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Abstract—Emerging infrastructure for residential meter [4]. However through the availability of inexpensive com-
communication and data processing carries the potential munication, computation and actuation technology, DSM
to control household electrical demand within local power opportunities in the residential and commercial sectoes ar

system constraints. Deferral of load control can be incentised . - .
through electricity tariff price structure which can in tur n also expected to be included! [SL.I[6]. A challenge in the

reshape a daily load profile. This paper presents a stochasti field of DSM in the residential sector is the modelling
bottom-up model designed to predict the change in domestic and prediction of changes in load profile resulting from
electricity profile invoked by consumer reaction to electritity  changes in energy consumption habits, induced by a varying
unit price, with submodels comprising user behaviour, prie electricity price during the day. In the presented work
response and dependency between behaviour and electric . . . ’
demand. The developed models are used to analyse theCONSUMEr reaction to price change is modellc_ed on a response
demand side management potentia| of the most relevant rate Wh|Ch addS a new methOd to the m0de||lng pOI"[fOlIO for
energy consuming activities through a simulated German user behaviour. In contrast to many approaches, based on the
household demonstrating that in the giver] scenario 8% of the gutomated control of devices for DSMI] [71-[9] , this work
annual electricity demand is shifted, leading to a 38 annual ghjights the potential of achieving a load shift withobet
saving. However, a 7% higher than average peak load results . . .
from the structure of the tariff signal modelled herein. A need for extensive addltlonal technology to be applied & th
discussion on selected aspects for tariff design for categes field. Thus the benefits of DSM technology can be analysed
of typical household appliances is included. and related to the findings of this study and in doing so will

, _ help improve classic elasticity based models consequently
Keywords: Demand Side Management, Electric Load ¢qnyripyting to an improved understanding of the driving

Profile, Stochastic Occupancy Bottom-up Model, Elasticity . . .
Behaviour Change, Load Modelling, Variable Electricity Price factprs of load profllle Cha”ges and therefore informing the
design of future variable tariffs.

A. Energy Consumption and DSM in Households
I. INTRODUCTION Electricity demand in households is created by the util-

The share of renewables in electricity generation porfoli isation of electric appliances, which can be categorized in
across the EU is growing steadily with a resulting increaggrms of flexibility and controllability [[I0]. For example,
in intermittent generation capacity leading to a paradigh@hting can be controlled easily but may not be flexible
shift towards flexible demand in power system operation. T8 its time of use and thus offers little opportunity for DSM.
maximise the utilization of renewable electricity genimag In contrast some wet appliances may be turned on and off
Demand Side Management (DSM)| [1] targets shifting ¢t random without the residents experiencing any significan
electrical demand to reshape load profiles in accordande witisadvantage to their lifestyles. The proportional cdmttion
available generation. This may be achieved by starting afti appliances to overall domestic energy consumption is
stopping certain energy consuming appliances for exampféisplayed in Tabléll. Appliances under direct user control

In [2] , different approaches to DSM and the variety ofccount for about 68% of household electricity consumption
DSM options, stakeholders and possible targets for DSM While appliances that are usually installed, configured an
different sectors were highlighted. Traditionally DSM ha#en operated autonomously, are classified as being under
been the preserve of |arge industrial customers, mosﬂy Wiﬂdirect user control and account for 32% of the household

a focus on peak load reduction to avoid capacity chafges [g]ectricity demand. _ _
Two main approaches to demand side management in
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TABLE | TABLE Il

