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Abstract—This paper introduces a new scheme for autonomous consumers, RTP scheme has not been sufficiently effective
electricity cooperatives, called predictive cooperative(PCP), for demand response because of a number of economic and
which aggregates commercial and residential electricity @n- papavioral issues, most notably low elasticity of residnt
sumers and participates in the electricity market on behalf of ! . . e .
its members. An axiomatic approach is proposed to calculate dem?‘”“_‘ (espec!ally at h'_gh prices) a”?' d|ff!culty of realei
the day-ahead bid and to disaggregate the collective cost amg Monitoring and inconvenience that residential consunes f
participating consumers. The resulting formulation is shavn in prediction of prices[[12],[[13].
to keep the members incentivized to both participate in the Automated enabling systerpsovide dynamic, active load

cooperative and remain truthful in reporting their expected loads. management that can respond to unforeseen real-time varia-

The scheme is implemented using PJM (world’s largest wholege .. ; . . .
electricity market) real-time and day-ahead price data for 2015 tions in the market([14]. Several benefits of intelligent au-

and a collection of residential and commercial load profiles tonomous units irsmart grid are discussed in details in_[15],
The model performance of this framework is compared to that [16], [17]. In the spirit of these benefits, some authors have
of real-time pricing (RTP) scheme, in which wholesale market syggested combined use of real-time pricing with an auto-
prices are directly applied to individual consumers. The rgults mated framework in DR application: Conejo et al. and Parva-
show truthful load announcement by consumers, reduction in . . .

electricity price variation for all consumers, and comparaive nia et al. address. DR with RTP.and prpppse_a solution for the
benefits for participants. subsequent appliance scheduling optimization problenj, [18
[4] ; Mohsenian et al. developed an RTP residential load
control for maximizing the consumer utility [10]; and Lu@n

et al. propose a load management strategy that optimizes
negotiation between consumers and retailers with RTP [h9].

|. INTRODUCTION practice, automated demand response relies on home energy

T HE new paradigm of the electricity industry commonlyhanagement systems (HEMS) to communicate with retailers,
known as smart grid includes active demand respondBd autonomous units of other consumers [20].
(DR), distributed energy resources (DER), enhanced assel he majority of available RTP based models are developed
utilization, and consumer choicgl [1]. by assuming active participation of end-consumers in the

The integration of demand-side management (DSM) in tiyeholesale electricity mar_ket,. an assumptlon that is uiseal
future smart grid has been widely discussed in the liteeatuff®M regulatory perspective in most regions [1]. Moreowar,
e.g., 2], [3]. In generaldemand responsapproaches can behas been argued [10]. [21]. [22], a more effective practice
divided into three categories: autonomous demand respolfs@emand-side management is to manage aggregate behavior
and scheduling[]4],[15]; price-based demand-side mana@éld incentivize demano_l response with price S|g_nals in aimult
ment [6]; and a mixed approach that combines these t@g€nt system, something that is not directly implementable
schemes([7],[8] in order to provide the end-consumer wiff @ puré RTP scheme because real-time prices indiscrimi-
simultaneous economic benefit and convenience in participitely apply to all RTP consumers_[23]. In principle, load
tion. aggregation benefits consumers by offsetting the inditidua

Price-based demand response applies variable pricing!@gd volatiliies, thus decreasing relative load variaticand
incentivize consumers to flatten their demand profile. S#vefnhancing the accuracy of load prediction. However, in orde
pricing schemes have been suggested in the literaturegingu to benefit, consumers need to part|C|pate_based on an ihterna
time of use (TOU), critical peak pricing (CPP), and rea|gontra.1ctual scheme that clearly determlnes how gggregate
time pricing (RTP)[[3]. RTP schemes charge consumers houR§nefits or potential aggregate penalties shall be diséibu
prices that reflect the real cost of electricity in the whales @Mong participating consumers according to their level of
market [9], [10], [11]. Variations of this scheme have athga Participation, truthfl_JIness, load estimation, and exaéfactors
been introduced to commercial and residential consumersSHh as market prices. SﬁycboBerat}veschemes have been
some regions such as ComEd’s residential real-time priciRgeviously introduced [[24],[[25],[[5], however they need
(RRTP) in the state of Illinois. Nevertheless, for residant [0 be formulated in such a way to incentivize participation

and truthful information sharing and disincentive freeirrg)
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truthfully reveal their expected load information. Thisisme work and explain its various components. We first provide an

relies on an autonomous agent that interacts with consumeverview of the architecture of the framework in Sectidn I,

and participates in the electricity market on their behalf. then, in Sectiod_Ill we introduce an axiomatic approach for
The proposed scheme, callpcedictive cooperativéPCP), effective day-ahead bids and disaggregation of the overall

includes four key components: load information sharing bgayment into individual shares, followed by the load fostea

consumers, load aggregation and forecasting, day-ahead lxiag model in Sectioi IV. Finally, Section_V}B presentes the

ding, and payment disaggregation. For each consumer, sigulation of the proposed scheme and its performancegusin

define two key parameters: an announced load as the expe&éil market data.

