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Abstract—We consider joint energy storage management and
load scheduling at a residential site with integrated renewble
generation. Assuming unknown arbitrary dynamics of renewdle
source, loads, and electricity price, we aim at optimizing he
load scheduling and energy storage control simultaneouslyn
order to minimize the overall system cost within a finite time
period. Besides incorporating battery operational constaints and
costs, we model each individual load task by its requested peer
intensity and service durations, as well as the maximum and
average delay requirements. To tackle this finite time horian
stochastic problem, we propose a real-time scheduling andas-
age control solution by applying a sequence of modificationral
transformation to employ Lyapunov optimization that otherwise
is not directly applicable. With our proposed algorithm, we show
that the joint load scheduling and energy storage control ca
in fact be separated and sequentially determined. Furtherrore,
both scheduling and energy control decisions have closedfn
solutions for simple implementation. Through analysis, weshow
that our proposed real-time algorithm has a bounded perfor-
mance guarantee from the optimal T-slot look-ahead solution
and is asymptotically equivalent to it as the battery capady
and time period goes to infinity. The effectiveness of jointdad
scheduling and energy storage control by our proposed algahm
is demonstrated through simulation as compared with altermative
algorithms.

Index Terms—Load scheduling, energy storage, renewable
generation, real-time algorithm, stochastic optimizatia, finite
time horizon

I. INTRODUCTION

The rising global demand of energy has resulted in hi

prices for electricity and also caused the growing envir

mental concern due to excess carbon emission from po

generation. Integrating renewable energy sources intgrilde

system has become a vital green energy solution to red
the energy cost and build a sustainable society and econoH‘n%
Although promising, renewable energy is often intermitten

and difficult to predict, making it less reliable for both dyi
level operation and as a local energy source for consum
Energy storage and flexible loads are considered as

promising management solutions to mitigate the randomn
of renewable generation, as well as to reduce electricigt ¢

[2], [B]. In particular, energy storage can be exploited hits

energy across time, while flexible loads can be controlled
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shift demand across time. For grid operators, they can be
utilized to counter the fluctuation in renewable generation
and to increase reliability. For consumers, energy storage
and load scheduling can provide effective means for energy
management to reduce electricity cost.

As renewable penetration into the power supply increases,
the renewable generation with storage solutions at regalen
homes (such as roof-top solar panels) will become incrgasin
popular. Thus, developing a cost effective energy storage-m
agement system to maximally harness energy from renewable
sources is of critical importance. At the same time, manyrsma
appliances have been developed, creating more contrellabl
loads at the consumer side. They can be controlled to benefit
from the dynamic price set at the utility, and help shift the
energy demand from high-peak to low-peak periods to reduce
energy bills. Providing effective management solutiont tha
combines both energy storage and load scheduling will be
the most promising future solution for consumers to reduce
energy costs and is the goal of this paper.

Developing an effective joint energy storage management
and load scheduling solution is important, but faces unique
challenges. For energy storage, the cost reduction bygeora
comes with an additional cost from battery degradation due
to charging and discharging; finite battery capacity makes
the storage control decisions coupled over time which are
difficult to optimize. For load scheduling, while minimign

ne electricity cost, it needs to ensure the delay requingsne
griL‘or each load and for the overall service are met. In pawdicul

\A,%d scheduling decision affects the energy usage andgstora

and vise versa. Thus, storage control and load scheduling
lﬁzlce'ecisions are coupled with each other and over time, making
specially challenging for a joint design.
nergy storage management alone has been considered for
power balancing to counter the fluctuation of renewable gene
ea}gon and increase grid reliability [[4]2[6], and for consens
O'reduce electricity cost$|[7]=[14]. Off-line storage tmh
rategies for dynamic systems have been propdsed[4], [7],
iéf. In these works, renewable energy arrivals are assumed
nown ahead of time and the knowledge of load statistics is
sumed. For real-time storage management design, [9] has
ormulated the storage management control as a Markov De-
cision Process (MDP) and solved it by Dynamic Programming
(DP). Lyapunov optimization technique ]|15] has been rdgent
employed for designing real-time storage control at either
grid operator side or consumer side under different system
models and optimization goal§]1[5],1[6]._[10]=[14]. Among
these works,[T11],[[12] have considered renewable gemerati
without modeling the battery operational cost. Both rerdea
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generation and battery operation cost have been modelechatively model the battery operational constraints and doe
[5], [6], [L3], [14]. Except for [14], which considers theosage to charging and discharging activities.

management design within a finite time period, all the abovewe aim at designing a real-time solution for joint energy
works consider the long-term average system cost. storage management and load scheduling to minimize the
Load (demand) scheduling through demand side manageerall system cost over a finite time period, subject todpatt
ment has been studied by many for shaping the aggregag®ration and load delay constraints. The interaction afllo
load at utility through direct load contral [16]=[118] or pig scheduling and energy storage, the finite battery capauity,
optimization [19], [20], and at consumer through load selted finite time period for optimization complicate the schedgli
ing to reduce electricity bill in response to the dynamiceri and energy control decision making over time. To tackle this
[21]-[26]. With the electricity price known ahead of timedifficult stochastic problem, we develop techniques thioag
linear programming[[21],[[22] and DR _[23] techniques argequence of problem modification and transformation which
applied for load scheduling. Without assuming known futurenable us to employ Lyapunov optimization to design a real-
prices, MDP formulation has been consideredlin [24]] [25fime algorithm that otherwise is not directly applicablete-
and opportunistic load scheduling based on optimal stappigstingly, we show that the joint load scheduling and energy
rule has been proposed in [26]. Combining both utility sidstorage control can be separated and sequentially detdmin
and demand side management is also considered_in [4#],our real-time optimization algorithm. Furthermore, ot
[28], where game theoretic approach is applied for distetu load scheduling and energy control decisions have closed-f
energy management. solutions, making the real-time algorithm simple to impémh
Few existing works consider joint optimization of energyVe further show that our proposed real-time algorithm not
storage management and load scheduling. A joint design lwady provides a bounded performance guarantee to the optima
been developed in[[29], in which the electricity price ig-slot look-ahead solution which has full future informatio
assumed to be known ahead of time and the storage moalailable, but is also asymptotically equivalent to it as th
is simplified without the battery operational cost. Realdi battery capacity and the considered time period for design
energy storage management with flexible loads has been cga-to infinity. Simulation results demonstrate the effemtigss
sidered in[[30] and[31]. While_[30] focuses on local demandf joint load scheduling and energy storage control by our
side, [31] combines both grid operator and demand sigeoposed algorithm as compared with alternative solutions
management using distributed storage. In these worksbfexiconsidering neither storage nor scheduling, or storagg onl

loads are only modeled in terms of the aggregated energyDifferent from our recent work([14], in which the energy
request; There is no individual task modeling or schedulingorage problem without flexible loads has been considered,
being conducted. Furthermore, in these works, renewaldethis work, we explore both energy storage and flexible
generation, loads, and electricity price are assumed to |g@d scheduling to reduce system cost. Given the individual
independent and identically distributed. With the incieas |oad modeling, load delay requirements imposed, and the loa
penetration of renewable generation and energy storageein jhteraction with energy usage over time, it is highly noixid

grid, future energy demand and supply are expected to be qué formulate the joint design problem, develop techniquesf
dynamic. Renewable generation, loads, and electricitgeprireal-time solution, and provide performance analysisoligh
may all fluctuate randorflywith their statistics likely being our developed techniques, we show that the joint optinozati
non-stationary, making them difficult to predict accunatel of load scheduling and storage control can in fact be sepérat
However, most of existing works design solutions assuminghd sequentially solved. Thus, we are able to obtain the load
either the future values or statistical knowledge of therbéo scheduling solution in closed-form and apply the resulfd] [
known. In addition, although long-term time averaged cest for the storage control. Furthermore, we demonstrate that a
typically considered in these existing works, the conssmebwer system cost can be achieved with joint load scheduling
may prefer a cost saving solution in a period of time defineghd energy storage control than with just energy storagesalo

by their own needs. It is important to provide a solutlon_ to Comparing with existing works, our proposed algorithm has
meet such need. We aim at proposing a real-time algorithl foliowing features and advantages: 1) The battery géora
for joint energy storage and load scheduling to addres®th@geration and associated cost, as well as individual loddtan
ISSues. quality of service, are thoroughly modeled; 2) The alganith
In this paper, we consider joint energy storage managemgpévides a real-time joint solution for both energy storage
and load scheduling at a residential site equipped with @ntrol and load task scheduling; 3) The solution only eelie
renewable generator and a storage battery. For renewakjethe current price, renewable generation, or loads, aed do
source, loads, and electricity price, we assume their dyt®Mmnot require any statistical knowledge of them; 4) The sohuti
to be arbitrary which can be non-stationary and their siedis js designed for a specified period of time which may be useful
are unknown. For the residential load, we characterize eggf practical needs; 5) The solution is provided in closedf
individual load task with its own requested power intensi%quiring minimum complexity for practical implementatio

and service duration, and co_nsider both per load maximum-l-he rest of this paper is organized as follows. In Sediibn I,
delay and average delay requirements. For battery storage, . describe the system model. In Sectiof IIl, we formulate

the joint energy management and load scheduling problem.
1Energy pricing design is considered to respond to the engegyand and In Section[TV, we propose a real-time algorithm for our

supply status and to shape the load for demand managemeantressilt, the . . L . .
real-time price in the future grid could fluctuate much maaedomly and joint optimization prOblem- In Sectiof 1V, we analyze the

quickly, and likely to have complicated statistical beloasi performance of algorithm. After presenting our simulation



