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Optimal Power Flow Pursuit
Emiliano Dall’Anese, Member, IEEE, and Andrea Simonetto, Member, IEEE

Abstract—This paper considers distribution networks featur-
ing inverter-interfaced distributed energy resources, and develops
distributed feedback controllers that continuously drive the in-
verter output powers to solutions of AC optimal power flow (OPF)
problems. Particularly, the controllers update the power setpoints
based on voltage measurements as well as given (time-varying)
OPF targets, and entail elementary operations implementable
onto low-cost microcontrollers that accompany power-electronics
interfaces of gateways and inverters. The design of the control
framework is based on suitable linear approximations of the
AC power-flow equations as well as Lagrangian regularization
methods. Convergence and OPF-target tracking capabilities of
the controllers are analytically established. Overall, the proposed
method allows to bypass traditional hierarchical setups where
feedback control and optimization operate at distinct time scales,
and to enable real-time optimization of distribution systems.

Index Terms—Distribution systems, optimal power flow, time-
varying optimization, renewable integration, voltage regulation.

I. INTRODUCTION

The present paper seeks contributions in the domain of oper-
ation and control of distribution systems with high integration
of distributed energy resources. The objective is to develop
distributed controllers that leverage the opportunities for fast
feedback offered by power-electronics interfaced renewable
energy sources (RESs), to continuously drive the system
operation towards AC optimal power flow (OPF) targets.

Prior works that focused on addressing power-quality and
reliability concerns related to RES operating with business-
as-usual practices [1] have looked at the design of Volt/VAr,
Volt/Watt, and droop-based control strategies to regulate output
powers based on local measurements, so that terminal voltages
are within acceptable levels (see, e.g., [2]–[5]); these strategies
have the potential of controlling inverter outputs at a time scale
that is consistent with the fast dynamics that govern the grid
edge; however, they do not guarantee system-level optimality
and stability claims are mainly based on empirical evidences.
On a different time scale, centralized and distributed OPF-
type algorithms have been developed for distribution systems
to compute optimal steady-state inverter setpoints. Objectives
of the OPF task at the distribution level include minimization
of power losses as well as maximization of economic benefits
to utility and end-users (e.g., [6]–[9]); typical constraints in
the OPF task ensure that voltage magnitudes and currents are
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within predetermined bounds, and RES setpoints are within
given operational and hardware limits. It is well-known that
the OPF problem is nonconvex and NP-hard (see e.g., [10]).
Centralized approaches either utilize off-the-shelf solvers for
nonlinear programs [7], [11], or leverage convex relaxation and
approximation techniques to obtain convex surrogates [6], [8]–
[10], [12]. On the other hand, distributed solution approaches
leverage the decomposability of the Lagrangian associated
with convex reformulations/approximations of the OPF, and
utilize iterative primal-dual-type methods to decompose the
solution of the OPF task across devices [8], [13], [14].

OPF approaches have been successfully applied to optimize
the operation of transmission systems. However, the time
required to collect all the problem inputs (e.g., loads across the
network and available RES powers) and solve the OPF task
may not be consistent with underlying distribution-systems
dynamics. For example, Figure 1 provides a snapshot of the
loading of five secondary transformers located in a distribution
feeder in Anatolia, CA [15]; in this case, it is apparent
that the inverter setpoints should be updated every second in
order to cope with load variations and yet guarantee system-
level optimality. However, existing distribution management
systems (DMS) may not be able to solve the OPF task and
dispatch setpoints in such a fast time scale. Distributed OPF
approaches, where the power commands are updated at a slow
time scale dictated by the convergence time of the distributed
algorithm [8], [13], [14], might systematically regulate the
inverter power-outputs around outdated setpoints (possibly
leading to violations of voltage and security limits).

In an effort to bypass traditional hierarchical setups where
local feedback control and network optimization operate at
distinct time scales [5], this paper develops a distributed
control scheme that leverages the opportunities for fast feed-
back offered by power-electronics interfaced RESs, and con-
tinuously drives the inverter output powers towards OPF-
based targets. These targets capture well-defined performance
objectives as well as voltage regulation constraints. The design
of the control framework is based on suitable linear approx-
imations of the AC power-flow equations [12] as well as
the double-smoothing technique proposed in [16] for time-
invariant optimization, and further extended to the time-
varying setup in [17]. By virtue of this technical approach, the
controllers entail elementary operations implementable into
low-cost microcontrollers that accompany power-electronics
interfaces of gateways and RESs. Further, while pursuing OPF
solutions, the proposed controllers do not require knowledge
of loads at all the feeder locations. Convergence and OPF-
target tracking capabilities of the proposed controllers are
analytically established.

Prior efforts in this direction include e.g., the continuous-
time feedback controllers that seek Karush-Kuhn-Tucker con-
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ditions for economic dispatch optimality for bulk power sys-
tems in [18]. Recently, modified automatic generation and
frequency control methods that incorporate optimization objec-
tives corresponding to DC OPF problems have been proposed
for lossless bulk power systems in e.g., [19], [20]. A heuristic
based on saddle-point-flow methods is utilized in [21] to syn-
thesize controllers seeking AC OPF solutions. A droop-type
control strategy for reactive power compensation in single-
phase radial systems is proposed in [22] and convergence to a
feasible power-flow solution is established; however, inverter
capacity limits are not accounted for and loads are static.
A local reactive power control strategy based on gradient-
projection method is proposed in [23], and convergence to
the solution of a well-defined (static) optimization problem is
studied. An online gradient algorithm for AC optimal power
flow in single-phase radial networks is proposed in [24]; it
is shown that the proposed algorithm converges to the set
of local optima of a static AC OPF problem, and sufficient
conditions under which the online OPF converges to a global
optimum are provided. A central controller for a number of
resources in a feeder of microgrid is developed in [25], based
on continuous gradient steering algorithms; the framework
accounts for errors in the implementable power setpoints, and
convergence of the average setpoints to the minimum of the
considered control objective is established. Finally, a reactive
power control strategy is proposed in [26] for single-phase
distribution systems with a tree topology based on an the so-
called extremum-seeking control method.

The proposed framework considerably broadens the ap-
proaches of [18], [19], [21]–[24] by focusing on AC OPF
setups for distribution systems with arbitrary topologies and
by establishing convergence and optimality in the case of time-
varying loads and ambient conditions. The proposed approach
offers significant contribution over [27] by establishing conver-
gence results for the case of time-varying loads and ambient
conditions and enabling low complexity implementations.

The remainder of this paper is organized as follows. Sec-
tion II outlines the system model and describes the target time-
varying OPF problem. Section III addresses the synthesis of
the proposed feedback controllers pursuing OPF solutions, and
Section IV presents test cases. Finally, Section V concludes
the paper. Relevant proofs are reported in the Appendix.

