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Abstract—A major challenge to implementing residential de-
mand response is that of aligning the objectives of many house-
holds, each of which aims to minimize its payments and maximize
its comfort level, while balancing this with the objectives of
an aggregator that aims to minimize the cost of electricity
purchased in a pooled wholesale market. This paper presents
a fast distributed algorithm for aggregating a large number of
households with a mixture of discrete and continuous energy
levels. A distinctive feature of the method in this paper is that
the nonconvex DR problem is decomposed in terms of house-
holds as opposed to devices, which allows incorporating more
intricate couplings between energy storage devices, appliances
and distributed energy resources. The proposed method is a
fast distributed algorithm applied to the double smoothed dual
function of the adopted DR model. The method is tested on
systems with up to 2560 households, each with10 devices on
average. The proposed algorithm is designed to terminate in60
iterations irrespective of system size, which can be ideal for an on-
line version of this problem. Moreover, numerical results show
that with minimal parameter tuning, the algorithm exhibits a
very similar convergence behavior throughout the studied systems
and converges to near-optimal solutions, which corroborates its
scalability.

Index Terms—Dual decomposition, accelerated gradient meth-
ods, demand response aggregation, smoothing techniques, mixed-
integer variables, smart grid, energy management.

NOTATION

A. Acronyms

CHP Combined heat and power.
DR Demand Response.
HVAC Heating, ventilation and air conditioning.
MIP Mixed-integer program/programming.
MIQP Mixed-integer quadratic program/programming.
MINLP Mixed-integer nonlinear program/programming.
QP Quadratic program/programming.
SoC State of charge.

B. Parameters

Ai Agent i’s total number of devices.
Ct
(

xtg
)

Electricity cost ($) of drawingxtg units of energy
from the grid during time-slott.

c0t Coefficient ($) of the constant term inCt
(

xtg
)

during time-slott.
c1t Coefficient ($/kWh) of the linear term inCt

(

xtg
)

during time-slott.
c2t Coefficient ($/kWh2) of the quadratic term in

Ct
(

xtg
)

during time-slott.
Dt

i,a (·) Dissatisfaction cost ($) incurred by agenti’s Type
2, Type 3 or Type 6 devicea during time-slott.

eli,a Energy (kW h) consumed by agenti’s Type 1,
Type 2 or Type 3 devicea during time-step∆τ .

e
SoC,ini
i,a Initial state of energy (kW h) of agenti’s Type 4

or Type 5 devicea.
e
SoC,final
i,a Final state of energy (kW h) of agenti’s Type 4

or Type 5 devicea.
e
SoC,min
i,a Minimum state of energy (kW h) of agenti’s

Type 4 or Type 5 devicea.
e
SoC,max
i,a Maximum state of energy (kW h) of agenti’s

Type 4 or Type 5 devicea.
Ei,a Total energy (kW h) requirement overT of agent

i’s Type 3 devicea.
Gmax Maximum power (kW) that can be drawn from

the grid.
I Total number of household agents.
ηchi,a Charging efficiency of agenti’s Type 4 or Type

5 devicea.
ηdisi,a Discharging efficiency of agenti’s Type 4 or

Type 5 devicea.
k Iteration number.
l Operating mode of agenti’s Type 1, Type 2 or

Type 3 devicea.
L Total number of operating modes of agenti’s

Type 1, Type 2 or Type 3 devicea.
pli,a Power level (kW) at operation model of agent

i’s Type 1, Type 2 or Type 3 devicea.
P

ch,min
i,a Minimum charging power (kW) of agenti’s Type

4 or Type 5 devicea.
P

ch,max
i,a Maximum charging power (kW) of agenti’s Type

4 or Type 5 devicea.
P

dis,min
i,a Minimum discharging power (kW) of agenti’s

Type 4 or Type 5 devicea.
P

dis,max
i,a Maximum discharging power (kW) of agenti’s

Type 4 or Type 5 devicea.
P

PV,t
i Predicted power (kW) generation of agenti’s PV

system at time-slott.
P

th,min
i,a Minimum power requirement (kW) of agenti’s

Type 6 devicea.
P

th,max
i,a Maximum power requirement (kW) of agenti’s

Type 6 devicea.
Pmax
i Maximum power rating (kW) of the household

main circuit breaker’s overload protection.
φ Type of agenti’s devicea.
πi,a Minimum ‘on’ time of a Type 3 devicea.
∆τ Time resolution (0.25h or 1h).
T Length of the decision time horizon.
T

in,min
i Minimum temperature value (◦C) in agent i’s

comfortable temperature range.
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T
in,max
i Maximum temperature value (◦C) in agenti’s

comfortable temperature range.
T comf
i Agent i’s most comfortable temperature (◦C).
T t
out Outside temperature (◦C) at time-slott.
τi,a Agent i devicea’s desired scheduling interval.
τ starti,a Start time of agenti devicea’s desired schedul-

ing interval.
τendi,a End time of agenti devicea’s desired scheduling

interval.
γli,a Nonnegative parameter ($) that reflects agent

i’s preference for operating model of Type 2
appliancea.

γi,a,γ
i,a

Nonnegative parameters ($) that determine how
quickly the user gets dissatisfied when the sched-
uled operation of Type 3 devicea is delayed by
t−(τendi,a +πi,a−∆τ) time-slots away fromτendi,a

or advancedτ starti,a − t time-slots ahead ofτ starti,a ,
respectively.

γthi,a Nonnegative parameter ($/◦C2) that depends on
agenti’s tolerance to deviations of the inside tem-
peratureT in,t

i from agenti’s most comfortable
temperatureT comf

i .
ψi,a Parameter (◦C/kWh) of the thermal dynamics

equation.
ζi,a Parameter of the thermal dynamics equation.
µ Smoothness parameter ($/kWh2).
ν Penalty parameter ($/kWh2).
κ Strong concavity parameter (kWh2/$).

C. Sets

Ai,φ Set of agenti’s typeφ devices.
Ai Set of all devices of agenti.
I Set of all household agents.
T DR decision time horizon.

D. Variables

T
in,t
i Inside temperature (◦C) at time-slott.
u
l,t
i,a Binary variable that takes a value of ‘1’ when

agenti’s Type 2 or Type 3 devicea is in operating
model during time-slott.

u
ch,t
i,a Binary variable that takes a value of ‘1’ when

agenti’s Type 4 or Type 5 devicea is in charging
mode during time-slott.

u
dis,t
i,a Binary variable that takes a value of ‘1’ when

agent i’s Type 4 or Type 5 devicea is in
discharging mode during time-slott.

vti,a Startup binary variable of agenti’s Type 3 device
a during time-slott.

x
ch,t
i,a Charging energy (kW h) of agenti’s Type 4 or

Type 5 devicea during time-slott.
x
dis,t
i,a Discharging energy (kW h) of agenti’s Type 4

or Type 5 devicea during time-slott.
x
SoC,t
i,a State of energy (kW h) of agenti’s Type 4 or

Type 5 devicea at time-slott.
xti,a Energy consumption (kW h) of agenti’s device

a during time-slott.
xt0 Total energy demand (kW h) during time-slott.

xtg Energy (kW h) drawn from the grid during time-
slot t.

λ Vector of Lagrange multipliers ($/kWh).