TABLE | Qt
LIST OF MAIN SYMBOLS

Ey é Qt ,} t o é_,
Wi user’s load arriving at time slat (kwh) Batter w

Pt load intensity (kwWh)

At load duration (number of slots) Renew, S; o
, — S Contrl.
dy delay incurred foll/; before it is served (number of slots) Swt

dpex | maximum delay allowed foiV; before it is served (numbef

of slots)
— - — - Fig. 1. The residential energy storage management system.
average delay of all arrived loads within tte,-slot period 9 ay g 9 4

(number of slots)

S
3

d™a* | maximum average delay (number of slots) for the loads withi
the T,-slot period

N sources and supply power to the user. The energy storage
management (ESM) system is shown in Eig. 1. As a part of the
ESM system, a load scheduling mechanism is implemented to

£y energy purchased from conventional grid at time $ItWh) | gchedule each load task to meet its delay requirements. We

Emax | maximum amount of energy that can be bought from the drid 3ssume the ESM system operates in discrete time slots with

per slot (kWh) _ : t € {0,1,---}, and all operations are performed per time slot

P unit price of buying energy at time slot($/kwh) t. Each component of the EMS system is described below.

Cy4(-) | cost function associated with the average delay

Prnax | maximum unit energy price$(kWh)

Ppin | minimum unit energy price$(kWh)
St renewable energy harvested at time gigkWh) A. Load Scheduling

Sw,¢ | amount of renewable energy directly supplied user's loads t  \We assume the user has load tasks in various types arriving
be served at time slat (kwh) over time slots. An example of the scheduling time line of two

St amount of renewable energy stored into battery at timeislpt loads is shown in FiﬂZ Lét, denote the load arriving at the
kWh .. . - .
Q (ortio)n of E; stored into battery at time slat(kwh) beginning of time slot. It is given by W, = piAi, wherep,

i P : Lo y and )\, are the load intensity and duration fdr;, respectively.
Rimax il charging amount (kWh) per slot allowed for the - \\ia assume), is an integer multiple of time slots, and the
attery o ; o !

Dy amount of energy discharged from the battery at time slot glllgimdum duraﬁlon for. any IO(?C: I8, I'”e" /\tdef{l’ z’ 'f. 3 Let
(kWh) t enote the maximum delay allowed fdr; before it is

Dmax | maximum discharging amount per slot allowed from the bat- Serveq (multiple of time SIOFS).' and lef denote the actual
tery (KWh) delay incurred for¥, before it is served. We have

Bt battery energy level at time slot(kWh) max

Bmin | minimum energy level required in the battery (kWh) di € {0’ 1....d; }’ vt. 1)

Bmax | maximum energy level allowed in the battery (kWh) Thus, the earliest serving time duration fdf; is [t,¢ + \;],

Cie entry cost for battery due to each charging activity ( and the latest serving time durationis- dmax ST AP

Cdc entry cost for battery due to each discharging activity ( We define an indicator functios (d,) = {1 : if t € [1 +

Tet entry cost for battery at time slat aszc ¢ = 1g¢Crc + d-,7 + d; + \;); 0 : otherwisg, for Vr < t. It indicates
1D,tCdc (3) whether or not the loadV, is being served at time slat

Ty, | net amount 0; energy Chkan%e in battery at time slots Consider aTl,-slot period. We defind,, as the average delay
Tut = |Qt + Srie = Def (KWh) of all arrived loads within thisl,-slot period, given l%/

Te average entry cost for battery over tiig-slot period §)
To average net amount of energy change in battery oveflthe A1 To—1

slot period (kWh) dy & > d,. 2)
Cu(+) | cost function associated with average usage amaunt$) ¢ =0
o weight for the cost of scheduling delay Besides the per load maximum deldy** constraint in [(1L),
ay energy storage control action vector at time glot we impose a constraint on the average dej_@yas
Ay desired change of battery energy level witfip slots (kWh) .

max

w weight for delay related queues in Lyapunov function dw € [07 d ] (3)

where d™?* is the maximum average delay for the loads

studies in SectioRVI, we conclude our paper in Sedfiod VIWithin the T,-slot period. It is straightforward tO see

Notations The main symbols used in this paper are sunibat for constraint [(3) to be effective, we ha <
marized in Tablé]l. maxe(o,1,—1]{d"**}, for Vt. The average delay,, reflects

the average quality of service for the loads within the

slot period. We define a cost functi@;(d,,) associated with

d,. A longer delay reduces the quality of service and incurs
We consider a residential-side electricity consumingtgntia higher cost. Thus, we assunig(-) to be a continuous,

powered by the conventional grid and a local renewable gezenvex, non-decreasing function with derivativg(-) < oo.

erator (RG) €.g.,wind or solar generators). An energy storage

battery is co-located with RG to store energy from both power?without loss of generality, we start tHg,-period at time slot = 0.

Il. SYSTEM MODEL



W, Wi, /d?;ax Jmax Let B; denote the battery energy level at time sloWith a

”””” CTIIIIIIIIITIIIIIII T a Thayg finite capacity,B; is bounded by
Pt ZIZZ’pt%\\,,\\,j :
Lo NN ) |
0 ‘tl /dt1 [ ‘}T}tl } T, —1 B € [Bmina Bmax] (10)
f dt 1 )\t2

where By, and By, are the minimum energy required and
Fig. 2. An example of load scheduling for two arrival loads, andW;,. maximum energy allowed in the battery, respectively. The
dynamics of B, over time due to charging and discharging

B. Energy Sources and Storage activities are given

1) Power SourcesThe user can purchase energy from the
conventional gridwith a real-time price. Letty; denote the
amount of energy bought in time slétlt is bounded by

Bii1 =Bt + Q¢+ Spt — Dy (11)

It is known from battery technology that frequent charg-
E; € [0, Emax] (4) ing/discharging activities cause a battery to degrade tiver
where E,,. IS the maximum amount of energy that can b@]—@]ﬁ Both th_e frequency of c.harging or discharging and
bought from the grid per slot. This amount can be used } e_amount that_ is charged or discharged affect the b_attery
directly supply the user's loads and/or be stored into ghietime. le_en thls,_we model tW_O types of bgttery qp_e_raab
battery. Let P, denote the unit price of buying energy affosts associated with the charging/discharging actsziéetry

time slott. It is bounded as?, € [Puin, Puax], Where Py, cOStandusage cost _ .

and P,,.,. are the minimum and maximum unit energy prices, 1he entry cost is a fixed cost incurred due to

respectively. We assumg, is known to the user at time slot€ach chqrglng or discharging activity. Deflng two !ndlca—

¢ and is kept unchanged within the slot duration. The averalff functions to represent charging and discharging ac-

cost for the purchased energy from the grid ovefiaslot UVitieS as lr, ={1:if Q¢+ S, > 0; 0: otherwisg and
period is defined by A 1 Tl E,P,. 1py = {1:if D, > 0; 0: otherwisé, respectively. LetCic

T, 24t=0 ] ; o
Renewable generatorAn RG is used as an alternativedenote the entry cost for each charging activity and for

energy source in the ESM system. L§t denote the amount that of the discharging activity. Let. ; denote the entry cost

. oo N
of renewable energy harvested at time glofVe assume; is at time SIOt_t' It is given byze; = 1rtCre + 1thCd°,' We
first used to supply the loads scheduled to be served at tififine the time-averaged entry cost over feslot period as

slot t. Denote this portion by, ;, we have Te = 7 Yo Tejt _ _ _
, The usage cost is defined as the cost associated with the
Sh¢ = min {Zp'rlSt(dT)aSt} (5) battery charging and discharging amount. bet; = Q¢ +
' ’ Sy — Dy| denote the net amount of energy change in battery
time slott due to charging or discharging. From (7) and
, it follows thatz,, ; is bounded by