II. PRELIMINARIES AND SYSTEM MODEL

A. System model

Consider a distribution feeder1 comprising N + 1 nodes
collected in the set N ∪ {0}, N := {1, . . . , N}, and lines

1Upper-case (lower-case) boldface letters will be used for matrices (column
vectors); (·)T for transposition; (·)∗ complex-conjugate; and, (·)H complex-
conjugate transposition; <{·} and ={·} denote the real and imaginary parts
of a complex number, respectively; j :=

√
−1 the imaginary unit; and | · |

denotes the absolute value of a number or the cardinality of a set. For x ∈ R,
function [x]+ is defined as [x]+ := max{0, x}. For a given N × 1 vector
x ∈ RN , ‖x‖2 :=

√
xHx; and, diag(x) returns a N × N matrix with the

elements of x in its diagonal. Further, projY{x} denotes the projection of
x onto the convex set Y . Given a given matrix X ∈ RN×M , xm,n denotes
its (m,n)-th entry. ∇xf(x) returns the gradient vector of f(x) with respect
to x ∈ RN . Finally, 1N denotes the N × 1 vector with all ones, and 0N

denotes the N × 1 vector with all zeros.
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Fig. 1. Loading of five secondary transformers in a feeder located in Anatolia,
CA [15]. Trajectories correspond to transformer loadings from 5:00 PM to
5:03 PM during a day of August, 2012.

represented by the set of edges E := {(m,n)} ⊂ (N ∪
{0}) × (N ∪ {0}). Assume that the temporal domain is
discretized as t = kτ , where k ∈ N and τ > 0 is is a given
interval, chosen to capture the variations on loads and ambient
conditions [cf. Figure 1]. Let V kn ∈ C and Ikn ∈ C denote the
phasors for the line-to-ground voltage and the current injected
at node n over the kth slot, respectively, and define the N -
dimensional complex vectors vk := [V k1 , . . . , V

k
N ]T ∈ CN and

ik := [Ik1 , . . . , I
k
N ]T ∈ CN . Node 0 denotes the secondary of

the distribution transformer, and it is taken to be the slack
bus. Using Ohm’s and Kirchhoff’s circuit laws, the following
linear relationship can be established:[

Ik0
ik

]
=

[
yk00 (ȳk)T

ȳk Yk

]
︸ ︷︷ ︸

:=Yk
net

[
V k0
vk

]
, (1)

where the system admittance matrix Yk
net ∈ C(N+1)×(N+1) is

formed based on the system topology and the π-equivalent
circuit of the distribution lines (see e.g., [28, Chapter 6]
for additional details on distribution line modeling), and is
partitioned in sub-matrices with the following dimensions:
Yk ∈ CN×N , yk ∈ CN×1, and yk00 ∈ C. Finally, V k0 = ρ0e

jθ0

is the slack-bus voltage with ρ0 denoting the voltage magni-
tude at the secondary of the transformer. A constant-power
load model is utilized, and P k`,n and Qk`,n denote the real and
reactive demands at node n ∈ N at time k [28].

Renewable energy sources (RESs) such as photovoltaic (PV)
systems and small-scale wind turbines are assumed to be
located at nodes G ⊆ N . For future developments, define
NG := |G|. Given prevailing ambient conditions, let P kav,n
denote the maximum renewable-based real power generation
at node n ∈ G at time k – hereafter referred to as the available
real power. For example, for a PV system, the available power
is a function of the incident irradiance, and corresponds to
the maximum power point of the PV array. When RESs
operate at unity power factor and inject in the network the
whole available power, a set of challenges related to power
quality and reliability in distribution systems may emerge
for sufficiently high levels of deployed RES capacity [1].
For instance, overvoltages may be experienced during periods
when RES generation exceeds the demand [1], while fast-
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variations in the RES-output tend to propagate transients that
lead to wear-out of legacy switchgear. Efforts to ensure reliable
operation of existing distribution systems with increased RES
generation are focused on the possibility of inverters providing
reactive power compensation and/or curtailing real power [2],
[3], [6], [9]. Thus, letting P kn and Qkn denote the real and
reactive powers at the AC side of inverter n ∈ G at time k,
the set of possible operating points can be specified as:

(P kn , Q
k
n) ∈ Ykn :=

{
(Pn, Qn): 0 ≤ Pn ≤ P kav,n,

(Qn)2 ≤ S2
n − (Pn)2

}
(2)

where Sn is the rated apparent power. Lastly, the addi-
tional constraint |Qn| ≤ (tan θ)Pn can be considered in
the definition of Ykn to enforce a minimum power factor
of cos θ; parameter θ can be conveniently tuned to account
for a variety of control strategies, including reactive power
compensation [2], real power curtailment [3], and joint real
and reactive control [9], [27]. Other devices such as, for
example, small-scale diesel generators, fuel cells, and variable
speed drives can be accommodated in the proposed framework
by properly capturing their physical limits in the set Ykn [29].

B. Problem setup

The objective is to develop distributed controllers that
regulate the RES powers {P ki , Qki }i∈G at a time scale that
is compatible with the distribution-systems dynamics, and
operate in a closed-loop fashion as:

[P ki , Q
k
i ] = Ci(P k−1

i , Qk−1
i ,yk), ∀i ∈ G (3a)

ẏ(t) = F(y, {P ki , Qki }) (3b)

yk = S(y(t)) , (3c)

where F(·) models the physics of distribution systems (e.g.,
power flows) as well as the dynamics of primary-level inverter
controllers [5], [27], [28], y(t) represents pertinent electrical
quantities (e.g., voltages and power flows), and yk is a
measurement of (some entries of) y(t) at time kτ . In the
following, the control function Ci(·) will be designed in a way
that the RES power outputs will continuously pursue solutions
of an OPF problem.

