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Abstract—We consider joint energy storage management and
load scheduling at a residential site with integrated renewable
generation. Assuming unknown arbitrary dynamics of renewable
source, loads, and electricity price, we aim at optimizing the
load scheduling and energy storage control simultaneouslyin
order to minimize the overall system cost within a finite time
period. Besides incorporating battery operational constraints and
costs, we model each individual load task by its requested power
intensity and service durations, as well as the maximum and
average delay requirements. To tackle this finite time horizon
stochastic problem, we propose a real-time scheduling and stor-
age control solution by applying a sequence of modification and
transformation to employ Lyapunov optimization that otherwise
is not directly applicable. With our proposed algorithm, we show
that the joint load scheduling and energy storage control can
in fact be separated and sequentially determined. Furthermore,
both scheduling and energy control decisions have closed-form
solutions for simple implementation. Through analysis, weshow
that our proposed real-time algorithm has a bounded perfor-
mance guarantee from the optimalT -slot look-ahead solution
and is asymptotically equivalent to it as the battery capacity
and time period goes to infinity. The effectiveness of joint load
scheduling and energy storage control by our proposed algorithm
is demonstrated through simulation as compared with alternative
algorithms.

Index Terms—Load scheduling, energy storage, renewable
generation, real-time algorithm, stochastic optimization, finite
time horizon

I. I NTRODUCTION

The rising global demand of energy has resulted in high
prices for electricity and also caused the growing environ-
mental concern due to excess carbon emission from power
generation. Integrating renewable energy sources into thegrid
system has become a vital green energy solution to reduce
the energy cost and build a sustainable society and economy.
Although promising, renewable energy is often intermittent
and difficult to predict, making it less reliable for both grid-
level operation and as a local energy source for consumers.
Energy storage and flexible loads are considered as two
promising management solutions to mitigate the randomness
of renewable generation, as well as to reduce electricity cost
[2], [3]. In particular, energy storage can be exploited to shift
energy across time, while flexible loads can be controlled to
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shift demand across time. For grid operators, they can be
utilized to counter the fluctuation in renewable generation
and to increase reliability. For consumers, energy storage
and load scheduling can provide effective means for energy
management to reduce electricity cost.

As renewable penetration into the power supply increases,
the renewable generation with storage solutions at residential
homes (such as roof-top solar panels) will become increasingly
popular. Thus, developing a cost effective energy storage man-
agement system to maximally harness energy from renewable
sources is of critical importance. At the same time, many smart
appliances have been developed, creating more controllable
loads at the consumer side. They can be controlled to benefit
from the dynamic price set at the utility, and help shift the
energy demand from high-peak to low-peak periods to reduce
energy bills. Providing effective management solution that
combines both energy storage and load scheduling will be
the most promising future solution for consumers to reduce
energy costs and is the goal of this paper.

Developing an effective joint energy storage management
and load scheduling solution is important, but faces unique
challenges. For energy storage, the cost reduction by storage
comes with an additional cost from battery degradation due
to charging and discharging; finite battery capacity makes
the storage control decisions coupled over time which are
difficult to optimize. For load scheduling, while minimizing
the electricity cost, it needs to ensure the delay requirements
for each load and for the overall service are met. In particular,
load scheduling decision affects the energy usage and storage
and vise versa. Thus, storage control and load scheduling
decisions are coupled with each other and over time, making
it especially challenging for a joint design.

Energy storage management alone has been considered for
power balancing to counter the fluctuation of renewable gener-
ation and increase grid reliability [4]–[6], and for consumers
to reduce electricity costs [7]–[14]. Off-line storage control
strategies for dynamic systems have been proposed [4], [7],
[8]. In these works, renewable energy arrivals are assumed
known ahead of time and the knowledge of load statistics is
assumed. For real-time storage management design, [9] has
formulated the storage management control as a Markov De-
cision Process (MDP) and solved it by Dynamic Programming
(DP). Lyapunov optimization technique [15] has been recently
employed for designing real-time storage control at either
grid operator side or consumer side under different system
models and optimization goals [5], [6], [10]–[14]. Among
these works, [11], [12] have considered renewable generation
without modeling the battery operational cost. Both renewable
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generation and battery operation cost have been modeled in
[5], [6], [13], [14]. Except for [14], which considers the storage
management design within a finite time period, all the above
works consider the long-term average system cost.

Load (demand) scheduling through demand side manage-
ment has been studied by many for shaping the aggregate
load at utility through direct load control [16]–[18] or pricing
optimization [19], [20], and at consumer through load schedul-
ing to reduce electricity bill in response to the dynamic price
[21]–[26]. With the electricity price known ahead of time,
linear programming [21], [22] and DP [23] techniques are
applied for load scheduling. Without assuming known future
prices, MDP formulation has been considered in [24], [25],
and opportunistic load scheduling based on optimal stopping
rule has been proposed in [26]. Combining both utility side
and demand side management is also considered in [27],
[28], where game theoretic approach is applied for distributed
energy management.

Few existing works consider joint optimization of energy
storage management and load scheduling. A joint design has
been developed in [29], in which the electricity price is
assumed to be known ahead of time and the storage model
is simplified without the battery operational cost. Real-time
energy storage management with flexible loads has been con-
sidered in [30] and [31]. While [30] focuses on local demand
side, [31] combines both grid operator and demand side
management using distributed storage. In these works, flexible
loads are only modeled in terms of the aggregated energy
request; There is no individual task modeling or scheduling
being conducted. Furthermore, in these works, renewable
generation, loads, and electricity price are assumed to be
independent and identically distributed. With the increasing
penetration of renewable generation and energy storage in the
grid, future energy demand and supply are expected to be quite
dynamic. Renewable generation, loads, and electricity price
may all fluctuate randomly1 with their statistics likely being
non-stationary, making them difficult to predict accurately.
However, most of existing works design solutions assuming
either the future values or statistical knowledge of them tobe
known. In addition, although long-term time averaged cost is
typically considered in these existing works, the consumers
may prefer a cost saving solution in a period of time defined
by their own needs. It is important to provide a solution to
meet such need. We aim at proposing a real-time algorithm
for joint energy storage and load scheduling to address these
issues.

In this paper, we consider joint energy storage management
and load scheduling at a residential site equipped with a
renewable generator and a storage battery. For renewable
source, loads, and electricity price, we assume their dynamics
to be arbitrary which can be non-stationary and their statistics
are unknown. For the residential load, we characterize each
individual load task with its own requested power intensity
and service duration, and consider both per load maximum
delay and average delay requirements. For battery storage,we

1Energy pricing design is considered to respond to the energydemand and
supply status and to shape the load for demand management. Asa result, the
real-time price in the future grid could fluctuate much more randomly and
quickly, and likely to have complicated statistical behaviors.

actively model the battery operational constraints and cost due
to charging and discharging activities.

We aim at designing a real-time solution for joint energy
storage management and load scheduling to minimize the
overall system cost over a finite time period, subject to battery
operation and load delay constraints. The interaction of load
scheduling and energy storage, the finite battery capacity,and
finite time period for optimization complicate the scheduling
and energy control decision making over time. To tackle this
difficult stochastic problem, we develop techniques through a
sequence of problem modification and transformation which
enable us to employ Lyapunov optimization to design a real-
time algorithm that otherwise is not directly applicable. Inter-
estingly, we show that the joint load scheduling and energy
storage control can be separated and sequentially determined
in our real-time optimization algorithm. Furthermore, both
load scheduling and energy control decisions have closed-form
solutions, making the real-time algorithm simple to implement.
We further show that our proposed real-time algorithm not
only provides a bounded performance guarantee to the optimal
T -slot look-ahead solution which has full future information
available, but is also asymptotically equivalent to it as the
battery capacity and the considered time period for design
go to infinity. Simulation results demonstrate the effectiveness
of joint load scheduling and energy storage control by our
proposed algorithm as compared with alternative solutions
considering neither storage nor scheduling, or storage only.

Different from our recent work [14], in which the energy
storage problem without flexible loads has been considered,
in this work, we explore both energy storage and flexible
load scheduling to reduce system cost. Given the individual
load modeling, load delay requirements imposed, and the load
interaction with energy usage over time, it is highly non-trivial
to formulate the joint design problem, develop techniques for a
real-time solution, and provide performance analysis. Through
our developed techniques, we show that the joint optimization
of load scheduling and storage control can in fact be separated
and sequentially solved. Thus, we are able to obtain the load
scheduling solution in closed-form and apply the result in [14]
for the storage control. Furthermore, we demonstrate that a
lower system cost can be achieved with joint load scheduling
and energy storage control than with just energy storage alone.

Comparing with existing works, our proposed algorithm has
the following features and advantages: 1) The battery storage
operation and associated cost, as well as individual load and its
quality of service, are thoroughly modeled; 2) The algorithm
provides a real-time joint solution for both energy storage
control and load task scheduling; 3) The solution only relies
on the current price, renewable generation, or loads, and does
not require any statistical knowledge of them; 4) The solution
is designed for a specified period of time which may be useful
for practical needs; 5) The solution is provided in closed-form
requiring minimum complexity for practical implementation.

