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Abstract—We present explicit sufficient conditions that guar- the manuscript, we make reference to the load-flow problem
antee the existence and uniqueness of the feasible load-flowformulated for the positive sequence.
solution for distribution networks with a generic topology (radial Due to the non-linearity of the equations, the existence and

or meshed) modeled with positive sequence equivalents. Ime - f th lution to the load-fl bl . i
problem, we also account for the presence of shunt elements, UN'quUeNess of the solution 1o the load-fiow problem IS no

The conditions have low computational complexity and thusan guaranteed in generall[1[I[2].I[3]. There is extensivetditere
be efficiently verified in a real system. Once the conditionsra on the subject as detailed in Sectloh II. But for grid control

satisfied, the unique load-flow solution can be reached by aw#n in order to maintain the system in feasible electrical staite
fixed point iteration method of approximately linear complexity. is essential to provide conditions guaranteeing that thgem

Therefore, the proposed approach is of particular interestfor - . . .
modern active distribution network (ADN) setup in the context mented power setpoint leads to the unique feasible solution

of real-time control. The theory has been confirmed through ©f the load-flow problem. Specifically, in active distritoi
numerical experiments. networks (and particularly, microgrids), these condiicare
Index Terms—load flow solution, fixed point method, existence further expected to be both explicitly formulated and vekife
and uniqueness, distribution networks. in real-time.
There are multiple scenarios that have such expectations.
One typical case is related to ti@anding maneuvemamely
the disconnection from the main grid due to an intentional or
non-intentional decision (e.gl,1[4]). In particular, witbspect
to the non-intentional islanding, there is a need to eveluat
in real-time whether a given resource can serve as a slack
for the islanded microgrid [5]. This evaluation is based on
verifying whether the currently implemented setpoint k&l
the unique feasible solution of the corresponding load-flow
problem. Another practical example is related to the rdgent
introduced framework for performing real-time control of
active distribution networks using explicit power setgsif6].
In this framework, the knowledge of the current system state
Y., Square submatrix oF, (obtained via a _correspor_wdlng state estlma_tlon procedare_)
I assumed. A typical task in this framework is then to decide
omitting the slack bus. . : . S
. . whether a given collection of power setpointsadmissible
w;, 1 =1,..., N Positive-sequence complex voltage . . !
. : iR the sense that the application of these setpoints willlres
at node: whens is a zero vector. . . ! )
. in a feasible voltage profile of the grid. Hence as we can see
W = diag(w;) - AR . .
ey . from these situations, the research in this paper is of joedct
u=W~'v Normalized node voltages. o
(For anyz in C) z The complex conjugate of significance. . - .
' In the paper, we give explicit conditions that guarantee
the existence and uniqueness of the load-flow solution for
|. INTRODUCTION (possibly meshed) distribution networks with shunt eletsen

HE load-flow problem, which expresses the link betweehhe unique solution can be reached by an iterative load-flow
T complex node voltages and complex nodal power imoethod given in this paper. Our conditions depend on the
jections, is one of the main tasks in power system theofyiIrent state of the grid as well as on the requested power
and applications. In the context of distribution networks, Setpoints. The proposed approach is computationally effici
is especially interesting to consider the case where nacks| With approximately linear complexity. Hence it can be apg|i
buses arePQ buses. In this paper we consider a network witf! @ real-time control framework. We also provide condition
one single slack bus, at which the complex voltage is assuniBdhe “classical” setup, where the knowledge of the current
fixed and known, while the rest afeQ buses. Given a vector 9rid state is absent. In this case, we show that our resudts ar
of nodal power injections intdQ buses, the problem is thenStronger than those introduced so far in the literature eNot
to compute the vector of complex node voltages in the netwd@t it is possible to extend our results to more generakthre

that isfeasible(i.e., close tol p.u. in magnitude). In the rest ofphalie distribution networks, but this is the subject of amgo
work.