I. I NTRODUCTION

DEMAND response programs capitalize on advancements
in communications, control, and computation technolo-

gies of the future grid to harness the flexibility of electric
loads for demand shaping, supply-demand balancing and other
ancillary services. Central to the vision of the future gridis the
deployment of smart meters with embedded agents that repre-
sent the consumers in their interaction with a DR aggregator.
This technology can enable efficient participation of flexible
loads in energy markets through leveraging carefully designed
price and load information exchange schemes.

Given this context, efficient load scheduling and aggregation
is a problem of growing importance in the area of demand
response. However, the problem of scheduling large numbers
of household loads, which comprise 25-30% of system load in
advanced economies and higher elsewhere, is particularly chal-
lenging for two main reasons. First, household agents are self-
interested and aim at minimizing their costs and maximizing
their comfort levels, whereas the aggregator aims at decreasing
peak demand and minimizing the cost of electricity purchased
in a pooled wholesale market. Therefore, the challenge liesin
devising a coordination scheme to aggregate these households
into a usable DR resource that aligns the objectives of the
households with the objectives of the aggregator.

Second, many household electrical devices have discrete
operating points that can only be represented by mixed-integer
variables (as in [1]–[11]), and some household device uses
are often coupled, thus giving household electricity demand
a combinatorial structure [12]. However, most energy man-
agement methods, such as those in [1]–[6], [11], [13]–[18],
address only one facet of the DR problem, which is local
energy and comfort management. That is, they do not address
system-wide aggregation of these DR capable households;
moreover, the methods proposed in these works are either
incompatible with wide-area aggregation or simply intractable
in large-scale problems [19].

The presence of mixed-integer variables results in a mixed-
integer program (MIP) that has a NP-hard computational
complexity. Therefore, solving the DR aggregation problem
centrally, as in [7]–[10], [20], may spell intractability when
the number of households is large. Furthermore, solving this
problem centrally requires sending all of the households’
private information to the aggregator, which entails substantial
communication overhead and privacy concerns.

To this end, distributed methods are emerging as a way
of efficiently implementing large-scale DR. The existing lit-
erature on distributed methods for demand response is split
into two main categories. The first category includes methods
that treat the household energy levels as continuous [21]–[40],
which often renders the underlying DR problem convex and
therefore computationally conducive. The second categoryof
papers includes the more realistic methods that treat the house-
hold energy levels as a mixture of discrete and continuous and
account for inter-temporal device couplings [41]–[52].
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In [41], the DR problem is decomposed in terms of devices
and a waterfilling-inspired negotiation mechanism is proposed
to reduce electricity generation costs, whereas [42] proposes a
method for the energy management of several prosumers in an
energy district in the aim of maximizing the energy district’s
utility and reducing reverse energy flows. In [43], a subop-
timal distributed algorithm based on an extended Lyapunov
optimization technique is used to control the switching states
of HVAC units in the aim of reducing the average variation
of nonrenewable energy demand while ensuring user comfort.
The works in [44] and [45] aim at flattening the load profile by
minimizing the deviation of the total load in a time-slot from
the mean total load over the scheduling horizon subject to the
minimum cost of individual consumers. The resulting bi-level
optimization problem is transformed into its equivalent single-
level problem and solved in a distributed fashion. However,
the focus in [44] and [45] is not on pricing strategies but
on demand profile reshaping. Moreoever, [46] shows that
the nonconvex demand response problem that results from
incorporating devices with interruptible tasks has a zero duality
gap if the problem is formulated over a continuous-time
horizon. It also shows that, in a discrete-time horizon, the
duality gap vanishes as the granularity of the discretization is
increased. A conventional gradient method is used in [46] to
solve the nonconvex discrete-time DR problem. On the other
hand, an approximate greedy iterative algorithm is used in
[47] to find sub-optimal energy consumption schedules for
the users. Additionally, the algorithm in [47] is guided towards
convergence by introducing a penalty term that penalizes large
changes between successive iterations. The DR model in [48],
also decomposed in terms of devices, is solved in a distributed
fashion using the proximal bundle method.

Similar to [41], [47] and [48], the DR problems in [49] and
[50] are decomposed in terms of devices but use concepts
from game theory to solve the problem. In more detail, a
game theoretic approach based on a modified regret matching
procedure is proposed in [49] to solve the problem to within
4% of the optimum, whereas [50] formulates the problem as a
noncooperative game and uses mechanism design to distribut-
edly solve the problem to a near-optimal Nash equilibrium.

Furthermore, the work in [51] proposes a novel auction
format, inspired by the clock-proxy auction in [53], for the
on-line scheduling of large numbers of households and small-
and medium-sized businesses, and shows how the mechanism
improves the efficiency of on-line energy use scheduling.

In contrast to [41], [46]–[49] and [50], the DR problem
in this work and in our previous work [52] is decomposed
in terms of households. Doing so, allows for a more ex-
pressive household model, which can incorporate the intricate
couplings between storage devices, appliances and distributed
energy resources. In contrast to [52], the method in this paper
accounts for user satisfaction and comfort and engages an
algorithm that terminates in substantially fewer iterations.

Against this background, this paper proposes a fast dis-
tributed gradient algorithm applied to the double smoothed
dual function of the adopted DR problem and shows how to
recover a near-optimal primal solution. In more detail, this
paper advances the state of the art in the following ways:

• The nonconvex DR problem in this work is decomposed
in terms of households, which facilitates incorporating the
intricate couplings between storage devices, appliances
and distributed energy resources.

• The proposed distributed gradient algorithm is applied
to a double smoothed dual function and is designed to
terminate in60 iterations, which can be ideal for an on-
line version of this problem.

• Numerical simulations show that, with minimal parameter
tuning, the proposed algorithm exhibits a similar conver-
gence behavior throughout all the studied systems and
converges to near-optimal solutions, which corroborates
its scalability.

The paper also provides a deeper insight into the geometry
of the dual function of the DR problem and shows that
this dual function is nonsmooth. Consequently, the paper
demonstrates that a conventional gradient method fails to solve
this problem even if the integrality constraints are relaxed and
the problem is convex. Taken together, these advances show
that the proposed algorithm represents a feasible method for
implementing large-scale demand response.

The paper progresses with notation and pertinent concepts
from convex optimization in Section II, followed by a descrip-
tion of the DR model in Section III. Sections IV describes the
double smoothing technique and its properties and Section V
presents the proposed fast gradient method. Numerical results
are presented in Section VI and Section VII concludes the
paper.

II. PRELIMINARIES

All vectors are column vectors unless otherwise specified,
and0 is an all-zeros vector of length depending on the context.
The inner product of two vectorsx, y ∈ Rn is delineated by
〈x,y〉 = x′y, wherex′ is the transpose ofx. The Euclidean
norm of a vectorx ∈ Rn is denoted by‖x‖ =

√

〈x,x〉
and the nonnegative orthant inRn is denoted byRn

+. The
spectral norm of a matrixA ∈ Rn×m is defined by‖A‖ =
√

λmax (A′A), whereλmax (A
′A) is the maximum eigenvalue

of A′A.
In smooth convex optimization,F1,1

L (Rn) is the class of
continuously differentiable convex functionsf : Rn 7→ R with
Lipschitz-continuousgradient [54], that is:

‖∇f (x)−∇f (y)‖ ≤ L ‖x− y‖ , for all x,y ∈ Rn,

for some constantL > 0. A continuously differentiable func-
tion f (x) is calledstrongly convexon Rn (i.e. f ∈ S1

κ (R
n))

if there exists a constantκ > 0 such that for anyx, y ∈ Rn,

f (y) ≥ f (x) + 〈∇f (x) ,y − x〉+ κ

2
‖y − x‖2 .