The rest of this paper is organized as follows. In Section II,
we describe the system model. In Section III, we formulate
the joint energy management and load scheduling problem.
In Section IV, we propose a real-time algorithm for our
joint optimization problem. In Section V, we analyze the
performance of algorithm. After presenting our simulation
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TABLE I
L IST OF MAIN SYMBOLS

Wt user’s load arriving at time slott (kWh)

ρt load intensity (kWh)

λt load duration (number of slots)

dt delay incurred forWt before it is served (number of slots)

dmax
t maximum delay allowed forWt before it is served (number

of slots)

dw average delay of all arrived loads within theTo-slot period
(number of slots)

dmax maximum average delay (number of slots) for the loads within
the To-slot period

Cd(·) cost function associated with the average delaydw

Et energy purchased from conventional grid at time slott (kWh)

Emax maximum amount of energy that can be bought from the grid
per slot (kWh)

Pt unit price of buying energy at time slott ($/kWh)

Pmax maximum unit energy price ($/kWh)

Pmin minimum unit energy price ($/kWh)

St renewable energy harvested at time slott (kWh)

Sw,t amount of renewable energy directly supplied user’s loads to
be served at time slott (kWh)

Sr,t amount of renewable energy stored into battery at time slott
(kWh)

Qt portion ofEt stored into battery at time slott (kWh)

Rmax maximum charging amount (kWh) per slot allowed for the
battery

Dt amount of energy discharged from the battery at time slott
(kWh)

Dmax maximum discharging amount per slot allowed from the bat-
tery (kWh)

Bt battery energy level at time slott (kWh)

Bmin minimum energy level required in the battery (kWh)

Bmax maximum energy level allowed in the battery (kWh)

Crc entry cost for battery due to each charging activity ($)

Cdc entry cost for battery due to each discharging activity ($)

xe,t entry cost for battery at time slott as xe,t = 1R,tCrc +
1D,tCdc ($)

xu,t net amount of energy change in battery at time slott, as
xu,t = |Qt + Sr,t −Dt| (kWh)

xe average entry cost for battery over theTo-slot period ($)

xu average net amount of energy change in battery over theTo-
slot period (kWh)

Cu(·) cost function associated with average usage amountxu ($)

α weight for the cost of scheduling delay

at energy storage control action vector at time slott

∆u desired change of battery energy level withinTo slots (kWh)

µ weight for delay related queues in Lyapunov function

studies in Section VI, we conclude our paper in Section VII.
Notations: The main symbols used in this paper are sum-

marized in Table I.

II. SYSTEM MODEL

We consider a residential-side electricity consuming entity
powered by the conventional grid and a local renewable gen-
erator (RG) (e.g.,wind or solar generators). An energy storage
battery is co-located with RG to store energy from both power
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Fig. 1. The residential energy storage management system.

sources and supply power to the user. The energy storage
management (ESM) system is shown in Fig. 1. As a part of the
ESM system, a load scheduling mechanism is implemented to
schedule each load task to meet its delay requirements. We
assume the ESM system operates in discrete time slots with
t ∈ {0, 1, · · · }, and all operations are performed per time slot
t. Each component of the EMS system is described below.

A. Load Scheduling

We assume the user has load tasks in various types arriving
over time slots. An example of the scheduling time line of two
loads is shown in Fig. 2. LetWt denote the load arriving at the
beginning of time slott. It is given byWt = ρtλt, whereρt
andλt are the load intensity and duration forWt, respectively.
We assumeλt is an integer multiple of time slots, and the
minimum duration for any load is1, i.e., λt ∈ {1, 2, . . .}. Let
dmax
t denote the maximum delay allowed forWt before it is

served (multiple of time slots), and letdt denote the actual
delay incurred forWt before it is served. We have

dt ∈ {0, 1 . . . , dmax
t }, ∀t. (1)

Thus, the earliest serving time duration forWt is [t, t + λt],
and the latest serving time duration is[t+dmax

t , t+dmax
t +λt].

We define an indicator function1S,t(dτ ) , {1 : if t ∈ [τ +
dτ , τ + dτ + λτ ); 0 : otherwise}, for ∀τ ≤ t. It indicates
whether or not the loadWτ is being served at time slott.
Consider aTo-slot period. We definedw as the average delay
of all arrived loads within thisTo-slot period, given by2

dw ,
1

To

To−1
∑

τ=0

dτ . (2)

Besides the per load maximum delaydmax
t constraint in (1),

we impose a constraint on the average delaydw as

dw ∈ [0, dmax] (3)

where dmax is the maximum average delay for the loads
within the To-slot period. It is straightforward to see
that for constraint (3) to be effective, we havedmax ≤
maxt∈[0,To−1]{d

max
t }, for ∀t. The average delaydw reflects

the average quality of service for the loads within theTo-
slot period. We define a cost functionCd(dw) associated with
dw. A longer delay reduces the quality of service and incurs
a higher cost. Thus, we assumeCd(·) to be a continuous,
convex, non-decreasing function with derivativeC′

d(·) < ∞.

2Without loss of generality, we start theTo-period at time slott = 0.
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Fig. 2. An example of load scheduling for two arrival loadsWt1 andWt2 .

B. Energy Sources and Storage

1) Power Sources:The user can purchase energy from the
conventional gridwith a real-time price. LetEt denote the
amount of energy bought in time slott. It is bounded by

Et ∈ [0, Emax] (4)

whereEmax is the maximum amount of energy that can be
bought from the grid per slot. This amount can be used to
directly supply the user’s loads and/or be stored into the
battery. LetPt denote the unit price of buying energy at
time slot t. It is bounded asPt ∈ [Pmin, Pmax], wherePmin

andPmax are the minimum and maximum unit energy prices,
respectively. We assumePt is known to the user at time slot
t and is kept unchanged within the slot duration. The average
cost for the purchased energy from the grid over aTo-slot
period is defined byJ

∆
= 1

To

∑To−1
t=0 EtPt.

Renewable generator: An RG is used as an alternative
energy source in the ESM system. LetSt denote the amount
of renewable energy harvested at time slott. We assumeSt is
first used to supply the loads scheduled to be served at time
slot t. Denote this portion bySw,t, we have

Sw,t = min

{

t
∑

τ=0

ρτ1S,t(dτ ), St

}

(5)

where the first term in (5) represents the total energy over
those scheduled loads that need to be served at time slott.
The remaining portion ofSt, if any, can be stored into the
battery. Since there is a cost associated to the battery charging
activity, we use a controller to determine whether or not to
store the remaining portion into the battery. LetSr,t denote
the amount of renewable energy charged into the battery at
time slot t. It is bounded by

Sr,t ∈ [0, St − Sw,t] . (6)

2) Battery Operation: The battery can be charged from
either the grid, the renewable generator, or both at the same
time. Let Qt denote the portion ofEt from the grid that is
stored into the battery at time slott. The total charging amount
at time slott is bounded by

Qt + Sr,t ∈ [0, Rmax] (7)

whereRmax is the maximum charging amount per slot for the
battery. Similarly, letDt denote the discharging amount from
the battery at time slott, bounded by

Dt ∈ [0, Dmax] (8)

where Dmax is the maximum discharging amount per slot
allowed from the battery. We assume there is no simultaneous
charging and discharging activities at the battery,i.e.,

(Qt + Sr,t) ·Dt = 0. (9)

Let Bt denote the battery energy level at time slott. With a
finite capacity,Bt is bounded by

Bt ∈ [Bmin, Bmax] (10)

whereBmin andBmax are the minimum energy required and
maximum energy allowed in the battery, respectively. The
dynamics ofBt over time due to charging and discharging
activities are given by3

Bt+1 = Bt +Qt + Sr,t −Dt. (11)

It is known from battery technology that frequent charg-
ing/discharging activities cause a battery to degrade overtime
[32]–[34].4 Both the frequency of charging or discharging and
the amount that is charged or discharged affect the battery
lifetime. Given this, we model two types of battery operational
costs associated with the charging/discharging activities: entry
costandusage cost.

The entry cost is a fixed cost incurred due to
each charging or discharging activity. Define two indica-
tor functions to represent charging and discharging ac-
tivities as 1R,t , {1 : if Qt + Sr,t > 0; 0 : otherwise} and
1D,t , {1 : if Dt > 0; 0 : otherwise}, respectively. LetCrc

denote the entry cost for each charging activity andCdc for
that of the discharging activity. Letxe,t denote the entry cost
at time slott. It is given by xe,t , 1R,tCrc + 1D,tCdc. We
define the time-averaged entry cost over theTo-slot period as
xe ,

1
To

∑To−1
t=0 xe,t.

The usage cost is defined as the cost associated with the
battery charging and discharging amount. Letxu,t

∆
= |Qt +

Sr,t −Dt| denote the net amount of energy change in battery
at time slott due to charging or discharging. From (7) and
(8), it follows thatxu,t is bounded by

xu,t ∈ [0,max {Rmax, Dmax}] . (12)

In general, the battery usage cost is associated with charge
cycles5. Each charge cycle typically lasts for a period of
time in a day [35]. To approximate this, we consider the
average net amount of energy change in the battery over
the To-slot period, defined asxu , 1

To

∑To−1
t=0 xu,t. From

(12), it is straightforward to see thatxu is bounded by
xu ∈ [0,max {Rmax, Dmax}]. We model the usage cost as
a function ofxu, denoted byCu(xu). It is known that faster
charging/discharging within a fix period has a more detrimen-
tal effect on the life time of the battery. Thus, we assume
Cu(xu) is a continuous, convex, non-decreasing function with
derivativeC′

u(xu) < ∞.6

Based on the above, the average battery operational cost
over theTo-slot period due to charging/discharging activities
is given byxe + Cu(xu).