The authors are with EPFL, Lausanne, Switzerland. The paper is structured as follows. In Secfidn II, we review

NOMENCLATURE
v = (v1,v9,...,on5)7 v is the positive-sequence
complex voltage at bus.
i = (i1,i2,...,in)T i is the positive-sequence
complex nodal current of buk.
s = (s1,82,...,sn)7 sy is the complex nodal
power injected into bug.
bus0O Slack bus, withvy=1 p.u.
19,80 Slack bus complex nodal
current and power.
Y  Positive-sequence nodal
admittance matrix.
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the related work. In Sectioh]ll, we present the load-floWw;,vs, ...,vx)? denote the vector of complex node voltages
problem and its useful equivalent formulation as a fixed poinf the PQ buses,i = (i1, is,...,ix) denote the vector of
problem. In Sectiofi 1V, we give our main result, and prove itomplex nodal currents into th&(Q buses,i, denote the

in SectiorY. In Sectiof VI, we provide numerical evaluatiosomplex nodal current into the slack busz (s, s2, ..., s5)7

of our method. Finally, we conclude in Section MII. denote the vector of complex nodal powers injected into the
PQ buses (negative value in real or imaginary part means
Il. RELATED WORK consumed), andy denote the complex nodal power injected

Sinc'g? the slack bus. Also, for any complex number we

In the last few decades, the existence and uniquenes denote its complex conjugate By A similar notation holds

the solution to the load-flow problem have been studied fran .
Various perspectives or vectors and matrices.
perspe | . , As known, the nodal powers and nodal currents can be

In [[7], conditions for the existence and uniqueness of the so . .

. . . . “expressed in matrix form as
lution to reactive power-voltage magnitude problem areegiv
and analyzed. Based onl [7].][8] extends the result to active So | |1 10 1
power-voltage angle problem. Under certain assumptiops, b 5| diag(v) ’ (1)
decoupling the active and reactive power (i.e., consigean _
sub-problem of active power with voltage angle, and a sub- [ 20 ] -y { 1 } _ )
problem of reactive power with voltage magnitude), suffitie
conditions for load-flow solvability are explored. For hatad Here.Y is the
radial distribution networks, the uniqueness of a feadiidel- the s;/stem

flow solution is proved by exploiting the radial structure in The classicaload-flow problemin this setup is defined as

[9]. In [20], th_e r_esu_lt is extended to the unbalanced radlf%llows: Given the nodal powers solve the set of equations
three-phase distribution networks. However, all theseltes and [2) to obtain the nodal voltagesand the power at the
are based on certain assumptions and cannot be generic, k busso. The nodal voltages are generally required to be

applied. _ ) feasiblein the sense that all the node voltages have magnitude
Recently, the focus has been moved to fixed point loa lose to 1 p.u

flow analysis since the fixed point theorem can guarantee t 8h this paper, we rely on an equivalent formulation of this

unigueness of the load-flow solution. In fact, the first aHEmp oblem that is known asnplicit Z,... formulation see e.g.,
'iy

i

(N +1) x (N +1) nodal admittance matrix of

of applying fixed point theorem to power systems dates ba First, partition the admittance matri as
to [17], which focused on the study of convergence prope ' ’

of the Newton method. For the latest research,[in [12], an v Yoo Yoo
efficient fixed point load-flow method is presented for radial Yo Yoo |’
gt et bt 1re 0 e SSCUO0 ey, o mborsy 31 X o vt

Verg vabiiity. ’ ’ N x 1 column vectorYy,, is an N x N matrix. Now, we claim

of fixed point load-flow method is proposed for dlsmbu“orﬁ}atYLL is an invertible matrix. This fact was mentioned, e.g.,

netW(_)_rk with smgle slack bus. In the same pape, su_ff|C|elr}| [13], without a proof; in AppendiX’A we give a proof that
conditions are given to guarantee the existence and unégsen

: e . . covers a broad range of distribution networks. The implicit
of solution. These sufficient conditions are improved(in] {14 o . : s
In this paper, we use a fixed point formulatiE))n of the foa{bus formulation is then given by the following proposition;

flow problem; then we specify a domain around a feasib gr completeness, we also provide a short proof.
point and provide sufficient conditions that guarantee tH&oposition 1. The solutionv to the original load-flow prob-
existence and unigueness of load-flow solution in this damalem can be found by solving the following fixed point equation
Under the proposed conditions, the unique solution can be
reached using the fixed point iteration. It should be noticed
that, by this approach, the feasibility of load-flow solutis
usually preserved.