consumption and a confidence factor as a value between

0 and 1 that indicates, for the purpose of market bidding, !l- INTERACTIVE ELECTRICITY COOPERATIVES

how much the consumer prefers to rely on PCP’s suggestedn this section, we introduce the concept pfedictive

bid, as opposed to her own intended consumption. As theoperative(PCP), a non-profit scheme that participates in

first step, the PCP agent receives the load aaodfidence the wholesale market on behalf of its members on the one

factor for day-ahead loads from each HEMS unit. Therhand, and acts as a contractual scheme for their participati

PCP forecasts the short-term aggregate load udimgpble- on the other hand. Residential and commercial electria@ty-c

seasonal autoregressive smoothing metla6], which we sumers subscribe to the PCP, which provides consumers with

have modified to accommodate dynamic parameter updatithie day-ahead price, receives consumer information, &stsc

The PCP then calculates the individual day-ahead bid usiaggregated load, places an aggregate bid in the market, and

the announced loads, confidence levels, and aggregata$bredinally disaggregates the collective cost among consurAers.

Finally, the total cost will be disaggregated among conssmeverview of the proposed procedure is illustrated in Eignd a

according to an incentive-compatible formulation, depeld the following algorithm:

axiomatically. - -
There are two distinct advantages in combining PCP dél_gorlthm | - PCP Daily Procedure.

mand forecasts with individual consumers’ estimatestfRine 1: I. 11am-12pm: Consumers provide their day-ahead expected load and

sum of values provided by consumers is not necessarily the ﬁonlﬁzdencepfgg?- < load for the next.day fime nterval (12:00

accurate aggregate esimation and agaregate forecasiig ¢, 17 PCF e o o e rexcay e mene (12000m

improve the estimation accuracy [27]. In addition, constsne 5. | 12am:

may be untruthful or biased in reporting their estimationis f 4: for each time step for 24 houdo

energy usage [28], if market bids depend only on their reqobrt 5. Participants consume their real-time load

estimates. 6: PCP receives real-time prices from real-time market

Our paper makes the following contributions to the litera< §g§ gf;rgse'ttsh:CCCOOHUS'Ltn;';rrsei'v'i:'r?qtiem;;'ggregate A howipest
ture: First, it offers a novel incentive-compatible schefme 9. i 11amthen
electricitycooperative to achieve a collective goal of reducingo: Repeat from step | for the next-day bids
price risk for the participants while enabling the prospeét: end if
of reduced average price for individual consumers, usingl4 end for
bottom-up, axiomatic approach, which to the best of authors
knowledge have not been previously used in the literatu@sides an accurate load prediction algorithm, as expldime
of smart grids. The paper furthermore mathematically psoveection[1V, the success of the PCP agent depends on two
that the provided scheme is not only beneficial for indiritical components: First, since the load predicted by the
vidual consumers to participate, but also provides ingesti PCP agent is in general different from the sum of declared
to participants to adopt a truthful behavior when interagti day-ahead loads by individual consumers, the agent needs
with the scheme. The combination of these two ensuresiGacombine both of these signals in order to calculate the
bilateral trust between theooperativescheme and individual effective day-ahead bid for each consumer. The relativghtei
consumers. Finally, the paper uses an agent-based sianylatPf €ach signal for a given consumer depends on the level
using real-world data from the Plnarket to demonstrate theof confidence that the consumer has announced in the PCP
benefits of the proposed scheme. As a part of the simulatiffimation versus her own. To combine these signals as a
process, and as a side contribution, the paper also improfaction of the confidence factor, we propose an axiomatic
the accuracy of one of the standard short-term load foriecastapproach as explained in Section 1l-A.
models by migrating toward dynamic parameter updating. Al- The second issue arises because, even with a good effective
though formulated for the PJM electricity market, the pamd day-ahead bid model, real-time consumption have discigpan
scheme and the axiomatic method used in its developmdfith respect to the effective day-ahead bid which translate
can provide useful insights for formulating other coopgest into potential costs or surpluses for the PCP and conselguent
of end-consumers in commodity markets with forward/futur®r individual consumers. Disaggregating these costs and s
contracts, such as agricultural water, natural gas andscrop Pluses is a function of several parameters, such as daytahea

