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Abstract

We explore the application of kernel-based multi-task learning tech-
niques to forecast the demand of electricity in multiple nodes of a distri-
bution network. We show that recently developed output kernel learning
techniques are particularly well suited to solve this problem, as they allow
to flexibly model the complex seasonal effects that characterize electricity
demand data, while learning and exploiting correlations between multiple
demand profiles. We also demonstrate that kernels with a multiplicative
structure yield superior predictive performance with respect to the widely
adopted (generalized) additive models. Our study is based on residential
and industrial smart meter data provided by the Irish Commission for
Energy Regulation (CER).

1 Introduction

Electricity cannot be stored efficiently in large quantities, therefore it is critical
to ensure that the amount generated at a given time is sufficient to meet the
load plus the losses while not exceeding this amount significantly. Predictive
methods for accurately forecasting the demand of electricity have thus become
important tools that guide planning and operation of utility companies. While
electric load forecasting is a well-established, several decades old research area
in engineering, new modeling problems keep appearing as technological and leg-
islative transformations affect the power industry. With the advent of smart
grids and meters, larger and richer sources of data are becoming available, mak-
ing it possible to build more sophisticated models that enable more accurate
billing of electricity and dynamic pricing.

A variety of tools from time series analysis, statistics, and more recently
machine learning, have been employed for electricity load forecasting. For an
overview on the vast body of available literature on the subject, we refer the
reader to the recent book by [30]. Classical techniques include linear and non-
linear regression models estimated by means of variants of least squares fitting,
and various types of ARMAX models expressing the forecast as a function of
previously observed values of the load and possibly other weather or social vari-
ables. Techniques inspired by Artificial Intelligence research such as expert
systems, fuzzy logic, and neural networks have also been applied to load fore-
casting. In particular, black-box models based on neural networks have been
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extensively analyzed, see the influential review by [18].
In recent years, Generalized Additive Models (GAM) [17] have established

themselves as state of the art tools for electricity load forecasting [15, 5, 26],
due to the existence of efficient and scalable training algorithms and the inter-
pretability of the model, which allows to clearly visualize the effect of individual
variables on the load by means of simple longitudinal plots. Meanwhile, kernel
methods have been employed with great success in the last decade. Already
back in 2001, a kernel-based Support Vector Regression (SVR) approach was
employed to win a competition on electricity load forecasting [7] organized by
EUNITE (European Network on Intelligent Technologies for Smart Adaptive
Systems). Later on, various types of kernel-based regularization methods and
Support Vector Machines have been applied to predict the demand of electricity,
see for instance [13, 19, 12].

Most research articles on electricity load forecasting focus on predicting a
single time series representing the electricity load aggregated over a large number
of nodes of the electricity network. Due to aggregation, such time series exhibit
high regularity and are therefore significantly easier to forecast than load profiles
at lower levels of the network. Nevertheless, making forecasts of the loads at
lower levels is becoming increasingly feasible due to the availability of rich smart
meter datasets, therefore the problem is attracting considerable interest in the
industry.

Forecasting electricity demand at low levels of the network (such as the
demand of an individual household) presents several challenges. First of all,
it involves analyzing a much larger number of time series, calling for scalable
techniques that can handle a very large amount of measurements. In addition,
demand profiles at lower levels of the electricity network are much less regular
and thus harder to predict. To tackle these challenges, recent works have inves-
tigated the use of clustering techniques for automatically aggregating multiple
load time series, reporting improved predictive performance at aggregated level
[2, 1, 20].

In this paper, we study the problem of electricity load forecasting at low
network level, and we suggest to solve it by means of kernel-based multi-task
learning techniques that can discover and take advantage of the relationships
between multiple profiles. Kernel based multi-task learning has been studied in
a variety of papers [24, 14, 4, 6] while, in recent years, the problem of learning
and exploiting relationships between multiple tasks is a topic that is attracting
considerable attention in the machine learning literature [21, 31, 32, 10, 3, 22,
28, 23, 27, 9].