7=0
where the first term in[{5) represents the total energy ov%)
those scheduled loads that need to be served at time.slo
The remaining portion ofS;, if any, can be stored into the
battery. Since there is a cost associated to the battergicigar

activity, we use a controller to determine whether or not to . . .
store the remaining portion into the battery. L€t, denote n general, the battery usage cost is associated with charge

& . .
the amount of renewable energy charged into the batteryCXf:le' Eaé:h chargeTcycIe typ_|cally li.Sts for a pegod ﬁf
time slott. It is bounded by time in a day [[35]. To approximate this, we consider the

average net amount of energy change in the battery over
Srit €0, — Swe - (6) the T,-slot period, defined ag, = TLZtT;ala:u_,t. From

2) Battery Operation: The battery can be charged fromfLd): it is straightforward to see that, is bounded by
either the grid, the renewable generator, or both at the safe € [0 maX { Bmax, Dmax}]. We model the usage cost as
time. LetQ, denote the portion ofZ, from the grid that is & runction ofz,, denoted byC, (7). It is known that faster
stored into the battery at time slotThe total charging amount charging/discharging within a fix period has a more detrimen
at time slott is bounded by tal effec_t on the_ life time of the battery. Th_us, we assume

C..(T=) is a continuous, convex, non-decreasing function with
Qi + Srt € [0, Riax] (7)  derivativeC’,(z) < cold

where Ry, is the maximum charging amount per slot for the Based on the above, the average battery operational cost
battery. Similarly, letD, denote the discharging amount fronPver theT,-slot period due to charging/discharging activities
the battery at time slot, bounded by is given byZe + Cy(Tw).

Dy € |0, Dy, 8
¢ [ ’ mdx] ( ) 3We consider an ideal battery model with no leakage of stoneigy over

where Diax is the maximum discharging amount per slotme and full charging/discharging efficiency.
allowed from the battery. We assume there is no simultaneolrl]sThe Ilfeflme of battery can be coarsely measured by the nurabéull
: . . - . charge cycles.
charging and discharging activities at the battesy, 5Charging the battery and then discharging it to the samé ieeensidered
a charge cycle.

(Q¢+ Srt) - De = 0. 9) 6Such a convex cost function has also been adopted in liter&&@)], [37].

xu,t S [01 max {Rmaxa Dmax}] . (12)



C. Supply and Demand Balance A. Problem Modification

For each load¥, arrived at time slotr, if it is scheduled Due to the finite battery capacity constraint, the control
to be served at time slat (> 7), the energy supply needsactions {a;} are coupled over time. To remove the time
to meet the amoung, scheduled foiV,. The overall energy coupling, similar to the technique used in our previous work
supply must be equal to the total demands from those loddd4] for energy storage only problem, we remove the finite
which need to be served at time stotThus, we have supply battery capacity constraint, and instead we impose a @nstr
and demand balance relation given by on the change of battery energy level over fheslot period.

Specifically, by [(TIL), the change of battery energy levelrove

t . . T,—1
the T,-slot period isBy, — By = > _,°0 " (Q+ + Syt — Dy).
E; — Sw D; = ~1s:(dy), Vt. 13 . ° =0 i
¢ = Qe t Swet Dy Tgop s(dr) (13) We now set this change to be a desired valug i.e.,

To—1
1 X A
I1. JOINT ENERGY STORAGE MANAGEMENT AND LOAD T > (Qui+ S —Di) = Tu-
SCHEDULING: PROBLEM FORMULATION ¢ =0 ©

(16)

Our goal is to jointly optimize the load scheduling an&\mt? that A, is onlyadeswe_d value we set, which may not be
energy flows and storage control for the ESM system a)chleyed by a control algorithm gt the end_]Q,FsIot period.
minimize an overall system cost over thg-slot period. We will quantify the amount of rmsmqtch with respectg
The loads, renewable generation, and piité;, S;, P,} have under our proposed_control glgorlthm in Sec_n V. By the bat
complicated statistical behaviors which may be non-statip tery capacity ind (dis)charging constraints, it is easypetbat
and thus are often difficult to acquire or predict in practicéAu| < Amax = min{Bmax — Buin, T, ma?i{;Rmaanmax}}-

In our design, we assume arbitrary dynamics{far;, S, P; } We now modify P1 to th_e follow optlmlzatu_)n problem
and do not assume their statistical knowledge being knoven. R adding the new constrairit (16), and removing the battery
intend to develop a real-time control algorithm that is ddpa Capacity constrain{ (10)

to handle such arbitrary and unknown system inputs. P2: min  J+ T + Cu(Tw) + aCy(dy)

We model the overall system cost as a weighted sum of the {ae,de}
cost from energy purchase and battery degradation, and the st. ), 3 — ©), @3), (@6).

; NN
cost of scheduling delay. Defing = [Et, Qt, D, Suw.t, Srt) I\%lote that by removing the battery capacity constraing (10),

as the control action vector for the energy flow in the ES We remove the dependency of per-siot charging/discharging

system at time slot. Our goal is to find an optimal policy . .
S . amount onB; in constraints[(14) and (15), and replace them
{a;, d;} that minimizes the time-averaged system cost. Thlis ! [(T4) ) P

optimization problem is formulated as follows Y (@) and [8), respectively.

Pl: min J+ T + Cu(Tn) + aCy(dy) B. Problem Transformation
{at7dt} -
In P2, both battery average usage c65t{(z,) and schedul-
st. 1) @) @. 6@ @3) and ing delay costCy(d,,) are functions of time-averaged vari-
0 <S¢+ Q¢ <min{Rmax, Bmax — Bt} (14) ables, which complicates the problem. Using the technique
0 < Dy < min {Duax, Bi — Bumin} (15) introduced in[[38], we now transform the problem into one tha

only contains the time-average of the functions. Speclical

whereq is the positivg weight for the cost of scheduling delayje introduce auxiliary variables, ; and~,; for z, , andd;,

delay incurred by scheduling in the joint optimization.

Note that inP1, {W;, S;, P.} are random, and their future 0 < 7w < max{Rmax; Dmax}, Vi 17
values are unknown at time slét Thus,P1 is a finite time Yu =Ty (18)
horizon joint stochastic optimization problem which isfidiilt 0 < var < min{d®, d™>}, Vi (19)

to solve. Joint energy storage control and load scheduling =
. L . 7= dy (20)
complicates the problem, making it much more challenging

_than each separate pro_blem alone. The f|n|'Fe battery _Capa%ereﬂ A % ZZL:—OI ~ie» for i = u, d. The above constraints
imposes a hard constraint on the control actipag, making ensure that each auxiliary variable lies in the same range as
{a;} correlated over time, due to the time-coupling dynamiGgs original variable, and its time average is the same as tha
of B, in (II)). Furthermore, the finite time horizon problemy s original variable. Define’; (y;) 2 %Z?ialci(Vit)

is much more difficult to tackle than the infinite time horizonyg the time average af;(v;) over T, slots, fori = u”d'

problem as considered in most existing energy storage worplying (I8) and [(2D) to the objective d¥2, and defining
New techniques need to be developed for a real-time contypl 2 (5, g, ~, , +,,], we transformP2 into the following

solution. _ _ _ optimization problem
In the following, we focus on proposing a real-time algo- o
rithm to provide a suboptimal solution @1 with a certain P3: o J +Te + Culu) + aCa(7a)

performance guarantee. To do this, we first mo@ifyto allow
. . . . A — — (G

us to design a real-time algorithm for joint energy storage st @.6 - @. 03, @9 - )

control and load scheduling at every time slot. We lateruwisc where the terms in the objective are @J)-slot time-averaged

how our solution can meet the constraintsRif cost functions. We can show thB2 and P3 are equivalent,



i.e., they have the same optimal control solutipsf, d; } (See B. Real-Time Algorithm

Appendix[A8). .
PP (B) Note thatZ; and H,; are the virtual queues related to

| s s o rals o S o, 1 s o
0 the scheduling delay. Lé®; 2 [Z;, H,+, X;, Hq ] denote

storage control and load scheduling by adopting Lyapungv =~ . "
optimgi]zation techniquelT15]. In thegfoll)(/)wingp Wg p)r/ogos e \/_lrtual gueue vector. We define the quadratic Lyapunov
our real-time algorithm foP3, and then design parameter unction L(®,) for ©; as follows

to ensure the proposed solution meets the battery capacity 1

constraint in the originaP1 which is removed irP2. L(©) £ 5 (Z2+HZ, +p (X7 +HS,) (26)

wherep is a positive weight to adjust the relative importance
of load delay related queues in the Lyapunov function. We
define a one-slot sample path Lyapunov drift A¢0,) £

By Lyapunov optimization, we first introduce virtual queueg, (®,, 1) — L(©;), which only depends on the current system
for each time-averaged inequality and equality constsaift inputs {IW;, S;, P;}.
P3to transform them into queue stability problems. Then, we |nstead of directly minimizing the system cost objective in
design a real-time algorithm based on the drift of Lyapung¥3 e consider therift-plus-costmetric given byA(®©,) +
function defined on these virtual queues. VIEP, + ey + Cu(yur) + aCa(vas)]- It is a weighted sum
of the drift A(®;) and the system cost at time slotwith
V' > 0 being the relative weight between the two terms.