SHARE OF DOMESTIC ELECTRICITY DEMAND BY APPLIANCE ELECTRICITY PRICE RATIOS OF SELECTEBSERMAN DSM STUDIES.
Appliance Electricity demand Study Low price  High price  High/Low
share 2 [%] ct/kwWh ct’/kwWh Ratio
Under direct user control: 68% E‘]'IZI?Mea [?[{le] %;‘967 231§5799 23;5451
- : eTelligenc . . .
gmga;g%@mem igg Intellikon [20] ~ 15.50 27.40 1.76
. MoM 15. 25. 1.67
Laundry 13.1 oMa [22] 5.00 5.00 6
Lighting 111
Cooking 10.1 . o ) )
Dish washing 5.9 intraday variability apply. However when working directly
quer indirect user control: 32% with the householder, there is a limitation on task comjexi
Fridge 12.0 imposed by human capabilities of calculating an optimal
Pumps 14 operational strategy. This assumption is also supported by
Freezer 5.3 . . . .
Other 74 the E-DeMa studyl[19], explained in more detail in Section
tIncludes drying  ZSource:[[11]; Percentage sectoral demand without elettric [I-B] where the participants could choose between four dif-
domestic hot water ferent tariff structures which were: fixed price, two-stegp

four-stepped and five-stepped. In this example 87% of the

- i i 0,
such as dish-washers, washing machines or tumble dri?c#stomers selected the two-stepped price signal, 5% sdlect

are equipped with controllers for DSMI[7[2{9]. A change o € four-stepped and 8% the five-stepped signal. This leads

start and end times as well as an interruption of operati{;o ttt]ee :c?cneCILtj:(;ogr:gitethrzglix (t;”g SttrhuethL:Jc:ﬁzuarrr]eerunggrethis
is achieved via a local or centralised controller, whichldou P P y )

be placed at the utility [5], to manipulate the premisesdlo reason a two stepped price gign.al Is introduced in -Section
profile. The drawback of using automated actuation devij@. and used for _the nvestigations of a change in load

for DSM are the costs of installation and the risk of lack ch)roflles pre_senteq n Se_ctlﬁllll.

acceptance of automated devices in private hores [16]. If"VNen discussing tariff structures the number of steps
actuated systems are not within the range of available o@ﬂd glso the dlfference in price bet\A{een st.eps have to be
tions, financial incentives and educational measurestedge onsidered. To illustrate this point price ratios of sedect

to influence the occupants’ energy consumption behavio%
are an alternative [17][18].

In an analysis of the benefits and drawbacks of DS
[16] pointed out that a lack of information technology an
communication infrastructure, increased costs and comple Modelling the cause and effect of modified electricity con-
ity, as well as inappropriate market structures can be amosigmption by load shifting in households through changing
the main obstacles to DSM programmes. The models afgcupants behaviour is still a challenge. Relying on custom
results presented in this work enable the potential of a lowffort to adapt energy to suit DSM requirements, leads to the
tech, low cost and low complexity approach to DSM, whichuestion of how to predict the change of energy consumption

is achieved by solely relying on user response to a priciglyring the day and over longer time frames, in response to
structure comprised of variable tariffs. the tariff structure. A widely used modelling approach for

this is based on the price elasticity of demahnd [23], which
is rooted in the field of economics. A main challenge of the
i o , ) elasticity based approaches is the definition of elasiti
Financial incentives that target change in the energy cross-elasticities, which determine the absolute powe
consumption patterns of households can be applied in thg;nge and its shift over time. The presented work shows
form of variable tariffs. The structure can differ in theyn approach to overcome some of the difficulties with cross-
value, number of price steps and the timing of high angasicity, but can still be easily combined with general
low prices during the day. At one extreme of complexityice_elasticity models. A core concept of the presented
electricity prices can be changed irregularly through®et t 55516ach is that energy consumption habits are distinct and
day or simply consist of a simple two-stepped price signgepend on personal needs and the purpose of the energy
contrary to the flat price model commonly used for Germaike \While a large part of human activity, sleeping and
residential customers. In selected field studies takingeplagaing for instance, is unlikely to be changed due to externa
in Germany, different tariff structures with two o five P& jncengives, there exists a set of activities which can biteshi

grman DSM projects are listed in Tallé II.