To this end, we begin with the formulation of a prototypical
AC OPF problem, which is utilized to optimize the operation
of the distribution feeder at time kτ :

(OPF
k
) min
v,i,{Pi,Qi}i∈G

hk({Vi}i∈N ) +
∑
i∈G

fki (Pi, Qi) (4a)

subject to (1), and

ViI
∗
i = Pi − P k`,i + j(Qi −Qk`,i), ∀ i ∈ G (4b)

VnI
∗
n = −P k`,n − jQk`,n, ∀n ∈ N\G (4c)

V min ≤ |Vi| ≤ V max, ∀ i ∈M (4d)

(Pi, Qi) ∈ Yki , ∀ i ∈ G , (4e)

where V min and V max are minimum and maximum, re-
spectively, voltage service limits (e.g., ANSI C.84.1 limits),
M ⊆ N is a set of nodes strategically selected to enforce
voltage regulation throughout the feeder, fki (Pi, Qi) is a time-
varying function specifying performance objectives for the ith

RES (e.g., cost of/reward for ancillary service provisioning [6],
[9], or feed-in tariffs [4]), and hk({Vi}i∈N ) captures system-
level objectives (e.g., power losses and/or deviations from the
nominal voltage profile [9]). It is well-known that (4) is a non-
convex (in fact, NP-hard) nonlinear program. Centralized [6],
[8]–[10], [12] and distributed solution approaches may not be
able to solve (OPF

k
) and dispatch setpoints fast enough to

cope with fast changes in the demand and ambient conditions
at the grid edge (see e.g., Figure 1), and might regulate the
power-outputs {Pi, Qi}i∈G around outdated setpoints (leading
to suboptimal operation and potential violations of voltage and
security limits). This is particularly relevant for distributed so-
lution approaches, whereby the power commands are updated
at a slow time scale, dictated by the convergence time of the
distributed algorithm [8], [13], [14]. In contrast, the objective
of (3) is to update the power setpoints at a fast time scale, and
in a way that the inverter outputs are continuously regulated to
a solution of (OPF

k
). How to design the control function (3a)

is the subject of the ensuing section.

III. DESIGN OF FEEDBACK CONTROLLERS

A. Leveraging approximate power-flow models

In this subsection, the linear approximation of the power
flow equations proposed in [12], [30] is briefly described; this
approximation will be crucial to develop distributed feedback
controllers that are low-complexity and fast acting.

Let s := [S1, . . . , SN ] ∈ CN collect the net power injected2

at nodes N , where Si = Pi − P`,i + j(Qi − Q`,i) for
i ∈ G, and Si = −P`,i − jQ`,i for i ∈ N\G [cf. (4b)–
(4c)]. Similarly, collect the voltage magnitudes {|Vi|}i∈N in
ρ := [|V1|, . . . , |VN |]T ∈ RN . The objective is to obtain ap-
proximate power-flow relations whereby voltages are linearly
related to injected powers s as

v ≈ Hp + Jq + b (5a)
ρ ≈ Rp + Bq + a, (5b)

where p := <{s} and q := ={s} [12], [30]. This way, the
voltage constraints (4d) can be approximated as V min1N ≤
Rp+Bq+a ≤ V max1N , while power-balance is intrinsically
satisfied at all nodes; further, relevant electrical quantities
of interests appearing in the function hk({Vi}i∈N ) in (4a),
e.g., power losses, can be expressed as linear functions of
p and q (see e.g., [12]). What is more, by using (5a)–(5b),
function hk({Vi}) can be re-expressed as

∑
i∈G h

k
i (Pi, Qi).

Following [12], [30], the matrices R,B,H,J and the vectors
a,b are obtained next.

To this end, re-write (4b)–(4c) in a compact form as

s = diag (v) i∗ = diag (v) (Y∗v∗ + y∗V ∗0 ) (6)

and consider linearizing the AC power-flow equation around
a given voltage profile v̄ := [V̄1, . . . , V̄N ]T [12], [30]. In
the following, the voltages v satisfying the nonlinear power-
balance equations (6) are expressed as v = v̄ + e, where the
entries of e capture deviations around the linearization points

2For notational simplicity, in this subsection we drop the superscript (·)k
indexing the time instant kτ from all electrical and network quantities.
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v̄. For future developments, collect in the vector ρ̄ ∈ RN+ the
magnitudes of voltages v̄, and let ξ̄ ∈ RN and ϑ̄ ∈ RN collect
elements {cos(θ̄n)} and {sin(θ̄n)}, respectively, where θ̄i is
the angle of the nominal voltage V̄i.

By replacing v with v̄ + e in (6) and discarding the
second-order terms in e (e.g., discarding terms such as
diag (e) Y∗e∗), equation (6) can be approximated as

Γe + Φe∗ = s + υ , (7)

where matrices Γ and Φ are given by Γ :=
diag (Y∗v̄∗ + y∗V ∗0 ) and Φ := diag (v̄) Y∗, respectively,
and υ := −diag (v̄) (Y∗v̄∗ + y∗V ∗0 ). Equation (7) provides
an approximate linear relationship between the injected
complex powers and the voltage. In the following, (7)
will be further simplified by suitably selecting the nominal
voltage profile v̄. To this end, notice first that matrix Y is
invertible [30, Lemma 1]), and consider the following choice
of the nominal voltage v̄:

v̄ = −Y−1yV0 . (8)

By using (8), one can see that Γ = 0N×N and υ = 0N , and
therefore one obtains the linearized power-flow expression

diag (v̄∗) Ye = s∗. (9)

A solution to (9) can thus be expressed as e =
Y−1diag−1(v̄∗)s∗. Thus, expanding on this relation, the ap-
proximate voltage-power relationship (5a) can be obtained by
defining the matrices:

R̄ = ZRdiag(ξ̄)(diag(ρ̄))−1 − ZIdiag(ϑ̄)(diag(ρ̄))−1 (10a)

B̄ = ZIdiag(ξ̄)(diag(ρ̄))−1 + ZRdiag(ϑ̄)(diag(ρ̄))−1, (10b)

where ZR := <{Y−1} and ZI := ={Y−1}, and setting
H = R̄ + jB̄, J = B̄ − jR̄, and b = v̄ . If the entries
of v̄ dominate those in e, then ρ̄ + <{e} serves as a first-
order approximation to the voltage magnitudes across the
distribution network [30], and relationship (5a) can be obtained
by setting R = R̄, B = B̄, and a = ρ̄. Analytical error
bounds for (5a)–(5b) are provided in [30]; the numerical
experiments provided in [12] demonstrate that (5a)–(5b) yield
very accurate representations of the power flow equations.