3We consider an ideal battery model with no leakage of stored energy over
time and full charging/discharging efficiency.

4The lifetime of battery can be coarsely measured by the number of full
charge cycles.

5Charging the battery and then discharging it to the same level is considered
a charge cycle.

6Such a convex cost function has also been adopted in literature [36], [37].
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C. Supply and Demand Balance

For each loadWτ arrived at time slotτ , if it is scheduled
to be served at time slott (≥ τ ), the energy supply needs
to meet the amountρτ scheduled forWτ . The overall energy
supply must be equal to the total demands from those loads
which need to be served at time slott. Thus, we have supply
and demand balance relation given by

Et −Qt + Sw,t +Dt =

t
∑

τ=0

ρτ1S,t(dτ ), ∀t. (13)

III. JOINT ENERGY STORAGE MANAGEMENT AND LOAD

SCHEDULING: PROBLEM FORMULATION

Our goal is to jointly optimize the load scheduling and
energy flows and storage control for the ESM system to
minimize an overall system cost over theTo-slot period.
The loads, renewable generation, and price{Wt, St, Pt} have
complicated statistical behaviors which may be non-stationary
and thus are often difficult to acquire or predict in practice.
In our design, we assume arbitrary dynamics for{Wt, St, Pt}
and do not assume their statistical knowledge being known. We
intend to develop a real-time control algorithm that is capable
to handle such arbitrary and unknown system inputs.

We model the overall system cost as a weighted sum of the
cost from energy purchase and battery degradation, and the
cost of scheduling delay. Defineat , [Et, Qt, Dt, Sw,t, Sr,t]
as the control action vector for the energy flow in the ESM
system at time slott. Our goal is to find an optimal policy
{at, dt} that minimizes the time-averaged system cost. This
optimization problem is formulated as follows

P1: min
{at,dt}

J + xe + Cu(xu) + αCd(dw)

s.t. (1), (3), (4), (6), (9), (13), and

0 ≤ Sr,t +Qt ≤ min {Rmax, Bmax −Bt} (14)

0 ≤ Dt ≤ min {Dmax, Bt −Bmin} (15)

whereα is the positive weight for the cost of scheduling delay;
It sets the relative weight between energy related cost and load
delay incurred by scheduling in the joint optimization.

Note that inP1, {Wt, St, Pt} are random, and their future
values are unknown at time slott. Thus,P1 is a finite time
horizon joint stochastic optimization problem which is difficult
to solve. Joint energy storage control and load scheduling
complicates the problem, making it much more challenging
than each separate problem alone. The finite battery capacity
imposes a hard constraint on the control actions{at}, making
{at} correlated over time, due to the time-coupling dynamics
of Bt in (11). Furthermore, the finite time horizon problem
is much more difficult to tackle than the infinite time horizon
problem as considered in most existing energy storage works.
New techniques need to be developed for a real-time control
solution.

In the following, we focus on proposing a real-time algo-
rithm to provide a suboptimal solution toP1 with a certain
performance guarantee. To do this, we first modifyP1 to allow
us to design a real-time algorithm for joint energy storage
control and load scheduling at every time slot. We later discuss
how our solution can meet the constraints ofP1.

A. Problem Modification

Due to the finite battery capacity constraint, the control
actions {at} are coupled over time. To remove the time
coupling, similar to the technique used in our previous work
[14] for energy storage only problem, we remove the finite
battery capacity constraint, and instead we impose a constraint
on the change of battery energy level over theTo-slot period.
Specifically, by (11), the change of battery energy level over
the To-slot period isBTo

− B0 =
∑To−1

t=0 (Qt + Sr,t −Dt).
We now set this change to be a desired value∆u, i.e.,

1

To

To−1
∑

t=0

(Qt + Sr,t −Dt) =
∆u

To

. (16)

Note that,∆u is only a desired value we set, which may not be
achieved by a control algorithm at the end ofTo-slot period.
We will quantify the amount of mismatch with respect to∆u

under our proposed control algorithm in Section V. By the bat-
tery capacity and (dis)charging constraints, it is easy to see that
|∆u| ≤ ∆max

∆
= min{Bmax−Bmin, Tomax{Rmax, Dmax}}.

We now modify P1 to the follow optimization problem
by adding the new constraint (16), and removing the battery
capacity constraint (10)

P2: min
{at,dt}

J + xe + Cu(xu) + αCd(dw)

s.t. (1), (3)− (9), (13), (16).

Note that by removing the battery capacity constraint (10),
we remove the dependency of per-slot charging/discharging
amount onBt in constraints (14) and (15), and replace them
by (7) and (8), respectively.

B. Problem Transformation

In P2, both battery average usage costCu(xu) and schedul-
ing delay costCd(dw) are functions of time-averaged vari-
ables, which complicates the problem. Using the technique
introduced in [38], we now transform the problem into one that
only contains the time-average of the functions. Specifically,
we introduce auxiliary variablesγu,t andγd,t for xu,t anddt,
respectively, and impose the following constraints

0 ≤ γu,t ≤ max{Rmax, Dmax}, ∀t (17)

γu = xu (18)

0 ≤ γd,t ≤ min{dmax
t , dmax}, ∀t (19)

γd = dw (20)

whereγi
∆
= 1

To

∑To−1
τ=0 γi,t, for i = u, d. The above constraints

ensure that each auxiliary variable lies in the same range as
its original variable, and its time average is the same as that
of its original variable. DefineCi(γi) , 1

To

∑To−1
t=0 Ci(γi,t)

as the time average ofCi(γi,t) over To slots, for i = u, d.
Applying (18) and (20) to the objective ofP2, and defining
πt , [at, dt, γu,t, γd,t], we transformP2 into the following
optimization problem

P3: min
{πt}

J + xe + Cu(γu) + αCd(γd)

s.t. (1), (3)− (9), (13), (16)− (20)

where the terms in the objective are allTo-slot time-averaged
cost functions. We can show thatP2 and P3 are equivalent,
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i.e., they have the same optimal control solution{a∗t , d
∗
t } (See

Appendix A).
AlthoughP3 is still difficult to solve, it enables us to design

a dynamic control and scheduling algorithm for joint energy
storage control and load scheduling by adopting Lyapunov
optimization technique [15]. In the following, we propose
our real-time algorithm forP3, and then design parameters
to ensure the proposed solution meets the battery capacity
constraint in the originalP1 which is removed inP2.

IV. JOINT ENERGY STORAGE MANAGEMENT AND LOAD

SCHEDULING: REAL-TIME ALGORITHM

By Lyapunov optimization, we first introduce virtual queues
for each time-averaged inequality and equality constraints of
P3 to transform them into queue stability problems. Then, we
design a real-time algorithm based on the drift of Lyapunov
function defined on these virtual queues.

A. Virtual Queues

We introduce a virtual queueXt to meet constraint (3),
evolving as follows

Xt+1 = max (Xt + dt − dmax, 0) . (21)

From (2), the above results indw ≤ dmax + (XTo
−X0)/To.

Thus, formulating the virtual queueXt in (21) will guarantee
to meet the average delay constraint (3) with a margin(XTo

−
X0)/To. In Section V, we will further discuss this constraint
under our proposed algorithm.

For constraint (16), dividing both sides byTo gives the time-
averaged net change of battery energy level per slot being
∆u/To. To meet this constraint, we introduce a virtual queue
Zt, evolving as follows

Zt+1 = Zt +Qt + Sr,t −Dt −
∆u

To

. (22)

From Bt in (11) andZt above, we can show that they are
different by a time-dependent shift as follows

Zt = Bt −At, whereAt
∆
= Ao +

∆u

To

t. (23)

The linear time function∆u

To
t in At is to ensure that constraint

(16) is satisfied. Due to this shiftAt, the range ofZt is
expanded to the entire real line,i.e., Zt ∈ R for Bt ∈ R

+.
Note thatAo is a design parameter. Later, we designAo to
ensure that our control solution{at} for the energy flows in
our proposed algorithm satisfies the battery capacity constraint
(10) imposed inP1.

Finally, to meet constraints (18) and (19), we establish
virtual queuesHu,t andHd,t, respectively, as follows

Hu,t+1 = Hu,t + γu,t − xu,t (24)

Hd,t+1 = Hd,t + γd,t − dt. (25)

From Lyapunov optimization, it can be shown that satisfying
constraints (3), (16), (18), and (19) is equivalent to maintaining
the stability of queuesXt, Zt, Hu,t, andHd,t, respectively
[15].

B. Real-Time Algorithm

Note thatZt and Hu,t are the virtual queues related to
the battery operation, whileXt and Hd,t are those related
to the scheduling delay. LetΘt , [Zt, Hu,t, Xt, Hd,t] denote
the virtual queue vector. We define the quadratic Lyapunov
functionL(Θt) for Θt as follows

L(Θt) ,
1

2

[

Z2
t +H2

u,t + µ
(

X2
t +H2

d,t

)]

(26)

whereµ is a positive weight to adjust the relative importance
of load delay related queues in the Lyapunov function. We
define a one-slot sample path Lyapunov drift as∆(Θt) ,

L (Θt+1)−L(Θt), which only depends on the current system
inputs{Wt, St, Pt}.