We are particularly interested in functions that belong to the
classS1,1

κ,L (Rn), which is the class of functionsf ∈ F1,1
L (Rn)

that are strongly convex with parameterκ > 0.

III. DR MODEL AND PROBLEM DESCRIPTION

The adopted DR topology, illustrated in Figure 1, is com-
posed of one aggregator, which coordinates the schedules
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Fig. 1. Aggregator and agents detailed interaction model and the broader
energy market (the dashed line is the scope of this paper).

of the participating households’ loads, interacting withI
household agents over a decision horizonT := {τ, τ +
∆τ, . . . , τ+T−∆τ} (typically one day) consisting ofT time-
slots. Specifically, the DR model comprises a set of agents
I := {0, 1, 2, . . . , I}, where0 is the aggregator and eachi 6= 0
is a household agent.

A. Household agent model

For each agenti 6= 0, let xti,a be the energy consumption
variable of devicea ∈ Ai := {1, . . . , Ai} during time-slot
t, whereAi is the set of all devices of agenti. Each device
a ∈ Ai is associated with a user-defined preferred scheduling
interval τi,a :=

{

τ starti,a , . . . , τendi,a

}

, whereτ starti,a andτendi,a are
the start and end times of the desired scheduling interval
(e.g. washing machine desired to be ‘on’ somewhere between
5pm and 9pm or an EV desired to be charged between 11pm
and 7am). Devices can be classified into seven types. To this
end, letφ ∈ {1, . . . , 7} denote the type of agenti’s device
a and Ai,φ ⊆ Ai be the set of agenti’s type φ devices.
Additionally, let l ∈ {1, . . . , L} be the operating mode of agent
i’s devicea ∈ {Ai,1 ∪ Ai,2 ∪ Ai,3} andpi,a = [p1i,a, . . . , p

L
i,a]

be the associated vector of power levels. Consequently, the
energy consumed during∆τ would beeli,a = pli,a∆τ .

A set of Type 1 includes must-run devices that must always
be ‘on’, such as refrigerators. These devices constitute the base
load of a household and their feasible setXi,a∈Ai,1

∈ RT is
defined by

xti,a = e1i,a, a ∈ Ai,1, t ∈ T . (1)

A set of Type 2 includes inflexible devices that can operate
at discrete power levels, such as electric ovens, lighting and
TVs with DVD players or game consoles. Devices of Type
2 do not have a total energy requirement over the scheduling
horizon, but they have an adjustable energy level that depends
on the dissatisfaction of the user. The feasible schedulingset
Xi,a∈Ai,2

of Type 2 devices is defined by

xti,a − u
1,t
i,ae

1
i,a − · · · − u

L,t
i,a e

L
i,a = 0, a ∈ Ai,2, t ∈ T , (2)

u
1,t
i,a + · · ·+ u

L,t
i,a = uti,a, a ∈ Ai,2, t ∈ T . (3)

Constraint (3) restricts only one binary variableul,ti,a to take a
value of ‘1’ during time-slott. Type 2 devices are associated
with a function that reflects agenti’s tradeoff between cost
minimization and satisfaction maximization. This function is
defined by

Dt
i,a

(

uti,a
)

= γ0i,a(1 − uti,a) + γ1i,au
1,t
i,a + · · ·+ γLi,au

L,t
i,a ,

a ∈ Ai,2, t ∈ τi,a, (4)

where γ0i,a, γ1i,a, . . . , γLi,a are nonnegative parameters that
reflect agenti’s preference for each operating model. For
instance, if a user prefers the highest operating mode over the
others, these parameters can be set asγLi,a = 0 andγL−1i,a ≤
· · · ≤ γ1i,a ≤ γ0i,a.

A Type 3 set contains flexible and non-interruptible devices
whose operation can be delayed or advanced but cannot be
interrupted before they have completed their task. Devicesof
Type 3 have a specific total energy requirement per scheduling
horizon. A Type 3 set includes appliances such as dishwashers,
washing machines and dryers that can operate at discrete
power levels similar to Type 2 devices. In more detail, the
feasible scheduling setXi,a∈Ai,3

of Type 3 devices is defined
by

xti,a − u
1,t
i,ae

1
i,a − · · · − u

L,t
i,a e

L
i,a = 0, a ∈ Ai,3, t ∈ T , (5)

u
1,t
i,a + · · ·+ u

L,t
i,a = uti,a, a ∈ Ai,3, t ∈ T , (6)

∑

t∈T

xti,a ≥ Ei,a, a ∈ Ai,3, (7)

vti,a ≥ uti,a − ut−∆τ
i,a , 1 a ∈ Ai,3, t ∈ T , (8)

and for all t ∈ {τ + πi,a −∆τ, . . . , τ + T −∆τ},

t
∑

q=t−πi,a+∆τ

v
q
i,a ≤ uti,a, a ∈ Ai,3. (9)

The startup binary variablevti,a is only equal to ‘1’ when
devicea is turned on during time-slott. The minimum ‘on’
time constraint (9) states that if devicea is turned on during
time-slot t (i.e. vti,a = 1), then this device should remain
‘on’ for at least πi,a time-slots. This formulation is not a
‘hold-time’ formulation as the device can still be ‘on’, even
after the minimum ‘on’ time has elapsed, in order to fulfill
its total energy requirementEi,a. Constraints (8) and (9) are
inequalities that describe facets of the convex hull of the
projection on the space of bothu andv [55]. This formulation
is a tight polyhedral representation of the convex hull of the
disjoint setXi,a∈Ai,3

. More interestingly, the variablev can
be modeled as continuous. Specifically, becauseu is binary,
constraints (8) and (9) ensure that thev variables are binary
even if they are modeled as continuous [56].

Unlike Type 2 devices, a user only cares that a Type 3
device finishes its task within the preferred scheduling interval

1At t = τ , t−∆τ is equal toτ −∆τ , which is equal toτ + T −∆τ of
the previous scheduling horizon.
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τi,a. Therefore, for Type 3 devices, the dissatisfaction function
would be

Dt
i,a

(

uti,a
)

=











0, if t ∈ τπi,a,

γi,a(t− τ
end,π
i,a )uti,a, if t > τ

end,π
i,a ,

γ
i,a

(τ starti,a − t)uti,a, if t < τ starti,a ,

a ∈ Ai,3, t ∈ T , (10)

whereτπi,a =
{

τ starti,a , . . . , τ
end,π
i,a

}

andτend,πi,a = τendi,a +πi,a−
∆τ .2 Parametersγi,a > 0 andγ

i,a
> 0 determine how quickly

the user gets dissatisfied when the scheduled operation of Type
3 devicea is delayed byt− τend,πi,a time-slots away fromτendi,a

or advancedτ starti,a − t time-slots ahead ofτ starti,a , respectively.
A Type 4 set contains flexible and interruptible storage

devices with a continuous power level within a certain range
τi,a, like EVs. Their feasible scheduling setXi,a∈Ai,4

is
defined by

u
ch,t
i,a

(

P
ch,min
i,a ∆τ

)