. Predicting User Response to a Price Signal

B. Electricity Prices and Structure

during the day, have pee” tested|[19]+21]. _ without considerable inconvenience or loss of quality . li
The nature of the tariff structure depends on the intendgg;g assumption is supported by the E-DeMa studyl [19],
effects on the electric load profile, which could be: which shows that different activities are not equally likel
o Maximum utilization of renewable energy to change under a variable price scheme. Practice theory
« Peak shaving is used in [[24], [[25] to conceptualize and explain energy
« Low cost energy purchase consumption behaviours, routines and possible flexibility

Using automated actuation devices, that are able to cw#hile formalisms are emerging[26] , a model that quantifies
culate an optimal operation strategy based on a given pridemand changes in reaction to pricing signals has yet to
signal, places no limitations to the tariff structure angl itemerge as a standard approach.



In [27] elasticity theory is applied to electric demanaonstant electricity price is referred to as business aslusu
under real time prices[ [28] extends this approach inclu¢BAU).
ing a non-linear elasticity function and a classification of Inputs:household appliance stock is provided to the model
customers’ flexibility and its impact on the structure of thand taken from[11],[[33]. Statistics of BAU user behaviour
cross-elasticity matrix, which accounts for the impact of @ retrieved from the Harmonized European Time of Use
price change at one point in time upon electricity demand 8tirvey [33] and included as a probability distribution.
other points in time. The approaches [inl[27]3{29] focus on cajculation StepsThe changed start time probability is
the resulting change in load with no indicator of the underly.aiculated as a weighted mix of the original distribution
ing processes that constitute it, while in[30].[31], el&@8!  ang a distribution resulting from a complete adjustment of
is applied to starting probabilities of electric appliasicth pehaviour towards the price signal. For each appliance the
this work a simple, straight forward method, which takes intyropapility of use is established using submodel 1 for the
account user preferences for the use of the appliance and ) case. This probability distribution is changed accoggi
responsiveness for each activity towards a price changeidsthe price structure and the expected user response pre-
presented which can enrich or substitute existing el@gtickented in Sectiof II[2B. In submodel 2 the probability of use
based approaches. Although inflexible personal routines\g@gen responding 100% to a given price signal is calculated
highlighted in [26] are not explicitly captured, the pre@h for each appliance and used together with the expected
methods implicitly build on daily routines and a load shiftesponse to calculate the changed probability distribstio
will occur in line with observed temporal preferences for Outputs: Submodel 3 maps electrical demand to each

each activity. activity using measured load traces and calculates an ag-
gregated load profile for a household.

II. MODELLING HOUSEHOLDELECTRIC LOAD PROFILES
UNDER VARIABLE TARIFFS

Regular start ) o User response
g Type of device Price signal p

Domestic electricity demand is classified into consump| , ;paiity for device

tion caused by appliances under direct user control a
under indirect user control (see Section]l-A). The effectsubmode1 —,I,_ - l_ _____ l ________ !

e . . | |

of modified user behaviour on the use of directly controlleg Regular start probability of controllable devices |

appliances are modelled using three submodels: | |

1) A model for user behaviour under "normal” conditionsl_—sub_—m,@z: Sl ==== —Ir —=====F= :|

(SmeOdeI 1)- . . | Total start probability |

2) A model for how behaviour changes i.e. how the user (100% Response to price signal) |

responds to a given price signal (submodel 2). | v [

3) A model for mapping user behaviour to energy con- Resulting probability for each device [

sum tion (Submodel 3) | Regular start probability x (1-user response) + hl |

F_) . : total start probability x user response |

The combination of these three submodels leads to the mobeF = = = = = = — - I __________________________

. Rk . [ SubmodeTl 3 1

proposed in the following sections. |
I Construction of electric load profile for each device

| (using measured load traces) I

A. Main Model L '

The electrical load model is based on the StOChaSHE;. 1. Inputs, main calculation steps and outputs of theseliral model.
bottom-up approach presented and validated against 430
households in[[32]. For each activity, information on fre-
quency, start time and duration are provided in the form of
the probability distributions shown in Figuré 4. The resg®n
to a price signal is modelled by modifying the probabilitie?' Data used

of the start times for each appliance within the constraints|, 2012 an 2013 the E-DeMa study [19], financed by the

of the foIIowing- assumptions: _ German government, investigated the potential of intefity
o 24 hours in advanc;e Of any given day, the user isnergy control systems and modified user behaviour in
provided with the price signal for that day. Germany. As a part of that study 575 electricity customers