Instead of directly minimizing the system cost objective in
P3, we consider thedrift-plus-costmetric given by∆(Θt) +
V [EtPt + xe,t +Cu(γu,t) +αCd(γd,t)]. It is a weighted sum
of the drift ∆(Θt) and the system cost at time slott with
V > 0 being the relative weight between the two terms.

Directly using the drift-plus-cost function to determine
control actionπt is still challenging. In the following, we use
an upper bound of this drift-plus-cost function to design our
real-time algorithm. The upper bound is derived in Appendix
B as (34). Using this upper bound, we formulate a per-slot
real-time optimization problem and solve it at every time slot
t. By removing all the constant terms independent of control
actionπt, we arrive at the following optimization problem

P4 : min
πt

Zt [Et + Sr,t + Sw,t − ρt1S,t(dt)]− |Hu,t|Sw,t

+Hu,t [γu,t − (Et + Sr,t)] + |Hu,t| ρt1S,t(dt)

+ µXtdt + µHd,t(γd,t − dt)

+ V [EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]

s.t. (1), (4)− (9), (13), (17), (19).

Note that the term
∑t

τ=0 ρτ1S,t(dτ ) in the upper bound (34)
is the total energy demand from the scheduled loads at time
slot t. Since delaydτ for τ ∈ {0, 1, . . . , t− 1} are determined
in previous time slotτ ≤ t− 1 by solvingP4, only ρt1S,t(dt)
is a function ofπt at time slott, and is part of the objective
of P4.

Denote the optimal solution of P4 by π
∗
t ,

[a∗t , d
∗
t , γ

∗
u,t, γ

∗
d,t]. After regrouping the terms in the objective

of P4 with respect to different control variables, we show
that P4 can be separated into four sub-problems to be solved
sequentially and variables inπ∗

t can be determined separately.
The steps are described below.

S1) Determined∗t andγ∗
d,t by solving the followingP4a1 and

P4a2, respectively.

P4a1 : min
dt

µdt(Xt −Hd,t)− ρt1S,t(dt) (Zt − |Hu,t|)

s.t. (1).

P4a2 : min
γd,t

µHd,tγd,t + V αCd(γd,t) s.t. (19).

S2) DetermineS∗
w,t in (5) usingd∗t obtained in S1).

S3) Using S∗
w,t obtained in S2) in (13), determineγ∗

u,t and
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a
∗
t by solving the followingP4b1 andP4b2, respectively.

P4b1 : min
γu,t

Hu,tγu,t + V Cu(γu,t) s.t. (17).

P4b2 : min
at

Et(Zt −Hu,t + V Pt) + Sr,t(Zt −Hu,t)

+ V (1R,tCrc + 1D,tCdc)

s.t. (4)− (9), (13).

Remark:An important and interesting observation of the
above is that the joint optimization of load scheduling and
energy storage control can in fact be separated: The scheduling
decisiond∗t is determined first inP4a1. Based on the resulting
energy demand in the current time slott, energy storage
control decisiona∗t is then determined inP4b2. Note that
the two sub-problems are interconnected through the current
virtual queue backlogsZt and Hu,t for the battery energy
levelBt and battery energy net changexu,t, respectively. The
storage control decisiona∗t will further change the battery
energy level and affectHu,t at the next time slot. Thus,
although the scheduling and storage decisions are separately
determined, they are interconnected through battery energy
level and usage, and sequentially influence each other.

In the following, we solve each subproblem and obtain a
closed-form solution. As a result, the optimal solutionπ∗

t is
obtained in closed-form.

1) The optimald∗t : The optimal scheduling delayd∗t for
P4a1 is given below.

Proposition 1: Let ωo , −ρt (Zt − |Hu,t|), ω1 ,

µ (Xt −Hd,t), andωdmax

t
, µdmax

t (Xt −Hd,t).

1) If Xt −Hd,t ≥ 0, thend∗t =

{

0 if ωo ≤ ω1

1 otherwise;

2) If Xt −Hd,t < 0, thend∗t =

{

0 if ωo ≤ ωdmax

t

dmax
t otherwise.

Proof: See Appendix C.

Remark: Note that ωo, ω1, and ωdmax

t
are the objective

values of P4a1 when dt = 0, 1, and dmax
t , respectively.

Furthermore,wo depends on the virtual queue backlogs (Zt

and Hu,t) related to the battery energy level, whileω1 and
ωdmax

t
depend on the virtual queue backlogs (Xt and Hd,t)

related to load delay. Proposition 1 shows that the scheduling
decision for loadWt is to either immediately serve it (d∗t = 0)
or delay its serving time (d∗t = 1 or dmax

t ). This decision
depends on whether the battery energy is high enough (soWt

will be served immediately) or the delays for the scheduled
loads so far are low enough (soWt will be delayed). When the
load is delayed to serve, the delay should be either minimum
or maximum depending on the existing scheduling delays of
the past loads.

2) The optimalγ∗
d,t and γ∗

u,t: SinceCd(·) andCu(·) are
both convex, the objectives ofP4a2 andP4b1 are convex. Let
C′

i(·) denote the first derivative ofCi(·), andC′−1
i (·) denote

the inverse function ofC′
i(·), for i = d, u. We obtain the

optimal solutionsγ∗
i,t, i = d, u, for P4a2 andP4b1 as follows.

Lemma 1:The optimalγ∗
i,t, for i = d, u, is given by

γ∗
i,t =















0 if Hi,t ≥ 0

Γi if Hi,t < −V βiC
′
i(Γi)

C′−1
i

(

−
Hi,t

V βi

)

otherwise.

(27)

whereβu = 1, βd = α/µ, Γu , max{Rmax, Dmax}, and
Γd , min{dmax

t , dmax}.
Proof: See Appendix D.

3) The optimala∗t : Once the scheduling decisiond∗t for
Wt is determined, the total energy demand from the scheduled
loads,i.e.,

∑t
τ=0 ρτ1S,t(d

∗
τ ), is determined. Given this energy

demand,P4b2 is solved to obtain the optimal control solution
[E∗

t , Q
∗
t , D

∗
t , S

∗
r,t] in a

∗
t . This subproblem for energy storage

and control is essentially the same as in [14], where the energy
storage only problem is considered. Thus, the closed-form
solution can be readily obtained from [14]. Here we directly
state the result.

Define L∗
t ,

∑t
τ=0 ρτ1S,t(d

∗
τ ) as the current energy

demand at time slott. Define the idle state of the battery
as the state where there is no charging or discharging ac-
tivity. The control solution under this idle state is denoted
by [E id

t , Q
id
t , D

id
t , S

id
r,t]. By supply-demand balancing equation

(13), it is given byE id
t = L∗

t − S∗
w,t, Q

id
t = Did

t = S id
r,t = 0.

Let ξt denote the objective value inP4b2 for the battery being
in the idle state. We haveξt = (L∗

t −S∗
w,t)(Zt−Hu,t+V Pt).

Denote a
′
t = [E′

t, Q
′
t, D

′
t, S

∗
w,t, S

′
r,t]. The optimal control

solutiona∗t of P4b2 is given in three cases below.

i ) For Zt−Hu,t+V Pt ≤ 0: The battery is in either charging
or idle state. The solutiona′t in charging state is given by


















D′
t = 0,

S′
r,t = min

{

St − S∗
w,t, Rmax

}

Q′
t = min

{

Rmax − S′
r,t, Emax − L∗

t + S∗
w,t

}

E′
t = min

{

L∗
t +Rmax − S∗

w,t − S′
r,t, Emax

}

.

If E′
t(Zt−Hu,t+V Pt)+(Zt−Hu,t)S

′
r,t+V Crc1R,t < ξt,

thena∗t = a
′
t; Otherwise,a∗t = a

id
t .

ii ) For Zt − µuHu,t < 0 ≤ Zt − Hu,t + V Pt: The bat-
tery is either in charging, discharging, or idle state. The
solution a

′
t in charging or discharging state is given by



















D′
t = min

{

L∗
t − S∗

w,t, Dmax

}

S′
r,t = min

{

St − S∗
w,t, Rmax

}

Q′
t = 0,

E′
t =

[

L∗
t − S∗

w,t −Dmax

]+

.

If E′
t(Zt −Hu,t + V Pt) + (Zt −Hu,t)S

′
r,t + V (Crc1R,t +

Cdc1D,t) < ξt, thena∗t = a
′
t; Otherwise,a∗t = a

id
t .

iii ) For 0 ≤ Zt −Hu,t < Zt −Hu,t + V Pt: The battery is in
either discharging or idle state. The solutiona

′
t in discharg-

ing state is given by











D′
t = min

{

L∗
t − S∗

w,t, Dmax

}

S′
r,t = Q′

t = 0,

E′
t =

[

L∗
t − S∗

w,t −Dmax

]+

.

If E′
t(Zt −Hu,t + V Pt) + V Cdc1D,t < ξt, thena∗t = a

′
t;

Otherwise,a∗t = a
id
t .