≤ x
ch,t
i,a ≤ u

ch,t
i,a

(

P
ch,max
i,a ∆τ

)

,

a ∈ Ai,4, t ∈ τi,a, (11)

u
dis,t
i,a

(

P
dis,min
i,a ∆τ

)

≤ x
dis,t
i,a ≤ u

dis,t
i,a

(

P
dis,max
i,a ∆τ

)

,

a ∈ Ai,4, t ∈ τi,a, (12)

u
dis,t
i,a + u

ch,t
i,a = uti,a, a ∈ Ai,4, t ∈ τi,a, (13)

x
ch,t
i,a − x

dis,t
i,a = xti,a,

3 a ∈ Ai,4, t ∈ T , (14)

x
SoC,t
i,a = x

SoC,t−∆τ
i,a + ηchi,ax

ch,t
i,a −

x
dis,t
i,a

ηdisi,a

,

a ∈ Ai,4, t ∈ τi,a, (15)

x
SoC,τ start

i,a −∆τ

i,a = e
SoC,ini
i,a , a ∈ Ai,4, (16)

x
SoC,τend

i,a

i,a = e
SoC,final
i,a , a ∈ Ai,4, (17)

e
SoC,min
i,a ≤ x

SoC,t
i,a ≤ e

SoC,max
i,a , a ∈ Ai,4, t ∈ τi,a. (18)

A Type 5 set contains flexible and interruptible storage devices
with a continuous power level overT , like batteries. Their
feasible scheduling setXi,a∈Ai,5

is defined by

u
ch,t
i,a

(

P
ch,min
i,a ∆τ

)

≤ x
ch,t
i,a ≤ u

ch,t
i,a

(

P
ch,max
i,a ∆τ

)

,

a ∈ Ai,5, t ∈ T , (19)

u
dis,t
i,a

(

P
dis,min
i,a ∆τ

)

≤ x
dis,t
i,a ≤ u

dis,t
i,a

(

P
dis,max
i,a ∆τ

)

,

a ∈ Ai,5, t ∈ T , (20)

u
dis,t
i,a + u

ch,t
i,a = uti,a, a ∈ Ai,5, t ∈ T , (21)

x
ch,t
i,a − x

dis,t
i,a = xti,a,

3 a ∈ Ai,5, t ∈ T , (22)

2If γi,a = γ
i,a

, functionDt
i,a

(

ut
i,a

)

would be symmetrical aroundτπi,a.
3 Constraints (14) and (22) aredefining constraintsthat only provide a

definition to the variables on their left-hand side. They aretherefore eliminated
during presolve.

x
SoC,t
i,a = x

SoC,t−∆τ
i,a + ηchi,ax

ch,t
i,a −

x
dis,t
i,a

ηdisi,a

,

a ∈ Ai,5, t ∈ T , (23)

x
SoC,τ start

i,a −∆τ

i,a = e
SoC,ini
i,a , a ∈ Ai,5, (24)

x
SoC,τend

i,a

i,a ≥ e
SoC,final
i,a , a ∈ Ai,5, (25)

e
SoC,min
i,a ≤ x

SoC,t
i,a ≤ e

SoC,max
i,a , a ∈ Ai,5, t ∈ T . (26)

A Type 6 set contains thermostatically controlled devices like
air conditioners. Their feasible scheduling setXi,a∈Ai,6

is
defined by

uti,a

(

P
th,min
i,a ∆τ

)

≤ xti,a ≤ uti,a

(

P
th,max
i,a ∆τ

)

,

a ∈ Ai,6, t ∈ τi,a, (27)

and their operation is governed by the (first order) thermal
dynamics

T
in,t
i = T

in,t−∆τ
i + ψi,ax

t
i,a + ζi,a

(

T out,t−∆τ − T
in,t−∆τ
i

)

,

a ∈ Ai,6, t ∈ τi,a, (28)

T
in,min
i ≤ T

in,t
i ≤ T

in,max
i , t ∈ τi,a, (29)

where ψi,a > 0 and ζi,a are parameters defined by the
geometry of the house (or room), thermal properties of the
house (or room) materials, and the thermostatically controlled
device characteristics (temperature of air flow, air mass flow
rate) [57]. Moreover,ψi,a < 0 if devicea ∈ Ai,6 is in cooling
mode andψi,a > 0 if devicea ∈ Ai,6 is in heating mode.

Additionally, Type 6 devices are associated with a user
dissatisfaction function captured by

Dt
i,a

(

T
in,t
i

)

= γthi,a

(

T
in,t
i − T comf

i

)2

,

a ∈ Ai,6, t ∈ τi,a. (30)

The dissatisfaction function in (30) is adopted from [21] and
aims at reflecting agenti’s tolerance to deviations ofT in,t

i

from T comf
i .

Given the above, the electric energy demand of agenti 6= 0
during time-slott is denoted byxti ∈ Xt

i , whereXt
i is defined

by

xti =
∑

a∈Ai

xti,a − P
PV,t
i ∆τ, (31)

0 ≤ xti ≤ Pmax
i ∆τ. (32)

Constraint (32) restricts agenti’s total energy consumption
during time-slot t to a maximum threshold ofEmax

i =
Pmax
i ∆τ . This constraint can be thought of as a way to

ensure that the power consumption during time-slott does
not exceed the rated capacity of the household main circuit
breaker’s overload protection. In fact, one of the superiorities
of the method in this paper is its ability to handle the coupling
constraints (31) and (32), which can only be incorporated in
a distributed model that decomposes the problem in terms of
households.

Finally, the demand profile of agenti 6= 0 is denoted by
xi =

[

xτi , . . . , x
τ+T−∆τ
i

]

∈ Xi, whereXi =
(
∏

a∈Ai
Xi,a

)

×
(
∏

t∈T X
t
i

)

. Because of the presence of binary variables
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(enforced by integrality constraints), the feasible setsXi are
disjoint and therefore nonconvex.

B. Aggregator model

The aggregator purchases energy in a pooled wholesale mar-
ket, and as such, faces a set of cost functionsCt : R+ 7→ R+.
In this expression,Ct

(

xtg
)

is the cost of drawingxtg units
of energy from the grid during time-slott. Due to physical
system limits, the power drawn from the grid is bounded above
by Gmax, which represents the maximum power that can be
drawn from the grid, and thereforextg ∈ Xg := [0, Gmax∆τ ].
Under the assumption that open-cycle gas turbines are the
marginal energy producers4, the cost faced by an aggregator
buying energy in the wholesale market during time-slott can
be approximated by the convex quadratic function,

Ct
(

xtg
)

= c2t
(

xtg
)2

+ c1txtg + c0t, (33)

wherec0t, c1t andc2t are time-varying parameters that reflect
the fluctuating wholesale prices.5 Throughout the rest of the
paper, parametersc1t and c0t are set to 0 for instantiation
purposes.6

C. Demand aggregation problem

The feasible scheduling setsXi6=0 are private information
held individually by each household. If the aggregator is able
to access this information for alli 6= 0, then it can (centrally)
minimize the total energy cost per scheduling horizonT , and
thereby efficiently allocate electric energy to these households,
by solving the following problem:

minimize
xi∈Xi,x

t
g∈Xg,

ut
i,a,T

in,t
i

∑

t∈T

(

Ct
(

xtg
)

+

∑

i∈I\0





∑

a∈Ai,2∪Ai,3

Dt
i,a

(

uti,a
)

+
∑

a∈Ai,6

Dt
i,a

(

T
in,t
i

)







 ,

(34a)

subject to
∑

i∈I\0

xti = xt0, t ∈ T , (34b)

wherext0 = xtg andxt0 ∈ X0 ∈ RT
+ is the total demand during

time-slot t.
Lettingx =

{

{xi}i∈I ,
{

xtg
}

t∈T

}

, and with a slight abuse
of notation, problem (34) can also be written as:

P∗ = inf
x∈X

{C (x) +D (x) : Acx = 0} , (35)

whereX =
(
∏

i∈I Xi

)

× Xg andAc ∈ RT×[(I+1)×T+T ] is
the coupling constraint matrix concatenating constraints(34b).