] ] ] Directly using the drift-plus-cost function to determine
We introduce a virtual queug(; to meet constraint{3), control actionr, is still challenging. In the following, we use
evolving as follows an upper bound of this drift-plus-cost function to desigm ou

. max real-time algorithm. The upper bound is derived in Appendix
Ko = max (Xe +dy —d™,0). (1) Bl as [34). Using this upper bound, we formulate a per-slot
From [2), the above results i, < d™* + (X, — X,)/T,. real-time optimization problem and solve it at every timet sl
Thus, formulating the virtual queus; in (ZI) will guarantee t- By removing all the constant terms independent of control
to meet the average delay constraiit (3) with a mafgip, — actionm, we arrive at the following optimization problem
Xo)/T,. In SectiorY, we will further discuss this constraint

IV. JOINT ENERGY STORAGE MANAGEMENT AND LOAD
SCHEDULING: REAL-TIME ALGORITHM

A. Virtual Queues

under our proposed algorithm. P4: min Z, (Bt + Srt + Swt — pelsi(de)] — [Hut| St
For constraint(16), dividing both sides I3y gives the time- _ ¥ Hot Prat — (Bo 4+ Se)] + | Hutl pelsie(dy)
averaged net change of battery energy level per slot being
A, /T,. To meet this constraint, we introduce a virtual queue + uXede + pHa(vae — di)
Z,, evolving as follows +V[EP 4 xey + Cu(Vur) + aCal(va,e)]
Au s.t. @)a @) - @)a m)v m)v @)
Zt+1 = Zt —+ Qt + S’r,t — Dt — T . (22)

o

. Note that the ternd_" _ p,1s,(d,) in the upper bound(34)
From B; in (1) and Z; above, we can show that they args the total energy demand from the scheduled loads at time

different by a time-dependent shift as follows slot¢. Since delayi, for 7 € {0,1,...,t—1} are determined
A A, in previous time slot- < ¢t — 1 by solvingP4, only p;1s.+(d;)
Zy = By — Ay, Wwhere 4, = A, + -t (23) is a function ofr, at time slott, and is part of the objective
¢ of P4.

The linear time functior%t in A; is to ensure that constraint Denote the optimal soluton ofP4 by = £
(I8) is satisfied. Due to this shifti;, the range ofZ; is [a} d},~ ,,~,]. After regrouping the terms in the objective
expanded to the entire real linee., Z; € R for B, € R*. of P4 with respect to different control variables, we show
Note thatA, is a design parameter. Later, we desidn to that P4 can be separated into four sub-problems to be solved
ensure that our control solutiofa; } for the energy flows in sequentially and variables i} can be determined separately.
our proposed algorithm satisfies the battery capacity caint The steps are described below.
(I0) imposed inP1.

Finally, to meet constraintd_(lL8) anfl [19), we establis
virtual queuesH,, ; and Hg ;, respectively, as follows

ﬁl) Determined; and~; , by solving the followingP4,: and
P4,., respectively.

Hyti1 = Hut +Yur — Tus (24) Pl smin pudy (Xy — Har) = pelsie(de) (Ze = [Hu])
Hat41 = Hat + var — di. (25) s.t. 1)
From Lyapunov optimization, it can be shown that satisfying %2 : I%H} pHavas+VaCa(ya:) st [19)
constraints[(8) [{16)[ (18), and {(19) is equivalent to nwitihg

the stability of queuesX;, Z;, H.., and H,,, respectively S2) DetermineS;, , in (§) usingd; obtained in S1).
[15]. S3) Using S, ; obtained in S2) in[(13), determing’ , and



a; by solving the followingP4,1 andP4,2, respectively.

I34‘1)1 : Ivnln Hu,t')/u,t + VCu(’Yu,t) s.t. m)
P4, : H;iﬂ E((Zi—Hy1+VP)+ Sr(Zy — Huy)

+V (1R,tcrc + 1D,thc)
@)- @ @3

S.t.

Remark: An important and interesting observation of the
above is that the joint optimization of load scheduling and’
energy storage control can in fact be separated: The sdhgdu
decisiond; is determined first ifP4,;. Based on the resulting
energy demand in the current time slot energy storage

control decisiona; is then determined ifP4,2. Note that

the two sub-problems are interconnected through the curré
virtual queue backlog¥; and H, . for the battery energy

level B; and battery energy net changg., respectively. The

storage control decisiom; will further change the battery
energy level and affect{, ; at the next time slot. Thus,
although the scheduling and storage decisions are selyarae
determined, they are interconnected through battery gner't

level and usage, and sequentially influence each other.

In the following, we solve each subproblem and obtain

closed-form solution. As a result, the optimal solutisp is
obtained in closed-form.

1) The optimald;: The optimal scheduling delay; for
P4,, is given below.

Proposition 1: Let w, —pi (Zt — [Huyl), wi
M (Xt — Hd,t); andwd?mx £ /Ld?lax(Xt - Hd,t)-

A

0 if w, <
1) If X, — Hy, > 0, thend; Yo =W
' 1 otherwise
0 if wo < wgmax

2) If Xy — Hqy <0, thend; d™@x  otherwise
t

Proof: See Appendix L.

Remark Note thatw,, wi, and wgmex are the objective

values of P4,; when d; = 0,1, and dj*®*, respectively.
Furthermorew, depends on the virtual queue backlodgs (
and H, ) related to the battery energy level, whilg and
wqmax depend on the virtual queue backlogs;(and H, ;)

related to load delay. Propositibh 1 shows that the schegluli

decision for load/V; is to either immediately serve itff = 0)
or delay its serving timed( 1 or dj***). This decision

Lemma 1:The optimaly;,, for i = d, u, is given by

0 if H;y >0
i if Hi,t < —VﬁlCZ’(I‘l)
ot ( ) otherwise

(27)
H; ¢
T VB

Whereﬂu =1, Bd = Oé//L, r, £ maX{Rmaanmax}a and

[y £ min{dPax, dmax},

Proof: See AppendikD.
3) The optimala;: Once the scheduling decisiaff for
; is determined, the total energy demand from the scheduled
|oads,i.e., th:o p-1s+(dr), is determined. Given this energy
demandpP4,2 is solved to obtain the optimal control solution
(B, Q5 Dy, Sy,] in aj. This subproblem for energy storage
and control is essentially the same adin [14], where theggner
fprage only problem is considered. Thus, the closed-form
solution can be readily obtained froim [14]. Here we directly
state the result.

Define L} = Zf—:opTlS,t(di) as the current energy
demand at time slot. Define the idle state of the battery
the state where there is no charging or discharging ac-
y. The control solution under this idle state is derbte
by [E, Q¥, D, S14,]. By supply-demand balancing equation

), it is given byEld = Ly — S5, QF = Di¢ = S, = 0.
et ¢, denote the objective value P4y for the battery being
in the idle state. We havg = (L; — S}, ,)(Z; — Hu: +V ;).
Denote a; (£, Q1, Dy, Sy, 4, Sy.4]. The optimal control

w,tr

solutiona; of P4y,2 is given in three cases below.
i) For Z,— H,,+ VP, <0: The battery is in either charging
or idle state. The solution; in charging state is given by
D; =0,
S, =min {S; — S} ;, Rmax }
Q; = min { Ryax — S}, Emax — L] + 55}
E} =min {L} + Rmax — S5y — 5.4, Prmax }
If Eé(Zt_Hu,t“l‘VPt)“l‘(Zt_Hu,t)S;,t‘FVCrClR,t <&,
thena} = a}; Otherwise,aj = al%.
||) For Z; — MuHu,t <0< Z — Hu,t + VP The bat-
tery is either in charging, discharging, or idle state. The
solution a; in charging or discharging state is given by
D; = min {L; — S} ;, Dmax }

S;,t = min {St — S:L_’t, Rmax}
Q; =0,
E; = [L: =St — DmaX]+

It E{(Z, — Huy+VP)+(Zi— Hut)Sp, +V(Crel g +
Caclp) < &, thena; = a}; Otherwise,a; = ald.

depends on whether the battery energy is high enoughifso _

will be served immediately) or the delays for the schedulit)
loads so far are low enough (86, will be delayed). When the

load is delayed to serve, the delay should be either minimum
or maximum depending on the existing scheduling delays of ing state is given b

the past loads.