The theory proposed here shares some similarities with tisegiven and is equal to the vector of complex voltages when
fixed point load-flow methods established in1[12],1[13] andower injections are zerazéro-load voltagef the grid).
[14]. But, the method in[[12] is a special case of this paper.
Furthermore, the sufficient conditions in this paper areen(jg)rom' By @ and [B), we have that
general than the conditions in]13] and [14], and thus improv i = Yo+ Yrrv.
these results.

®3)

v=w+Y;; diag(v)"'5 2 G(v), (4)

where wE Y Yo (5)

Thus, clearlyw £ —Y; 'Y, is the zero-load voltage of the

IIl. THE LOAD FLOW PROBLEM grid. From {1),

. o : " i = diag(v) '3
We consider a distribution network modeled by its positive

sequence equivalents with' PQ buses and one slack busgnd hence nyLl diag(7) ™15 = —w+v,

(in essence, & 0 bus). Without loss of generality, we assume

that the complex voltage of the slack buslip.u. Letv = Which completes the proof. O



Remarkl. This formulation can be viewed as a direct result R (umm - jgfl) - VA

of the superposition theorem: is the superposition of the With p= 5 .

voltagesw, resulting from current injections by the slack bus ) . ) ] )

when all other injections are absest & 0, i = 1...N) plus Moreover, this solution can be reached using the iterative
. . i 1 i 0

the voltages resulting from current injections duestahen Procedure(@) by starting with any(”) € D.

the slack bus injection is absent. In case there is no knowledge of the current sfate), the
In the subsequent sections, we propose and prove sufficifaitowing corollary can be used.

conditions under which there exists a unique feasible solut

to (4), which can be found by the iteration

Corollary 1. Suppose that the complex powersatisfies
&(s) < 0.25. Then, there exists a unique solutiento the

v * D = 4+ v diag(@) 713 (6) load-flow problem, such that the paip, s) satisfies@) and
v belongs to
IV. MAIN RESULT
In this section, we give conditions on the complex power 2 ) . oy — wi < (1= /1—4&(s)) Jwi _
injectionss which guarantee that iteratioln (6) converges to the ‘ U 2

unique feasible solutiom of the load-flow problem. We also ) ) ) ) )
provide computational complexity of the method. This solution can be reached using the iterative procedare i

Before presenting our method formally, we give a high® by starting with any,©® e 1.

level outline. First, we assume the knowledge of a Pai5)  proof. We use Theoreril 1 with the choige= w ands = 0.
that satisfies the load-flow equatiorid (4). This pair can Bg this case, ag(0) = 0, condition [9) is always satisfied.

interpreted as the current (actual) state of the grid obthina|so, asu,,;, = 1, condition [ID) becomes(s) < 0.25 and
via a measurement and state estimation process. In additions given by (1 — /1 — 4€(s))/2. 0

we are given a desired “next” power setpoin©Our conditions
are thus formulated in terms 66, 5) ands, and guarantee the We demonstrate the numerical utility of choosing either the
unique feasible solution to (4) which is “close” too. Finally, method of Theoreril1 or that of Corolldry 1 in Sectlod VI.
we provide conditions on the starting point”) from which
this solution can be computed using iteratibh (6). ) . o

As mentioned in the introduction, such a procedure is esge- Comparison with Existing Results
cially useful in the modern ADN setup, where the electrical |n [13], the following sufficient condition for the unique
state is continuously estimated and is varying slowly frésn isolution of the load-flow problem was givefip € 1, 00] and
current value. In case there is no knowledge of the currept p/(p — 1) such that
state, a trivial choice fo(o, 5) is (w, 0), wherew is the zero-

load voltage profile[{5). For details, see Corollaty 1 below. HW‘IYL*LlW_lH;‘,Hqu < 0.25, (11)

where, for any matrix4, [|A[; £ max;, |Anell,, and the
notation A4;, stands for theh-th row of A. This work has
been improved in[14] as followslp € [1, ], ¢ = p/(p—1),
and a real-valued diagonal matrix such that

A. Main Theorem

We introduce some further notation. L8t = diag(w) and
set .