Herein, we develop and compare a variety of kernel-based models for long-
term electricity demand forecasting in multiple nodes, with the goal of identify-
ing the best way to capture the complex seasonal effects that characterize such
demand patterns. We design kernels specifically tailored to capture the seasonal
effects present in electricity load data. By doing so, we expose the performance
limits of the very popular additive models, showing that they are often out-
performed by multiplicative kernel models. We formulate the problem of fore-
casting the demand in multiple nodes of the network as a multi-task learning
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problem, illustrating the usefulness of jointly learning and exploiting similari-
ties between multiple load profiles. Finally, we show how recently developed
multi-task learning techniques can be used to gain insights and interpretability
on real demand data, while achieving state of the art predictive performance.
Our experimental analysis is based on data provided by the Irish Commission
for Energy Regulation (CER).

2 Electric load forecasting: goals and dataset
structure

Electric load forecasting aims at predicting the future load in one or multiple
nodes of an electricity network. Depending on how far ahead in time the forecast
is required, the corresponding estimation problem exhibits different character-
istics, and influence decisions of significantly different nature. It is therefore
common to classify forecasting problems in three categories: short-range fore-
casting (several minutes up to one week ahead), medium-range forecasting (up
to 10 years ahead), and long-range forecasting (as far as several decades ahead),
see [30] for a more comprehensive discussion.

Forecasting models are built starting from datasets containing one or mul-
tiple time series, each of them representing the load measurement at a specific
location and level in the network, ranging from highly aggregated loads in the
transmission network down to the distribution network and to the loads of indi-
vidual users. Missing measurements and different sampling rates contribute to
make these data noisy and challenging to analyze. Moreover, defective meters
at a low level in the network are hard to detect, and faulty meters can report
wrong measurements before being replaced.

Being mostly driven by human activity, a variety of temporal patterns can
be observed in the load data. The top panel of Fig. 1 shows a typical profile
for aggregated electricity load over several years (data source: French Réseau
de Transport d’Electricité1), from which a clear yearly seasonal pattern can be
observed, with higher demand in winter and lower demand in the summer. A
closer look at this data also reveals typical weekly (Fig. 1, middle panel) and
daily (Fig. 1, bottom panel) profiles. Correctly capturing these seasonal pat-
terns is an crucial aspect of the problem, which can be dealt with by properly
extracting and utilizing temporal and calendar features. The type of day of the
week can be also taken into account: the bottom panel of Fig. 1 shows a specific
week where all days have a similar profile but a difference between week days
and weekend can be clearly noticed. Forecasting is particularly challenging on
public holidays, and different public holidays may exhibit significantly different
load profiles. Fig. 2 illustrates the difficulty of fitting and forecasting the de-
mand in correspondence of public holidays and special events: without including
specific information in the model, the prediction error can be particularly high
in corrispondence with such events.

1http://clients.rte-france.com/lang/fr/visiteurs/vie/vie_stats_conso_inst.jsp
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Figure 1: Electric load data: yearly, weekly, and daily seasonal patterns can be
observed in the top, middle, and bottom panels, respectively.
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Figure 2: CER data (SME meters): without specific information about special
events and holidays, the forecasting error can be particularly high in correspon-
dence with those events. Uninformed models have difficulties to fit the demand
even within the training period (until July 2010), let alone the test period (last
six months). See section 4 for more details about CER data.
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A variety of additional features can be typically extracted from the data
or obtained from other sources and utilized to forecast the electricity demand.
For instance, the electricity consumption is affected by weather conditions (par-
ticularly due to heating and air-conditioning), therefore variables such as tem-
perature, humidity and irradiance are often taken into account by forecasting
models. Economic indicators such as gross domestic product can be used to
model trends in long-range scenarios. Finally, short term forecasting models
are typically based on time series techniques, where auto-regressive lagged val-
ues of the load itself are incorporated in the model and used to track short-range
trends and deviations from stationarity.

