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Abstract—This letter presents a distributed algorithm for
aggregating a large number of households with mixed-integer
variables and intricate couplings between devices. The proposed
distributed gradient algorithm is applied to the double smoothed
dual function of the adopted DR model. Numerical results show
that, with minimal parameter adjustments, the convergenceof
the dual objective exhibits a very similar behavior irrespective
system size.

Index Terms—Dual decomposition, accelerated gradient meth-
ods, demand response, smoothing technique, mixed-integervari-
ables.

I. I NTRODUCTION

EFFICIENT load scheduling and aggregation is a problem
of growing importance in the area of demand response

(DR). However, this problem is particularly difficult for two
main reasons. First, many household electrical devices have
discrete operating points that can only be represented by
mixed-integer variables, and moreover, household device uses
are often coupled, thus giving household electricity demand a
combinatorial structure. Therefore, solving this problemcen-
trally may spell intractability when the number of households
is large. Second, solving this problem centrally would require
sending all of the households’ private information to the
aggregator, which entails substantial communication overhead
and privacy concerns.

Against this background, this letter proposes a distributed
gradient algorithm applied to a double smoothed dual function.
This work is not the first attempt to solve a DR problem with
mixed-integer variables in a distributed fashion. This problem
is decomposed in terms of devices and solved in a distributed
fashion using the proximal bundle method in [1]. In contrast
to [1], the DR problem in this work is decomposed in terms of
households. Doing so, allows for a more expressive household
model, which can incorporate the intricate couplings between
storage devices, appliances and renewable energy resources.

II. DR MODEL AND PROBLEM DESCRIPTION

The model comprises a set of agentsI := {0, 1, 2, . . . , I},
where0 is the aggregator and eachi 6= 0 is a household agent.
Let xt

i ∈ R+ be the demand for electric energy for every agent
i 6= 0 at time-slott ∈ T := {τ, . . . , τ+T−1}. The aggregator
faces a set of cost functionsCt : R+ 7→ R+, whereCt (xt

0)
is the cost of supplyingxt

0 units of energy to the households
at time-slott.

Given the households’ feasible schedule setsXi6=0 and
their demand profilexi =

[

xτ
i , . . . , x

τ+T−1
i

]

, the aggregator

can (centrally) minimise the total energy cost per scheduling
horizonT by solving the following problem:

min
xi∈Xi

∑

t∈T

Ct
(

xt
0

)

, (1a)

subject to
∑

i∈I\0

xt
i = xt

0, t ∈ T . (1b)

The local constraints of agentsi 6= 0 arise from the operating
modes of different flexible loads includinginterruptible (e.g.
PHEVs, pool pumps) andnon-interruptible (e.g. washing
machines, dishwashers) loads (as in [1], [2]). Problem (1)
can also be written asP∗ = infx∈X {C (x) : Acx = 0} ,
wherex = {xi}i∈I , X =

∏

i∈I Xi, andAc is the coupling
constraint matrix.

Problem (1) is a mixed-integer program (MIP) that belongs
to the class of NP-hard problems which are notorious for
tending to be intractable (if solved centrally) when they
grow in size. However, relaxing the coupling constraints
(1b), through the Lagrangian relaxation method, bestows a
separable structure on problem (1). The problem can then be
decomposed intoI + 1 independent subproblems that can be
solved in parallel. The partial Lagrangian of problem (1) can
be written as

L (x,λ) =
∑

t∈T

Ct
(

xt
0

)

+
∑

t∈T

λt





∑

i∈I\0

xt
i − xt

0



 , (2)

where λ =
[

λτ , . . . , λτ+T−1
]

is the vector of Lagrange
multipliers. Therefore, the Lagrange dual function would be

D (λ) = inf
xi∈Xi

L (x,λ) = D0 (λ) +
∑

i∈I\0

Di (λ) , where (3)

D0 (λ) = inf
x0∈X0

∑

t∈T

(

Ct
(

xt
0

)

− λtxt
0

)

, and (4)

Di (λ) = inf
xi∈Xi

∑

t∈T

λtxt
i, i ∈ I \ 0. (5)

Finally, the dual problem ismaxλ�0 D (λ). However, in
this DR scenario, the concave dual functionD (λ) is typically
nondifferentiable. Specifically, as the subproblems in (5)can
have multiple optimal solutions for a given vectorλ, the dual
function D (λ) can be nonsmooth. Consequently, applying
a conventional gradient method [3] to this problem would
exhibit a very slow convergence.

III. D OUBLE SMOOTHING METHOD

One way to obtain a smooth approximation ofD (λ) is
to modify the subproblems in (5) to ensure a unique optimal
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solution for everyλ. The dual function is modified as follows:

Dµ (λ) = D0 (λ) +
∑

i∈I\0

Di,µ (λ) , where (6)

Di,µ (λ) = inf
xi∈Xi

(

∑

t∈T

λtxt
i +

µ

2
‖xi‖2

)

, i ∈ I \ 0, (7)

and µ > 0 is a smoothness parameter. The modified dual
function Dµ (λ) is smooth and its gradient∇Dµ (λ) =
Acxµ,λ, wherexµ,λ denotes the unique optimal solution of
problem (6), is Lipschitz-continuous with Lipschitz constant
Lµ = ‖Ac‖

2

µ .
The aim of this smoothing is to obtain a Lipschitz-

continuous gradient for which efficient smooth optimisation
methods can be applied [4]. However, despite having a good
convergence rateDµ (λ

∗)−Dµ (λk) at iterationk when apply-
ing a fast gradient method, the same good rate of convergence
does not apply to‖∇Dµ (λk)‖.