E(s) 2 WY, W diag(s)] oo ()

——1

where, for any complex matrixd, W=ty W A[IIA™ s]lq < 0.25. (12)

| Alloo = maxz | A We next show that our condition is weaker (thus the result is
b stronger). Since no knowledge of the current electricalesta
is assumed in both [13] and [14], we compare it with the

condition of Corollarf 1. By Holder's inequality with + 1 =

Umin £ min |f}7/w7| . 8 1,
J

denotes the matrix norm induced by the norm. Let

o —1v—17-1 ;. —
Below is our main result. Its proof is in Sectigd V. ) =W Y W diag(5)[|

1y —1771 -1
Theorem 1. Let the pair (9, 3) be a known solution to the :miaXZ‘(W Yoo W A)ij (A7),
load-flow problen{d). Consider some other candidate complex ’
power injections. Assume that =y (W*YEEW”A) (A™'s). (13)
v imaxJ J
€(3) < upin ©) y .
<I(W Y W) A sl

£6)

min

2
> —4€(s—§)>0. (10)

Then there exists a unique solutiorto the load-flow problem, Thus, whenever[(11) or(1L2) is satisfied, we have that

a o i 7am
and A= <umm <|\w v w 1A|\;§||A*15||q.

such that the pair(v, s) satisfies{@) and v belongs to

D2 {v: v — 0| < plwil}

&(s) < 0.25, hence the hypothesis of Corolldry 1 is satisfied.
We complement this result in Sectién VI-B by showing that
the converse is not true.



C. Computational Complexity Proof. Since (7, §) satisfies the power flow equatiohnl (4), we

1) The complexity of one iteratiom general, each iteration have thati = 1 + W'Y 'W " diag(@) '3 in addition to
of (8) can be computed either directly or through solvin@ - Thus,
linear equations. Such procedures usually requirgV?) Gu) — = WflnyW*l (diag(g)*lg _ diag@*lg) )
computational complexity for a general linear system. But o . , , )
experience shows the computational complexity can appro2Ur 90al is to show that there exists a radiusuch that if
imately beO(N) if using LU decomposition with complete [ui — @;| < then ‘G(U)i - Uz‘ < r for all i. We have
Markowitz pivoting [16]. This is because the nodal admit&n
matrices are structurally sparse and symmetric in genkenal, ~ ST pu— 3 8
which the pivoting reduces the number of fill-ins and preserv ‘ (u); = Z (W Yir W )U (ﬂ_j B __J)'

- u

the sparsity in LU decompositioh [17], 18]. ! - = = X

For radial distribution networks, a similar decomposition <> (VI/*Y;LWV*)_S](“J —“j)_tuj(sj — %)
is given in [12] by exploiting the grid structure from a J K A
graph-theoretic perspective. Such decomposition gueeant o151\ = (U5 —Ty)
O(N) computational complexity for these cases under proper = Z ‘ (W YW )ms] Wi
hypothesis. - =

2) The complexity of checking conditior@enerally, com- +>° (WﬁlY[LlW%)U% :