In summary, typical forecasts of the electricity demand may depend on a va-
riety of features that include time and calendar variables, weather and economic
conditions, previously observed values of the load, and information about the
node of the network where the forecast is required. A general model that takes
into account the previously discussed features takes the form

Forecast = f

 t, d, c︸ ︷︷ ︸
Time / Calendar

features

, yl, ul︸ ︷︷ ︸
Dynamic
features

, k, sk︸︷︷︸
Node features

 , (1)

where the dependent variables are the following:

• t ∈ [0, 24) is the time of day expressed in hours,

• d ∈ {1, 2, . . . , 365, 366} is the day of the year,

• c is the type of day, e.g. Monday to Sunday, weekday/weekend, holiday,

• yl is a real vector containing lagged values of the measured electric load,

• ul is a real vector containing measurements of lagged values of exogenous
variables other than the load (such as temperature),

• k is the node ID in the electricity network, e.g. meter/customer/zone ID,

• sk is a vector of features describing the node type, e.g. customer/zone
type.

In Section 4, we analyze one of the many possible multi-task learning prob-
lems that naturally appear within this framework, namely the problem of si-
multaneously predicting the load in each node of the network. This amount to
disaggregate the overall dataset over the multiple smart meters and treat each
node k of the network as a different learning task. In the next section, we briefly
recall the standard setup of multi-task regression and review the techniques that
will be employed in Section 4 to solve the problem sketched above.

3 Kernel-based multi-task regression

In the following, we focus on multi-variate (multi-task) regression problems
where the goal is to learn multiple functions fj : X → R from multiple datasets
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of pairs (xij , yij) ∈ X × R. Here, X is a set of input features, m denotes the
number of tasks, and `j the number of examples for the j-th task. Letting
f : X ×Rm denote the vector-valued function with components fj , we are going
to search f by minimizing the following regularization functional

R(f,L) =

m∑
j=1

`j∑
i=1

(yij − fj(xij)))2 + λ‖f‖2HL
.

where λ > 0 is a regularization parameter, and HL is a Reproducing Kernel
Hilbert Space (RKHS) of vector-valued functions with (matrix-valued) kernel

H(xi, xj) = K(xi, xj)L.

Here, K : X × X → R is a positive semidefinite kernel called input kernel, and
the square matrix L ∈ Rm×m is the output kernel matrix whose entries Ljk

express the similarity between the tasks (output components) j and k. In view

of the representer theorem, there exist functions f̂j minimizing R(f,L) in the
form:

f̂j(x) =

m∑
k=1

Ljk

`k∑
i=1

cikK(xik, x). (2)

We refer to [25] for more details about RKHS of vector-valued functions and
the corresponding representer theorem.

3.1 Fixing L = I (independent kernel ridge regression)

Expression (2) shows that inter-task transfer is possible only when off-diagonal
elements of the output kernel matrix are different from zero. Indeed, by choosing
L equal to the identity matrix all the tasks are learned independently by solving
a standard kernel regularized least squares problem

f̂j = arg min
fj∈H

 `j∑
i=1

(yij − fj(xij))2 + λ‖fj‖2H

 , (3)

whereH is the RKHS of scalar functions with kernelK. This single-task baseline
is referred to as independent kernel ridge regression.

3.2 Learning L (output kernel learning)

In this subsection, we review a kernel-based multi-task regression approach
called low-rank Output Kernel Learning (OKL), recently developed in [9]. In
such approach, the functions fj and the output kernel L are jointly optimized
by solving the following problem

min
L∈Sm,p

+

min
f∈HL

R(f,L) + λtr(L), (4)
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Table 1: Number of meters and sparsity for each customer group in the Irish
CER dataset

Customer group Meters Sparsity

Residential 4225 0.028%

Industrial (SME) 485 0.035%

Others 1723 17%

where Sm,p
+ is the cone of positive semidefinite matrices with rank less than or

equal to p. Instead of imposing a low-rank constraint or regularizing the trace of
the output kernel, other type of regularizers could be tried, see e.g. [10, 11, 8].
The low-rank approach has the advantage of allowing us to tightly control the
memory required to store the models.