In the rest of this paper, we introduce the proposed fram@ids, real-time consumption and market prices. Here agan,

use an axiomatic approach, as explained in Se¢fionllll-B to

1PJM electricity wholesale market coordinates and delipesser to whole disaggr_egate the total .pay.ment for participating consarasr
or part of 13 U.S. states plus the District of Columbia. a function of the contributing parameters.
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2) Similarity in deviation direction: For all the day-ahead
loads, we assume that if the total effective bid is morefless
than the sum of reported loads, then effective individudlibi
also more (less) than the individual reported load.This esak
sense since, depending on the confidence factor of a given
consumer, her effective bid is always between her repoiittd b

"""""""" @) and a number calculated by the PCP, and the direction of this
i st H deviation depends on the aggregate deviation. In other svord
W w deviation of effective bids shall have the same sign as the
aggregate deviatiors:z’gn(li(t) — lfl(t)) = sign(Lety — La(t))-

3) Proportionality: : All other factors equal, effective bid
deviation of a consumer is an increasing function with respe

Fig. 1.  The proposed PCP steps are: 1) PCP receives the day-ahig her confidence factoﬁ(li [ )/Bp- o > 0. We now

load and confidence factor; 2) PCP places bid in day-aheadketaB) . e(t) a(%. i(t) . L

participants consume real-time load; 4) PCP receivestiraal-cost; and 5) ne_ed an equation for.day.'ahead 'P' that satisfies _a” these
PCP disaggregates the cost among participants. The dag-ahedel (Section. axioms. The formulation is not unique, yet we pick the
(I-A)) is used for day-ahead market and the payment moSletfon[(Il-H))  following equation, which is simple and, as we will show,

is used for real-time market. e . .
satisfies all three axioms:

Day-Ahead Market Real-Time Market

Utility Co.

N
1. AXIOMATIC DAY-AHEAD AND PAYMENT Loy = Uy + 97 Loy * (L) = La)/ D pillyy- (2)
DISAGGREGATIONMODELS j=1

In this_ section we propose two model_s, one for the Qa)&nd the total day-ahead bid i) = ¥, li(t)'
ahead bid calculation and the other for final payment disag- - _ o _
gregation among participants in an electricityoperative In ~ Proposition 1. Equation [2) satisfies Axioms A.1- A.3.
the first model, we use an axiomatic approach to formulate p. . First, the L., will remain in the reasonable

how the PCP should calculate day-ahead bids by combiningﬁi@undary defined by ;) and Ly, According to [1) we can
forecasted load - using a central forecasting algorithm idls W d o equal to:a = p20i , /3 2 which is in [0, 1]
be explained in Sectiopn_IV-with the sum of expected loads, : L alh) =1 Pita(t) ’
announced by individual consumers. The second model is u§é§&ause)i € [0,1]. Secondle(_t) ~law) an]\(?Le(t) — Lay) have
to disaggregate the total payment among participants baseddentical signs because? « I;, ., and >>", p;l;, ) are both
a set of axioms inferred from mathematical constraints gfixePositive. Finally, the formulation ensures positive datives

sum etc.) and fairness in payment model. for effective load deviation with respect to confidence leve
(pi):
A. Day-Ahead Model 8(12 - l;(t)) Pilflm*(? Eé'v:l pil{z(z)_mlfl(t))
The PCP agent uses two distinct signals to calculate its dp; - (I pill )2
day-ahead bid: its own forecasted loald(;)), and the sum il @% 0 gy pilh g toili) =0

of announced day-ahead loads reported by the consumers to - 0 pill )2
the PCP Loy =D, l;(t)). We introducetotal effective day-

ahead bid(L.) as the weighted combination of these two

signals. But how should the PCP agent decide about their

relative weights? To formulate this decision, we furthesumse B. Payment-Disaggregation Model

that each consumer has a certain level of confidepgeté

: i In real-time market, the total payment paid by the PCP is
the PCP agent. We model this confidengg) @s a number . . ) .
between 0 (no confidence) and 1 (full confidence). Thus, tﬁlefunctlon of the effective day-ahead load, calculated & th

PCP needs to take into account the confidence factors ROF Vlous sect|or_1, total real—_tlme load and market prices. !
. . ) . M market, this payment is calculated using the following
different consumers in order to combine the two signals th]%r

make the effective day-ahead bid. To facilitate the cateuis, mulation {29
we introduceindividual effective day-ahead bid$) as a set of
instrumental variables to capture individual consumehngres Py = Lew) * pae) + (L) = Leqn)) * Pry ®)
of PCP day-ahead bid, so that = }_, /;. To formulate the \yhere Ly = Y4l is the aggregate real-time load con-
value ofl;_s, we _take on an axiomatic approach by assumirg,mption as a sum 02 individual consumptiopg,, andp, ()
the following axioms: _ _ . are respectively day-ahead and real-time pfices L., is