« The user performs a certain activity, such as watchingere equipped with smart meters and given the opportunity
TV or cooking, n-times during a day. The number ofp select between different tariff schemes. After the mbje
starts of each activity is kept constant since the need4@ a-posteriori interview was performed, asking whether
undertake an activity is assumed to be independent®id how often the participants changed a certain activity in
its timing. response to the tariff with the findings compared to measured

« Willingness to react to the signal, referred to as respongrctricity consumption data. One of the findings was that
rate, is different for each activity according to thesers responded differently depending on which activitg wa
importance of the activity to the user. being modified. FigurEl5 shows an example of the possible

« Once started, an activity will take as much time as knswers and their distribution on the question, 'How often
normally does when started at this time of the day. did you change activity X?". The data extracted from over

Figure[d shows the inputs, main calculation steps and ositp@60 questionnaires is used to calibrate the behaviouraéinod
of the behavioural model. The case characterised bydascribed in the following section.



C. Electricity Tariff Structure It is possible that a single type of appliance could be

Motivated by the observations that customers prefer a t4S€d by more than one person at the same time. This is
iff structure with low complexity, as explained in sect/GE) accounted for wth a co-use factor, which is derl\_/e_d from
a two-stepped tariff structure (high-price and low-priceis the TUS data[[33] and is dependent on the activity type

chosen to be implemented in the model as a binary sign@nd the number of persons living in the same dwelling. The
This signals is used for dividing the day into timeslots starting probability is reduced according to the co-us¢ofac

where consumption is preferred or discouraged according!fb@ccount for shared appliance use.

the pricep: One central modelling assumption is that all appliances
can be used independently of each other and thus could
1< p(t) = Low be used simultaneously. While this may hold for some
s(t) = 0= p(t) = High (1 appliances it was shown in_[26] that certain activities shar
a defined set of patterns. To account for this, a class of
finite state appliances/activities are incorporated irte t
‘ ‘ ‘ model. The appliances used for these activities are used
14- EERE R © — Baseline Scenario ~  in a predefined sequence and additionally follow a discrete
1.2- e erseennn{ 777 Scemario 1 - program (for example laundry machines). Thereby the use of
1.0 ‘ ‘ ‘ ‘ one appliance is linked to the prior use of another appliance
T o8 o : : : ~ for laundry and kitchen devices. For all cooking activities
c%oaf D o one sequence reflects the preparation of a certain type of
N 3 | meal. The use of a tumble dryer after the use of a washing
0.4 v P machine and the time in between are randomly selected.
0.2~ i i

| . Clearly, exploring more detailed forms of this relationshi
0.0t bt e A ! 1 is an area of further research in its own right![34].
0 5 I;(?urofda 15 20 Validation of the model has been conducted with 430
Y measured electric load profiles using Pearson’s correlatio
coefficients for the average daily load profile varying be-
Fig. 2. Price signak(t¢) sent to the consumer in scenario 1 according ti’ween 0.85and 0.97 depending upon the day of the week and
scenario 1 (0 - high price / 1 - low price). ’ ) L . .
the group considered. The validation methodology is given
. - , . a full treatment in [[3R], but MAPE values obtained vary
The signal indicates favourable times to use an appliance C
9 bp between 6.1% to 16%., which is comparable to measurement

(at low price level,s = 1) and when to avoid energy . ) .
consumption (at high price leve$=0). The tariff structure based forecasts for residential premides [35].

chosen for scenario 1 is taken from[19] and strives to reduce

load during daytime hours. In this study the price ratio of input : time of use data, appliance stock data
high to low was 2.55, the prescribed hours of high and low output: usage schedule for each appliance
prices are shown in Figuld 2 and compared to a baselingor every daydo

scenario characterised by a constant electricity price. for every activitydo
sample number of starts;
] . . for every startdo
D. Submodel 1: Modelling User Behaviour sample start time:;