4In reality the wholesale prices are also affected by congestions on the
transmission network but in this paper this congestion component of the
wholesale electricity prices is neglected.

5The cost function in (33) is not tailored to a specific market but instead
is a general approximation of efficient markets.

6Strictly positive values ofc1t andc0t do not affect the derivations in this
paper.

Problem (34) is a mixed-integer quadratic program (MIQP)
that belongs to the class of NP-hard problems that are no-
torious for tending to be intractable (if solved centrally for
optimality) when they grow in size. In addition, sending the
households’ private information to the aggregator requires a
large communication overhead in a setting with a large number
of household agents, even before privacy issues are considered.

However, relaxing the coupling constraints (34b) through
the Lagrangian relaxation method bestows a separable struc-
ture on problem (34). The problem can then be decomposed
into I + 1 independent subproblems that can be solved in
parallel.

In more detail, the partial Lagrangian of (34) is given by:

L (x,λ) =
∑

t∈T



Ct
(

xtg
)

+ λt





∑

i∈I\0

xti − xt0



+

∑

i∈I\0





∑

a∈Ai,2∪Ai,3

Dt
i,a

(

uti,a
)

+
∑

a∈Ai,6

Dt
i,a

(

T
in,t
i

)









=
∑

t∈T

(

Ct
(

xtg
)

− λtxt0
)

+
∑

i∈I\0

(

∑

t∈T

(

λtxti +

∑

a∈Ai,2∪Ai,3

Dt
i,a

(

uti,a
)

+
∑

a∈Ai,6

Dt
i,a

(

T
in,t
i

)







 ,

where λ =
[

λτ , . . . , λτ+T−∆τ
]

is the vector of Lagrange
multipliers. Accordingly, the Lagrange dual function is

D (λ) = inf
x∈X

L (x,λ) . (36)

Due to the block angular structure of the primal problem,
elements of the Lagrange dual (36) can be separated as
follows:

D (λ) = D0 (λ) +
∑

i∈I\0

Di (λ) , (37)

where the aggregator solves

D0 (λ) = inf
x0∈X0,

xt
g∈Xg

∑

t∈T

(

Ct
(

xtg
)

− λtxt0
)

, (38)

while the household agents solve

Di (λ) = inf
xi∈Xi,

ut
i,a,T

in,t
i

∑

t∈T



λtxti +
∑

a∈Ai,2∪Ai,3

Dt
i,a

(

uti,a
)

+
∑

a∈Ai,6

Dt
i,a

(

T
in,t
i

)



 , i ∈ I \ 0. (39)

Finally, the dual problem is given by

max
λ�0

D (λ) . (40)

However, in this DR scenario, the concave dual function
D (λ) is typically nondifferentiable. Indeed, using Danskin’s
theorem [58]–[60], the subdifferentials ofD (λ) are

∂D (λ) = {Acx : D (λ) ,x ∈ X} .
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Fig. 2. Dual functionD
(

λ1, λ2
)

(and its contour plot) of a small DR problem
with two time slots. The white line delineates the evolutionof the dual iterates.

Specifically, as the subproblems in (38) and (39) can have mul-
tiple optimal solutions for a given vectorλ, the subdifferentials
∂D (λ) may be not be unique and the dual functionD (λ)
can be nonsmooth.7 Consequently, applying a conventional
gradient method [61] to this problem would most likely exhibit
very slow convergence. This can be visualized in Figure 2,
which illustrates the concave but nonsmooth dual function
(and its contour plot) of a small problem comprising two
households, each with two devices (an EV and an electric
oven) scheduled over two time slots. Figure 2 also showcases
the slow convergence of a conventional gradient method as
delineated by the white line. Therefore, in order to accelerate
convergence, a double smoothing technique is introduced,
which involves regularizing the dual problem in (40) to allow
applying a fast gradient method [54].

IV. D OUBLE SMOOTHING METHOD

As discussed in Section III-C, the dual function of the
DR problem at hand is typically nonsmooth and not strongly
convex. However, these properties can be conferred on the dual
functionD (λ) by applying a double smoothing technique.

A. First smoothing

One way to obtain a smooth approximation ofD (λ) is
to modify the subproblems in (39) to ensure a unique optimal
solution for everyλ. The dual function is modified as follows:

Dµ (λ) = D0 (λ) +
∑

i∈I\0

Di,µ (λ) , (41)

7If a function f (x) is smooth, its subdifferential contains only one point
and therefore∂f (x) = ∇f (x).
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λ
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Fig. 3. Double smoothed dual functionDµ,κ

(

λ1, λ2
)

(and its contour plot)
of the DR example in Section III-C forµ = 0.2 andκ = 0.02. The white
line delineates the evolution of the double smoothed dual iterates.

where

Di,µ (λ) = inf
xi∈Xi,

ut
i,a,T

in,t
i





∑

t∈T



λtxti +
∑

a∈Ai,2∪Ai,3

Dt
i,a

(

uti,a
)

+
∑

a∈Ai,6

Dt
i,a

(

T
in,t
i

)



+
µ

2
‖xi‖2



 , i ∈ I \ 0. (42)

and µ > 0 is a smoothness parameter [62]. The modified
dual functionDµ (λ) is smooth and its gradient∇Dµ (λ) =
Acxµ,λ, wherexµ,λ delineates the unique optimal solution of
problem (41), is Lipschitz-continuous with Lipschitz constant
Lµ = ‖Ac‖

2

µ
. To show the bounds introduced byDµ (λ) on

D (λ), let

DX = min







1

2

∥

∥

∥{xi}i∈I\0
∥

∥

∥

2

: {xi}i∈I\0 ∈
∏

i∈I\0

Xi







,

thenDµ (λ) − µDX ≤ D (λ) ≤ Dµ (λ) for all λ ∈ RT
+ and

−Dµ (λ) ∈ F1,1
Lµ

.
The aim of this smoothing is to obtain a Lipschitz-

continuous gradient for which efficient smooth optimization
methods can be applied. However, despite having a good
convergence rate ofDµ (λ

∗) − Dµ (λk) at iterationk when
applying a fast gradient method, the same good rate of
convergence does not apply to‖∇Dµ (λk)‖. Moreover, since
the aim is not only to efficiently solve the dual problem but
also to recover a feasible solution to the primal, a single
smoothing is not enough to achieve this goal [63].

B. Second smoothing

This goal can be achieved by applying a second smoothing
to the dual function to make it strongly concave. The new dual
function is written as

Dµ,κ (λ) = D0 (λ) +
∑

i∈I\0

Di,µ (λ)−
κ

2
‖λ‖2 , (43)
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which is strongly concave with parameterκ > 0, and
whose gradient∇Dµ,κ (λ) = Acxµ,λ − κλ is Lipschitz-
continuous with constantLµ,κ = ‖Ac‖

2

µ
+ κ = Lµ + κ.