In each case above, the cost of charging or discharging is
compared with the costξt of being in an idle state, and the
control solution ofP4b2 is the one with the minimum cost.
The condition for each case depends onZt, Hu,t andPt, where
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Algorithm 1 Real-Time Joint Load Scheduling and Energy
Storage Management
Set the desired value of∆u. SetAo andV as in (28) and (29),
respectively.
At time slot 0: SetZ0 = X0 = Hu,0 = Hd,0 = 0.
At time slot t: Obtain the current values of{Wt, St, Pt}

1) Load scheduling:Determined∗t according to Proposi-
tion 1 andγ∗

d,t according to (27), respectively.
2) Energy Storage Control:

a) Renewable contribution: DetermineS∗
w,t in (5)

usingd∗t obtained above.
b) Energy purchase and storage: Determineγ∗

u,t ac-
cording to (27) anda∗t according to Cases i)-iii) in
Section IV-B3.

3) Updating virtual queues:Useπ∗
t to updateBt based on

(11), andXt, Zt, Hu,t, Hd,t based on (21)−(25).

Zt andHu,t are rated to battery energy levelBt and usage
costxu,t, respectively. Thus, Cases i)-iii) represent the control
actions at different battery energy levels (i.e., low, moderate,
or high) and electricity prices.

4) Feasibility ofa∗t to P1: Recall that we have removed
the battery capacity constraint (10) when modifyingP1 to P2.
Thus, this constraint is no longer imposed inP4b2, and our
real-time algorithm may not provide feasible control solutions
{a∗t } to P1. To ensure the solution is still feasible to the
original problemP1, we design our control parametersAo and
V . The result readily follows [14, Proposition 2]. We omit the
details and only state the final result below.

Proposition 2: For the optimal solutiona∗t of P4b2, the
resultingBt satisfies the battery capacity constraint (10), and
{a∗t } is feasible toP1, if Ao in (23) is given by

Ao =

{

A′
o if ∆u ≥ 0

A′
o −∆u if ∆u < 0

(28)

whereA′
o = Bmin + V Pmax +V C′

u(Γu) + Γu +Dmax +
∆u

To
,

andV ∈ [0, Vmax] with

Vmax =
Bmax − Bmin −Rmax −Dmax − 2Γu − |∆u|

Pmax + C′
u(Γu)

. (29)

C. Discussions

We summarize the proposed real-time joint load scheduling
and energy storage control in Algorithm 1. Due to the sep-
aration of joint optimization, the algorithm provides a clear
sequence of control decisions at each time slott.

Recall that we modify the original joint optimization prob-
lem P1 to P3, and apply Lyapunov optimization to propose a
real-time algorithm forP3 which is to solve the per-slot opti-
mization problemP4. We then design system parametersAo

andVmax to ensure our solution satisfies the battery capacity
constraint, which is removed when we modifyP1 to P4. As
a result, our proposed solution by Algorithm 1 is feasible to
P1. Furthermore, we have the following discussions.

1) In modifyingP1, we remove the battery capacity constraint
(10) and instead impose a new constraint (16) on the overall
change of battery energy level overTo slots to be∆u. Note

that this constraint is set as a desired outcome,i.e., ∆u is a
desired value. The actual solutiona∗t in the proposed algorithm
may not satisfy this constraint at the end of theTo-slot period,
and thus may not be feasible toP3. Nonetheless, settingAo

and V as in (28) and (29) guarantees that{a∗t } satisfy the
battery capacity constraint (10) and therefore are feasible to
P1.
2) In designing the real-time algorithm by Lyapunov frame-
work, virtual queueXt in (21) which we introduce for the
average delay constraint (3) can only ensure the constraint
is satisfied with a margin as indicated below (21). As a
result, constraint (3) can only be approximately satisfied.
However, this relaxation is mild in practice for the average
delay performance. Note that the per-load maximum delay
constraint (1) is strictly satisfied ford∗t by Algorithm 1. We
will show in simulation that the achieved average delaydw by
Algorithm 1 in fact meets constraint (3).
3) We point out that the load scheduling and energy storage
control decisions are provided in closed-form by Algorithm1.
Thus, the algorithm is particularly suitable for real-timeim-
plementation with a constant computational complexityO(1).
Furthermore, no statistical assumptions on the loads, renew-
able source, and pricing{Wt, St, Pt} are required in the algo-
rithm. They can be non-stochastic or stochastic with arbitrary
dynamics (including non-stationary processes). This allows
the algorithm to be applied to general scenarios, especially
when these statistics are difficult to predict. Finally, despite
that Algorithm 1 is a suboptimal solution forP1, we will
show in the following that it provides a provable performance
guarantee.

V. PERFORMANCEANALYSIS

In this section, we analyze the performance of Algorithm 1
and discuss the mismatch involved in some constraints as a
result of the real-time algorithm design.

A. Algorithm Performance

To evaluate the proposed algorithm, we consider aT -slot
look-ahead problem. Specifically, we partitionTo slots intoT
frames withTo = MT , for M,T ∈ N

+. For each frame, we
consider the same problem asP1 but the objective is theT -
slot averaged cost within the frame and the constraints are all
related to time slots within the frame. In addition, we assume
{Wt, St, Pt} for the entire frame are known beforehand. Thus,
the problem becomes a non-causal static optimization problem
and we call it aT -slot lookahead problem. Letuopt

m be the
corresponding minimum objective value achieved by aT -slot
look-ahead optimal solution over themth frame. We intend to
bound the performance of Algorithm 1 (with no knowledge of
future values of{Wt, St, Pt}) to the optimalT -slot lookahead
performance (with full knowledge of{Wt, St, Pt} in a frame).

We denote the objective value ofP1 achieved by Algo-
rithm 1 overTo-slot period byu∗(V ), whereV is the weight
value used in Algorithm 1. The following theorem provides a
bound of the cost performance under our proposed real-time
algorithm touopt

m under theT -slot lookahead optimal solution.
Theorem 1:Consider{Wt, St, Pt} being any arbitrary pro-

cesses over time. For anyM,T ∈ N
+ satisfyingTo = MT ,
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theTo-slot average system cost under Algorithm 1 is bounded
by

u∗(V )−
1

M

M−1
∑

m=0

uopt
m ≤

GT

V
+

L(Θ0)− L(ΘTo
)

V To

+
C′

u(Γu)(Hu,0 −Hu,To
) + αC′

d(Γd)(Hd,0 −Hd,To
)

To

(30)

whereG is given in (43) and the upper bound is finite. In
particular, asTo → ∞, we have

lim
To→∞

u∗(V )− lim
To→∞

1

M

M−1
∑

m=0

uopt
m ≤

GT

V
. (31)

Proof: See Appendix E.
Remark: Theorem 1 shows that our proposed algorithm is

able to track the “ideal”T -slot lookahead optimal solution
with a bounded gap, for all possibleM and T . Also, for
the best performance, we should always chooseV = Vmax.
The bound in (31) gives the asymptotic performance asTo

increase. SinceVmax in (29) increases withBmax, it follows
that Algorithm 1 is asymptotically equivalent to the optimal
T -slot look-ahead solution as the battery capacity andTo go
to infinity. Note that, asTo → ∞, P1 becomes an infinite time
horizon problem with average sample path cost objective7. The
bound in (31) provides the performance gap of long-term time-
averaged sample-path system cost of our proposed algorithm
to theT -slot look-ahead policy.

B. Design Approximation

1) Average scheduling delaydmax: Recall that, by Algo-
rithm 1, using the virtual queueXt in (21), the average delay
constraint (3) is approximately satisfied with a margin,i.e.,
dw ≤ dmax + ǫd, whereǫd , (XTo

−X0)/To is the margin.
We now boundǫd below.

Proposition 3: Under Algorithm 1, the marginǫd for con-
straint (3) is bounded as follows

|ǫd| ≤

√

2G

µTo

+
L(Θo)

µTo

+
|X0|

To

. (32)

Proof: See Appendix F.
Proposition 3 indicates that the marginǫd → 0 asTo → ∞.

Thus, the average delay is asymptotically satisfied. Note that,
for X0 = 0, ǫd ≥ 0. If X0 > 0, it is possible thatǫd < 0 and
constraint (3) is satisfied with a negative margin. However,this
will drive d∗t to be smaller which may cause higher system
cost. Thus, we setX0 = 0 in Algorithm 1.

2) Mismatch of∆u: In our design, we set∆u to be a
desired value for the change of battery energy level over
To-slot period as in new constraint (16). This value may
not be achieved by Algorithm 1. Define the mismatch by
ǫu ,

∑To−1
τ=0 (Qτ+Sr,τ−Dτ )−∆u. The bound forǫu follows

the result in [14, Proposition 3] and is shown below.

|ǫu| ≤ 2Γu +Rmax + V Pmax + V C′
u(Γu) +Dmax. (33)

Note thatVmax in (29) increases as|∆u| decreases, and a
largerVmax is preferred for better performance by Theorem 1.

7As To → ∞, constraint (16) becomeslimTo→∞

1

To

∑To−1

τ=0
(Qτ +

Sr,τ −Dτ ) = 0 as in the infinite time horizon problem [39].
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Fig. 3. Mean loadW t, mean renewable generationSt, and real-time
pricePt over 24 hours.