B. Target time-varying optimization problem
To develop computationally affordable distributed con-

trollers pursuing solutions to (4), we begin with the derivation
of a convex surrogate for the target OPF problem by lever-
aging (5) and (10). Particularly, by using (5b), the voltage
magnitude at node n ∈ M and time k can be approximated
as |V kn | ≈

∑
i∈G [rkn,i(Pi − P k`,i) + bkn,i(Qi − Qk`,i)] + ckn,

with ckn := ρ̄kn −
∑
i∈N\G(rkn,iP

k
`,i + bkn,iQ

k
`,i). It follows that

problem (4) can be approximated as:

(P1
k
) min
{ui}i∈G

∑
i∈G

f̄ki (ui) (11a)

subject to

gkn({ui}i∈G) ≤ 0, ∀n ∈M (11b)

ḡkn({ui}i∈G) ≤ 0, ∀n ∈M (11c)

ui ∈ Yki , ∀ i ∈ G , (11d)

where ui := [Pi, Qi]
T, function f̄ki (ui) is defined as

f̄ki (ui) := fki (ui) + hki (ui) for brevity, and

gkn({ui}i∈G) := V min − ckn
−
∑
i∈G

[rkn,i(Pi − P k`,i) + bkn,i(Qi −Qk`,i)] (12a)

ḡkn({ui}i∈G) :=
∑
i∈G

[rkn,i(Pi − P k`,i) + bkn,i(Qi −Qk`,i)]

+ ckn − V max . (12b)

Notice that the sets Yki , i ∈ G, are convex, closed, and bounded
for all k ≥ 0 [cf. (2)]. For future developments, define the set
Yk := Yk1 × . . .YkNG . It is also worth reiterating that the 2M
constraints (12), M := |M|, are utilized to enforce voltage
regulation [cf. (4d) and (5b)]. Additional constraints can be
considered in (OPF

k
) and (P1

k
), but this would not affect

the design of the feedback controllers.
Regarding (11), the following assumptions are made.

Assumption 1. Functions fki (ui) and hki (ui) are convex and
continuously differentiable for each i ∈ G and k ≥ 0. Define
further the gradient map:

fk(u) := [∇T
u1
f̄k1 (u1), . . . ,∇T

uNG
f̄kNG (uNG )]T . (13)

Then, it is assumed that the gradient map fk : R2NG → R2NG

is Lipschitz continuous with constant L over the compact set
Yk for all k ≥ 0; that is, ‖fk(u) − fk(u′)‖2 ≤ L‖u − u′‖2,
∀ u,u′ ∈ Yk. �

Assumption 2 (Slater’s condition). For all k ≥ 0, there exist
a set of feasible power injections {ûi}i∈G ∈ Yk such that
gkn({ûi}i∈G) ≤ 0 and ḡkn({ûi}i∈G) ≤ 0, for all n ∈M. �

Regarding Assumptions 2, notice that functions gkn({ûi}i∈G)
and ḡkn({ûi}i∈G) are linear [cf. (12)]; hence, Slater’s condition
does not require strict inequalities [31]. From the compactness
of set Yk, and under Assumptions 1 and 2, problem (11) is
convex and strong duality holds [31, Section 5.2.3]. Further,
there exists an optimizer at each time k ≥ 0, which will be
hereafter denoted as {uopt,k

i }i∈G . For future developments, let
gk(u) ∈ RM and ḡk(u) ∈ RM be a vector stacking all the
functions gkn({ui}i∈G), n ∈ M, and ḡkn({ui}i∈G), n ∈ M,
respectively; then, given that these functions are linear in u, it
follows that there exists a constant G such that ‖∇ugk(u)‖2 ≤
G and ‖∇uḡk(u)‖2 ≤ G for all u ∈ Yk for all k ≥ 0.

It is worth pointing out that the cost functions {f̄ki (ui)}i∈G
are not required to be strongly convex; whereas, the con-
vergence properties of existing distributed control schemes
hinge on the strong convexity of the target cost functions (see
e.g., [19]–[21]).

Let Lk(u,γ,µ) denote the Lagrangian function associ-
ated with problem (11), where γ := [γ1, . . . , γM ]T and
µ := [µ1, . . . , µM ]T collect the Lagrange multipliers asso-
ciated with (11b) and (11c), respectively. Further, let u :=
[(u1)T, . . . , (uNG )T]T for brevity. Upon rearranging terms, the
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Lagrangian function can be expressed as

Lk(u,γ,µ) :=
∑
i∈G

f̄ki (Pi, Qi)

+ (Pi − P k`,i)(řki )T(µ− γ) + (Qi −Qk`,i)(b̌ki )T(µ− γ)

+ (ck)T(µ− γ) + γT1mV
min − µT1mV

max (14)

where řki := [{rkj,i}j∈M]T and b̌ki := [{bkj,i}j∈M]T are
M × 1 vectors collecting the entries of Rk and Bk in the
ith column and rows corresponding to nodes in M, and
ck := [{ckj }j∈M]T. Notice that, from the compactness of
{Yki }i∈G and Slater’s condition, it follows that the optimal
dual variables live in a compact set.

In lieu of Lk(u,γ,µ), consider the following regularized
Lagrangian function

Lkν,ε(u,γ,µ) := Lk(u,γ,µ)

+
ν

2
‖u‖22 −

ε

2
(‖γ‖22 + ‖µ‖22) (15)

where the constant ν > 0 and ε > 0 appearing in the Tikhonov
regularization terms are design parameters. Function (15) is
strictly convex in the variables u and strictly concave in the
dual variables γ,µ. The upshot of (15) is that gradient-based
approaches can be applied to (15) to find an approximate
solution to (P1

k
) with improved convergence properties [16],

[17]. Further, it allows one to drop the strong convexity
assumption on {f̄ki (ui)}i∈G and to avoid averaging of primal
and dual variables [32]. Accordingly, consider the following
saddle-point problem:

max
γ∈RM

+ ,µ∈RM
+

min
u∈Yk

Lkν,ε(u,γ,µ) (16)

and denote as {u∗,ki }i∈G ,γ∗,k,µ∗,k the unique primal-dual
optimizer of (15) at time k.

In general, the solutions of (11) and the regularized saddle-
point problem (16) are expected to be different; however,
the discrepancy between uopt,k

i and u∗,ki can be bounded
as in [16, Lemma 3.2], whereas bounds of the constraint
violation are substantiated in [16, Lemma 3.3]. These bounds
are proportional to

√
ε; therefore, the smaller ε, the smaller is

the discrepancy between uopt,k
i and u∗,ki .