The representer theorem (2) still applies to the inner minimization problem
of (4). By plugging the expression (2) into (4), one obtains a functional that is
convex quadratic with respect to both the coefficients cik and L. Although the
resulting problem is not jointly convex, the alternating minimization procedure
described in [9] can be applied to obtain a minimizer. An important aspect of
the method is that, by selecting the rank parameter p, is it possible to control the
overall number of parameters of the model, as well as the memory requirements
and the computation time to obtain a solution. More specifically, letting A =
∪j ∪i {xij}, one can show that the solution (4) can be rewritten as

f̂j(x) =

p∑
k=1

bjkgk(x), gk(x) =
∑̀
i=1

aikK(xi, x), (5)

where ` = #A, xi ∈ A, i = 1, . . . , `, and the coefficients bjk form a low-rank
factor of L. It is therefore sufficient to store and optimize (`+m)p parameters,
which can be much smaller than

∑m
j=1 `j .

4 Electricity demand forecasting in multiple nodes
by multi-task learning

In this section, we focus on predicting the demand of electricity in multiple
nodes of an electricity network, a multi-task learning problem where each task
corresponds to one of the measured smart meters in the network.

To analyze our long-term forecasting approach, we adopt data provided by
the the Irish Commission for Energy Regulation (CER) 2, containing electric
load measurements from 6435 smart meters, half-hourly sampled from July 14,
2009 to December 31, 2010 (536 days). These meters include residential cus-
tomers and small-to-medium industrial sites. We consider a mid-term test sce-
nario where the goal is to forecast the load in multiple nodes over a time horizon

2http://www.ucd.ie/issda/data/commissionforenergyregulationcer/
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of 171 days, using one year of measurements to build the model. Due to the
long forecasting horizon, dynamic features are not available and are therefore
dropped from the general model in Eq. (1). Such model does not rely on recent
measurements of the load, therefore it is able to make predictions over an ar-
bitrarily long horizon. The load forecast for the k-th node is thus simply given
by ŷ = fk(t, d, c), where fk are the multiple functions to be learned, taking into
account time and calendar features.

From the original CER dataset, several pre-processing steps were performed.
The day of the year and time of the day were extracted from the five-digit times-
tamps. In this dataset, the time of day is an non-zero integer indexing the num-
ber of half-hours, and therefore it should be normally in the set {1, 2, . . . , 48}.
Two meters containing time of days higher than 50 half-hours were discarded, as
it was unclear how to interpret these measurements. The dataset also contains
days with 46 and 50 measurements and time of days up to 50. These incon-
sistencies are caused by the start and the end of daylight saving time (DST)
and are easily fixable. When DST starts in Ireland 3, the 1AM to 2AM hour
get skipped, and half-hourly time of day indices should be {1, 2, 5, 6, . . . , 48}.
When DST starts in Ireland, the 1AM to 2AM hour “happens twice”, and
half-hourly time of day indices should be {1, 2, 3, 4, 3, 4, 5, 6, . . . , 48}, instead of
{1, 2, . . . , 50} as found in the dataset. We then downsampled each time-series
from half-hourly sampling to 3-hour sampling, by averaging available measure-
ments for each time slot of 3 hours ([12AM, 3AM), [3AM, 6AM), etc) and a
total of 8 measurements per day. Our final dataset contains m = 6433 smart
meters sampled over ` = 4288 time slots. Characteristics of such pre-processed
dataset are summarized in Tab. 1. One year (2920 downsampled observations)
was used for training and validation, and the remaining 1368 observations were
used for testing. In order to perform tuning of the regularization parameter,
we extracted a validation set containing a subset of the original non-test data,
obtained by randomly choosing 20% time samples, equal for all the meters.

Forecasting performance can be evaluated for each time slot i = 1, . . . , ` and
any arbitrary group of meters G. For this purpose, let Gi denote the subset
of G for which measurements are available in the i-th time slot. We define
two different metrics, namely the aggregated mean absolute percentage error
(MAPE) and the normalized mean absolute error (NMAE):

MAPE(i,G) = 100

∣∣∣∑j∈Gi yij −
∑

j∈Gi fj(ti, di, ci)
∣∣∣∑

j∈Gi yij
,

NMAE(i,G) =

∑
j∈Gi |yij − fj(ti, di, ci)|∑

j∈Gi yij
.