Thus, a smaller|∆u| is preferred. Note also that our simulation
study shows that the actual mismatchǫu is much smaller than
this upper bound.

VI. SIMULATION RESULTS

We set each slot to be 5 minutes and consider a 24-hour
duration. Thus, we haveTo = 288 slots for each day. We
assumePt, St and Wt do not change within each slot. We
collect data from Ontario Energy Board [40] to set the pricePt.
As shown Fig. 3 top, it follows a three-stage price pattern as
{Ph, Pm, Pl} = {$0.118, $0.099, $0.063} and is periodic ev-
ery 24 hours. We assume{St} to be solar photovoltaic energy.
It is a non-stationary process, with the mean amountSt =
E[St] changing periodically over 24 hours, and having three-
stage values as{Sh, Sm, Sl} = {1.98, 0.96, 0.005}/12 kWh
per slot8 and standard deviation asσSi

= 0.4Si, for i =
h,m, l, as shown in Fig. 3 middle. We assume the load{Wt}
is a non-stationary process, having three-stage mean values
W t = E[Wt] as {Wh,Wm,W l} = {2.4, 1.38, 0.6}/12 kWh
per slot9 with standard deviation asσWi

= 0.2W i, for
i = h,m, l, as shown in Fig. 3 bottom. For each loadWt, we
generateλt from a uniform distribution with interval[1, 12],
andρt = Wt/λt. We setdmax

t in (1) to be identical for allt.
We set the battery related parameters as follows:Rmax =

Dmax = 0.165 kWh10, Crc = Cdc = 0.001, Bmin = 0, and the
battery initial energy levelB0 = 0. Unless specified, we set
Bmax = 3 kWh. We setEmax = 0.3 kWh. Also, we set the
weightsα = 1 andµ = 1 as the default values. SinceVmax

increases as|∆u| decreases, to achieve best performance11, we
set∆u = 0 andV = Vmax.

We consider an exemplary case where the battery usage
cost and the delay cost are both quadratic functions, given

8We set the mean renewable amount to be{Sh, Sm, Sl} =
{1.98, 0.96, 0.005} kWh per hour. Converting to per slot energy amount
with 5 minutes duration, we have{1.98, 0.96, 0.005}/12 kWh per slot. We
set these values based on that the average energy harvested by photovoltaic
is about 20 kWh within a day for a residential home.

9Similar asSt, the mean load is converted from energy amount per hour to
per slot. The mean values are set based on that the each residential household
on average consumes1 ∼ 2 kWh per hour.

10Assuming a household consumes1 ∼ 2 kWh per hour on average, we
set the values ofRmax andDmax to be in the same range for load supply.
Thus, per slot, we haveRmax = Dmax = 1.98 kWh/12 = 0.165 kWh.

11A detailed study of∆u can be found in [14].



10

by Cu(xu) = kuxu
2 and Cd(dw) = kddw

2
. The constant

ku > 0 is a battery cost coefficient depending on the battery
characteristics. We set it asku = 0.2.12 The constantkd > 0 is
a normalization factor based on the desired maximum average
delaydmax in (3). It is set askd = 1/(dmax)2, such that the
cost for an average delaydw = dmax is normalized to 1.13 The
optimal γ∗

i,t in (27) can be determined withC′
i(Γi) = 2kiΓi,

andC′−1
i

(

−
Hi,t

V βi

)

= −
Hi,t

2βikiV
, for i = u, d.

A. An Example of Load Scheduling

In Fig. 4, we show a fraction of the load scheduling results
by Algorithm 1, where we setdmax

t = dmax = 18 slots and
α = 0.005.14 Each horizontal bar represents a scheduled load
Wt with the width representing the load intensityρt and the
length representing the total duration from arrival to service
being completed. For a delayed load, the delay is indicated in
different color before the load is scheduled. In this example,
we see some loads are immediately scheduled, while others
are scheduled atdmax

t . The total energy demand at each time
slot is the vertical summation over all loads that are scheduled
in this time slot.

B. Effect of Scheduling Delay Constraints

1) Effect ofdmax
t and dmax: We study how the average

system cost objective ofP1 under our proposed algorithm
varies with different delay requirements. We setdmax

t = dmax,
∀t, and plot the average system cost vs.dmax

t in Fig. 5, for
different values of weightα in the cost objective. As can
be seen, the system cost decreases asdmax(dmax

t ) increases.
This shows that relaxing the average delay constraint gives
more flexibility to load scheduling, where each load can be
scheduled at lower electricity price, resulting in lower system
cost. This demonstrates that flexible load scheduling is more
beneficial to the overall system cost. In addition, we see that
a larger valueα gives more weight on minimizing the delay
in the objective, resulting in a higher system cost.

Next, we study the effect of load delay constraints on the
monetary cost,i.e., the cost of energy purchasing and battery
degradation, given byJ + xe + Cu(xu) in the objective of
P1. The monetary cost indicates how much saving a consumer
could actually have, by allowing longer service delay. In Fig. 6,
we plot the monetary cost vs.dmax for dmax

t = 216. We
see a clear trade-off between the monetary cost and the load
delay. The trade-off curve can be used to determine the desired
operating point. For comparison, we also consider the case
in which all loads are served immediately after arrival,i.e.,
dmax
t = 0. This is essentially the case with only energy storage

12The value ofku depends on the type of battery and current battery
technology. We have tested a range of values forku and studied the effect of
ku on the system cost performance in our previous work [14].

13The normalization bykd ensures the delay cost is properly defined.
Intuitively, a longer delay is encouraged in order to allow more energy cost
saving, as long as the desired maximum average delay is satisfied. Thus, the
costCd(dw) should not be affected by the absolute delay valuedw , but rather
its relative value todmax, i.e., dw

2
/(dmax)2.

14We set the value ofα to ensure that the weighted delay costαCd(dw) is
comparable to the other two costs in the objective ofP1. Thus, both delay and
energy cost are active factors in making the storage and scheduling decision
in simulation.
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α = 0.005).

d
t
max (dmax)

60 80 100 120 140 160 180 200 220

A
vg

. s
ys

. c
os

t

×10-3

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

α=0.001
α=0.005

Fig. 5. Average system cost vs.dmax

t (dmax = dmax

t ).

but no load scheduling. Thus, the monetary cost is independent
of dmax. We see a substantial gap between the two curves and
the gap increases withdmax. This clearly shows the benefit of
joint load scheduling and energy storage management.

2) Average delaydw: We now study the average delaydw
achieved by our proposed algorithm vs.dmax for variousdmax

t

in Fig. 7. As we see, the actual averaged delaydw increases
with the average delaydmax requirement. This is because, with
a more relaxed constraint on the delay, loads can be shifted
to a later time in order to reduce the system cost, resulting in
larger average delay. However, the increase is sublinear with
respect todmax. Similarly, we observe that increasing the per
load maximum delaydmax

t increasesdw. Finally, recall that
we study the margin for average delay constraint (3) under our
proposed algorithm in Proposition 3. To see how the resulting
dw meets constraint (3), we plot the linedmax in Fig. 7. As
we see,dw is belowdmax for all values ofdmax anddmax

t .
3) Effect ofµ: Weight µ is used to control the relative

importance of virtual queues related to the battery and those
to delay in Lyapunov functionL(Θt) in (26) and Lyapunov
drift ∆(Θt). For Lyapunov drift∆(Θt), if µ is large, the two
queuesXt andHd,t related to the load delay will dominate the
drift. This will affect the drift-plus-cost objective considered
in our proposed algorithm and thus the performance. To study
the effect ofµ on the performance, in Fig. 8, we evaluate the
average system cost for different values ofµ. We see that a
lower system cost is achieved by smaller value ofµ. This is
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because, with smallerµ, the drifts ofXt related to delay is
less significant in the overall drift. This allows wider difference
betweendw anddmax, i.e., smallerdw and lower delay cost.

C. Performance vs. Battery Capacity

We consider two other algorithms for comparison: A)No
storage or scheduling: In this case, neither energy storage
nor load scheduling is considered. Each load is served im-
mediately using energy purchased from the conventional grid
and/or renewable generator. B)Storage only: In this method,
only battery storage is considered but every load is served
immediately without a delay. This is essentially the algorithm
provided in [14].