2) The optimaly;, and; ,: Since Cqy(-) and Cy(-) are
both convex, the objectives &4, andP4,; are convex. Let
C!(-) denote the first derivative af’;(-), andCfl(-) denote

For0< Z,— H,: < Zy — H,; + VP;: The battery is in

either discharging or idle state. The solutignin discharg-

D; = min {L; — S} ;, Diax }

S;“.,t = Q; = 07

E = [L; — S5, — D]
If Bi(Zi — Hut +VP;)+VCaclp: <&, thena; = aj;
Otherwise,a; = al9.

In each case above, the cost of charging or discharging is

+

the inverse function ofC}(-), for ¢ = d,u. We obtain the compared with the cos§; of being in an idle state, and the
optimal solutionSth, 1 = d,u, for P4, andP4,; as follows. control solution ofP4,. is the one with the minimum cost.
The condition for each case dependsfnH,, ; andP,;, where



Algorithm 1 Real-Time Joint Load Scheduling and Energghat this constraint is set as a desired outconee, A, is a
Storage Management desired value. The actual solutiaji in the proposed algorithm

Set the desired value dt,. SetA, andV as in [28) and.(29) may not satisfy this constraint at the end of fheslot period,
respectively. “ ¢ " and thus may not be feasible R8. Nonetheless, setting,

At time slot0: SetZy = Xo = H, o = Hyo = 0. and V' as in [28) and[{29) guarantees that;} satisfy the

At time slot¢: Obtain the current values dfiv;, S;, P} IcFJ)alttery capacity constrair 1.0} and therefore are feasil

2) In designing the real-time algorithm by Lyapunov frame-
work, virtual queueX; in (1) which we introduce for the
o ) . average delay constrairni] (3) can only ensure the constraint
a) Renewable contribution: Determing ; in @) g satisfied with a margin as indicated belo1(21). As a
usingd; obtained above. _ result, constraint[{3) can only be approximately satisfied.
b) Energy purchase and storage: Determifje ac- qyever, this relaxation is mild in practice for the average
cording to [2Y) andy; according to Cases i)-iii) i gelay performance. Note that the per-load maximum delay

1) Load schedulingDetermined; according to Proposi-
tion[ll and~;, according to[(27), respectively.
2) Energy Storage Control:

SectiqrﬂE. constraint[(lL) is strictly satisfied faf; by Algorithm[1. We
3) Updating virtual queuesUse; to updateB; based on will show in simulation that the achieved average delayby
(A1), andXy, Z;, Hy,i, Ha, based onl(21)(25). Algorithm[1 in fact meets constrairt](3).

3) We point out that the load scheduling and energy storage
control decisions are provided in closed-form by Algoritfim
Z; and H,; are rated to battery energy lev8}, and usage Thys, the algorithm is particularly suitable for real-tirme-
costz, +, respectively. Thus, Cases i)-iii) represent the Comr9|ementation with a constant computational complegit ).
actions at different battery energy level®( low, moderate, Fyrthermore, no statistical assumptions on the loadswrene
or high) and electricity prices. able source, and pricingV;, S;, P;} are required in the algo-
4) Feasibility ofa; to P1 Recall that we have removedjihm. They can be non-stochastic or stochastic with abjtr
the battery capacity constraifit {10) when modifyPgjto P2 gynamics (including non-stationary processes). Thiswailo
Thus, this constraint is no longer imposedR#,2, and our the algorithm to be applied to general scenarios, espgciall
real-time algorithm may not provide feasible control swins \yhen these statistics are difficult to predict. Finally, mits
{a;} to P1 To ensure the solution is still feasible to thenat Algorithm[1 is a suboptimal solution fdP1, we will

original problemP1, we design our control parametets and - show in the following that it provides a provable performanc
V.. The result readily follows [14, Proposition 2]. We omit theyyarantee.

details and only state the final result below.
Proposition 2: For the optimal solutiora; of P42, the

resulting B; satisfies the battery capacity constrainil (10), and V. PERFORMANCEANALYSIS

{a;} is feasible toP1, if A, in (23) is given by In this section, we analyze the performance of Algorifim 1
) ) and discuss the mismatch involved in some constraints as a
A, = A, !f Ay =0 (28) result of the real-time algorithm design.
AL A, if A, <0

where A’ = Buin + V Paax + VC/ (D) 4+ Ty + Dinax + %, A. Algorithm Performance
and V' € [0, Vinax] with To evaluate the proposed algorithm, we considéF-slot

Binax — Buin — Rmax — Diax — 2T — |Ay| look-ahead problem. Specifically, we partiti@p slots intoT"
Vinax = (29) frames withT, = MT, for M, T € N*. For each frame, we

Prax + C (T, . RS
+Cul) consider the same problem B4 but the objective is thd'-

slot averaged cost within the frame and the constraintslare a
related to time slots within the frame. In addition, we assum
We summarize the proposed real-time joint load scheduliggy;, S;, P,} for the entire frame are known beforehand. Thus,
and energy storage control in Algorithimh 1. Due to the seghe problem becomes a non-causal static optimization probl
aration of joint optimization, the algorithm provides aale and we call it aZ-slot lookahead problem. Let> be the
sequence of control decisions at each time lot corresponding minimum objective value achieved by-alot
Recall that we modify the original joint optimization prob{ook-ahead optimal solution over theth frame. We intend to
lem P1to P3, and apply Lyapunov optimization to propose &ound the performance of Algorithimh 1 (with no knowledge of
real-time algorithm foiP3 which is to solve the per-slot opti- future values of W,, S;, P,}) to the optimall’-slot lookahead
mization problemP4. We then design system parametells performance (with full knowledge ofiv;, S, P,} in a frame).
and Vinax to ensure our solution satisfies the battery capacitywe denote the objective value &f1 achieved by Algo-
constraint, which is removed when we mod®l to P4. As  rithm [T overT,-slot period byu*(V), whereV is the weight
a result, our proposed solution by Algorithith 1 is feasible tgajue used in Algorithril]1. The following theorem provides a
P1 Furthermore, we have the following discussions. bound of the cost performance under our proposed real-time
1) In modifying P1, we remove the battery capacity constrairalgorithm touof" under thel-slot lookahead optimal solution.
(I0) and instead impose a new constrainf (16) on the overallTheorem 1:Consider{W;, S;, P} being any arbitrary pro-
change of battery energy level ové&y slots to beA,. Note cesses over time. For any/,T € N* satisfyingT, = MT,

C. Discussions



the T,-slot average system cost under Algorithim 1 is bounded g
g ‘ ‘ ‘ ‘
i =
M-—1 s
. ! ot . GT | L(©0) — L(Or,) R T
wi(v) - M Z_Oum = v * VT, :: Hour
m= § 0.2 — , , .
n Cr (L) (Huo — Hur,) + aCy(La)(Hao — Ha,r,) (30) *;0.177
T, g ok | LSk ‘ !
where G is given in [43) and the upper bound is finite. In e ° hour ® ®
particular, asl, — oo, we have goz’ — 1= : ‘ .
LM ap Sl W T AL W
Jim (V) = lim Z_jo up < 5 (31) R

Proof: See AppendiXE.

Remark TheorenTll shows that our proposed algorithm i 3 Mean loadiV;, mean renewable generatish, and real-time
able to track the “idealT-slot lookahead optimal solution price P, over 24 hours.
with a bounded gap, for all possiblé/ and 7. Also, for
the best performance, we should always chodse- V..
The bound in[(31) gives the asymptotic performancelas
increase. Sincé/,.. in (29) increases withB,,,,, it follows
that Algorithm[1 is asymptotically equivalent to the optim
T-slot look-ahead solution as the battery capacity Zhdjo VI. SIMULATION RESULTS
to infinity. Note that, ag’, — oo, P1becomes an infig{se time
horizon problem with average sample path cost objattivee i
bound in[31) provides the performance gap of Iong—term{imgurat'on' Thus, we hav@, = 28 slots for each day. We

) - umeP;, S; and W; do not change within each slot. We
2;/ ?;?Teiks)ﬁggt ;)r? etZdS);)tIT g; cost of our proposed algorlﬂ'é]lol ect data from Ontario Energy Boafd [40] to set the piite

As shown Fig[B top, it follows a three-stage price pattern as

. o {Ps, P, P} = {$0.118,$0.099, $0.063} and is periodic ev-

B. Design Approximation ery 24 hours. We assum{é; } to be solar photovoltaic energy.
1) Average scheduling delay®*: Recall that, by Algo- It is a non-stationary process, with the mean amagint=

rithm[d, using the virtual queu&; in (1), the average delay E[S;| changing periodically over 24 hours, and having three-

constraint [B) is approximately satisfied with a margie,, stage values a$S;, S,.,S;} = {1.98,0.96,0.005} /12 kWh

dy, < d™ + ¢4, Whereey = (X7, — Xo)/T, is the margin. per sldfl and standard deviation ass, = 0.45;, for i =

Thus, a smallefA,, | is preferred. Note also that our simulation
study shows that the actual mismatchis much smaller than
athis upper bound.