MAPE(i,G) measures the relative absolute percentage error incurred when
forecasting the aggregated demand using the sum of the forecasts. On the other
hand, NMAE(i,G) is the sum of the forecasting errors over individual tasks,

3http://www.timeanddate.com/time/change/ireland/dublin

8

http://www.timeanddate.com/time/change/ireland/dublin


relative to the naive baseline of predicting fj(ti, di, ci) = 0 for all i, j. Since the
demand values yij are always non-negative, the two metrics are undefined only
for those groups on meters for which the cumulative demand in the i-th time
slot is identically zero, or no measurements are available for any of the meters.
We compute the average and standard deviation of these two metrics over all
the time slots in the test period.

One advantage of the long-term forecasting approach is that it allows to nat-
urally incorporate and handle time series with missing observations, without re-
sorting to inputing techniques or discarding data. In the following, we analyze a
variety of kernel based models to solve this multi-task regression problem. First
of all we introduce kernels based on the time/calendar features of model (1),

Kt(t1, t2) = exp (−hT (|t1 − t2|)/σt) ,
Kd(d1, d2) = exp (−hD(|d1 − d2|)/σd) ,

Kc(c1, c2) =

{
1 if c1 = c2

0 if c1 6= c2.
,

where hP (x) = min{x, P − x} is a change of variable that yields P -periodic
kernels over the square [0, P ]2. By observing that the Fourier transform of
exp(−|x|) is non-negative, it can be easily shown that periodized kernels such as
Kt and Kd are positive semidefinite, see [29]. In our experiment, σt and σd were
respectively set to 4 hours and 120 days. In order to defineK((t1, d1, c1), (t2, d2, c2)),
we combine these three kernels to define a variety of models:

• Additive Models

Kt(t1, t2) +Kd(d1, d2) , (6)

Kt(t1, t2) +Kd(d1, d2) +Kc(c1, c2) , (7)

• Semi-Additive Models

Kd(d1, d2) +Kt(t1, t2) ·Kc(c1, c2) , (8)(
Kt(t1, t2) +Kd(d1, d2)

)
·Kc(c1, c2) , (9)

• Multiplicative Models

Kt(t1, t2) ·Kd(d1, d2) , (10)

Kt(t1, t2) ·Kd(d1, d2) ·Kc(c1, c2) , (11)

First of all, we have trained independent kernel ridge regression models (see
Sec. 3.1) for each measured smart meter using all the kernels from (6) to (11).
We compare these models against a multi-task learning approach that simul-
taneously performs estimates for all the meters, and also allows us to exploit
the available meter grouping information in the dataset. Specifically, we have
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Figure 3: CER data: measured load (blue curves) and corresponding forecast
with independent (red curve) and multi-task (black dashed curve) for the ag-
gregated demand (top panel), a single SME meter (mid panel), and a single
residential meter (bottom panel). Measurements are shown over 5 weeks of the
test period. All forecasts are obtained using a multiplicative kernel model (11).

trained two separate multi-task output kernel learning (OKL) models (see Sec.
3.2): the first is trained over all the residential meters (the union of meters la-
beled “residential” and “others”), and the second over industrial (SME) meters.
The maximum rank constraint for the first model was set to p = 200 to obtain
a compact model that fits into memory, while the OKL model for SME meters
was trained with full rank p = 485. We refer the reader to [9] for a discussion
on the effect of this parameter. Both OKL models utilize the multiplicative
input kernel (11), as it proves to be the most effective at capturing the seasonal
effects.

Figure 3 illustrates the challenges of long-term forecasting at low network
level versus forecasting aggregated demands. We analyze the measured load and
the corresponding forecast over a window of 5 weeks within the test period. In
the top panel, one can see the aggregated load and the corresponding forecast
obtained as the sum of all disaggregated forecasts obtained using model (11).
The kernel-based forecasts are rather accurate overall, only slighly estimating
the total load during the Christmas week, a particularly problematic period to
predict. In the middle panel, the measured load for a single SME meter is com-
pared with the corresponding forecast. The varying demand profiles of different
days of the week are captured rather well by the model. Again, there is a larger
error over the Christmas week, caused by a sudden drop of the demand to a
low baseline value (probably due to interruption of business activities followed
by a slow resumption in the subsequent days). This leads the models to over-
estimate the load, though the model learned with a multi-task approach is less
affected. Finally, the bottom panel shows the electricity demand of a residential
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Table 2: Overall accuracy of the different long-term forecasting methods on the
CER dataset