In Fig. 9, we compare our proposed algorithm to the above
two alternative algorithms under various battery capacity
Bmax. Since algorithm A does not use a battery, the system
cost is unchanged overBmax and is 0.01. We do not plot
the curve as the cost is much higher than the rest of two
algorithms we considered. For algorithm B and our proposed
Algorithm 1, as can be seen, the system costs reduces asBmax

increases. This is because a larger battery capacity allows
charging/discharging to be more flexible based on the current
demand and electricity price, resulting in a lower system cost.
Comparing the two, we see that joint load scheduling and
energy storage control provides further reduction in system
cost.
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VII. C ONCLUSION

In this work, we have considered joint energy storage
management and load scheduling for the ESM system, where
renewable source, loads, and price may be non-stationary and
their statistics are unknown. For load scheduling, we have
characterized each load task by its power intensity and service
duration, and have considered the maximum per load delay
and maximum average delay requirements. For storage control,
our storage model includes details of the battery operational
constraints and cost. Aiming at minimizing the overall system
cost over a finite period of time, we have designed a real-time
algorithm for joint load scheduling and energy storage control,
where we have provided a closed-form per slot scheduling
and energy storage decisions. As a result, we have shown that
the joint load scheduling and energy storage control can in
fact be separately and sequentially determined in our real-time
algorithm. Furthermore, we have shown that our proposed real-
time algorithm has a bounded performance guarantee from
an optimalT -slot look-ahead solution and is asymptotically
equivalent to the optimalT -slot look-ahead solution, as the
battery capacity and time period go to infinity. Simulation
results have demonstrated the gain of joint load scheduling
and storage control provided by our proposed algorithm over
other real-time schemes which consider neither storage nor
scheduling, or with storage only.
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APPENDIX A
PROOF OFEQUIVALENCE OF P2 AND P3

Proof: The proof follows the same approach as in [14,
Lemma 1]. Letuo

2 anduo
3 denote the minimum objective values

of P2 and P3, respectively. Since the optimal solution ofP2
satisfies all constraints ofP3, it is a feasible solution ofP3.
Thus, we haveuo

3 ≤ uo
2. By Jensen’s inequality and convexity

of Ci(·) for i = d, u, we haveCd(γd) ≥ Cd(γd) = Cd(dw)
and Cu(γu) ≥ Cu(γu) = Cu(xu). This meansuo

3 ≥ uo
2.

Hence, we haveuo
2 = uo

3 andP3 andP2 are equivalent.

APPENDIX B
UPPERBOUND ON DRIFT-PLUS-COST FUNCTION

The following lemma presents an upper bound on the drift
∆(Θt).

Lemma 2:The one-slot Lyapunov drift∆(Θt) is upper
bounded by

∆(Θt) ≤ Zt

(

Et + Sr,t + Sw,t −

t
∑

τ=0

ρτ1S,t(dτ )−
∆u

To

)

+Hu,tγu,t −Hu,t(Et + Sr,t) + µXt(dt − dmax) +G

− |Hu,t|

(

Sw,t −

t
∑

τ=0

ρτ1S,t(dτ )

)

+ µHd,t(γd,t − dt) (34)

where G = 1
2 max

{

(

Rmax −
∆u

To

)2

,
(

Dmax +
∆u

To

)2
}

+

1
2 max{R2

max, D
2
max}+

µ
2 max

{

(dmax)2, (dmax
t − dmax)2

}

+
µ
2 (d

max
t )2.
Proof: From the definition of∆(Θt), we have

∆(Θt) , L(Θt+1)− L(Θt)

=
1

2
[Z2

t+1 − Z2
t + (H2

u,t+1 −H2
u,t)]

+
µ

2

[

(X2
t+1 −X2

t +H2
d,t+1 −H2

d,t)
]

(35)

where from queue (22),Z2
t+1 − Z2

t can be presented by

Z2
t+1 − Z2

t

2
= Zt

(

Qt + Sr,t −Dt −
∆u

To

)

+
(Qt + Sr,t −Dt −

∆u

To
)2

2
. (36)

Note that from (16), we have∆u

To
≤ max{Rmax, Dmax}. For

a given value of∆u, by (7) and (8),(Qt + Sr,t −Dt −
∆u

To
)2

is upper bound bymax
{

(Rmax −
∆u

To
)2, (Dmax +

∆u

To
)2
}

. By
the supply-demand balance (13), the first term on RHS of (36)
can be replaced by

Zt

(

Qt + Sr,t −Dt −
∆u

To

)

= Zt

(

Et + Sr,t + Sw,t −

t
∑

τ=0

ρτ1S,t(dτ )−
∆u

To

)

. (37)

From (24),H2
u,t+1 −H2

u,t in (35) can be presented by

H2
u,t+1 −H2

u,t

2
= Hu,t(γu,t − xu,t) +

(γu,t − xu,t)
2

2
. (38)

Note that from (12) and (17), the second term of RHS in (38)
is upper bounded by(γu,t − xu,t)

2 ≤ max{R2
max, D

2
max}.

We now find the upper bound for−Htxu,t in the first term
on RHS of (38). By the supply-demand balance (13),−Htxu,t

can be replaced by

−Htxu,t = −Hu,t(|Qt + Sr,t −Dt|)

= −Hu,t

(∣

∣

∣

∣

∣

Et + Sr,t + Sw,t −
t
∑

τ=0

ρτ1S,t(dτ )

∣

∣

∣

∣

∣

)

. (39)

The upper bound of−Htxu,t in (39) is obtained as follows.
1) For Hu,t ≥ 0: We have

−Hu,t

(∣

∣

∣

∣

∣

Et + Sr,t + Sw,t −
t
∑

τ=0

ρτ1S,t(dτ )

∣

∣

∣

∣

∣

)

≤ −Hu,t

(

Et + Sr,t + Sw,t −
t
∑

τ=0

ρτ1S,t(dτ )

)

= −Hu,t(Et + Sr,t)−Hu,t

(

Sw,t −

t
∑

τ=0

ρτ1S,t(dτ )

)

.

2) For Hu,t < 0: We have

−Hu,t

(∣

∣

∣

∣

∣

Et + Sr,t + Sw,t −

t
∑

τ=0

ρτ1S,t(dτ )

∣

∣

∣

∣

∣

)

≤ −Hu,t

(

|Et + Sr,t|+

∣

∣

∣

∣

∣

Sw,t −

t
∑

τ=0

ρτ1S,t(dτ )

∣

∣

∣

∣

∣

)

≤ −Hu,t

(

Et + Sr,t +

t
∑

τ=0

ρτ1S,t(dτ )− Sw,t

)

= −Hu,t(Et + Sr,t) +Hu,t

(

Sw,t −

t
∑

τ=0

ρτ1S,t(dτ )

)

.

Combine the above cases forHu,t, we have−Htxu,t in (39)
upper bounded by

−Hu,t

(∣

∣

∣

∣

∣

Et + Sr,t + Sw,t −

t
∑

τ=0

ρτ1S,t(dτ )

∣

∣

∣

∣

∣

)

≤ −Hu,t (Et + Sr,t)− |Hu,t|

(

Sw,t −

t
∑

τ=0

ρτ1S,t(dτ )

)

.

From (21), we haveX2
t+1 ≤ (Xt + dt − dmax)

2. Thus,
(X2

t+1 −X2
t ) in (35) is bounded by

X2
t+1 −X2

t

2
≤ Xt (dt − dmax) +

1

2
(dt − dmax)

2 (40)

where by (1), the last term in RHS of (40) is upper bounded
by (dt − dmax)2 ≤ max

{

(dmax)
2
, (dmax

t − dmax)
2
}

.

From (25),H2
d,t+1 −H2

d,t in (35) can be presented by

H2
d,t+1 −H2

d,t

2
= Hd,t(γd,t − dt) +

(γd,t − dt)
2

2

≤ Hd,t(γd,t − dt) +
1

2
(dmax

t )2 (41)

where the last inequality is derived from the bounds ofγd in
(19) anddt in (1). We give the upper bond of (35) as follows

∆(Θt) , L(Θt+1)− L(Θt)

≤ Zt

(

Et + Sr,t + Sw,t −

t
∑

τ=0

ρτ1S,t(dτ )−
∆u

To

)
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− |Hu,t|

(

Sw,t −

t
∑

τ=0

ρτ1S,t(dτ )

)

+ µHd,t(γd,t − dt) +G

+Hu,tγu,t −Hu,t(Et + Sr,t) + µXt (dt − dmax) (42)

whereG includes all constant terms from the upper bounds
of (36), (38), (40) and (41), and is defined as

G ,
1

2
max

{

(

Rmax −
∆u

To

)2

,

(

Dmax +
∆u

To

)2
}

+
1

2
max{R2

max, D
2
max}+

µ

2
(dmax

t )2

+
µ

2
max

{

(dmax)2, (dmax
t − dmax)2

}

. (43)

APPENDIX C
PROOF OFPROPOSITION1

Proof: To determine the optimal scheduling delayd∗t , we
need to compare the objective values ofP4a1 under all serving
options. The optimal delayd∗t is the one that achieves the
minimum objective value. Becausedt · 1S,t(dt) = 0, we have
the following cases:

1) If the load is immediately served, we have1S,t(dt) = 1
anddt = 0. The objective value becomesωo;

2) If the load is delayed, we havedt > 0 and1S,t(dt) = 0.
The objective function is reduced toµdt(Xt−Hd,t). For
Xt−Hd,t ≥ 0, the objective value isω1; Otherwise, the
value isωdmax

t
.

Comparingωo to ω1 or ωdmax

t
, we obtaind∗t .