We set each slot to be 5 minutes and consider a 24-hour

We now bound; below. h,m, 1, as shown in Fid.]3 middle. We assume the I¢&i, }
Proposition 3: Under Algorithm[1, the margim, for con- is a non-stationary process, having three-stage meansvalue

straint [3) is bounded as follows W, =E[W;] as{W,,W,,,W;} = {2.4,1.38,0.6} /12 kWh

per slofl with standard deviation asw, = 0.2W;, for

lea| < 2G n L(©,) n @' (32) i=h,m,1, as shown in FigJ3 bottom. For each IoHd, we

=\ uTh pTo T generate\; from a uniform distribution with intervall, 12],

and p; = W;/\:. We setd®** in (@) to be identical for alk.

Propositior B indicates that the margin—s 0 asT, — co. We set the battery related parameters as follofig;x =

Thus, the average delay is asymptotically satisfied. Naig thé)max :,0'_1,6|5 KWIL, IC'C TBCdC - 0.00|1, Bumin :_f(_),dand the
for Xo = 0, eg > 0. If Xo >0, it is possible that, < 0 and Pattery initial energy leveB, = 0. Unless specified, we set

constraint[(B) is satisfied with a negative margin. Howetes, Brnax = 3 kWh. We setEinax = 0.3 kWh. Also, we set the

will drive d; to be smaller which may cause higher systelwe'ghtso‘ =landu =1 as the d_efault values. Sindé;
cost. Thus, we seX, — 0 in Algorithm 1. increases ag\, | decreases, to achieve best perform%we

2) Mismatch ofA,: In our design, we sef\, to be a Se\tNA“ =0 %ndv = Vinax. | h he b
desired value for the change of battery energy level over € consider an exemplary case w ere.t € a_ttery usage
T,-slot period as in new constrainE{16). This value ma@OSt and the delay cost are both quadratic functions, given
not be achieved by Algorithril 1. Define the mismatch byswe set the mean renewable amount to 48, 5m, 51} =

€y 2 ZTO_I(QT—FST’T—DT)—AU. The bound fok,, follows {1.98,0.96,0.005} kWh per hour. Converting to per slot energy amount

=0 . ’ )
the resJIt in[[14, Proposition 3] and is shown below with 5 minutes duration, we havgl.98,0.96,0.005}/12 kWh per slot. We
! ' set these values based on that the average energy harvgspwtovoltaic

<9or R VP VO (T Do 33 is about 20 kWh within a day for a residential home.
l€ul < 20w + Rumax + V Prax + uw(Tw) + Dimax. (33) 9Similar asS;, the mean load is converted from energy amount per hour to

; ; per slot. The mean values are set based on that the eachntegditieusehold
Note that_VmaX in (29) increases ag\,| decreases, and af” average consumes 2 kWh per hour.
largerVi,ax is preferred for better performance by Theofdm - 19Assuming a household consumes~ 2 kWh per hour on average, we

set the values oRRmax and Dyax to be in the same range for load supply.
"As T, — oo, constraint [Ip) becomeEmr, Ti S To-1(Q, + Thus, per slot, we hav&yayx = Dimax = 1.98 kWh/12 = 0.165 kWh.

7=0

Sr.- — D-) = 0 as in the infinite time horizon problelﬁ[BQ]. 1IA detailed study ofA,, can be found in[[14].

Proof: See AppendikIF.



10

by Cu(Tw) = koo’ and Cy(d,) = kadw_. The constant

k., > 0 is a battery cost coefficient depending on the battery N Serving
characteristics. We set it &g = 0.2 The constanky > 0 is I Delay
a normalization factor based on the desired maximum average —©—Empty

delay d™** in @). It is set asky = 1/(d™**)?2, such that the

cost for an average delal, = d™** is normalized to £3 The 3

optimal~;, in (Z7) can be determined witt}(T';) = 2k;T';, §
1—1 H;, o H;, .

andC; (— VB:) = —gp v fori=u,d.

A. An Example of Load Scheduling

In Fig.[4, we show a fraction of the load scheduling results 305 310 315 320 325 330 335 340 345 350
by Algorithm[d, where we sef{*®* = ¢™2* = 18 slots and Time slot t
o = 0.005/14 Each horizontal bar represents a scheduled load . . e
W, with the width representing the load intensjy and the Fig. 4. A trace of load scheduling results ovel; (™ = d™** =18,

length representing the total duration from arrival to g=v ‘- 0'005)'“073
being completed. For a delayed load, the delay is indicated i 52 ' ' ' '
different color before the load is scheduled. In this exampl s :afg'ggé
we see some loads are immediately scheduled, while others st nE
are scheduled at***. The total energy demand at each time Gas
slot is the vertical summation over all loads that are sclestiu ..
in this time slot. 7.l
B. Effect of Scheduling Delay Constraints a5l

1) Effect ofd;"®* and d™**: We study how the average i
system cost objective oP1 under our proposed algorithm oa ‘ ‘ ‘ ‘ ‘ ‘ ‘
varies with different delay requirements. We gge> = d™2x, 08 100 120 140 160 180 200 220

max max
vt, and plot the average system cost ¥82* in Fig.[3, for de™ @™
different values of weightx in the cost objective. As can
be seen, the system cost decreaseg“8%(d;"**) increases.

This shows that relaxing the average delay constraint gives

more flexibility to load scheduling, where each load can kgt no load scheduling. Thus, the monetary cost is independe

scheduled at lower electricity price, resulting in lowest®m of ¢m2x, We see a substantial gap between the two curves and

cost. This demonstrates that flexible load scheduling isemghe gap increases wiii*><, This clearly shows the benefit of

beneficial to the overall system cost. In addition, we seé ﬂ]@int load scheduling and energy storage management.

a larger valuex gives more weight on minimizing the delay )y Average delayl,: We now study the average deldy;

in the objective, resulting in a higher system cost. achieved by our proposed algorithm w&®* for variousd}*®
Next, we study the effect of load delay constraints on thg Fig.[1. As we see, the actual averaged delayincreases

monetary costi.e., the cost of energy purchasing and batteryih the average delay™®* requirement. This is because, with

degradation, given by + T, + C,(7.) in the objective of 5 more relaxed constraint on the delay, loads can be shifted
P1 The monetary cost indicates how much saving a consumgry |ater time in order to reduce the system cost, resulting i

could actually have, by allowing longer service delay. 19.8, |arger average delay. However, the increase is sublinetr wi
we plot the monetary cost vsi™* for di"** = 216. We yespect tod™*. Similarly, we observe that increasing the per
see a clear trade-off between the monetary cost and the 19884 maximum delayl"®* increasesl,,. Finally, recall that

delay. _The trqde-off curve can be used to determl_ne theatksiyy o study the margin for average delay constrdiht (3) under ou
operating point. For comparison, we also consider the Ca8®posed algorithm in Propositiéh 3. To see how the regltin

in which all loads are served immediately after arriviad,, 7" meets constrainf13), we plot the lin&* in Fig.[d. As
di*™* = 0. This is essentially the case with only energy storagge seed,, is belowd™** for all values ofd™* and d>*.

Fig. 5. Average system cost ve;"®* (d™** = d;"*).

12The value ofk, depends on the type of battery ar_ld current batter?/ 3) Effect OIIMZ W?Ight p1s ulseddto Cﬁntl’é)l the I’elztlvhe
technology. We have tested a range of valueskfpand studied the effect of mportange of virtua queues re ate : to the battery andethos
k., on the system cost performance in our previous work [14]. to delay in Lyapunov functior.(®;) in (28) and Lyapunov

13_'I_'he normalization by{ed ensures the_ delay cost is properly defineddyift A(Gt)- For Lyapunov driftA(G)t), if m is Iarge, the two
Intuitively, a longer delay is encouraged in order to allowreenergy cost X dH lated to the load del ind inate th
saving, as long as the desired maximum average delay ifiesti$hus, the qu_eue Lt an_ d.t relate O eload de a)_/ W'_ Om_'na etne
costC(dy ) should not be aﬁectgd by the absolute delay valyebut rather ~ drift. This will affect the drift-plus-cost objective coidgred
its relative value tad™a%, i.e., dy /(d™3%)2. in our proposed algorithm and thus the performance. To study

14 ; Ty . .