1) Boundedness: The total effective day-ahead bid isyhe total effective day-ahead load as calculated by the RCP i
bounded by the PCP forecasted load and the sum of ingfe previous section. We note that in the PIM formulationgthe
viduals’ declared loads: is no penalty for real-time load imbalance, but this doesn't

Ja € [0,1]: Loy = aL sy + (1 — a) L (1) change the generality of the formulation.

where L., is the aggregate day-ahead bid. 2Wwithout loss of generality, we assume that all the pricespasitive.
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Once the total payment is known, the PCP has to disembines the three conditions &L, > 0 , AL > 0, and
aggregate it for the share of each participating consumgr.> p,.
Since we assume that the PCP is a non-for-profit schemeWhenA > 0 andp, > pg (caseiq, cases,) or A < 0 and
we expect the sum of these payments to be equal to the < py (cases, caseqp), iNncentives fordeviation reducers
total payment made by the PCP to the market. It is alss stated inAxiom B.3 does not add additional cost to the
fair to assume that individual payments must be increasingoperative(price choice is the real-time price in these cases),
functions of individual consumptions. Moreover, we expecthus the deviation payment of all consumers can be cal@ilate
the payment disaggregation scheme to be aligned with thging p, and the individual payment for each consumer,
overall incentive goals of theooperativethat is encouraging regardless of the case they belong to, is calculated asvillo
participants to either minimize their deviations or to time
shift their loads to lower total daily payments made by the P =1 spg+ (1L —1%) % p, (5)
PCP. To create this incentive structure, PCP divides coassim

into two groups: The first groupléviation reducensare those joms by definition. However, wheds > 0 andp, < pq

who have helped with lowering the total deviation, to WhorQ )or A < 0 and q ( )
the PCP offers a potential reward by giving them a pricg”>¢10» “45¢3b Pr = Pd (€05€2q, CA5C1a),

. . . - ayment calculations need to be formulated differently to
choice between day-ahead and real-time prices. This iiveent_ . . . L
o . . atisfy Axioms B1-B4incedeviation reducersise day-ahead
is in general costly for the PCP and its cost is assumed ta

be shouldered by the second grouge\iation contributork prices In the ch0|ce_ they are given as statediiiom .B'3
who have contributed to the total deviation. These corgsai which in turn result in additional cost for the PCP. This ¢ost
: s mentioned earlier, should be paiddsviation contributors

and incentive mechanisms are captured more clearly in fha o' .
. i ) P y Similar to the effective day-ahead load model, the formula-
following axioms:

1) Balanced Payment: In a non-profitcooperative sum tion for individual payments here is not unique. We condtruc

of all payments made by consumers must be equal to wﬂ% ?vit_nlual payments as follows and will later show that it
the PCP pays to the market, .87, P(it) = Py. satisfies all the axioms: _

2) Positive Marginal Price:: As long as the direction pi o A _ o' 6
of imbalance remains unchanged, i.e., the signAof, = (o = lriey * Pay + &% (Proy = Pay) * Dies 0 ©

Lty — Le(ry remains unchanged, each consumer’s IOaymeWhereS indicates the set of atleviation contributorsaand an

IS an Increasing functl_on _(?f her Iqad. '@(P;)/a(li(t)) > 0. additional cost is added to their payment, proportionahtirt
3) Deviation Incentive:: The first group of consumers, .
share of total deviation.

those who have not contributed to the aggregate load demiati
will be given a choice to pick the pricg,(;) VSpy()) by which  Proposition 2. The payment model satisfies Axioms B.1- B.4.

their deviation payment is calculated. This deviation pagin Proof: First, its easy to show that the formulation is

can in general be positive or _neg_anve._ .balanced(Axiom B.1) and the sum of individual payments is
In order to formulate deviation incentives, as well as devia

tion responsibility inAxiom 4 we define four deviation casesequal to[[B). In the cases whé (5) applies, paym_ents nbtural i
Lo , add up to[(B). However, for cases wheré (6) applies, we have:
for each individual as followscase; : A > 0 and 6" > P lispatAsx(pr—pa)s S s/ o6 —
0,cases : A < 0 and §° < 0,casez : A > 0 and §° < ~ 2zieN fr ¥ Pd pr_ pd €3 jes T
0,caseq : A < 0 and §° > 0. Where A was defined earlier (la+ A) % pa+ A+ (pr —pa) = Ld.*p.dJ.rA*pT.' :
A ; ' Second, the proposed formulation is increasing with retspec
and 5215) = l;(t) - l;(t) for each consumer. Cases 3 and 4

(2), : o the individual load, given the total balance and price

representdeviation reducerswhile cases 1 and 2 represent,. .. . . o

o : irection (Axiom B.2). For cases wherE] (5) applies, this is
deviation contributors