APPENDIX D
PROOF OFLEMMA 1

Proof: Sinceµ, α and V are all positive weights, and
Ci(γt)’s are assumed to be continuous, convex and non-
decreasing functions with respect toγi,t with maximum
derivativesC′

i(Γi) < ∞, for i = d, u, the optimalγ∗
i,t’s

are determined by examining the derivatives of the objective
functions ofP4a2 andP4b1. Note that, givenγu,t in (17) and
γd,t in (19),C′

i(γi,t) ≥ 0 and increases withγi,t for i = d, u.
For βi defined in Lemma 1, we have

1) For Hi,t ≥ 0: We haveµdHd,t + V αC′
d(γd,t) > 0 and

Hu,t+V C′
u(γu,t) > 0. Thus, the objectives ofP4a2 andP4b1

are both monotonically increasing functions, and the minimum
values are obtained withγ∗

i,t = 0 for i = d, u.
2) For Hi,t < −V βC′

i(Γi): Since V C′
i(Γi) ≥ V C′

i(γi,t)
for i = d, u, we haveµdHd,t + V αC′

d(γd,t) < 0 and
Hu,t + V C′

u(γu,t) < 0. The objectives ofP4a2 and P4b1
are both monotonically decreasing functions. From (19), the
minimum objective value ofP4a2 is reached withγ∗

d,t = Γd

whereΓd , min{dmax
t , dmax}; The minimum objective value

of P4b1 is reached withγ∗
u,t = Γu where by (17), we have

Γu , min{Rmax, Dmax};
3) For −V βiC

′
i(Γi) ≤ Hi,t ≤ 0: In this case,γ∗

d,t and
γ∗
u,t are the roots ofµdHd,t + V αC′

d(γd,t) = 0 andHu,t +

V C′
u(γu,t) = 0, respectively. We haveγ∗

i,t = C′−1
i

(

−
Hi,t

V βi

)

for i = d, u.

Thus, we haveγ∗
i,t for i = d, u as in (27).

APPENDIX E
PROOF OFTHEOREM 1

Proof: A T -slot sample path Lyapunov drift is defined by
∆T (Θt) , L(Θt+T )−L(Θt). We upper bound it as follows

∆T (Θt) =
Z2
t+T − Z2

t +
(

H2
u,t+T −H2

u,t

)

2

+
µ
(

X2
t+T −X2

t +H2
d,t+T −H2

d,t

)

2

≤ Zt

t+T−1
∑

τ=t

(

Qτ + Sr,τ −Dτ −
∆u

To

)

+
1

2

[

t+T−1
∑

τ=t

(

Qτ + Sr,τ −Dτ −
∆u

To

)

]2

+Hu,t

t+T−1
∑

τ=t

(γu,τ − xu,τ ) +
1

2

[

t+T−1
∑

τ=t

(γu,τ − xu,τ )

]2

+Xt

t+T−1
∑

τ=t

(dτ − dmax) +
µ

2

[

t+T−1
∑

τ=t

(dt − dmax)

]2

+Hd,t

t+T−1
∑

τ=t

(γd,τ − xd,τ ) +
µ

2

[

t+T−1
∑

τ=t

(γd,τ − xd,τ )

]2

≤ Zt

t+T−1
∑

τ=t

(

Qτ + Sr,τ −Dτ −
∆u

To

)

+Hu,t

t+T−1
∑

τ=t

(γτ − xu,τ ) +Xt

t+T−1
∑

τ=t

(dτ − dmax)

+Hd,t

t+T−1
∑

τ=t

(γd,τ − xd,τ ) +GT 2 (44)

whereG is defined in Lemma 2.
AssumeTo = MT . We consider a per-frame optimization

problem below, with the objective of minimizing the time-
averaged system cost within themth frame of lengthT time
slots.

Pf : min
{at,γt}

1

T

(m+1)T−1
∑

t=mT

[EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]

s.t (1), (4), (6), (9), (13)− (15), (17)− (20).

We show thatPf is equivalent toP1 in which To is replaced
by T . Let uf

m denote the minimum objective value ofPf .
The optimal solution ofP1 satisfies all constraints ofPf and
therefore is feasible toPf . Thus, we haveuf

m ≤ u
opt
m . By

Jensen’s inequality and convexity ofCi(·) for i = d, u, we
haveCd(γd) ≥ Cd(γd) = Cd(dw) andCu(γu) ≥ Cu(γu) =
Cu(xu). Note that introducing the auxiliary variablesγu,t with
constraints (17) and (18), andγd,t with constraints (19) and
(20) does not modify the problem. This meansuf

m ≥ uopt
m .

Hence, we haveuf
m = uopt

m andPf andP1 are equivalent.
From (44) and the objective ofPf , we have theT -slot drift-

plus-cost metric for themth frame upper bounded by

∆T (Θt) + V

(m+1)T−1
∑

t=mT

[EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]
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≤ Zt

(m+1)T−1
∑

t=mT

(

Qt + Sr,t −Dt −
∆u

To

)

+Xt

t+T−1
∑

τ=t

(dτ − dmax)

+Hu,t

t+T−1
∑

τ=t

(γu,τ − xu,τ ) +GT 2 +Hd,t

t+T−1
∑

τ=t

(γd,τ − xd,τ )

+ V

(m+1)T−1
∑

t=mT

[EtPt + xe,t + Cu(γu,t) + αCd(γd,t)] . (45)

Let {π̃t} denote a set of feasible solutions ofPf , satisfying
the following relations

(m+1)T−1
∑

t=mT

(

Q̃t + S̃r,t

)

=

(m+1)T−1
∑

t=mT

(

D̃t +
∆u

To

)

(46)

(m+1)T−1
∑

t=mT

γ̃i,t =

(m+1)T−1
∑

t=mT

x̃i,t, for i = u, d (47)

(m+1)T−1
∑

t=mT

d̃t ≤

(m+1)T−1
∑

t=mT

dmax (48)

with the corresponding objective value denoted asũf
m.

Note that comparing withP1, we impose per-frame con-
straints (46)-(48) as oppose to (16), (18), (20) and (3) for the
To-slot period, respectively. Letδ ≥ 0 denote the gap of̃uf

m

to the optimal objective valueuopt
m , i.e., ũf

m = uopt
m + δ.

Among all feasible control solutions satisfying (46)-(48),
there exists a solution which leads toδ → 0. The upper bound
in (45) can be rewritten as

∆T (Θt) + V





(m+1)T−1
∑

t=mT

[EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]





≤ GT 2 + V T lim
δ→0

(

uopt
m + δ

)

= GT 2 + V Tuopt
m . (49)

Summing both sides of (49) overm for m = 0, . . . ,M − 1,
and dividing them byVMT , we have

1

MT

M−1
∑

m=0

(m+1)T−1
∑

t=mT

[EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]

+
L(ΘTo

)− L(Θ0)

VMT
≤

GT

V
+

1

M

M−1
∑

m=0

uopt
m . (50)

SinceCi(γi) ≤ Ci(γi) for the convex functionCi(·) where
γi ,

1
To

∑To−1
t=0 γi,t for i = u, d, from (50), we have

(

1

To

To−1
∑

t=0

EtPt

)

+ xe + Cu(γu) + αCd(γd)

≤
1

To

To−1
∑

t=0

[EtPt + xe,t + Cu(γu,t) + αCd(γd,t)] (51)

For a continuously differentiable convex functionf(·), it
satisfiesf(x) ≥ f(y)+f ′(y)(x−y). Applying this toCu(xu)
andCu(γu), we have

Cu(xu) ≤ Cu(γu) + C′
u(xu)(xu − γu)

≤ Cu(γu) + C′
u(Γu)(xu − γu)

= Cu(γu)− C′
u(Γu)

Hu,To
−Hu,0

To

(52)

Similarly, we have

Cd(dw) ≤ Cd(γd)− C′
d(Γd)

Hd,To
−Hd,0

To

. (53)

Apply the inequalities in (52) and (53) toCu(γu) andCd(γd)
respectively at LHS of (51), and combining (50) and (51), we
have the bound of the objective valueu∗(V ) of P1 in (30)
achieved by our proposed algorithm.

To show the bound in (31), asTo → ∞, it is suffice to show
that bothHu,t andHd,t in (30) are bounded. To show these
bounds, we need to show that the one-slot Lyapunov drift in
(35) is upper bounded as follows

L(Θt+1)− L(Θt) ≤ G. (54)

To show the above bound for the drift, we choose an alternative
feasible solutioñπt satisfying the following per slot relations:
i) Q̃t + S̃r,t = D̃t +

∆u

To
; ii) γ̃i,t = x̃i,t, for i = u, d; and

iii) d̃t ≤ dmax. With these relations, and by choosing̃dt =
dmax, the terms at RHS of (36), (38), (40) and (41) become
zeros, and we have (54). Averaging (54) overTo-slot period,
we have 1

To
[L(ΘTo

)− L(Θ0)] ≤ G. For any initial value of
L(Θ0) < +∞, by (26), we have

1

2To

[

Z2
To

+H2
u,To

+ µ
(

X2
To

+H2
d,To

)]

≤ G+
L(Θ0)

To

. (55)

It follows that Hu,To
≤
√

2ToG+ 2L(Θ0) and Hd,To
≤

√

(2ToG+ 2L(Θ0))/µ. Since
√

2ToG+ 2L(Θ0)/To → 0 as
To → ∞, for any initial values ofHu,0 andHd,0, the third
term in RHS of (30) goes to zero. Thus, we have (31).

APPENDIX F
PROOF OFPROPOSITION3

Proof: To proveǫd is bounded, we note that

|ǫd| =
|XTo

−X0|

T0
≤

|XTo
|+ |X0|

T0
. (56)

From (55), it follows that|XTo
| ≤

√

(2ToG+ 2L(Θ0))/µ.
Substituting the above upper bound of|XTo

| in (56), we have
(32).
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