User behaviour is modelled using a stochastic bottom- sample duration given the start time;
up approach based on time of use survey (TUS) [3B]. if appliance is already usethen
For each household appliance a usage schedule is generated | try again;
for each day using the procedure described in Fifire 3. The else
devices are separated into two classes: those that aréyactiv | block slot in activity schedule;
independent, such as fridges and routers, and those that hav end
a dependence on domestic activities, such as TVs or wet end
appliances. end

The number of starts, the start time and the durationend
for each activity, is sampled from probability distribut®
derived from the time of use data. An important feature &fg. 3. Routine for generating an activity schedule for alpl&ances.
this model is that the duration of use is linked to the start
time.

Seasonal effects, such as reduced TV viewing hours d- Submodel 2: The Change in User Behaviour
ing summer month, are accounted by adjusting the numbefTo model alterations in user behaviour, users are divided
of starts during the course of the year. The probabiliiyto two extreme categories: a BAU user whose behaviour
distributions for the number of starts are adjusted acogrdiremains unchanged and a responding user who always reacts
to the analysed data. Further seasonal effects are incladed00% to the price signal. The changed user behaviour is
the lighting model. The electricity consumption for eléctr a mix of both probability distributions according to the
lighting is dependent on the global irradiation outside thesponse rate. The weighting of the probability distribog
building and the number of persons present in the dwellinig. set according to the reported response rates. The modified
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TABLE Il
PROBABILITY OF USER RESPONSE DERIVED FROM THE Fig. 6. Expected respons&resp for the activities considered in the
QUESTIONNAIRE behavioural model (N=359-404), [19]
Answer Mapped response probability
a MResp II"I % . .
Always 100 _ 1) The business as _usual (BAU) usén tr_us case _the_re _
Often 75 is no response to the signal and the start time distribugon i
Occasionally 50 unchanged as described in Section]I-D.
Rarely 25

2) The responding userThe other extreme is the re-
sponding user who reacts 100% to the signal: all activities
are shifted to favourable timeslots and unfavourable times
lots are avoided. For the responding user the probability
Presd X, t) Of starting an activityX at a certain time slot
¥ is derived by multiplying the probability of the BAU user
Paay with the price signak(t) described in SeCTHEC.

Never 0

distributions still incorporate users timely preferendes
certain activities. As a result the time to which an activit
is shifted is still in line with the user’s preferences of whe
to undertake that particular activity

When respond_lng to_tr_u_e S|gqal, thg useris expecteq to shift Presd X, t) = Paau (X, 1) - 5(t) 3)
the start of certain activities with a likelihood of readito
the signal referred to as the user response rate which depend vs(t) € {0,1}

Orr: the type of factlwty andfllts n_nporr;[anc_(lel_to the user. E'ﬁ’reThe resulting daily probability distribution is normalite
shows a set of answeasreflecting the willingness to changery,q gistribution still reflects user preference of when to

an acti\./i_ty as reported in [19]. The answers are mappe‘,j irEﬂdertake an activity but completely avoids start times in
probabilities for user respons®resda) according to their high price time slots
countsw in the interviews and using Tablellll. For each . ' . .
L . 3) Merging - The changed use®ne interpretation of the
activity X the expected valu#resp for an user responding . . - .
1o the price sianal is calculated according to: questionnaire results shown in Figliie 6 is that a response ra
P 9 gto of 2% is equivalent to showing a 100% responding behaviour
n on 2% of the days. This interpretation is used to calculate
- Mresfa) - wresfa) (2) the changed probability distribution of start times. Toider
a=1 the changed start time probability distributidPew(X, t)
ef&)r each activity X, the distributions of the BAU user and
L[He responding user are weighted according to the expected
[esponsefiresd X) as calculated in efl] 2 and summed:

1
22:1 WResd @)

Highlighted in Figurd b are the differences in expect
response: dish-washing and laundry exhibit about three
four times higher response rates than the other activiti
considered. Response affects start time and this is accemmo B
dated with a new start time probability distribution cotisig Prew(X,t) = Eresd X) - Presd X, 1) “)
of three parts: + (1 = EresfX)) - Poav (X, 1)