. . N %atisfied by definition. For those cases who ude (6), for the
Assuming all consumers are rational, and assuming individ- AR ]
sake of simplicity we put:

ual payments are calculated using similar formulation as in
(@), this axiom results in the following payments fieviation ; 5% % Zﬁ.\;l & (z—c)(z+a)
reducerconsgmers: o T Y (@+p)
i 12 % pg+ (I —11) * max{pgq, p, HOr cases
P'= 47 i i : 4)
12 pg+ (I —1%) * min{pg, p, } fOr casey

For such cases, the above equation satisfies all four ax-

whenz =%, ¢ = I, a < B andz > ¢ (since the denominator

is the sum of only positive deltas). Then, we prove that the
4) Deviation Responsibility: This axiom is complimentary first derivative of the payment function is strictly poséiv

to the previous qxiom, and states thﬂy_iation contributors ¢ /dy = (2% + 28z + a8 — B + ca) /(2 + 2Bz + )

shall be responsible for potential additional costs, posed

PCP, because of the incentives giverdeviation reduceras ~ Sincea—cf+ca < af—cf+cf = aff < §* thendf /dx <

stated undeAxiom B.3 1 and sinced P\, /dx = pp) + (Pr() — Ppw)) * df /dz and
We now need to formulate individual payments that satisiyr(;) = 0 thend %, /dx > 0. Similar logic applies to the case

these four axioms. As the first step, we distinguish betweeith §* < 0.

scenarios depending on the direction of price change fromFinally, (8) ensuresieviation responsibilityfor case; and

day-ahead to real-time. We consider subscripted letteasd case, and [4) ensures the consumer’s choice dose; and

b for p,. > pg andpy < p,, respectively. For instanc@se;, cases (Axioms B. 3 and B.4). [ ]
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C. Incentive Compatibility wherelimy: _, g, - fu(li) = 0. Since both upper and lower

In this section, we first show that, given the suggestdpundary approach zero ftff — E[i.]~, using a similar logic
scheme, participants behave truthfully in reporting their these boundary approach zero tor— Ei,]*. We can then
pected consumptions, thus the PCP can trust consumers, Ti§8Rclude:
and as a key result of this paper, we show that consumers lim B[ -1 =0
are in general better off if they join a PCP, compared to a la—Ell]
hypothetical scenario in which they directly participatethie \yhich indicates that condition to other consumers beintiiru
market. ful, no single consumer has incentive to change her truthful

Proposition 3. In the proposed scheme, if a consumer a$irategy, thus being truthful is a Nash equilibrium. =

sumes that the aggregate load is unbiased, regardless of #gosition 4. For a given consumer, if PCP is unbiased
distribution of conﬂdence_for other consumers, being twith \yitn respect to aggregate load estimation, relying on PCP’s
about the expected load is a Nash equilibrium. effective bid is a (weakly) dominant strategy. (see AppeByli

Proof: We first prove a lemma that states that the effec-
tive bid, equal to expected real-time demand, minimizes the
expected price; then show that truthful load provided byheac
consumer ensures the optimal expected bid (equal to expecteThe PCP uses a variation of double seasonal autoregressive
demand). exponential smoothing (DSAES) for forecasting aggregated
load [26], [30]. The original formulation is taken frorn [31]

IV. SHORT TERM LOAD FORECASTING

lemma. Assuming normal distribution for real-time prices,
with expected value equal to the day-ahead prié8p(] =
pdﬂ, if the total day-ahead load estimation is unbiased i (t+k) = by + dy b Wy b+ dFe,  (8)
(E[A] = 0) accurate effective bid in the day-ahead market ! T Toetha

(I¢ = 1;) results in a minimum expected electricity price for where 7;(t + k) is the load forecast for the next steps
the consumer (see Appendix A). of current time intervat, s; and s, are the number of time

From the above lemma, the accurate effective bid (equalifgervals in a day and week (24 and 168 respectivély)s
the expected real-time load) yields the least expectedk priéh® Smoothed leveli; andw; are the seasonal index for daily

Accordingly, we set the day-ahead load [ (2) equal,to ~ @nd weekly cyclesk, = [(k — 1) mod si] + 1 and ky =
[(k — 1) mod s3] + 1, and k is forecasting lead time. The

274 o j ) . . : ) .
[ LR L pila(Ly ZJE_N la) (7) term involving ¢ is the autoregressive adjustment for first-
ot djen pila order residual autocorrelation.