Method Kernel
NMAE MAPE

Mean Std Mean Std

Additive Models Kd +Kt 0.4829 0.0834 8.0384 7.2644

Kd +Kt +Kc 0.4897 0.0846 8.0435 6.9948

Semi-Additive Models Kd +Kt ·Kc 0.4546 0.0682 7.1413 6.6078(
Kd +Kt

)
·Kc 0.4507 0.0649 7.2921 6.5868

Multiplicative Models Kd ·Kt 0.4663 0.0771 5.5284 5.4252

Kd ·Kt ·Kc 0.4237 0.0528 4.2917 4.3055

Multi-Task OKL Kd ·Kt ·Kc 0.4226 0.0487 4.0222 4.0541

customer, characterized by rapid variations with sharp consumption peaks and
irregular patterns, that make the forecast even more difficult.

Table 2 reports the performance of all methods over the full set of 6433 smart
meters, while Tables 3, 4 and 5 report disaggregated performance measures over
each group from Tab. 1. We start by analyzing the performance of the addi-
tive models, which are probably the most widely adopted in the literature. By
comparing the performance of models (6) and (7), we can observe that adding
a constant bias specific to the type of the day of week (kernel Kc) does not nec-
essarily improve the accuracy of the model. The overall NMAE and MAPE are
in fact higher for model (7), see Tab. 2. Semi-additive models where the type
of day of the week is utilized to switch between different profiles yields a signif-
icant improvement in performance. The two semi-additive models (8) and (9)
achieve similar performance over the groups residential and others (see respec-
tively Tab. 3 and Tab. 5). However, for the SME customer group, model (9)
is better in terms of both NMAE and MAPE (see Tab. 4). In previous works
such as [5], semi-additive models of the form (8) have been proposed to switch
between different daily patterns, depending on the type of day. Interestingly,
our results show that in certain situations, such as when modeling industrial
customers, it is even better to switch the overall sum of the daily pattern and
the yearly pattern. We took a step even further by utilizing fully multiplicative
models (10) and (11). The multiplicative model (10) pools over different days of
the week, while (11) learns independent models for each day. While the former is
not always better than the semi-additive models, the latter significantly outper-
forms them. We can conclude that a multiplicative kernel structure (11) is the
best at capturing yearly, weekly and daily seasonal effect, both overall and for
each customer group. Such conclusion is aligned with recent results presented
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Table 3: Accuracy of the different long-term forecasting methods on the resi-
dential customer group

Method Kernel
NMAE MAPE

Mean Std Mean Std

Additive Models Kd +Kt 0.5114 0.0929 13.1083 9.9519

Kd +Kt +Kc 0.5157 0.0941 13.0127 10.2067

Semi-Additive Models Kd +Kt ·Kc 0.5005 0.0900 10.7139 9.9966(
Kd +Kt

)
·Kc 0.4977 0.0846 10.8144 9.6131

Multiplicative Models Kd ·Kt 0.5058 0.0844 8.4289 7.1833

Kd ·Kt ·Kc 0.4776 0.0721 5.2692 5.6305

Multi-Task OKL Kd ·Kt ·Kc 0.4711 0.0716 4.9166 5.2588

Table 4: Accuracy of the different long-term forecasting methods on the SME
customer group

Method Kernel
NMAE MAPE

Mean Std Mean Std

Additive Models Kd +Kt 0.4517 0.2204 15.0748 23.1005

Kd +Kt +Kc 0.4590 0.1769 16.6668 17.0665

Semi-Additive Models Kd +Kt ·Kc 0.3704 0.1238 8.1880 10.8081(
Kd +Kt

)
·Kc 0.3646 0.1305 8.1422 11.7269

Multiplicative Models Kd ·Kt 0.4006 0.1923 12.5359 20.4140

Kd ·Kt ·Kc 0.3127 0.1105 5.9289 10.3842

Multi-Task OKL Kd ·Kt ·Kc 0.3194 0.0725 5.2940 5.8227
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Table 5: Accuracy of the different long-term forecasting methods for the smart
meters labeled as “others”