We set the value oft to ensure that the weighted delay costy(dw)is  the effect ofx on the performance, in |:|m 8, we evaluate the
comparable to the other two costs in the objectiv®df Thus, both delay and t t for diff t val AW that
energy cost are active factors in making the storage andlsthg decision average system CO_S or ) merent values otvve see i a_ a
in simulation. lower system cost is achieved by smaller valueuofThis is
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because, with smallex, the drifts of X, related to delay is
less significant in the overall drift. This allows wider difence
betweend,, and d™*, i.e., smallerd,, and lower delay cost.

VIl. CONCLUSION

In this work, we have considered joint energy storage
management and load scheduling for the ESM system, where
renewable source, loads, and price may be non-stationary an

We consider two other algorithms for comparison: W9 their statistics are unknown. For load scheduling, we have
storage or schedulingin this case, neither energy storageharacterized each load task by its power intensity andeerv
nor load scheduling is considered. Each load is served igration, and have considered the maximum per load delay
mediately using energy purchased from the conventiondl géind maximum average delay requirements. For storage ¢ontro
and/or renewable generator. Bjorage only In this method, our storage model includes details of the battery operakion
only battery storage is considered but every load is serve@nstraints and cost. Aiming at minimizing the overall syst
immediately without a delay. This is essentially the altfori  cost over a finite period of time, we have designed a real-time
provided in [14]. algorithm for joint load scheduling and energy storage @int

In Fig.[9, we compare our proposed algorithm to the abovenere we have provided a closed-form per slot scheduling
two alternative algorithms under various battery capacignd energy storage decisions. As a result, we have shown that
Bax- Since algorithm A does not use a battery, the systetime joint load scheduling and energy storage control can in
cost is unchanged oveB,,., and is 0.01. We do not plot fact be separately and sequentially determined in ourthea-
the curve as the cost is much higher than the rest of tvadgorithm. Furthermore, we have shown that our proposded rea
algorithms we considered. For algorithm B and our proposéche algorithm has a bounded performance guarantee from
Algorithm[d], as can be seen, the system costs reducBg,as an optimalT-slot look-ahead solution and is asymptotically
increases. This is because a larger battery capacity allogepiivalent to the optimal™-slot look-ahead solution, as the
charging/discharging to be more flexible based on the currdrattery capacity and time period go to infinity. Simulation
demand and electricity price, resulting in a lower systest.coresults have demonstrated the gain of joint load scheduling
Comparing the two, we see that joint load scheduling arahd storage control provided by our proposed algorithm over
energy storage control provides further reduction in systeother real-time schemes which consider neither storage nor
cost. scheduling, or with storage only.

C. Performance vs. Battery Capacity
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We now find the upper bound ferH,x,, ; in the first term

Proof: The proof follows the same approach as [in] [14an be replaced by

Lemma 1]. Let:§ andug denote the minimum objective values

of P2 and P3, respectively. Since the optimal solution B2
satisfies all constraints &3, it is a feasible solution oP3.

Thus, we havei§ < u3. By Jensen’s inequality and convexity

of C;(-) for i = d,u, we haveCy(v4) > Ca(Fa) = Caldy)
and Cy(v) > Cu(Fm) = Cu(Ty). This meansu3 > us.
Hence, we have:s = u§ andP3 andP2 are equivalent. m

APPENDIXB
UPPERBOUND ON DRIFT-PLUS-COST FUNCTION

The following lemma presents an upper bound on the drift < H,

A(©y).

Lemma 2:The one-slot Lyapunov drifA(®;) is upper

bounded by

¢
Ay
A(©y) < Zy (Et +Srt + Swt — E prls(ds) — T )
7=0 °

+ Hy v — Hu (B + Sry) + p X (dy —

t
— [Hy ] <Sw,t - Z pTls,t(dT)> +pHa(va,e — di) (34)
7=0

dmaX) _"_ G

2 2
Where G = %max{(Rmax - %) ) (Dmax + %) } +
1 maX{Rmaxv 12nax} + H max { dmax)Q (dmax - dmax)Q} +
£ (dmax)2
Proof: From the definition ofA(®;), we have
A(©y) = (®t+1) — L(©y)
=3 [Zf+1 72+ (H2 1y — H2,)
+ 5 (X = XP+ H] o — HE)] (39)
where from queud(22)77,, — Z}? can be presented by
AR A Ay
T Tty Sy — Dy — 2%
5 t | Qe+ Srt t T,
+8,,— D, — 52)?
G . ) (36)

Note that from [(IB), we hav%— < max{Rmax, Dmax }. FOr
a given value ofA,,, by (@) and[(8),(Q: + S, — Dt — —)2

is upper bound bynax i( max — 72)% (Dimax + 72)? é

on RHS of [38). By the supply-demand balaricd (13}, 2.+
—Hyzyy = —Hy (|Qe + Srt — Dy)

- ( ) (39)

The upper bound of H,z, ; in (39) is obtained as follows.
1) For H,+ > 0: We have

- Hu,t <
t
(Et + Sr,t + Sw,t - Z pTls_,t(dT)>

7=0

t

Et+Srt+Swt_Zp7'15t )
=0

t
B+ S+ Swt — Z prls.(dr)
=0

t

t
= Hu t(Et +S’I" t) ut <Sw,t - ZPTIS,t(d7)> .
7=0
Et + Sr,t + Sw,t — Z Pfls,t(d‘r)
=0

2) For H,+ < 0: We have
t

- Hu,t <
S _Hu,t <|Et + Sr,t| + Sw,t - Zp‘rls,t(d‘r)
=0

)

t
= _Hu,t(Et + Sr,t) + Hu,t <Sw,t - Zp‘rls,t(d‘r)> .
=0

t
_Hu,t (Et + Sr,t + Z p‘rlS,t(dT) - Sw,t)

7=0

Combine the above cases féf, ;, we have— H;z,; in (39)
upper bounded by

o

t
S _Hu,t (Et + Sr,t) - |Hu,t| <Sw,t - Zp‘rls,t(d‘r)> .
=0

t
Et + Sr,t + Sw,t — Z Pfls,t(d‘r)
=0

From [21), we haveX,fJr1 < (Xy 4 dy — d™)?. Thus,
(X2, — X?) in (39) is bounded by
Xt2+1 — 2 max max \2
< X (dy —d™™) + (dt d™)”  (40)

BY where by [[1), the last term in RHS d:f:d40) is upper bounded

the supply-demand balan¢e]13), the first term on RHE df (3@ dy — d™)? < maX{(dmaX)2 (> dmax)? |
can be replaced by = 172 02 b db
N rom (28),Hj,,, — Hj, in (35) can be presented by
Zt(Qt+Sr,t—Dt— u> H?2 — H? —d;)?
T, d,t+12 d,t _ Hd,t(”Yd,t _ dt) + (’Yd,t 5 t)
t
AW
=7 <Et + Srt+ Swt — Z prls(ds) — ?> - (37) < Hgi(yae —di) + %(dinax)Q (41)
7=0 o
= H2, . —H?, i b ted b where the last inequality is derived from the boundsygfin
rom (24),H7 u I (89) can be presented by (I9) andd, in (@). We give the upper bond df(B5) as follows
Hg - HZ u,t — Ly 2
% = Hyt(Vu,t — Tuye) + (st 5 1) . (38) A(®:) = L(O441) — L(©;)

t
Note that from[(ZR) and(17), the second term of RHYIA (38)< 7z, <Et 4 St + Sut — prls J(d

is upper bounded by, ; — . ¢)? < max{R2, , D2 .}

_ B
T,
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¢ APPENDIXE
—[Hugl { Swi =D prlsalds) | + pHas(var — di) + G PROOF OFTHEOREM[]
7=0
4 Hysvur — Hot(Be + Spt) + pX (dy — d™) (42) Proof: A T-slot sample path Lyapunov drift is defined by