A critical step in this
and for the expected value we have: / / ren o e / \ model is to initialize the

B i PR (L= e n 1) e three main model param-
a 'r > ien Pilh eters for daily, weekly
i j d autoregressive adjust-
: Py =S e n B) an SSIVe ad)
=l,—ElL]+E [ ! ]_ij ments. The initialization
ZjEN Pjta Approximate

optimal method introduced in_[30]
cosflicients || uses 10° random initial

In the last term of the above equation, lets assume tt

we can define positive upper and lower boundary for t—— p— opttize points for each model pa-
denominator corresponding ©: By < Y.y pil} < Ba. Optimize a Pt oprmze || rameter as well as the

For the lower boundary, if. — E[l,]~, we have: Newton method for root

. i estimation.
Bl — 1> fL(18) =1 — Bl,] + 22l fE;ZjEN al Autoreaene Dookte onsonal This model however has
. 20 (BL =3, 1 ]=0 two practical problems for
=1l — Ell,]+ 2 Sl ZBKN\I =) / 36-hour load forecast / autonomous s . Fi

S \ our load forecas ystems: First,

because other consumers and the PCP are assumed tc oS - . the level of sensitivity
truthful and unbiased, we have: Fig. 2. Dynamic load forecasting model of the prediction accuracy
A (opt: optimize) to these parameters makes

ElLs - Z . al = Ellr] static parameter estimation less appealing. Moreoverinihe

ialization algorithm is rather computationally intensian
JENNI tializat Igorith th putationally int d

if we setl! = Ell,], the RHS of the inequality approacheslemands disproportionate computational resources. ddste
zero: limys , gy, )~ fr(lX) = 0. In addition, B; results in an we modified the model using a dynamic algorithm that cal-
upper boundary: culates forecasting model parameters once a day to predict
P21 (B[l,] — 1) the 36 hours of load time series. Note that the day-ahead bid
Lz B = includes all the expected values of 24 consecutive hourextf n
! day load, which is in accordance with the day-ahead market
3 This assumption is in accordance with PIJM market priceibigion. functionality. Then, using 12- to 36-hour load forecastiRGP

fu(le) = lg — Ell:] +
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TABLE |
MAPE MEASURE OFDSAES METHOD WITH FIXED AND DYNAMIC *1;0 RPD=-30 A4 RPD=-10 ~ ©-© RPD=10 = ©-8 RPD=30
PARAMETERS Tt NS
ToAa<0 F AmD E - A0 s
- - S ojalml t HER |14 ag
Lead Hours || Dynamic Parameters | Fixed Parameters L15t: : ; B
12 0.0474 0.0552
24 0.0424 0.0468 110
36 0.0497 0.0541

Relative price
=
=1
o

can submit the day-ahead bid at 6PM of the day before tt 100
transactiof(see Fig[R).

This model was implemented in Python on a sample cor o.ss
sumers load data [32]. The results show 9%-15% reduction
forecasting error, an improvement that is the result of gisin oot ———— - ——aol . deb
dynamic parameter updating, in comparison with the mot @ ) © Gl
conventional static parameter methods (Table 1).

Fig. 3. Relative price deviation vs load deviation arehl-time price
deviatio(RPD): (a) aggregate balance is negative &Ad is significantly
V. SIMULATION larger than|d|, (b) aggregate balance is close to zero, (c) aggregate dealan

. . . . . . is positive andA| is comparable tgd|, (d) aggregate balance is positive and
In this section, we first provide some illustrative compu'w is significantly larger thand|, (A:aggregate deviatior: individual load

tational results for the axiomatic models developed in Segeviation).

tion [l We the provide a simulated model of the proposed

scheme, using real-world market data.

negative and vice versa. This results are in agreement with
the results shown in Fif] 3. This opportunity ensures thgt an
consumer with knowledge of aggregate bias may modify her
Céxpected load to the PCP, which in turn reduces the aggregate
deviation. This phenomena can be considered as a negative
feedback loop between the expected aggregate bias and the
individual bias.

A. Numerical lllustration

Fig.[3 shows the results for individual unit price as a fun
tion of individual load deviation as presented in Seclidell
Each figure illustrates the price sensitivity to load dewiator
four scenarios of real-time price deviation (RPD) whefs (
represents the aggregate load deviation. The relative [sic
decreasing as a function of real-time load when the aggeegat
load is negative, although the marginal price is increa¢ieg B. Agent-Based Simulation

Fig. [3a). The opposite case holds for the positive aggregat§ue syydy the performance of the PCP using real-world
'Oa‘?' d_eV|at|0n (see Fid.J 3d). In th? case W'th Zero_aggreg%li%ctricity day-ahead and real-time prices and the réalist
_de‘("’?‘“on’ We can see that f[he optimum price pertains to zqgQ profiles in an agent-based model. We collect a sample
|nd|\_/|d_ual deviation (see Fid.13b). Fmal_ly, if the indiviell repository of simulated load profiles according to the PIJM
deviation can offset the aggregate deviation, one can vbser geographic ared [32]. To benchmark the proposed schemes,
discontinuous price because the consumer switches frong bej, o compare the simulation results witeal-time pricing

a deviation reducetto a deviation contributor(see Fig[Bc). gRTP) scheme. In RTP, each consumer places a bid in the