EResp(X ) ==



A. Change of the Daily Load Profile

70r |
In Figure[8 he daily electric load profile under normal

60- BAU User ,
~ --- Responding User A - . . L

£ 5o --- Changed User A con<_j|t|ons (i.,e. a constant price) is comp_ared to th_e load
g | : i N profile when applying a two-stepped tariff (scenario 1).
240~ S "V Under normal conditions the electric load profile shows
= \ \ . . .
g 30- L e two characteristic peaks - the first peak occurs at around
o )
2
Ay

N 12am with a second considerably higher peak occurring
around 7-8 pm. In the morning a steady rise in electricity
demand is observed beginning after the fourth hour of the
day. The changed load profile, when users responded to the
Hour of day price signal, shows a different characteristic: the twokgea
at 12 and around 7pm persist but are now less distinct.
Generally, energy consumption during high price hours is
reduced. During the night time period (12:30 a.m. - 4:30
a.m.) energy consumption in both cases is almost identical.
Moving activities out of the expensive hours of the day
FigurelT shows the start time probabilities for the différefinto low price periods, leads to two new peaks in the load
user types when the price signal described in Sedtiod Il{§ofile: a first peak in the early morning and a second peak,
is applied. even higher than the one before applying the signal, in late
evening. In the morning hours, the changed profile shows
. ] ] a higher demand in hours of high price periods than in the
F. Submodel 3: Mapping Behaviour to a Load Profile  paseline scenario, which can be attributed to an appliance

With the use of submodel 1 and 2, a schedule for t€ing started in a low price period but continuing to operate
considered activitiesY for each timeslot in the day is through to a high price period.
derived according to whether an activitis either performed
(X;(t) = 1) or not (X;(t) = 0). For each activity the 700, S e .
corresponding electric appliance is used. Based on mehst —— Baseline Scenario ‘ L
data a load trace’,; for each appliance is generated, 600r|--- Scenario 1

Fig. 7. Expected probability distribution for vacuumingr fihe different
user types.

depending on the duration of use. = 500~
= 400- . : ,
[ S T T i
Pe(t ZX  Peli B 8.0 e
VXZ-{O, 1€} 200r
100L I I I I .
Load traces can then be aggregated together to forn 0 5 10 15 20
Hour of day

household load profile as i [B2].

Fig. 8. Average electrical load of a household, under BAUditions in
I1l. DSM POTENTIAL FOR GERMAN SINGLE FAMILY the baseline scenario and with the influence of the signatémario 1.
HOUSES

A one year simulation using 500 single family houseg annual Comparison of the Load Profiles

with 3 occupants was undertaken to investigate the electric
‘A comparison of the annual duration curves for the cases
household load profile under different tariff structurebeT
|nvest|gated is shown in Figufé 9; annual energy consump-
age and work pattern of the occupants and the applianc
1oh is 3197 kWh per annum in scenario 1 and about 1%
portfolio of each building were sampled from a repre:.
. C igher in the baseline scenario. This effect is a result ef th
sentative distribution for Germany [33]. Each househo
. act that activities such as watching TV, when started late
was simulated on a 10 second base and the results wer
. ) In_the evening, are used for a shorter duration than when
averaged to a one hour time step. Regular public holida ays
arted earlier in the evening in the BAU case. The shape
are included. Simulations were performed for the S|gna
the annual duration curve is flattened as a consequence
introduced in SectiofL I, which in tum produced a repdrte f the price signal, whereas the annual peak is increased b
user response, introduced in SectionJIl-E, used to caleul%to P 9 P y
the modified activity schedule for one day. To examine the '
effects of different tariff structures, two additional sitation
runs were completed with one structure that was used in tihe Contribution of the Individual Technologies to Load
Intelliekon study[[2D] and one designed to reduce load peafifting
The aim of the following investigation is to evaluate of the To investigate the contribution of each technology to load
effects of the two-stepped price signal on the shape of thkifting, the daily shifted energy for each appliance itelis
daily electric load profiles. Further, the potential for DSMn TableIM. On a daily basis on average 729Wh were shifted,
actions by use of individual electric appliances is evadat equal to 8% of the total daily electricity consumption which



800- ‘ ‘ o is shifted to earlier hours and the evening peak is delayed by
‘ ‘ ‘ ‘ ‘ — Baseline Scenario one hour with the evening peak higher than in the baseline
1 scenario. The signal which was intended to reduce the load
peaks actually leads to a flattening of the evening peak with
a higher demand in the late afternoon; the morning peak is
only slightly higher than in the baseline scenario though.