J

plexity of checking conditions is mainly the complexity of
computing £(5) and &(s — ), which is O(N?). But for Now, assume thatu; — ;| < r < Upin, Where w,, is
networks where the decomposition [n[12] applies, this corgiven in [8). Also, by the definition of,,;,, we have that
plexity can be reduced t®(N) by only computing and [%j| = tmin. Therefore,[u;| > umin, —r, and

comparing the rows that correspondiéaf nodes. >

J

wlv—rw ) I, (1 :ﬂj)
( LL )USJ

Ujlj
r < E(8)r .
(umin - T)umin (uwnin - T)unuin

V. PROOF OFTHEOREM[I < (WHYEW%)”%

For the purpose of the proof, we find it useful to parametrize J
@) in a different way. Letu £ W ~'v denote thenormalized Similarly,

voltage with respect to an unloaded grid. Then, it is easy to ey G —3))
see that[{¥) is equivalent to XJ: (W v w )UTJ.
u=1+ W_IY;£W71 diag(m)~'5 £ G(u), (14) <> ' (W’lY[LlW’l)ij(Ej %) = »1 —5 < (f(é _j)r),
; rin rin
where1 = (1,1,..,1)7 is the unity vector. Clearly, any combine them and obtain
conditions onu provide corresponding conditions enusing ) (&) £(s—8)
the invertible mapping = Wwu. We thus perform the analysis ‘G(u)i — ;| < a7)
of (I4) and the corresponding iteration (Umin = 1)umin — (Umin =)
. Therefore, we have a self-mapping if
ut ) =1 4 WY W diag@®) 5. (15) R R
o Ss-8) a8)

From the Banach fixed point theorem[19], if the operator (Unin — ") Umin  (Umin — T)
is a contraction mapping on a metric spdt® J), then there ; .an be re-organized as
is a unique fixed point.* in D. Moreover,u* can be reached A
by iterative update ofu(**1) = G(u(*)) from an arbitrary "2 _ (u &) > r+&(s—38) 2 f(r)<0.  (19)
u(? in D. In the rest of this section, we show that under the e -
conditions of Theorerfl 1, operat6tis a contraction mapping We thus have shown that is a self-mapping if there exists

in the sense that (i) is a self-mapping of. on a closed seb , " "~ (0,umin) such thatf(r) < 0. Since f(r) is a

e = . = 2 1 —
ﬁ;\gSlzﬁ?”Soa?otrhzniloslt’ricz:tlg%p.)ropertyg(u ) =Gl < convex polynomial of degree two ant{0) = &(s — §) > 0,

we know there is an interval of such if (i) the axis of
symmetry (umm — M) /2 > 0 and (ii) the discriminant

Umin

min

A. Proof of self-mapping 5\ 2 .
Lemma 1. Suppose that the paiit, 5) and the complex power 8= \min Ii(j)t?]l_ i) 7 These fuo condiions
- Supp palp, 5) hiexp are exactly[(R) and (10).

s satisfy(@) and ([0). ThenG is a self-mapping of: on By now, the satisfaction of]9) anf (10) gives an interval of

D2 {u:|u— | < p} (16) . But we are interested in the smallest possible value,of
) which is given byp = ((umm - f(—s) —+/A) /2 since it
_ (umin - %) - VA provides a better description of Iocrglyilty for load-flow dida.
with p= B) This completes the proof of the Lemma. O

and a; = 0; /w;. Remark2. Equivalently,G is a self-mapping ob on D.



B. Proof of contraction mapping

Lemma 2. Suppose that the paift, 3) and the complex power

s satisfy (@) and (I0). ThenG is a contraction mapping of;
on the metric spacéD d) whereD is given in(@8) andd is
defined by th&,, norm.

Proof. As D is a convex set, there exists a straight path

connecting any two points’ and u? |n D. Parameterlze the

path and denote it by: b(t) = u! + t(u? — ut) for t € [0,1].
Then, we have the relation:
16 = Gl =IGOW) = GO =1 [ ACCW) gy
By triangular inequality, it holds that
~ dG
1G(u?) - Gl oo < / P 9CCO) g (20)

We view CV as an abstract vector space & (i.e., of
dimension2N), equipped with the normi(zy, ..., 2x)|[ec =
max? , |2;|. Note that this is a norm when we vie@/" either
as aC-vectorspace or afR-vectorspace. As shown in [20],

G(b+h)=G(b) + G'(b) - h+ ||h]|ee(h) YheCV,

where G’ (b) : CN — CN, the differential operator oy at
b, is anR-linear operator, and - denotes the action of this

operator. Then for thé& defined in [1#), we have

G'(b)-h=-W YW dlag< S %V) h.
by N

So that, we continue the derivation I {20) and obtain

dab(t
L\\xdt

)