Now that −Dµ,κ (λ) ∈ S1,1
κ,Lµ,κ

, applying a fast gradient
method ensures the same rate of convergence for‖∇Dµ,κ (λ)‖
as forDµ,κ (λ

∗) − Dµ,κ (λk). This property is essential for
recovering a near-optimal solution for the primal in fewer
iterations compared to just applying a single smoothing [63].

The effect of the double smoothing is showcased in Fig-
ure 3 which illustrates the double smoothed dual function
Dµ,κ (λ1, λ2) (and its contour plot) of the DR example in
Section III-C withµ = 0.2 andκ = 0.02. Figure 3 also shows
a better performance of the conventional gradient method now
applied to the double smoothed dual problem, as delineated
by the white line.

V. FAST GRADIENT ALGORITHM

The algorithm is divided into two phases. The first phase
consists of a fast gradient method applied to the double
smoothed dual function in (43). The fast gradient method
in the first phase is designed to run for a fixed number of
iterations during which both the recovered primal objective
value and the norm of the gradient of the dual function are
quickly decreased. At the termination of Phase I, the vectorof
Lagrange multipliers along with the smoothness parameter and
the step size that resulted in the minimum recovered primal
objective value are selected as a warm start for second phase.
In the second phase, the second smoothing is dropped and a
penalty term is added to the single smoothed dual function in
(41). The penalty term in Phase II penalizes large deviations
of household agenti’s total load at time-slott from its value
at the previous iteration. Similar to Phase I, Phase II is also
designed to run for a fixed number of iterations irrespective
of the size of the DR system.

More specifically, the fast gradient method in Phase I
involves two multiplier updates,

λk+1 = λ̂k +
1

Lk
µk,κk

∇Dµk,κk

(

λ̂k

)

, (44)

λ̂k+1 = λk+1 + βk (λk+1 − λk) , (45)

where

βk =

(√

Lk
µk,κk −

√
κk
)

(√

Lk
µk,κk +

√
κk
) . (46)

The parameters of Phase I are set as follows:

µk+1 = e







log

(

µmin

µ1

)

2maxiterI







µk, κk+1 = e





log

(

κmin

κ1

)

3maxiterI





κk, (47)

where maxiterI is the maximum number of iterations in Phase
I.

In Phase II, the single smoothed dual is modified to incor-
porate the penalty term as follows:

Dµk,νk (λk) = D0 (λk) +
∑

i∈I\0

Di,µk,νk (λk) , (48)

where

Di,µk,νk (λk) = inf
xi∈Xi,

ut
i,a,T

in,t
i

(

∑

t∈T

(

λtkx
t
i +

∑

a∈Ai,2∪Ai,3

Dt
i,a

(

uti,a
)

+
∑

a∈Ai,6

Dt
i,a

(

T
in,t
i

)



+

µk

2
‖xi‖2 +

νk

2

∥

∥xi − xi
k−1
∥

∥

2
)

, i ∈ I \ 0. (49)

The distributed algorithm is described in Algorithm 1.

Algorithm 1 Distributed algorithm
Phase I

Parameters: λ1 � 0, κmin > 0, κ1 >> κmin, α1 ∈
[

10−3, 5× 10−4
]

, αmin ∈
[

8× 10−4, 10−6
]

, maxiterI> 10.
1: Initialization: Aggregator setsk = 1, µ1 = α1 ‖Ac‖

2, µmin = αmin ‖Ac‖
2,

λ̂1 = λ1, ν1 = 0 andJ = 1.
2: while k ≤ maxiterI do
3: Aggregator solvesD0

(

λ̂k

)

and broadcastŝλk, µk andνk to the households.

4: Households solve and returnD
i,µk,νk

(

λ̂k

)

andxi to the aggregator.

5: Aggregator computes∇D
µk,νk,κk

(

λ̂k

)

andPk
r as in (50).

6: Aggregator computesLk

µk,κk = ‖Ac‖
2

µk + κk, setsνk+1 = 0 and updates

λk+1, λ̂k+1, µk+1 andκk+1.
7: k ← k + 1.
8: end while

End of Phase I: Aggregator finds the best primal solution PJ
r

along with λ̂J , µJ , LJ

µJ ,κJ and x
µJ ,νJ ,λ̂J

such that

J :=

{

k : PJ
r = min

{

{

Pk
r

}

k∈{1,...,maxiterI}

}}

.

Phase II
Parameters: maxiterII > 1.

9: Initialization: Aggregator setsδ =
(

LJ

µJ ,κJ

)−1
, λ̂k = λ̂J , µ = ρµJ ,

ν = σµJ .
10: while k ≤ (maxiterI+maxiterII) do
11: Aggregator solvesD0

(

λ̂k

)

and broadcastŝλk, µ andν to the households.

12: Households solve and returnDi,µ,ν

(

λ̂k

)

andxi to the aggregator.

13: Aggregator computes∇Dµ,ν

(

λ̂k

)

andPk
r as in (50).

14: Aggregator setŝλk+1 = λ̂k + δ∇Dµ,ν

(

λ̂k

)

.
15: k ← k + 1.
16: end while

End of Phase II: Aggregator finds the best primal solution
PS

r along with λ̂S and x
µ,ν,λ̂S

such that S :=
{

k : PS
r = min

{

{

Pk
r

}

k∈{1,...,maxiterI+maxiterII}

}}

.

In general, a feasible primal solution can only be recovered
when both the dual and the norm of its gradient converge,
i.e. whenDµk,νk,κk

(

λ̂k

)

−Dµk−1,νk−1,κk−1

(

λ̂k−1

)

≤ ǫ and
∥

∥

∥
∇Dµk,νk,κk

(

λ̂k

)∥

∥

∥
≤ ǫ.8 In addition, recovering a feasible

primal solution when the norm of the gradient of the dual
is not equal to zero is nontrivial in general. However, in
this DR scenario, the aggregator is purchasing electricityfor
the households only after receiving their demand profiles,
computed as a best response to the price signalλ̂k. Therefore,
the aggregator can in practice force the coupling variablext0
to be equal to

∑

i∈I\0 x
t

i,µk,νk,λ̂k
at each time-slott and solve

8ǫ is a small positive number in the order of10−4.
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the following problem:

Pk
r = minimize

xt
g∈Xg

∑

t∈T

Ct
(

xtg
)

+
∑

i∈I\0

Di,µk,νk

(

λ̂k

)

−
〈

λ̂k,xi
k
〉

− µk

2

∥

∥xi
k
∥

∥

2 − νk

2

∥

∥xi
k − xi

k−1
∥

∥

2
(50a)

subject to
∑

i∈I\0

xt
i,µk,νk,λ̂k

= xtg, t ∈ T . (50b)

This recovered primal solutionPk
r is only feasible when

xtg ∈ Xg := [0, Gmax∆τ ]. However, Phase I of the algorithm
is designed to quickly decrease the norm of the gradient
of the dual function and move away from potential infeasi-
bility. Moreover, in the highly improbable case where this
constraint is violated, typically at the start of the algorithm,
the aggregator can still track the evolution of these recovered
primal iterates by relaxing this constraint. Eventually, at the
termination of the algorithm, the aggregator is able to select a
feasible recovered primal solution that achieves the minimum
value among the recovered primal iterates, as described at the
end of Phase II of Algorithm 1. In fact, the aggregator does not
need

∑

i∈I\0Di,µk,νk

(

λ̂k

)

in order to find the point̂λS that

gives the minimum recovered primal valuePS
r among the re-

covered primal iterates. The values of
∑

i∈I\0Di,µk,νk

(

λ̂k

)

are retrieved here only for comparison purposes.