Consider then the following primal-dual gradient method to
solve the time-varying saddle-point problem (16):

ũk+1
i = projYk

i

{
ũki − α∇ui

Lkν,ε(u,γ,µ)|
ũk

i ,γ̃
k
,µ̃k

}
,

∀ i ∈ G (17a)

γ̃k+1
n = projR+

{
γ̃kn + α(gkn(ũk)− εγ̃kn)

}
,

∀n ∈M (17b)

µ̃k+1
n = projR+

{
µ̃kn + α(ḡkn(ũk)− εµ̃kn)

}
,

∀n ∈M, (17c)

where α > 0 is the stepsize and projY{u} denotes the pro-
jection of u onto the convex set Y; particularly, projR+

{u} =
max{0, u}, whereas (17a) depends on the inverter operating
region [cf. (2)] and can be computed in closed-form (see
e.g., Appendix B). For the time-invariant case (i.e., f̄ki (ui) =
f̄i(ui), gkn(u) = gn(u), and ḡkn(u) = ḡn(u) for all k > 0),

convergence of (17) is established in [16]. For the time-varying
case at hand, which captures the variability of underlying
operating conditions at the grid edge [cf. Figure 1], it is
appropriate to introduce additional assumptions to substantiate
the discrepancy between the optimization problems that are
associated with consecutive time instants [17].
Assumption 3. There exists a constant σu ≥ 0 such that
‖u∗,k+1 − u∗,k‖ ≤ σu for all k ≥ 0. �

Assumption 4. There exist constants σd ≥ 0 and σd̄ ≥ 0 such
that |gk+1

n (u∗,k+1) − gkn(u∗,k)| ≤ σd and |ḡk+1
n (u∗,k+1) −

ḡkn(u∗,k)| ≤ σd̄, respectively, for all n ∈M and k ≥ 0. �

It can be shown that the conditions of Assumption 4
translate into bounds for the discrepancy between the optimal
dual variables over two consecutive time instants; that is,
‖γ∗,k+1 − γ∗,k‖ ≤ σγ and ‖µ∗,k+1 − µ∗,k‖ ≤ σµ with
σγ and σµ given by [17, Prop. 1]. Upon defining z∗,k :=
[(u∗,k)T, (γ∗,k)T, (µ∗,k)T]T it also follows that ‖z∗,k+1 −
z∗,k‖ ≤ σz for a given σz ≥ 0. Under Assumptions 1–4,
convergence of (17) are investigated in [17, Theorem 1].

Similar to traditional distributed optimization schemes, up-
dating the RES-power setpoints via (17) leads to a setup where
the optimization algorithm is decoupled from the physical
system [27], and the RES-power setpoints are updated in an
open-loop fashion. In the next section, a feedback control
architecture is proposed; actionable feedback from the distri-
bution system will be incorporated in (17) in order to enable
adaptability to changing operating conditions.

C. Feedback controllers pursuing OPF solutions

Let ykn denote a measurement of |V kn | acquired at time
k from node n ∈ M of the feeder. Then, we propose the
following strategy to update the RES-inverter setpoints at each
time k:
[S1] Collect voltage measurements {ykn}n∈M.
[S2] For all n ∈M, update dual variables as follows:

γk+1
n = projR+

{
γkn + α(V min − ykn − εγkn)

}
(18a)

µk+1
n = projR+

{
µkn + α(ykn − V max − εµkn)

}
. (18b)

[S3] Update power setpoints at each RES i ∈ G as:

uk+1
i = projYk

i

{
uki − α∇ui

Lkν,ε(u,γ,µ)|uk
i ,γk,µk

}
(18c)

and go to [S1].
The proposed feedback control strategy is illustrated in

Figure 2. It can be seen that the update (18c) is performed
locally at each RES inverter and affords a closed-form solution
for a variety of sets Yki (see e.g., Appendix B); updates (18a)–
(18b) can be computed either at each inverter (if the voltage
measurements are broadcasted to the RES units) or at the
utility/aggregator. The controller (18c) produces a (continuous-
time) reference signal ui(t) for RES i that is has step changes
at instants {τk}k≥0, is a left-continuous function, and takes
the constant value uk+1

i over the time interval (τk, τ(k+ 1)].
Notice that differently from traditional distributed optimization
schemes, (18) does not require knowledge of the loads at loca-
tions N\G. The only information required by the controllers



6

γk+1
n =projR+

{γk
n+α(V min−yk

n−ǫγk
n)}

µk+1
n =projR+

{µk
n+α(yk

n−V max−ǫµk
n)}

uk+1
i =projYk

i
{uk

i −α∇uiLk
ν,ǫ(u,γ,µ)|uk

i ,γk,µk}

uk+1
j =projYk

j
{uk

j −α∇ujLk
ν,ǫ(u,γ,µ)|uk

j ,γk,µk}

yk
n

Fig. 2. Proposed control architecture. Upon collecting voltage measurements from selected feeder locations, RES-inverter setpoints are updated in a closed-loop
fashion via (18).

pertains to the line and feeder models, which are utilized to
build the network-related matrices in (5). In the following, the
convergence properties of the proposed scheme are analyzed.

Key to this end is to notice that steps (18a)–(18b) are in
fact ε-gradients of the regularized Lagrangian function [33];
that is, V min − ykn − εγkn 6= ∇γnLkν,ε|uk,γk,µk and ykn −
V max − εµkn 6= ∇µnLkν,ε|uk,γk,µk . This is primarily due
to i) voltage measurements errors, ii) approximation errors
introduced by (5b), and iii) setpoints possibly updated at a
faster rate that the power-output settling time for off-the-shelf
inverters [27]. The latter point is particularly important because
updates (18) can be conceivably performed at a fast time scale
(e.g., τ can be on the order of the subsecond); in fact, iterates
uk+1
i , γk+1

n , and µk+1
n are updated via basic mathematical

operations, and low latencies can be achieved with existing
communications technologies.

Let ekγ ∈ RM and ekµ ∈ RM collect the dual gradient errors
V min−ykn− εγkn−∇γnLkν,ε and ykn−V max− εµkn−∇µn

Lkν,ε,
respectively. Then, the following practical assumption is made.

Assumption 5. There exist a constant e ≥ 0 such that
max{‖ekγ‖2, ‖ekµ‖2} ≤ e for all k ≥ 0. �

Before stating the main convergence result for the network
feedback controllers illustrated in Figure 2, it is convenient to
introduce relevant definitions as well as a supporting lemma.
Recall that z̃k := [(ũk)T, (γ̃k)T, (µ̃k)T]T, and define the time-
varying mapping Φk as

Φk : {ũk, γ̃k, µ̃k} 7→



∇u1Lkν,ε(u,γ,µ)|
ũk

1 ,γ̃
k
,µ̃k

...
∇uNG

Lkν,ε(u,γ,µ)|
ũk

NG
,γ̃k

,µ̃k

−(gk1 (ũk)− εγ̃k1 )
...

−(gkM (ũk)− εγ̃kM )
−(ḡk1 (ũk)− εµ̃k1)

...
−(ḡkM (ũk)− εµ̃kM )



which is utilized to compute the gradients in the error-free
iterates (17) as

z̃k+1 = projYk×RM
+ ×RM

+

{
z̃k − αΦk(z̃k)

}
. (19)

Then, the following holds.
Lemma 1: The map Φk is strongly monotone with constant

η = min{ν, ε}, and Lipschitz over Yk × RM+ × RM+ with
constant Lν,ε =

√
(L+ ν + 2G)2 + 2(G+ ε)2. �

The result above is a relaxed version of [16, Lemma 3.4],
since it does not require the Lipschitz continuity of the gradient
of (11b)–(11c). Convergence and tracking properties of the
feedback controllers (18) are established next.