_In Fig. [4a, we ShOW_ th_e_ results for th_e _electricity uni ay-ahead market and the payment is calculated using her
price as a function of |nd|V|du_aI load dewatmn (qay'aheaéiffective bid, real-time consumption, and market pricessir
bid minus the expected real-time load). In this figure, thg @) simuylations, including all the models for the PCP and
optimum level of deviation is very close to zero for diffeten., <umers are developed using Object-Oriented Python.
levels of MAPE. However, we can see a shift toward right +,o 1odel inputs include the trading time fram)

for higher levels of estimation error. The reason is a highﬂ{e number of consumersV{, hourly load profile for each
price sensitivity to lower values in denominator, i.e., th%?ﬁ '
i

nsumer [;), market day-ahead priced?(), market real-
real-time load. Fig[C4b shows the expected price versus L) y P 4

L o o e prices £,), and the number of simulation round&/§.
|nd|_V|duaI deviation Whe.n the expected tqtal dewat@‘_{z@]) The estimated load and the confidence factors are calculated
varies. The expected price is higher for higher deviatioemvh

here i licibl deviation. H h and announced by each consumer agent. The latter is assigned
there is negligible aggregate deviation. However, the etqae sing a uniform distribution between 0 and 1 and is updated by

price decreases if a c_onsume_r’s load deviation is agai_razst_ ch consumer based on twoperativés historical advantage
gggregate I(.)a(.j de.V|at|or.1.- For m_stance, a consumer k_’e,r_ief'tﬁ) her. The model output include the list of relative prices
its load deviation is positive while the aggregate deviai® (Dyep/Pa OF Drep/pa) Tor €ach set of consumers with similar

4The complexity of the second approach is reduced fO(T * 1015 * level of MAPE.
F(n)) (for each data point) t® (T + 100 x F'(n)/7) when T is the number ~ The trading time frame is set to 3600 hourly time intervals
of historical time steps used (672 for 4 weeks) and F(n) isctiveplexity of  for Feb-July 2015 and we consider the same set of consumers
Newton method for n refers to digit precision. The compotadl intensiveness
is however not a major problem in the proposed PCP as it islleéddd only (One hundred) for P_CP Fmd RTP schemes. To represent a
once a day. consumer’s load estimation error, we use MAPE measure
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The first simulation is aimed at determining the effect of
load forecasting error on consumenedative priceandrelative
price standard deviatiorFig.[3 shows the results for unit price
distribution. In all figures, the x-axis shows the MAPE and
the price variation is expectedly increasing correspogdon
B the forecasting error. Fig. ba compares the price peresntil
] between PCP and RTP. The median relative price is equal
- r to one for all consumers because expected values of real-
sonosl 6y gi_-g | time and day-ahead prices are very close to each other in the
“a.,,.-g_' e PJM market. In PCP, the price distribution is skewed toward
[ lower prices because, assuming an unbiased load foregastin
8y . . . .. ..
ooongh e . o — — g and price dlstnbu_tlo_n and positive deviation, the lowelues
day-ahead bid deviation,/E1.] of p, and p, statistically apply to 25% of the cases. Also,
(@) p- applies to other 50% of cases and a finally quarter of
the prices remain between the two values (50% higher and
@4 Ea=o QO EAJ>0 AA Eal<0 50% lower thanp;). So, less than half of the relative prices
T can stay higher than the median price and this is why the
distributions are skewed toward the lower prices. Note that
| same logic can be applied to negative deviation, however,
® this logic only applies to consumers whose deviation cannot
offset the aggregate deviation. For higher levels of MAPIg, t
Y distribution approaches a normal distribution with mealuea
equal to one.
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55 i In electricity wholesale markets, day-ahead prices offer
real-time load deviation {100+ (i~ L/l clear incentives to consumers for flattening their loadif@s.
(b) However, risks associated with price volatilities in réaie
Fig. 4. Electricity unit price vs the effective bid deviati@nd real-time load market, among other things, discourage consumers from ac-
deviation: a) the expected relative price versus the bidatien with unbiased tive participation in the electricity market. Any autonounso
ggggg:g{:xg b) the expected relative price vs real-time deviation wbittsed o po e that offers consumers lower risk associated with rea
time price volatility can incentivize active demand-sidann