1
) — Gl -,
G(w™) = G(u)] S/O G (b(2)) -

1 — 5 db(t
:/ W=y W diag | ., ()
70 by (%)

SN

Ei,(t) 7”00 (21)
</'1 Wy W diag (o o) oo lu? — [,
~Jo b (1) b (t)

Sinceb(t) is always inD, we havelb;(t)| > i — p. Then,
by sub-multiplicativity of matrix norm, there Is
Wy W diag | ot
T (5?@) <t>> =
<IW YL W diag (51, 58) ool diag (B3 (1), ...,Ei,(t))’l lloo
PN
- (uwnin - P)2
(22)

Further, observe that from_(110),

=(Umin + %)2 —4(&(8) +&(s—3)) > 0.

Hence, we have
£(s) = ||W*1Y;;W*l diag () ||
—|\W71Y[L1W (diag (3) + diag (5 — 8)) [/
<|w~ YLLW dlag( ) [|oo+
(|[Ww— 1YLLI/V diag (5 — 3) [|eo

Umzn + E(S) :
=€(5) +£(s— ) < <72 )

Umin + f(é) + \/_ 5
< . (Umin - p) .

(23)

2

Thus, by combining[{21)[(22) anB {23), we obtain
G (?) = Gu')
! “1y 1wl . [ F1
S./o (W™ Y, W diag (zf(t),...,
£(s)

- (uwnin - P)2

SN
-2
biv (1)

— oo < flu® = u'leo

) lloo llu® = u'floodt

flw?

which completes the proof of the Lemma. O

Remark3. Equivalently,G is a contraction mapping af on
metric space(D,d) whered is defined by weighted vector
norm £y, o, such that|v|w.eo = |W ™10 co-

VI.

The proposed conditions have been tested through a large
number of experiments on the basis of IEEE modEgls [21].
Due to space limitations, we show the numerical result of one
experiment on an |IEEE 13-feeder model whose structure is
illustrated as following in Fi§]1. We adjust it by assumirp a
power lines are of same type but different length. The model
parameters are taken as typical values for medium-voltage
cables as in[[22].

NUMERICAL ILLUSTRATION

—_— 650

646 645 632

611 684

671

692 675

652 680

Fig. 1. |EEE 13-feeder grid.

The power components of the known soluti¢h ©) are
given in Tabldll; voltage magnitudes are shown on[Fig.3. For
better expression, first re-number all the nodes. Then tadke t
power injections = p + j¢ with normalization baséMVA
for Power and4.16/+/3 = 2.4kV for Voltage (which is also
the voltage of the slack bus).



TABLE | 035+ Solved voltages for power injection s

KEY PARAMETERS T (] o
103k + v, soiveg l}jy I}z;oposedRme;hod °
-~ O v, solved by Newton-Raphson
Index _ p(MW)__g(Mvar)__ [3](MVA) e 2 ol P— e @ ©
632 — 1 -0.48 -0.32 0.58 1 E n
633 — 2 1.28 0.96 1.60 1.05 2102 © o
634 — 3 -0.72 -0.48 0.87 0.95 §’ + . . +
645 4  0.96 0.8 1.25 1.03 ELOISF o
646 —»5  -0.96 -0.8 125 101 Zoiol -+ +
671 — 6 0.64 0.48 0.80 1.05 g 4
692 — 7 -0.8 -0.48 0.93 0.97 1.005F +
675 — 8 0.64 0.48 0.80 1.04 . ‘ ‘ ‘ ‘ ‘ ‘
684 —9  -0.64 -0.48 0.80 0.99 g 2 p 6 5 0 »
611 — 10 0.32 0.24 0.4 1 Bus
680 — 11  -0.48 -0.32 0.58 1 _ o
652 — 12 0.32 0.24 0.4 1.05 _Fl_g. ? The voltages of power injectichand the computed voltages of power
Injection s.
A. llustraion of Main Theorem : e
Here, for illustration purpose, we apply TheorEin 1 to tes T ]
the candidate power injection) wheres; = §;e; with § and ofthe proposd coralry: ithont (. ) |
e as in Tabld]l. The computed results are shown in Table II. | e pe e b s
is easy to check that the conditions in Theorem 1 are satisfie T The pover tervl hat st PRy 7
In contrast, note tha(s) = 0.5770 > 0.25, i.e. the method P condiions of e method n 19 1
and conditions given in [13] and 4] do not work in this case o ; L g g i |
sum(|S|)/ MVA
TABLE I
COMPUTEDRESULTS Fig. 4. Intervals of power injection that satisfy the cormatis of the proposed