A7(©;) £ L(® 1) — L(©;). We upper bound it as follows
where G includes all constant terms from the upper bounds

of @8), (38), [@0) and{31), and is defined as Ar(©)) = Z2 . —Z3+ (H2, p— H2,)
G A 1 R Ay ’ D Ay ’ 2 ’ 2 2 2
= g max max = 75 |0 | Mmax + T, N H (Xt+T = Xi+Hir — Hd,t)
1 ’ 2
5 max{ R D) + 5 (d7™)? T A
M . 9 i i 9 < Zt Z (Q‘r + ST,T DT - Tu>
+ 5 max {(d™®)?, (™ — d™™)?}. (43) — 0
t+T—1 2
[ | 1 Ay
a T Sr T DT -
3| & (@rseroT)
APPENDIXC e T—1 A T—1 2
1
PROO-F OFPROP(-)SITIOI\ﬂ] _ + Huy Z (Yur — Tur) + 5 Z (Yur — Tu T)]
Proof: To determine the optimal scheduling del&y, we =t T=t
need to compare the objective valueddf,; under all serving t+T—1 t+T—1 2
options. The optimal delayl; is the one that achieves the + X, Z (dr —d™) +g Z (dy dm"‘x)]
minimum objective value. Becausk - 15(d;) = 0, we have =t =t
the following cases: t+T—1 u t+T—1 2
1) If the load is immediately served, we have,(d;) = 1 +Hae Y, (var—ar)+ 5 > (s CCd,T)]
andd, = 0. The objective value becomes;; T=t T=t
2) If the load is delayed, we havk > 0 andlg ,(d;) = 0. HT 1
) i I y i Ve fﬂf( t) < Zt Z QT+ST.T_DT_ Au
The objective function is reduced tal, (X, — H,4 ). For ; T,
X;—Hga: > 0, the objective value is);; Otherwise, the T:fTil T
value iswgmax. TH Z (Yr — Tur) + X Z (d, — dmex)
Comparingw, to wy Or wgmsx, We obtaind;. | ! g T e ' p— ’
t+T—1
APPENDIXD +Har Y, (Yar—as) +GT? (44)
PROOF OFLEMMA [I] =t

Proof: Since i, a and V' are all positive weights, and where@ is defined in Lemma&l?2.

Ci(v)'s are assumed to be continuous, convex and non-assume7, = MT. We consider a per-frame optimization
decreasing functions with respect tg, with maximum problem below, with the objective of minimizing the time-

derivativesC;(I';) < oo, for i = d,u, the optimalvy;,’s averaged system cost within theth frame of lengthl” time
are determined by examining the derivatives of the objectig|gts.

functions ofP4,2 andP4,;. Note that, giveny, , in (I7) and
va+ in @3), C/(vi+) > 0 and increases with; ; for i = d, u. )
For 3 defined(in L)emmﬂl, we have P: min 7 ZT[EtPt + et + Cu(yur) + aCa(7a,)]

1) For H;; > 0: We havepqsHq: + VaCl(vs:) > 0 and =

I’.’)u,t+VC;(’7u7t) > 0. Thus,uthe objectivesdgﬁz) andP4,, st @, @, @ @, @13)- ({15 @) - @)

are both monotqnically_increasing functions, and the mimm \va show thaPs is equivalent taP1 in which T, is replaced
values are obtained with;, = 0 for i = d, u. by 7. Let u/, denote the minimum objective value &;.
2) For H;; < —VBC(l): Since VCi(Ii) > VCi(vit)  The optimal solution o1 satisfies all constraints @ and
for i = d,u, we havepaHa, + VaCy(yar) < 0 and iherefore is feasible tds. Thus, we haveu!, < ud. By
Hyp + VC(7ue) < 0. The objectives ofP4.z and P4v1  jensen's inequality and convexity 6f () for i — d,u, we
ar_e_both mo_nott_nnlcally decreaS|_ng funcuons._ Frém (1%, ﬂﬁaveCd(yd) > Cy(Fa) = Ca(dy) and Cy () > Cu(7a) =
minimum objective value oP4,. is reached withy; , = T'y C..(T=). Note that introducing the auxiliary variables ; with
wherel'y £ min{dj"*, d"**}; The minimum objective value constraints[{AI7) and{18), ang,; with constraints[(119) and
of P4y is reached withy; , = I', where by [IV), we have @0) does not modify the problem. This mean§ > uSP
Iy £ min{ Rmax, Dimax }; Hence, we have:/, = uof' and Py and P1 are equivalent.
3) For —VB,Ci(I';) < H;y < 0 In this case,y;, and  From [43) and the objective dt¢, we have the-slot drift-
Va,e are the roots ofuqHa, + VaCy(va,:) = 0 and Hyy +  plus-cost metric for thenth frame upper bounded by

:/C{L('Yu,t) = 0, respectively. We have;, = C; ' (—"f—ﬁ') (mA1)T-1
ori=d,u.

; Ar(©®) +V EiPy + et + Cu(Vut) + aCa(va,
Thus, we havey;, for i = d, u as in [2). [ | () t:z,,;;p[ w ! o) 1)

(m+1)T—1




(m+1)T—-1 A, t+T—1
<Z Spt— Dy — — X dy — dM*
< tt:zm:T (Qt+ ¢ t T, >+ t§( )

t+T—1 t+T—1
+ Hu,t Z('yu,‘r - IU,T) + GT2 + Hd,t Z(’Yd.ﬁ' - xd,T)
T=t T=t
(m+1)T—-1
+ V Z [Etpt + :Ee,t + Cu(’Yu,t) + aCd(7d7t)] . (45)
t=mT

Let {7;} denote a set of feasible solutions B, satisfying
the following relations

(m+1)T—1 (m+1)T—1 A
Z (Qt + Sr,t) = Z (Dt =+ ?:) (46)
t=mT t=mT
(m+1)T—-1 (m+1)T—-1
S A= Y &y, fori=u.d (47)
t=mT t=mT
(m+1)T—1 (m+1)T—1
Yoodis D> dam (48)
t=mT t=mT

with the corresponding objective value denotedids
Note that comparing witfP1, we impose per-frame con-

straints [4b){{@8) as oppose 0 [16).1(18).1(20) did (3)tier t 1
2T,

T,-slot period, respectively. Let > 0 denote the gap ofi/,
to the optimal objective value®?', i.e., @/, = ud' + 4.

Among all feasible control solutions satisfying {46)4(48)
there exists a solution which leadsde— 0. The upper bound

in (@5) can be rewritten as

(m+1)T—-1
Ar(®y) +V Z [EPy + et + CulYut) + aCal(va,)]
t=mT
<GT*+VT lim (ud'+6) = GT? + VTud" (49)
—
Summing both sides of (#9) over for m =0,...,M — 1,

and dividing them by M T, we have

M—1 (m+1)T—1
T Z Z [ELP; + xet + Cu(Yut) + aCa(va )]

m=0 t=mT
1Ml
u%Pt
tar 2

SinceC;(7;) < C;(~;) for the convex functiorC;(-) where
2 L5 l2g i for i = u,d, from (50), we have

GT
v

L(®r,) -
VMT

L(©y)

+ (50)

Vi

T,—1
1 L
(T > EtPt> +Te + Cu(Ta) + aCa(7a)
° =0

T,—1

Z [EyPy + xet + Cu(Yue) + aCa(Var)]
t=0

1
<
- T

o

(51)

For a continuously differentiable convex functiofy(-), it

satisfiesf (z) > f(y)+ f'(y)(z—y). Applying this toC\, (T)
andC, (7x), we have
Cu(Ta) < Cu(Fa) + Cr(Tw) (Ta — Ta)
= Culm) — () 0 (sg)
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Similarly, we have

— - H
dw) < Ca(7d) S —

Apply the inequalities in[(32) and(b3) ©,(7.,) andCy(7a)
respectively at LHS of{31), and combinirig(50) ahdl (51), we
have the bound of the objective valug(V) of P1in (30)
achieved by our proposed algorithm.

To show the bound ifi{(31), a8, — oo, it is suffice to show
that bothH,,, and H,,, in (30) are bounded. To show these
bounds, we need to show that the one-slot Lyapunov drift in
(39) is upper bounded as follows

L(®1) — L(®,) < G.

To show the above bound for the drift, we choose an alteraativ
feasible solutionr, sat|sfy|ng the following per slot relations:

) Qi+ St = Dy + 4 =5 00) Fip = &y, for i = u,d; and

i) d; < d™a*. With these relations, and by choosidg =
d™ the terms at RHS of (36)[_(B8)._(¥0) arid41) become
zeros, and we havé (b4). Averagingl(54) o@&rslot period,
we have— [L(®7,) — L(®g)] < G. For any initial value of

L(®) < —|—oo by (28), we have

Cu oyt (53)

(54)

L(©y)
T,

It follows that H, 1, < /2T,G +2L(®y) and Hy 1, <

V@2T,G + 2L(0y))/u. Since\/2T,G + 2L(0,) /T, — 0 as

T, — oo, for any initial values ofH, o and H, o, the third
term in RHS of [[(3D) goes to zero. Thus, we hdve (31).m

(23, + H) o +p(XF, +Hip)] <G+ (55)

APPENDIXF
PROOF OFPROPOSITIONT

Proof: To provee, is bounded, we note that
|€d|: |XTD_X0| S |XTo|+|X0|
Ty Ty

From [BB), it follows that| X7,| < \/(2T,G + 2L(©))/p.
Substituting the above upper bound|afz, | in (58), we have

(32). m

(56)
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