VI. N UMERICAL EVALUATION

The simulations are carried out withT = 24 hours,
∆τ = 1h and up toI = 2560 household agents interacting
with one aggregator, as in Figure 1. Each household has up
to 10 devices on average, mixed among the types described in
Section III-A. Appliances’ power levelspli,a are obtained from
Ausgrid’s device usage guide [64] for different manufacturers
of the same appliance type and different household data. As a
result, for Type 1 appliances,pli,a is selected randomly from
[0.08, 0.15]. For Type 2 and Type 3 appliances,pli,a is selected
randomly from [0.1, 0.275] and [0.7, 4] respectively. Also,
Type 2 and Type 3 appliances can operate in up to 3 operating
modes, i.e.l ∈ {1, 2, 3}. Moreover, each household has 3
Type 3 appliances on average withπi,a selected randomly

from the set{2, 3} andEi,a ≥ πi,a∆τmax
{

{

pli,a
}

l∈{1,2,3}

}

.

The dissatisfaction parametersγli,a for Type 2 appliances are
selected randomly from[0.001, 0.15], whereas for Type 3γi,a
is selected randomly from[0.001, 0.15] with γ

i,a
= 1.5γi,a,

which makes the dissatisfaction function for Type 3 devices
asymmetrical.

For Type 4 (EVs) and Type 5 (batteries) devices, the values
for eSoC,max

i,a are drawn randomly from[9, 16] and [8, 11]

respectively, whereaseSoC,min
i,a is set to0.25eSoC,max

i,a for both
EVs and batteries to avoid deep discharging. The minimum
and maximum charging powersP ch,min

i,a andP ch,max
i,a for both

EVs and batteries are drawn randomly from[0.1, 0.6] and
[1.1, 3.3] respectively. Analogously,P dis,min

i,a andP dis,max
i,a are

drawn randomly also from[0.1, 0.6] and[1.1, 3.3] respectively.
The charging and discharging efficienciesηchi,a andηdisi,a are set
to 0.87 and 0.9 respectively for EVs and to0.91 and 0.95

respectively for batteries. Moreover, for batteries,e
SoC,ini
i,a and

e
SoC,final
i,a are both set to0.3eSoC,max

i,a , whereas for EVs, which
are required to be fully charged byτendi,a∈Ai,4

, eSoC,final
i,a is set

equal toeSoC,max
i,a . The initial state of energyeSoC,ini

i,a for an EV
is set to0.4eSoC,max

i,a . Also, it is assumed that EVs are mostly
required to be charged somewhere betweenτ starti,a∈Ai,4

= 7pm
andτendi,a∈Ai,4

= 7am.
For Types 6 devices (air conditioners), the data for parame-

tersψi,a andζi,a is obtained by running the model initializa-
tion of the thermal model of a house in [57] for 10 distinct
households with distinct geometries and thermal properties of
the house materials. As forP th,min

i,a andP th,max
i,a , their values

are selected randomly from[0.1, 1] and[2, 5] respectively. The

comfortable temperature range
[

T
in,min
i , T

in,max
i

]

is assumed

to be [18 ◦C, 25 ◦C] with the most comfortable temperature
T comf
i as 22.5 ◦C. When it comes toτi,a, the agents are

divided into two groups. The first group consists of agents
that prefer their air conditioners to be ‘on’ from midday
until late afternoon hours. The second group consists of
agents preferring their air conditioners to be on from early
evening hours untill midnight. Furthermore, the dissatisfaction
parameterγthi,a for Type 6 devices is selected randomly from
[0.001, 0.15]. Finally, the predicted input powerPPV,t

i from
PV panels is obtained from [65] and scaled by a factor drawn
randomly from[0.8, 1.5].

In an effort to reflect realism (and break symmetry), it is
assumed that only40% of the households have PV and battery
storage systems and not more than60% of the households have
EVs. It is also assumed that not more than70% of households
have air conditioners. The coefficient of the quadratic cost
componentc2t is set to 0.007 from 8am to 2pm, 0.004 from
2pm to 7pm, 0.01 from 7pm to 12am, 0.003 from 12am to
5am, and 0.004 from 5am to 8am (as in [7]).

In all simulations, AMPL [66] is used as a frontend model-
ing language for the optimization problems along with Gurobi
6.0.5 [67] as a backend solver. Algorithm 1 is coded in
MATLAB and the interfacing between AMPL and MATLAB
is made possible by AMPL’s application programming inter-
face. The simulations are all carried out on an Intel Core i7,
3.70GHz, 64-bit, 128GB RAM computing platform. Finally,
the data set of 10 distinct households is replicated accordingly
to generate the data sets for larger systems.

A. Centralized computation

As a benchmark for comparison, the solution of the central-
ized problem (34) along with its associated root-node gap are
shown in Table I for different system sizes. Table I lists the
total number of variables (Var), the number of binary variables
(Bvar), the total number of constraints (Const), the solution to
problem (34) (P∗) and its root-note gap (Gap (%) ).

As shown by Table I, a peculiar attribute of problem
(34) is that it has a large root-node gap (loose relaxation).
Problems that have a large root-node gap are, in practice,
particularly hard to solve because they cast a heavier burden
on the branch-and-cut algorithms, which manifests in longer
computation times to reach optimality. The solver run-timeof
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TABLE I
SOLUTION OF THE CENTRALIZED PROBLEM AND ITS ROOT-NODE GAP.

I Var Bvar Const P∗ ($) Gap (%)
10 3734 1423 4205 11.25 39.13
20 7276 2774 8218 33.18 27.78
40 14360 5476 16244 104.44 19.28
80 28528 10880 32296 346.12 13.53

160 56864 21688 64400 1184.65 10.23
320 113536 43304 128608 4202.81 8.68
640 226880 86536 257024 15495.29 8.00

1280 453568 173000 513856 58857.48 7.70
2560 906944 345928 1027520 228738.14 7.72
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Fig. 4. Scaling of the DR aggregation problem (semilogy plot).

both the original nonconvex problem in (34) and its convex
relaxation are shown in Figure 4. In fact, Gurobi’s parameters
are changed from their default values to ones that implement
aggressive cuts generation (clique cuts, cover cuts and other
Gurobi specific cuts) and aggressive presolve. Also, the primal
simplex algorithm was chosen, instead of the default dual sim-
plex algorithm, to solve the root-node and the node relaxations.
This solver parameter tuning results in significant computation
speedups for this specific problem, with up to30% faster
computations in some instances. However, even with this
solver parameter tuning, the solver run-time for theI = 1280
and I = 2560 test systems is more than 3 days, which is
3 times longer than the decision time horizon. Consequently,
from a computational point of view, a centralized approach
for solving the DR problem in this paper is not even suitable
for day-ahead market clearing applications. On the other hand,
the subproblemsDi,µk,νk

(

λ̂k

)

, also being MIQPs, are easily
handled by Gurobi in its default settings.