theorem, the proposed corollary, the method_in [13] and teéhod in [14].

0.5692 0.0164 0.5770 1.0050 0.0412

the candidate power injectionsfrom TaQIeD but instead we
In Fig[2, the red circle is of radiup = 0.0412 and scale them frons. Specifically, lets = /@ﬁ with x € [0, 00)
represent® for one coordinate (here for instance, select NoddVA. In other words, the scaling factor = Zf;l |s;] is the

8). sum of all apparent power injections. Then,
1) With @©,3): By applying the conditions of the proposed
01 main theorem, the black interval is obtained in Big.4. For al
g the summed power: in this interval, our conditiond[9) and
0.05 (I0) are satisfied.
~ 2) Without ,5): Similarly, we can obtain the red interval by
g 0 applying the conditions of the proposed corollary, the gree
B interval by conditions of the method ifn_[14], and the blue
-0.05 interval by conditions of the method in [13]. In this example
it is clear that the power interval provided by the proposed
0005 1 1085 14 method (i.e., red interval) covers the power intervals jfest
Re(vg) by methods in[[13] and[14] (i.e., green and blue intervals).
) _ _ In other words, the proposed method is (strictly) strongant
Fig. 2. The domairD for one coordinate (Node 8). the methods in[13] and [14].

Remark4. Here, theA for the method in[[14] is chosen as

In Fig[3, the solved voltage magnitudes are shown. In t & - 1y -1t
ested in[14\;, =1 WY W .
same figure, the Newton-Raphson method is used for checkmggg I M /maxi | LL Juel

the result. It is well-observed that the method gives out the
same solution as Newton-Raphson method. Actually, all the VII. CONCLUSION

solution coordinates lie in the domain given by our theorem. We have provided explicit sufficient conditions that guar-

_ ) ) antee the existence and uniqueness of the feasible load-flow
B. Continuation Power Flow analysis solution for distribution networks with generic topologyuh
In this subsection, we illustrate the range of power infgtdi  eled using their positive sequence equivalents. Our firgding
that are allowed and provided by our theorems, using “centiimprove on all previously known results. The whole theory
uation power flow analysisT[23]. To this end, we do not takbas been verified in IEEE benchmark grids.



The proposed method is of practical use, as it can easiy The Invertibility
be deployed in applications for microgrids and distribatio If the grid is viewed as a graph where buses are vertices

networks that require solving load-flows in real time. and power lines are edges, then a new graph can be generated

We pIar_1 to extend the results to more general three—phqﬁp eliminating node 0. Suppose that the new graph has
networks in a subsequent paper. connected components, then by carefully re-numbering each
node,Y7;, can be written as a-block diagonal matrix. In this
way, Yz, is invertible iff all blocks are invertible. Thus, if
we can show an arbitrary one of these components invertible,
then the invertibility ofY ., is proved. Thus, without loss of
generality, assume that the new graph itself be one corhecte
component.

First, denote this undirected graph & = (V,€). In
addition, letys!ec* C V be the set of nodes that are originally
Lconnected to the slack bug/ = (V*,£*) be the subgraph
that contains all the transformer edges and corresponding
endpoints;G,, = (Vim,Em), m € {1,..., M} be all the M
connected components (¥, £ \ £).

