’ feasible schedule s&is., and One way to obtain a smooth approximation Bf(A) is
their demand profilec; = [:v[, . :vT*T*l], the aggregator to modify the subproblems i](5) to ensure a unique optimal

»e

The model comprises a set of agefits= {0,1,2,...,I},
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solution for every\. The dual function is modified as follows: a0 : : : : : ; ; ;
« m YT P Jd Lol " st d ™
Dy(A)=Do(A)+ Y Diu (), where (6) s ‘ Sl .
i€T\0 “&12 )
L 9 _% —— Primal
Diy(A) = inf (Y NMal+Zlal® ), i€Z\0, (7) S1 ——Dual
’ xz;€X; 2 <
teT ey . . . . . . . . .
and 4 > 0 is a smoothness parameter. The modified du 0 100 200 300 400 500 600 700 8OO 900 1000
function D, (A) is smooth and its gradienVD, (A) = lterations (k)

Acx, x, Wherex, » denotes the unique optimal solution of
problem [(6), is Lipschitz-continuous with Lipschitz cosmst
L, = LA TABLE|
The aim of this smoothing is to obtain a Lipschitz- DIFFERENCE BETWEENP: AND P
continuous gradient fpr which efficient smopth op_t|m|sat|o 7 2] () Gap ()| @™ | AT
methods can be applied! [4]. However, despite having a good 640 | 76049.78 75732.03 042 0.0004 | 10
convergence rat®,, (A*)—D,, (A;) at iterationk when apply- 1280 | 304089.52 | 302927.74 | 0.38 0.001 | 10
ing a fast gradient method, the same good rate of convergence 2260 | 1216367.92] 1211711.03] 038 | 0.0015) 10
does not apply td|VD,, (Ax)|-
Since the aim is not only to efficiently solve the dual
problem but also to recover a nearly feasible solution to the V. NUMERICAL EVALUATION
primal [5], a second smoothing is applied to the dual functio Algorithm [1 is tested on three scenarios, each with one
to make it strongly concave. The new dual function is writtedggregator an@é40, 1280 and 2560 households respectively,
as each with10 appliances scheduled ovér= 24h (as in [2]).
K 9 In all three scenarios, Algorithid 1 is initialized witky = 0,
Dus N =DoA)+ D DieN) = SIAF B 172 1 maxiter — 100(?, a' = 3 x 107*||A.|]> Dx and
1€TNO amaxiter — 8 5 108 ||A.||> Dx. The simulation results along
which is strongly concave with parameter> 0, and whose with the corresponding parameter values are listed in Thble
gradientVD,, ,; (A) = Az, x — kA is Lipschitz-continuous Table[] shows that the difference between the recovered best
with constantZ,, ,, = L, + &. integer feasible solutior?’ and the optimum solutiorP*
does not exceed.42%, which corroborates the claim that a
IV. FAST GRADIENT ALGORITHM near-optimal solution can be recovered in a limited number
The fast gradient method involves two multiplierof iterations. Finally, the evolution of* and Dﬂky,{k(j\]g)
updates, Api1 _ Ao + VD, (S\k , inthe I = 1280 case is displayed in Figufé 1, which also
. i ikt shows a quick and smooth convergence of the dual objective
and - A1 - Arp1 + B¥(Ar+1— Ax),  where Dy .« (M) and a small duality gap upon termination.

ﬁ’“z(\/f—x/ﬁ) gj\/%er)l' )
t

pk,kk
The parameters o e algorithm are set as follows, VI. CONCLUSION

log maxiter / .1 i i i i i i
phtt = a’f“/%x,(aan;’“j)l/ = e)( os(RTYR) /maxite) k- The aim of this work is to implement a fast gradient
og(aM¥e/ o maxiter) _k

wherea*t! = e a®, and maxiter is the algorithm applied to the double smoothed dual function of
maximum number of iterations. The distributed algorithm ia DR problem comprising expressive household models and

ig. 1. Evolution of the primal and dual objectives for the= 1280 case.

described in Algorithnil. mixed-integer variables. This work also demonstrates how t
_ _ . recover a near-optimal solution in a fixed number of itersio
Algorlthm 1 : Distributed algorlthm and minimal parameter tweaking_

Parameters: A; > 0, x* > 0, ™% — 0.0001, 4™ € [0.0001,0.005],
maxiter€ {500, 1000}.
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