Theorem 1: Consider the sequence {zk} := {uk,γk,µk}
generated by (18). Let Assumptions 1–5 hold. For fixed
positive scalars ε, ν > 0, if the stepsize α > 0 is chosen
such that

ρ(α) :=
√

1− 2ηα+ α2L2
ν,ε < 1, (20)

that is 0 < α < 2η/L2
ν,ε, then the sequence {zk} converges

Q-linearly to z∗,k := {u∗,k,γ∗,k,µ∗,k} up to the asymptotic
error bound given by:

lim sup
k→∞

‖zk − z∗,k‖2 =
1

1− ρ(α)

[√
2αe+ σz

]
. (21)

Proof. See the Appendix. �

Equation (21) quantifies the maximum discrepancy between
the iterates {uk,γk,µk} generated by the proposed controllers
and the (time-varying) optimizer of problem (16). From [16,
Lemma 3.2] and by using the triangle inequality, a bound
for the difference between uk and the time-varying solution
of (11) can be obtained. The condition (20) imposes the
requirements on the stepsize α, such that ρ(α) is strictly
less than 1 and thereby enforcing Q-linear convergence. The
optimal stepsize selection for convergence is α = η/L2

ν,ε.
The error (21) provides trade-offs between smaller α’s

(leading to a smaller term multiplying the gradient error e, and
yet yielding poorer convergence properties, i.e., ρ(α) close to
1) and bigger α’s (leading to the opposite).
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Remark 1. For notational and exposition simplicity, the paper
considered a balanced distribution network. However, the pro-
posed control framework is applicable to multi-phase unbal-
anced systems with any topology. In fact, the linearized model
in Section III-B can be readily extended to the multi-phase
unbalanced setup, and the controllers (18) can be embedded
into inverters located at any phase and node. �

Remark 2. Assumption 2 requires the objective function (11a)
to be continuously differentiable. Notice however that non-
differentiable functions such as |x| and [x]+ := max{0, x}
(with the latter playing an important role when feed-in tariffs
are considered [4]) can be readily handled upon introduc-
ing auxiliary optimization variables along with appropriate
inequality constraints. For example, the problem minx[x]+ s.t.
g(x) ≤ 0 can be reformulated in the following equivalent way:
minx,z z s.t. g(x) ≤ 0, x ≤ z, and z ≥ 0. �

Remark 3. Traditional OPF approaches include voltage regula-
tion constraints at all nodes [6], [8]–[10], [12]. In the present
setup, the setM corresponds to M nodes where voltage mea-
surements can be collected and utilized as actionable feedback
in (18). Accordingly, the setM may include: i) nodes G where
RESs are located (existing inverters that accompany RESs are
equipped with modules that measure the voltage at the point of
connection); and, ii) additional nodes of a distribution feeder
where distribution system operators deploy communications-
enabled meters for voltage monitoring. �

Remark 4. The scalars σu, σd and σd̄ (and, thus, σz) in
Assumption 3 and Assumption 4 quantify the variability of
the ambient and network conditions over the time interval
[τk, τ(k+ 1)] as well as the (maximum) discrepancy between
OPF solutions corresponding to two consecutive time instants
τk and τ(k+ 1) [cf. Figure 2]. On the other hand, parameter
e implicitly bounds the error between the setpoint uki com-
manded to the inverter and the actual inverter output, and it
is related to the inverter’s actuation time. It is worth pointing
out that the results of Theorem 1 hold for any value of τ (and,
hence, for any values of the scalars σu, σd, σd̄, and σz) and
for any value of e. For given dynamics of ambient conditions,
network, and problem parameters, σz and e are utilized to
characterize the performance of the proposed controllers. For
example, it is clear that the value of σu decreases with τ ; and,
as a consequence, the distance between the controller output
and the OPF solutions decreases with τ too [cf. (21)]. �

IV. EXAMPLE OF APPLICATION

As an application, a distribution network with high-
penetration of photovoltaic (PV) systems is considered; par-
ticularly, it is demonstrated how the proposed controllers can
reliably prevent overvoltages that are likely to be experienced
during periods when PV generation exceeds the demand [1].

To this end, consider a modified version of the IEEE 37-
node test feeder shown in Figure 3. The modified network
is obtained by considering a single-phase equivalent, and by
replacing the loads specified in the original dataset with real
load data measured from feeders in Anatolia, CA during
the week of August 2012 [15]. Particularly, the data have a
granularity of 1 second, and represent the loading of secondary
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Fig. 3. IEEE 37-node feeder. The boxed nodes represent the location of PV
systems. The red nodes are the ones analyzed in the numerical example.

transformers. Line impedances, shunt admittances, as well
as active and reactive loads are adopted from the respective
dataset. With reference to Figure 3, it is assumed that eighteen
PV systems are located at nodes 4, 7, 10, 13, 17, 20, 22, 23, 26,
28, 29, 30, 31, 32, 33, 34, 35, and 36, and their generation
profile is simulated based on the real solar irradiance data
available in [15]. Solar irradiance data have a granularity of 1
second. The rating of these inverters are 300 kVA for i = 3,
350 kVA for i = 15, 16, and 200 kVA for the remaining
inverters. With this setup, when no actions are taken to prevent
overvoltages, one would obtain the voltage profile illustrated in
Figure 4(a). To facilitate readability, only three voltage profiles
are provided.

The voltage limits Vmax and Vmin are set to 1.05 pu and 0.95
pu, respectively. The performance of the proposed scheme is
compared against the one of local Volt/VAr control [2], [22],
one of the control strategies currently tested on the field by a
number of DMS vendors and utility companies; particularly,
a droop control without deadband [2], [22] is tested, where
inverters set Qkn = 0 when |V kn | = 1 pu and linearly increase
the reactive power to Qkn = −

√
S2
n − (P kav,n)2 when |V kn | ≥

1.05 pu. The PV-inverters measure the voltage magnitude and
update the reactive setpoint every 0.33 seconds.

For the proposed controllers, the parameters are set as ν =
10−3, ε = 10−4, and α = 0.2. The stepsize α was selected
empirically. The target optimization objective (11a) is set to
f̄k(uk) =

∑
i∈G cq(Q

k
i )2 + cp(P

k
av,i − P ki )2 in an effort to

minimize the amount of real power curtailed and the amount
of reactive power injected or absorbed. The coefficients are
set to cp = 3 and cq = 1. Iteration of the controllers (18) is
performed every 0.33 seconds. Before describing the obtained
voltage profiles, it is prudent to stress that from Theorem 1 it is
evident that the convergence of the controllers is not affected
by the network size.