--- Scenario 1

700~ -
100L 1 1 1 1 1 1 1 1 ] 600- s .
0 1000 2000 3000 4000 5000 6000 7000 8000
Hour of Year = 500- e AR
= 400-
Fig. 9. Annual duration curve for the baseline scenario caneg to g
scenario 1. — 300xs; —— Baseline Scenario
R Bt --- Scenario 1
200 -K3Naroooo- -.--- Scenario 2 il
. . o T e Scenario 3
leads to an annual saving of 35&/a, given a low/high 1000 i i ; | |
price of 8.49 and 21.6€ct/kWh. The highest contribution 0 5 10 15 20
in terms of shifted energy was achieved by changed laund Hour of day
followed by dish-washing and cooking which lead to savinc - o L ! ! 1
of 16.4€/a, 8.4€/a and 4€/a respectively. The share of T Daseline Scenario
shifted energy to the total demand of each appliance sho 1'27 -.--- Scenario_2 |

that about 31% of the electricity consumption for laundr o N Scenario_3

. . ) . = 1.0 :

and dish washing was shifted to favourable hours. Cookir § ! i P
1 H H H 9 0.8- : 1 1 1 4

PC-use, cleaning and ironing were shifted by between € @ 06 | i o
and 10% and shifting of TV related consumption was 2% 0'4’ ! i Eo 1
4- i ! Lo 1

1 ! ]
L | i T 1

TABLE IV 0.2 ! P : Poob

SHARE OF TOTAL ELECTRICITY CONSUMPTION SHIFTED ENERGY AND 0.0- A ——— ’ -

RESULTING SAVINGS FOR THE INVESTIGATED SCENARIO 0 5 10 15 20

Hour of day

Share of  Shifted  Shifted Savings

g)é?Tl]and Energy Energy Fig. 10. Influence _of different _price signals (0 - high pricé / low price)
Categories % Whid % €la on the average daily load profile (top)
Laundry 12% 340 31% 16.4
Dish washing 6% 175 31% 8.4
Cooking 10% 86 10% 4.1 IV. DISCUSSION OFRESULTS
PC 13% 72 6% 35 o _ _
TV 11% 23 204 1.1 Results in Figurd_10 show that the price signal shape
Cleaning dry 2% 21 10% 1.0 has a strong influence on the load profile. In all cases a
Ironing 1% 13 12% 0.6 variation in the tariff structure leads to reduced constiompt
Total 55% 729 8% 35.1

in high price hours with an increased consumption at hours
where price is low. For all tariff structures an increase in
consumption can be observed at hours where the electricity
D. Effect of Signal Shape on the Load Profile price changes from high to low, however, if these high to low
As described in Section II[JA, an increase in the numberice shifts occur during the early evening, new and higher
and value of the load peaks during the day is observed whHead peaks than in a constant price scenario are exhibited, a
applying the two-stepped signal giverin 1]-C. To investéya effect which should be taken into account when designing
the effect of different tariff structures, two further segios tariff structures for different customer groups. Obseorat
were simulated and the results can be seen in Figure d®new peaks is consistent with the statements_in [16], where
The first additional signal (scenario 2) is a two steppdfie effect of disturbed natural load diversity by DSM is
signal equal to the one used in the Intelliekon study, whiatiscussed. Similar observations for automated devices are
investigated DSM in private households][20]. In this casdescribed as rebound effects in][36], reported as an inereas
the high time is set from 11 a.m.- 5 p.m.. The secomf load leading to a new peak when interrupted processes
additional signal (scenario 3) is a peak-shaving signaickvh try to catch up after blocking times are passed.
is derived from the household load curve of the baseline Results in Tabld_TV show that about 8% of the total
scenario. During times of high load from 10 a.m. to 2 p.ndemand was shifted, which corresponds well with the results
and 4p.m. to 9 p.m. a high price is applied. At times aff the active participants in the E-DeMa study who shifted
typically low electricity demand, a low electricity priceaw 8.6% of their energy consumption against an average shift
applied to motivate a shift of energy consumption to thes¥ 3.6% for all study participants. The small discrepancy
hours. The high to low price ratio was kept constant for athay be attributed to an overly optimistic self-evaluation
cases. Using the Intelliekon tariff structure, the morrpegk regarding the change of behaviour as well as the assumption