Let 2 be an N-by-1 vector such that,,« = 0, and for all
i € ysleck define

A. Modeling and the Admittance Matrix _ | wio non-transformer connection
Yio = yl, transformer connection

APPENDIXA
INVERTIBILITY OF Y1,

In circuit theory [24], there are already results on the ittve
ibility of a full admittance matrix which includes the grodias
one node. However, these results do not directly apply;to,
which is only a sub-matrix of the nodal admittance mairix
that does not contain ground node. Having considered tbis f
we give the proof of the invertibility o7, 7, in this appendix.
It is worth noticing that the proof does not require the netwo
to be radial.

For the non-transformer connection (e.g., transmissias)i
between node andj, the2 x 2 longitudinal admittance matrix Then, we have

is
) ; eMYipe= > Fi(Yir)ie;
ylg _yzg i,JEV

—Yij  Yij N N

. _ =>_ X wFiwi—a)+d] D wFi(e - Kle)
wherey;; (equal toy;;) is the summed admittance of all power =1 ;.¢;,j)ee\et i=1j:(i,)) €€
lines going directly from nodé to nodey. + > Golml®+ Yy )

For the transformer connection between nadeand j, icyslack eV

without loss of generality, let nodé be connected to the
primary side of this transformer and noglee at the secondary
side, the2 x 2 admittance matrix is given as

For the first term, we have

N
Do > wiTilwi—xy)

t t —1 i=1j:(i,j)€E\EL
Yij _yinij

N N
—1 _ _
LI 1 =2, > wmmi—E) ) YL wFilei-a)

1=15>4:(i,j)€E\EL i=1j<i:(i,j)€E\EL
primary side, corpplex Tgmbeﬁ;’? is tr_le rgmo. ReC|pr_0caIIy, s peaet i peaet
we can denotey;;|K;;|~° by yj; which is the equivalent
aggregated admittance on the secondary side,]égél by =>" > (yijTi(zi — x5) + yi;T5 (x5 — x1))
K;; which is the inverse ratio. Now, the terms in a general =1 j>i:(i.5)ee\e!

where !, is the equivalent aggregated admittance on theg™ S e )+i S e -
i1 (i — T 5i%5 (%5 — @i

admittance matriX” including shunt elements can be explic= Z yijlzi — x;)?
itly written as i<ji(i,g) EE\E?
. . Similarly, for the second term, we have
—Yij ) JjeN()
_ t p— ; t(s
}/ij o _yinij J EN.(Z) i Z vl T — K xj)
0 otherwise e P A
K3 ji(i,5)€E
N N
and =3 > yhTmiwi - KGte) +> . > T — K lap)
==, =
h + + j>i:(i,j)€EE j<i:(i,j)EE
Y=y + > wii+ > vl N N
JEN (i) JENt(i) =2 X wmm oK)+ 30 vimie - Kjlw)
i=1j>i:(i,j)€&t =1j5>i:(i,5)e€t

whereN (i) is the set of nodes that have direct non—transformger: >
connections with node, and N’ (i) is the set of nodes that =, ., 7).
have direct transformer connections with nadelere,ysumt  _ )

is the sum of shunt elements around nade i<ji(ij)eEt

t 1 tel o1
(yi;Ti(xs — K wj) +y;; Ky 7 (K a — )

t —1_ 2
yz]|m1 - Kij zj|



So that,

= > wglni-glPr Y

xHYLLx

t -1, 2
Yijlos — K ajl
1<j:(4,5)EE\ET i<j:(i,5)€ET

+ > ol Dy el =0

jcyslack 1€V

Since R0 > 0 for all i € Vslack Ryshunt non-negative for
all i € V, andRy;;, Ry;; > 0 for all 4,5 s.t. (4,5) € €, we
have

1) x; = 0 for all i € Vsiack;

2) z; =, foralli,j €V, given anym € {1,...,M};

3) =K, 'z; foralli,j st (i,j) € €.
Becausdj is connected, it can be obtained that

o By above 1 and 2, there exists at least ones.t.z; =0

forall i € V,,.

Thus, the vector: must be a zero vector, which implié§, .
has a trivial null space and hence is invertible.
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