Method Kernel
NMAE MAPE

Mean Std Mean Std

Additive Models Kd +Kt 0.4948 0.0779 7.4672 6.9361

Kd +Kt +Kc 0.5001 0.0804 7.4141 6.4660

Semi-Additive Models Kd +Kt ·Kc 0.4659 0.0638 6.4749 5.9244(
Kd +Kt

)
·Kc 0.4601 0.0605 6.6273 5.9189

Multiplicative Models Kd ·Kt 0.4801 0.0710 5.4504 5.5997

Kd ·Kt ·Kc 0.4370 0.0517 4.0279 4.2522

Multi-Task OKL Kd ·Kt ·Kc 0.4361 0.0490 3.7450 3.9503

in [16], where tensor product basis functions were utilized to capture weekly and
yearly seasonalities in the simpler context of load forecasting for a single highly
aggregated time series. A further performance improvement can be obtained by
utilizing a multi-task learning approach, where correlation between electricity
demand behavior of multiple customers is learned and exploited. As the Tables
show, the multi-task OKL approach provides the lowest mean NMAE over all
the meters performance, residential and others, and second lowest mean NMAE
for SME (only 2% higher than the lowest for this group). The multi-task learn-
ing approach also provides the lowest mean aggregated MAPE, overall and for
each customer groups. Finally, the multi-task approach is more robust, as the
temporal standard deviation is the lowest for both NMAE and MAPE. Again,
such robustness can be observed overall the customers as well as for each cus-
tomer group. In particular, it is worth mentioning a 44% improvement of the
standard deviation of the MAPE for SME meters, compared to the best single
task model that uses the multiplicative model (11).

In addition to improving forecasting accuracy, the low-rank multi-task learn-
ing model is significantly more compact in terms of number of parameters.
For all the single-task methods (with additive, semi-additive and multiplicative
kernels), the number of parameters is equal to the overall number of training
observations

∑m
j=1 `j . In our experiment, this amounts to about 13 million pa-

rameters (precisely 12785524 parameters). The low-rank output kernel learning

method models each prediction function f̂j as a linear combination of p latent
functions, shared by all tasks (see Sec. 3.2). These p functions gk can be seen as
typical load profiles. As a consequence, only (` + m)p parameters are required
to learn the prediction functions for all smart meters. In our experiment, this
gave a total of about 3 million parameters (precisely 3016310) thus producing
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a model that is about 4.24 times more compact, in addition to being more
accurate.

5 Discussion and conclusions

Our analysis shows that kernel-based multi-task learning is effective for the res-
olution of electric load forecasting problems. Focusing on the challenging prob-
lem of forecasting the electric load of individual customers, we designed kernels
that take into account relevant multiple seasonality patterns. We demonstrated
the clear benefits of multiplicative kernel models over additive or semi-additive
models. Our results suggest a new modeling direction, as opposed to the (gen-
eralized) additive models, widely employed in the energy community. We illus-
trated further performance gain made possible by using a multi-task learning
approach over a large number of single-tasks baselines. While recent studies
reported MAPE around 3% for the short term forecasting of an aggregated sig-
nal of a few thousands of smart meters e.g. [1], our method achieves a MAPE
of 4% on a long term forecasting scenario, which is a much harder problem as
auto-regressive terms are not available.

The ideas and results presented in this paper open a wide range of consid-
erations. First of all, they suggest that electricity demand data can be used
as natural test benchmarks for multi-task learning methods. In addition, these
problems motivate developing new techniques that allow to incorporate more
complex task relationships structures taking into account, for instance, topolog-
ical and physical constraints from the electricity network. The development of
online methods that can automatically discover relationships between multiple
tasks seems to be particularly important for short-term load forecasting sce-
narios. Finally, combining online multi-task learning methods with topological
network constraints would allow to start tackling very complex scenarios such
as forecasting on a full electricity network with dynamic reconfigurations.