B. Distributed computation

Algorithm 1 is initialized with λ1 = 0, κmin = 10−5,
κ1 = 50, α1 = 8 × 10−4, maxiterI = 30, ρ = 0.3, σ = 2
and maxiterII= 30. Consequently, the only parameter that
requires tuning depending on system size isαmin. Obviously,
this parameter has to be small enough so that the solution of
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Fig. 5. Evolution of the recovered primal and modified dual objectives for
I = 40.

the modified (double smoothed) dual functionDµ,ν,κ (λ
∗) is

as close as possible to the original dual functionD (λ∗).
The evolutions of the recovered primal iteratesPk

r and the
double smoothed dual functionDµk,νk,κk(λ̂k) are displayed
in Figure 5 and Figure 6 forI = 40 and I = 1280
respectively. Figures 5 and 6 show thatDµk,νk,κk(λ̂k) exhibits
a fast and smooth convergence in less than60 iterations. In
fact,Dµk,νk,κk

(

λ̂k

)

−Dµk−1,νk−1,κk−1

(

λ̂k−1

)

decreases to
less than0.001 in around25 iterations but the algorithm is
kept running until60 iterations to allow

∥

∥

∥∇Dµk,νk,κk

(

λ̂k

)∥

∥

∥

to decrease enough to guarantee recovering a good primal
solution. Furthermore, the convergence behavior of the dual
iterates witnessed in Figures 5 and 6 carries over to all
the other problem instances. This feature is of paramount
importance for the scalability of the algorithm.

The algorithm has been found to suitably converge within
60 iterations across a large number numerical tests on a vast
array of test systems with different mixtures of devices and
appliances. The algorithm can be terminated in less than
60 iterations but this might come at the price of a lower
quality solution; or it may require instance-specific parameter
tuning to achieve the same quality solution in fewer iterations.
Conversely, increasing the number of maximum iterations
above60 can result in smaller optimality gaps but the marginal
decrease in the recovered primal values is not high enough
to warrant this increase. In summary,60 iterations has been
found empirically to strike a good tradeoff between having a
small number of iterations and recovering high quality feasible
solutions.

For all test systems, the optimality gap is measured as
follows:

Gap =

(

PS
r − P∗

)

P∗ × 100.

The optimality gaps for the studied test systems are listed in
Table II. Table II shows that the optimality gap does not exceed
0.48% in all the considered test cases. In fact, further tuning
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TABLE II
ALGORITHM PARAMETER SETTING AND OPTIMALITY GAP.

I µmin S PS
r ($) P∗($) Opt. Gap (%)

10 5× 10−6 54 11.26 11.25 0.11
20 5× 10−6 53 33.25 33.18 0.22
40 5× 10−6 41 104.87 104.44 0.41
80 5× 10−6 43 347.73 346.12 0.46

160 5× 10−6 60 1187.47 1184.65 0.24
320 5× 10−6 60 4219.40 4202.81 0.39
640 5× 10−6 56 15570.22 15495.29 0.48

1280 5× 10−5 50 59013.32 58857.48 0.26
2560 5× 10−5 59 229560.12 228738.14 0.36

parametersα1, αmin, ρ andσ can result in optimality gaps as
low as0.04% but these results are not displayed here for the
sake of keeping the algorithm as generic as possible.

C. Discussion

A common trait for all the test systems is the oscillation of
the recovered primal iterates. These oscillations stem from a
combination of two reasons. The first reason is that because
the households have mixed-integer variables, their feasible
scheduling sets are disjoint. Therefore, a change in the price
signal λ̂k can result inxt

i,µk ,νk,λ̂k
changing in discrete steps.

The second reason is that the test systems are a replication
of the data set of 10 distinct households. Therefore all the
similar households will exhibit the same best response to
the price signal̂λk which entails that the effect of the first
reason will be magnified on the collective level. By this
reasoning, this oscillatory behavior of the recovered primal
iterates should not exist when all the variables are continuous
and the problem is convex. Indeed, Figure 7 shows that the
recovered primal iterates of a relaxed version of the test system
with I = 40 do not exhibit this oscillatory behavior. It is also
evident from Figure 7 that an optimal solution can be found
within 60 iterations for a relaxed version of the adopted DR
problem. In fact, a close inspection of Figure 7 and Figure 5
shows that the modified dual function exhibits a very similar
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Fig. 7. Evolution of the recovered primal and modified dual objectives of the
relaxed (convex) version of the test system withI = 40.

convergence behavior in both the original nonconvex problem
and its convex relaxation.

Moreover, to see the superiority of the fast gradient algo-
rithm (applied to the double smoothed dual function) over a
conventional gradient method (applied to the original nons-
mooth dual function), Figure 8 shows the evolution of the
recovered primal and original dual objectives of the test system
with I = 40 using a conventional gradient method with a step
size of 0.0005. In this case, the dual function is nonsmooth
and exhibits an oscillatory behavior9 just like the recovered
primal. This has an adverse effect on the stopping criteria of
the algorithm. Additionally, it is clear from Figure 8 that the
duality gap (and also the optimality gap) does not decrease
below15%. The same observation applies to all the considered
test systems.

Finally, the computational effort of the proposed fast gra-
dient method is distributed among the agents. The MIQPs
solved by agentsi 6= 0 take less than0.15 seconds to solve
in the worst case and the aggregator subproblem and primal
recovery problems10 require less than0.01 seconds each to
solve in the worst case. Therefore, as shown in Figure 4, the
parallel solve time of the algorithm is at most0.15× 60 = 9
seconds (neglecting communication overhead), which can be
ideal for an on-line version of this problem. In a practical
implementation, the convergence time of the algorithm is
expected to align with the local energy market’s operation.For
example, in the Australian National Electricity Market, supply
procurement auctions are run for each30 minute period. In this
case,30 minutes is ample time compared to the9 seconds
required for the proposed algorithm to complete60 iterations
and find a near-optimal solution.

9Refer to Figure 2 for a geometric interpretation of the oscillations.
10The aggregator subproblem and the primal recovery problem are both

convex QPs.
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VII. C ONCLUSION

The aim of this work is to demonstrate the scalability of a
fast gradient algorithm applied to the double smoothed dual
function of a large-scale nonconvex DR problem comprising
expressive household models and mixed-integer variables.This
work demonstrates how to recover a near-optimal solution
within a preset small number of iterations and minimal param-
eter tuning. More specifically, the solutions recovered from the
algorithm are on average within0.32% of the optimum. Addi-
tionally, the results show that the convergence of the algorithm
exhibits a similar behavior across the studied test systems,
which corroborates the method’s scalability. The paper also
provides a geometrical insight into the dual problem of the
adopted nonconvex DR model and highlights the inefficacy
of the conventional gradient method in solving this specific
problem.

The work in this paper can be extended in several directions.
The formulations in this paper can be easily extended to
account for reverse power flow constraints, aggregator level
renewable energy resources and aggregator controlled storage.
Additionally, the DR problem in this paper can be extended to
incorporate the nonlinear characteristics of hot-water systems,
fuel cells, micro-CHP and a second order thermal model
of a household. In this case, the resulting DR problem is
a MINLP that has a nonconvex relaxation. Finally, future
work will involve extending the DR problem in this paper
to account for the underlying power distribution network
through incorporating AC power flow and system operational
constraints.
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