Figure 4(b) illustrates the voltage profiles for nodes 2, 28,
and 35 when Volt/VAr control is implemented. The maximum
values of the voltage magnitude are obtained at node 35. It
can be seen that Volt/VAr control enforces voltage regulation,
except for the interval between 11:30 and 13:00. In fact, the
available reactive power is upper bounded by (S2

n−(P kav,n)2)
1
2 ,

and this bound decreases with the increasing of P kav,n; it
follows that in the present test case the inverters do not
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Fig. 4. Achieved voltage profile: (a) without control; (b) implementing
Volt/Var local control without dead band; and, (c) implementing the proposed
controllers.

have sufficient reactive power between 11:30 and 13:00 to
enforce voltage regulation. Figure 4(c) shows the voltage
profile obtained with the proposed controllers (18). It can be
seen that the proposed controllers enforce voltage regulation,
and a flat voltage profile is obtained from 9:30 to 14:00
[cf. Figure 4(a)]. A flat voltage profile is obtained because
in the present test case the controllers minimize the amount
of real power curtailed and the amount of reactive power
provided; thus, the objective of the controllers is to ensure
voltage regulation while minimizing the deviation from the
point [P kav,n, 0]T. A few flickers are experienced due to rapid

6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00

Time 

2

4

6

8

10

12

14
15

C
o
s
t

×10
4

Volt/VAr

OPF pursuit

Fig. 5. Achieved cost f̄k(uk) =
∑

i∈G cq(Qk
i )2 + cp(Pk

av,i − Pk
i )2.

variations of the solar irradiance, but the voltage magnitudes
are enforced below the limit within 1-2 seconds.

Figure 5 reports the cost achieved by the proposed con-
trollers; that is

∑
i∈G cq(Q

k
i )2 + cp(P

k
av,i−P ki )2. This is com-

pared against the cost of reactive power provisioning entailed
by Volt/VAr control, which is computed as

∑
i∈G cq(Q

k
i )2.

The advantages of the proposed controllers are evident, as
they enable voltage regulation with minimal curtailment of real
power as well as reactive power support. Notice that the lower
is the amount of reactive power absorbed by the inverters, the
lower are the currents on the distribution lines, with the due
benefits for the distribution system operators [3], [9]. It is
also worth emphasizing that the cost entailed by Volt/VAr is
decreasing during solar-peak hours; as mentioned above, this
is because the available reactive power is upper bounded by
(S2
n−(P kav,n)2)

1
2 , and this bound decreases with the increasing

of P kav,n. However, while the cost decreases around 10:00 –
12:00, the Volt/VAr controllers are not able to ensure voltage
regulation.

Notice that the voltage magnitudes can be forced to flatten
on a different value (e.g., 1.045 pu) by simply adjusting V max.
Given the obtained trajectories, it is evident that the proposed
controllers can be utilized to effect also Conservation Voltage
Reduction by appropriately changing the values of V min and
V max in the control loop [cf. (18a)–(18b)]. To test the ability
of the proposed controllers to modify the voltage profile in
real time in response to changes in V min and V max, consider
the case where the distribution system operator sets the bound
V max to: i) 1.05 pu from 6:00 to 13:00; ii) 1.035 from 13:00
to 14:00; and, iii) 1.02 after 14:00. Figure 6 illustrates the
voltage profile obtained by the proposed controllers in the
present setup. It can be clearly seen that the voltages are
quickly regulated within the desired bounds.

V. CONCLUDING REMARKS

This paper addressed the synthesis of feedback controllers
that seek RES setpoints corresponding to AC OPF solutions.
Appropriate linear approximations of the AC power flow
equations were utilized along with primal-dual methods to
develop fast-acting low-complexity controllers that can be
implemented onto microcontrollers that accompany interfaces
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Fig. 6. Voltage profile achieved by the proposed controllers when V max is
time-varying. Particularly, V max is set to: 1.05 pu from 6:00 to 13:00; 1.035
from 13:00 to 14:00; and, 1.02 after 14:00.

of gateways and inverters. The tracking capabilities of the
proposed controllers were analytically established and numer-
ically corroborated.

APPENDIX

A. Proof of Theorem 1
For notational simplicity, recall that zk :=

[(uk)T, (γk)T, (µk)T]T collects the primal and dual variables
produced by the proposed controllers, and define the following
time-varying mapping

Φk
e : {uk,γk,µk} 7→



∇u1
Lkν,ε(u,γ,µ)|uk

1 ,γk,µk

...
∇uNG

Lkν,ε(u,γ,µ)|uk
NG

,γk,µk

−(V min − yk1 − εγk1 )
...

−(V min − ykM − εγkM )
−(yk1 − V max − εµk1)

...
−(ykM − V max − εµkM )


,

which allows us to rewrite (18) in the following compact form

zk+1 = projYk×RM
+ ×RM

+

{
zk − αΦk

e(zk)
}
. (22)

Consider the norm ‖zk−z∗,k−1‖2, which captures the distance
between zk and the optimal triplet (u∗,k−1,γ∗,k−1,µ∗,k−1) at
time k− 1 for the min-max problem (16). Using (22), we can
write

‖zk − z∗,k−1‖2 =∥∥∥projYk−1×RM
+ ×RM

+

{
zk−1 − αΦk−1

e (zk−1)
}
− z∗,k−1

∥∥∥
2
.

(23)

By standard optimality conditions, the optimizer
is a fixed point of the iterations (19), i.e.,
z∗,k−1 = projYk−1×RM

+ ×RM
+

{
z∗,k−1 − αΦk(z∗,k−1)

}
.