References

[1] C. Alzate and M. Sinn. Improved electricity load forecasting via kernel spectral
clustering of smart meters. In 2013 IEEE 13th International Conference on Data
Mining (ICDM), pages 943–948. IEEE, 2013.

[2] C. Alzate, M. Espinoza, B. De Moor, and J. AK Suykens. Identifying customer
profiles in power load time series using spectral clustering. In Artificial Neural
Networks–ICANN 2009, pages 315–324. Springer, 2009.

[3] C. Archambeau, S. Guo, and O. Zoeter. Sparse bayesian multi-task learning. In
Advances in Neural Information Processing Systems 24 (NIPS 2011), volume 1,
page 41, 2011.

[4] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In Advances
in Neural Information Processing Systems 19 (NIPS 2006), volume 19, page 41.
MIT; 1998, 2006.

14



[5] A. Ba, M. Sinn, Y. Goude, and P. Pompey. Adaptive learning of smoothing
functions: application to electricity load forecasting. In Advances in Neural In-
formation Processing Systems 25 (NIPS 2012), pages 2519–2527, 2012.

[6] E. Bonilla, K. Chai, and C. Williams. Multi-task Gaussian process prediction. In
Advances in Neural Information Processing Systems 20 (NIPS 2007), volume 20,
pages 153–160, 2007.

[7] BJ. Chen, MW. Chang, and CJ. Lin. Load forecasting using support vector
machines: A study on EUNITE competition 2001. Power Systems, IEEE Trans-
actions on, 19(4):1821–1830, 2004.

[8] C. Ciliberto, T. Poggio, and L. Rosasco. Convex learning of multiple tasks and
their structure. In International Conference on Machine Learning, 2015.

[9] F. Dinuzzo. Learning output kernels for multi-task problems. Neurocomputing,
118:119–126, 2013.

[10] F. Dinuzzo, C. S. Ong, P. Gehler, and G. Pillonetto. Learning output kernels
with block coordinate descent. In Proceedings of the 28th Annual International
Conference on Machine Learning, Bellevue, WA, USA, 2011.

[11] F. Dinuzzo, C.S. Ong, and K. Fukumizu. Output kernel learning methods. In
M; Argyriou A Suykens, J; Signoretto, editor, Regularization, Optimization, Ker-
nels, and Support Vector Machines,. CRC Press, 2014.

[12] E. Elattar, J. Goulermas, and H. Wu. Electric load forecasting based on locally
weighted support vector regression. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 40(4):438–447, 2010.

[13] M. Espinoza, J. Suykens, R. Belmans, and B. De Moor. Electric load forecasting.
Control Systems, IEEE, 27(5):43–57, 2007.

[14] T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. Journal of Machine Learning Research, 6:615–637, 2005.

[15] S. Fan and R.J. Hyndman. Short-term load forecasting based on a semi-
parametric additive model. Power Systems, IEEE Transactions on, 27(1):134–
141, 2012.

[16] A. Guerini and G. De Nicolao. Long-term electric load forecasting: A torus-based
approach. In Proceedings of the European Control Conference. IEEE, 2015.

[17] TJ. Hastie and RJ. Tibshirani. Generalized additive models, volume 43. CRC
Press, 1990.

[18] H. S. Hippert, C. E. Pedreira, and R. C. Souza. Neural networks for short-term
load forecasting: A review and evaluation. Power Systems, IEEE Transactions
on, 16(1):44–55, 2001.

[19] W-C Hong. Electric load forecasting by support vector model. Applied Mathe-
matical Modelling, 33(5):2444–2454, 2009.

15



[20] S. Humeau, T. K. Wijaya, M. Vasirani, and K. Aberer. Electricity load fore-
casting for residential customers: Exploiting aggregation and correlation between
households. In Sustainable Internet and ICT for Sustainability (SustainIT), 2013,
pages 1–6. IEEE, 2013.

[21] L. Jacob, F. Bach, and JP. Vert. Clustered multi-task learning: A convex formu-
lation. In Advances in Neural Information Processing Systems 21 (NIPS 2008),
volume 21, pages 745–752, 2008.

[22] Z. Kang, K. Grauman, and F. Sha. Learning with whom to share in multi-task
feature learning. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 521–528, 2011.
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