Since the aim is not only to efficiently solve the dual
problem but also to recover a nearly feasible solution to the
primal [5], a second smoothing is applied to the dual function
to make it strongly concave. The new dual function is written
as

Dµ,κ (λ) = D0 (λ) +
∑

i∈I\0

Di,µ (λ)−
κ

2
‖λ‖2 , (8)

which is strongly concave with parameterκ > 0, and whose
gradient∇Dµ,κ (λ) = Acxµ,λ − κλ is Lipschitz-continuous
with constantLµ,κ = Lµ + κ.

IV. FAST GRADIENT ALGORITHM

The fast gradient method involves two multiplier
updates, λk+1 = λ̂k + 1

Lk

µk,κk

∇Dµk,κk

(

λ̂k

)

,

and λ̂k+1 = λk+1 + βk (λk+1 − λk) , where

βk =
(√

Lk
µk,κk −

√
κk
)(√

Lk
µk,κk +

√
κk
)−1

.
The parameters of the algorithm are set as follows,

µk+1 = αk+1/DX , andκk+1 = e(log(κ
maxiter/κ1)/maxiter)κk,

whereαk+1 = e(log(α
maxiter/α1)/maxiter)αk, and maxiter is the

maximum number of iterations. The distributed algorithm is
described in Algorithm 1.

Algorithm 1 : Distributed algorithm
Parameters: λ1 � 0, κ1 > 0, κmaxiter = 0.0001, µ̂min ∈ [0.0001, 0.005],

maxiter∈ {500, 1000}.
1: Initialisation: Households computeDXi

= min
{

1
2
‖xi‖

2 : xi ∈ Xi

}

, and
send it to the aggregator which computesDX =

∑

i∈I\0 DXi
and sets

µ1 = α1/DX , µ̂1 = µ1, λ̂1 = λ1, J = 1 andk = 1.
2: while k ≤ maxiterdo
3: Aggregator solvesD0(λ̂k) and broadcastŝλk andµ̂k to the households which

solveD
i,µ̂k (λ̂k) and returnx

i,µ̂k,λ̂k
to the aggregator.

4: Aggregator computes ∇D
µ̂k,κk (λ̂k) and the primal Pk

r =
∑

t∈T Ct(
∑

i∈I\0 xt

i,µ̂k,λ̂k
).

5: Aggregator computesLk

µk,κk = ‖Ac‖
2

µk +κk and updatesλk+1 andλ̂k+1.

6: Aggregator updatesµk+1 and κk+1 and sets{µ̂k+1 = µk+1 : µ̂k+1 ≥
µ̂min}.

7: k← k + 1.
8: end while

Output: Aggregator finds the best recovered primal solutionPJ
r along with λ̂J , µ̂J

andx
µ̂J ,λ̂J

such thatJ := {k : PJ
r = min{{Pk

r }k∈{1,...,maxiter}}}.
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Fig. 1. Evolution of the primal and dual objectives for theI = 1280 case.

TABLE I
DIFFERENCE BETWEENPJ

r AND P∗ .

I PJ
r ($) P∗($) Gap (%) µ̂min κ1

640 76049.78 75732.03 0.42 0.0004 10
1280 304089.52 302927.74 0.38 0.001 10
2560 1216367.92 1211711.03 0.38 0.0015 10

V. NUMERICAL EVALUATION

Algorithm 1 is tested on three scenarios, each with one
aggregator and640, 1280 and 2560 households respectively,
each with10 appliances scheduled overT = 24h (as in [2]).
In all three scenarios, Algorithm 1 is initialized withλ1 = 0,
κ1 = 10, maxiter = 1000, α1 = 3 × 10−4 ‖Ac‖2 DX and
αmaxiter = 8 × 10−8 ‖Ac‖2 DX . The simulation results along
with the corresponding parameter values are listed in TableI.
Table I shows that the difference between the recovered best
integer feasible solutionPJ

r and the optimum solutionP∗
does not exceed0.42%, which corroborates the claim that a
near-optimal solution can be recovered in a limited number
of iterations. Finally, the evolution ofPk

r and Dµ̂k,κk(λ̂k)
in the I = 1280 case is displayed in Figure 1, which also
shows a quick and smooth convergence of the dual objective
Dµ̂k,κk(λ̂k) and a small duality gap upon termination.

VI. CONCLUSION

The aim of this work is to implement a fast gradient
algorithm applied to the double smoothed dual function of
a DR problem comprising expressive household models and
mixed-integer variables. This work also demonstrates how to
recover a near-optimal solution in a fixed number of iterations
and minimal parameter tweaking.
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