By virtue of this fact, (23) can be rewritten as

‖zk−z∗,k−1‖2 =
∥∥∥projYk−1×RM

+ ×RM
+

{
zk−1− αΦk−1

e (zk−1)
}

− projYk−1×RM
+ ×RM

+

{
z∗,k−1 − αΦk−1(z∗,k−1)

}∥∥∥
2
. (24)

We now utilize the non-expansivity property of the projection
operator, which yields

‖zk − z∗,k−1‖2 ≤ ‖zk−1 − αΦk−1
e (zk−1)

− z∗,k−1 + αΦk−1(z∗,k−1)‖2 . (25)

By construction, observe that

Φk−1
e (zk−1)−Φk−1(zk−1) = ek−1 (26)

where ek := [0T
2NG

, (ekγ)T, (ekµ)T]T is the gradient error. By
this definition, we can now expand and bound the right-hand
side of (25) as

‖zk−1−αΦk−1(zk−1)−z∗,k−1+αΦk−1(z∗,k−1)−αek−1‖2 ≤
‖zk−1 − αΦk−1(zk−1)− z∗,k−1 + αΦk−1(z∗,k−1)‖2+

‖αek−1‖2 (27)

where we have used the Triangle inequality.
We use now Lemma 1: first the mapping Φk is strongly

monotone with constant η, that is

(Φk−1(zk−1)−Φk−1(z∗,k−1))T(zk−1 − z∗,k−1) ≥
η‖zk−1 − z∗,k−1‖22. (28)

Second, the mapping Φk is Lipschitz continuous with constant
Lν,ε, which implies

‖Φk−1(zk−1)−Φk−1(z∗,k−1)‖22 ≤ L2
ν,ε‖zk−1 − z∗,k−1‖22.

(29)
By expanding the squared first term in the right-hand side
of (27) and by using the properties (28)-(29), we can write

‖zk−1 − αΦk−1(zk−1)− z∗,k−1 + αΦk−1(z∗,k−1)‖22 ≤
(1− 2αη + α2L2

ν,ε)‖zk−1 − z∗,k−1‖22. (30)

By putting together the results in (25), (27), and (30) as
well as the bound on the gradient error ‖ek−1‖2 ≤

√
2e [cf.

Assumption 5], we have that

‖zk − z∗,k−1‖2 ≤
√

2αe+√
1− 2αη + α2L2

ν,ε‖zk−1 − z∗,k−1‖2. (31)

For simplicity, let ρ(α) :=
√

1− 2αη + α2L2
ν,ε. Thus, it

follows that

‖zk − z∗,k−1‖2 ≤ ρ(α)‖zk−1 − z∗,k−1‖2 +
√

2αe. (32)

We now consider the distance between the controller output
zk with the current optimizer of the min-max problem (16),
i.e., ‖zk − z∗,k‖2. This quantity can be bounded by using
Assumptions 3–4 on the variability of primal and dual opti-
mizers. Particularly, by using the Triangle inequality and the
relation (32), it follows that

‖zk − z∗,k‖2 = ‖zk − z∗,k − z∗,k−1 + z∗,k−1‖2
≤ ‖zk − z∗,k−1‖2 + σz

≤ ρ(α)‖zk−1 − z∗,k−1‖2 +
√

2αe+ σz. (33)
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If ρ(α) < 1, then (33) represents a contraction, and via the
geometric series sum formula we can write

‖zk − z∗,k‖2 ≤ [ρ(α)]k‖z0 − z∗,0‖2+

1− [ρ(α)]k

1− ρ(α)

[√
2αe+ σz

]
.

The relation above describes a Q-linear convergence of ‖zk−
z∗,k‖2 to a neighborhood of 0, with asymptotic error bound
given by

lim sup
k→∞

‖zk − z∗,k‖2 =
1

1− ρ(α)

[√
2αe+ σz

]
, (34)

which completes the proof.

B. Setpoint update

The setpoint update (18c) affords a closed-form solution for
a variety of RESs and other controllable devices. For notational
simplicity, let ûkn = [P̂ kn , Q̂

k
n]T be the unprojected point, where

P̂ kn and Q̂kn are the unprojected values for the real and reactive
powers, respectively; that is,

ûkn := uk−1
n − α∇un

Lk−1
ν,ε (u,γ,µ)|uk−1

n ,γk−1,µk−1 . (35)

Clearly, one has that ukn = projYk−1
n
{ûkn}. In the following,

expressions for ukn are reported for different choices of the set
Yk−1
n .

Real power-only control: in this case, the set Yk−1
n boils

down to Yk−1
n =

{
(Pn, Qn): 0 ≤ Pn ≤ P k−1

av,n , Qn = 0
}

. This
set is typical in inverter-interfaced RESs adopting real power
curtailment-only strategies [3], [4], where P k−1

av,n represents
the maximum power point for a RES; it also represents
conventional generation unit operating at unity power factor,
where P k−1

av,n is the maximum generation. In this case, (18c)
can be simplified as follows:

P kn = max{0,min{P̂ kn , P k−1
av,n }} (36a)

Qkn = 0 . (36b)

Reactive power-only control: For RES with reactive power-
only control capability, the set of possible operating points is
given by Yk−1

n = {(Pn, Qn) : Pn = P k−1
av,n , |Qn| ≤ (S2

n −
(P k−1

av,n )2)
1
2 } [2], [6]. In this case, (18c) boils down to:

P kn = P k−1
av,n (37a)

Qkn = sign(Q̂kn) min{|Q̂kn|, (S2
n − (P k−1

av,n )2)
1
2 } (37b)

where sign(x) = −1 when x < 0 and sign(x) = 1 when
x > 0.
Joint real and reactive power control: Consider now the more
general setting where an inverter can control both real and
reactive output powers; particularly, given the inverter rating
Sn and the current available real power P k−1

av,n , consider the set
Yk−1
n =

{
(Pn, Qn): 0 ≤ Pn ≤ P k−1

av,n , (Qn)2 ≤ S2
n − (Pn)2

}
in (2). With reference to Figure 7, the setpoints ukn can be

P

Q ûk
n

uk
n = ûk

n

ûk
n

ûk
n

uk
n

uk
n

uk
n

ûk
n

uk
n

Ek�1
n

Dk�1
n

Ck�1
n

Bk�1
n

Bk�1
nAk�1

n

Ak�1
n

Yk�1
n

Ek�1
n

P

Q

Fig. 7. Projection onto set (2). The red dot corresponds to the point
[Pk−1

av,i , 0]T.

obtained from the unprojected point ûkn as summarized next:

ukn =



ûkn , if ûkn ∈ Yk−1
n

ûkn
Sn

‖ûk
n‖

, if ûkn ∈ Ak−1
n[

P k−1
av,n , sign(Q̂kn)(S2

n − (P k−1
av,n )2)

1
2

]T
,

if ûkn ∈ Bk−1
n[

P k−1
av,n , Q̂

k
n

]T
, if ûkn ∈ Ck−1

n[
0, Q̂kn

]T
, if ûkn ∈ Dk−1

n[
0, sign(Q̂kn)Sn

]T
, if ûkn ∈ Ek−1

n

(38)

where the regions Ak−1
n ,Bk−1

n , Ck−1
n , Dk−1

n , and Ek−1
n can be

readily obtained from Sn and P k−1
av,n .

It is also worth pointing out that closed-form expressions
can be found when Yk−1

n models the operating regions of e.g.,
diesel generators and controllable loads with variable speed
drives.
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