of conditional independence of activities this allows for V. CONCLUSION

a theoretical simultaneous shift of all activities towards Correctly anticipating the expected change in individual
favourable points in time, which might not be realisablgoyseholds load profiles is particularly valuable in thegtes
for activities that are inherently coupled. The value f@do of electricity tariffs. This paper has proposed a model to
shifting calculated in this work is clearly below the 32%tthayredict the change of the electricity load profile in resgons
has been estimated by [10], but close to the 12% which{s the application of a variable tariff structure, showing
observed in the field trials reported in the same study.  accurate prediction of shifted load under particular cases

The current modelling approach assumes that most of ¢ scenarios investigated, around 8% of the total domestic
appliances are independent (see seCfiohll-D) which has @&mand was shifted, which corresponds well with previous
effect on the results which may, in a rare case, lead totréal results and results in a financial gain©85/year. Over
simulation timeslot where the maximum possible numb&90% of this saving came from wet appliance usage with an
of appliances are operated simultaneously. Although taéMost trivial contribution of€5/year coming from shifting
majority of appliances could theoretically be operated §Pnsumer electronics and TVs, highlighting their lack of
the same time, this is constrained by an individuals’ multdsefulness in demand response.
tasking capability. Whereas semi-automated appliancefs su Load shifting comes with a consequence though, as it was
as dish-washers and laundry machines as well as base-I8&g@wn that additional peaks in the load profile can occur
devices do not face a limitation in simultaneity, appliamcevhich are even higher than the peaks present without the
requiring user interaction are limited in this manner. ®abkpplication of a variable tariff structure. This work hagn
V] shows that cooking, the use of PCs and TVs, vacuurfighted the importance human factors play in DSM: different
cleaning and ironing account for 17% of the daily shifte@ousehold types show different consumption patterns and
energy, which implies that simultaneous operation of tho#eus an individual availability of DSM capacity during the
app"ances] based on the assumption of mosﬂy independ@ﬁy. In the same vein, the expected motivation to respond to
appliances, could lead to an overestimation of the new loadvariable price is highly dependent on the following three
peaks that may result. In households with a low number Bman oriented factors:
occupants and thus a high number of appliances per dwelled) The importance of the activity
overestimation is most severe. However for the investijate 2) The value to the user of responding to the tariffs and
case with three persons per household this effect is reduced their inherent elasticity
In aggregation over many households, over the year and witt3) The time of day when a specific change of behaviour
increasing number of dwellers in the living unit the resgti is demanded from the user

peak will be further smoothed. Lastly, tariff complexity must remain within limits of
Whereas possible peak over estimation is a weaknesdliy understanding of the consumers as overly fine grained

the presented approach the quantification of shifted energ&‘:ﬁ structures will be burdensome to follow consistgntl
remains unaffected by the partial independence assumptig#ilding on the model developed here, it will be possible to
The response rate to a price signal used in sedfion [igesign custome_r_specn‘lc tarl_ff schemes_ based on predicted
to determine the new starting points already accounts fapusehold specific changes in load profile.

inconveniences occurring and limitations in multi-tagkiof

a single dweller. A combination of the presented approach VI. ACKNOWLEDGMENT
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