agement based on market prices. In this paper, we introduced

that evenly varies between 0.02 and 0.20. The MAPE of 0@ autonomousooperativeagent that applies load forecasting
aggregate forecasting model, presented in Se€fion IV,sis |@long with axiomatic day-ahead bid and payment sharing
than 0.05 in this model. To diminish the effect of a Sing|g1odel for the electricity wholesale markets. We contribute
load profile (rather than MAPE) on the outcome, we considt® (i) axiomatic models for day-ahead bid calculation anstco
50-round simulations with random MAPE assignments 1aring and (i) a dynamic coefficient updating in a comjetit
consumers. For each consumer, we assume that the confiddfg@easting technique.
factor (p;) is a random value between 0 and 1 in the first The paper offers a novel incentive-compatible scheme for
iteration, drawn from a uniform distribution. For the pusgo electricitycooperative to achieve a collective goal of reducing
of this simulation, we further assume that each confidenB&ce risk for the participants while enabling the prospect
factor is updated to the average of its previous value affl reduced average price for individual consumers, using a
1(0) in case the PCP average price is lower(higher) than RPpttom-up, axiomatic approach. It is mathematically prove
average price during the last 24 hours. Higl 5¢c shows tHat the provided scheme is not only beneficial for individua
evolution of confidence factor (averagéor all consumers and consumers to participate in, but also provides incentives t
p; for consumers with different MAPE levels). The averagBarticipants to adopt a truthful behavior when interacting
confidence factor converges to lower values for consumé¥§h the scheme. Using agent-based simulation, we tested th
with higher MAPE, mainly because they are more |ike|proposed scheme with real-world data of PIJM markets and
to be adeviation contributor The statistical measures forrealistic consumer load profiles. The results demonsttete t
each data point are generated using a set.&f¢ calculated the PCP scheme, compared to a hypothetical RTP scheme
relative price8. The statistical measures include relative pricen Which individual consumers interact directly with the
median, standard deviation and various percentiles of edBRrket - reduces electricity price variations for all camsus.
set of Samp'e pointsl To better represent the overall tr'End'In addition to being truthful to PCP about their estimated
Fig.[8, we don't show all of the data points. load, consumers are incentivized to decrease their egimat
variance since higher estimation accuracy leads to higher
SIncludes the 50 rounds of simulations on 3600 time steps. confidence factor and lower prices.
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Fig. 5. Simulation results for the electricity price as adiion of the load estimation error (MAPE): (a) Relative upiice (the final price divided by
the day-ahead price) percentiles and (b) Relative pricedatal deviation (normalized standard deviation with thg-aleead price) for RTP and PCP. The
agent-based simulation includes 100 consumers, (c) cowfdéactor evolution in multi-agent simulation.

APPENDIXA
PROOF OF THELEMMA [[II=C] whena = Elp, — palp» > pa] > 0. Also by definition
Let's assume the following probabilities for a specific tim(E[A‘Z—flrur > lo,A > 0] is a positive number4S" > 0)
intervalt: p = Plp, > pa], w = P[Lr > L], and6 = P[l, > and E[2|I, < I.] is negative 0%~ < 0); this ensures that
I!] for the consumet. According to thepartition theory the E[%] ZTpd and day-ahead bid equal to real-time consumption

expected payment by the consumer is (for simplicity, we @voisyres the lowest expected price equahto
repetitivet and showcasewith letter c):

p " APPENDIX B
BTt = pwb B[*P4=Pr ey, PROOF OF THEPROPOSITIONZ]
+ pw (1 — 0) E[L2LEPe 0y ] 4+ p(1 — w)0E[palcsal In the cases when other consumers are biased in their
1—w)(1—0E 8" A(pr—pa) . estimation Whll_e th_e PQP is not biased, accord|r_lg[Ib (2)
ol =) ) [pd+ AST L, e} the positive estimation bias by other consumers will reduce
+ (1= p)wbE[pg + %Mb] the expected value of day-ahead load by consuimaiso a
+ (1= p)w(1 = 6)Elpaleas] negative estimation bias will increase the expected value o

s day-ahead bid. In other word#;[A] > 0 leads toFE[d] < 0
+ (1= p)(1 — w)O B[Pl oy and vice versa if the consumer has been truthful with its
+ (1= p)(1 = w)(1— §)E|lpatd e, gy estimation.

el ) Bl b fcas] ®) Also, based on[(10) the final expected price is combination

of first part, with expected value q¢f; and the second part,
This can be combined to much simpler expression. As thicluding positive values. Lets assume that the= P[A >

result, the equation equals to: 0] > 0.5, then the most influential term in the equation will
B[£] = Kpa+ pwBlE]Elpa — prlpr > pa] e SiA
+ (1= p)(1 — W) E[]Elpa — prlpr < pdl wWOBl Sy lr > o) A > 0]
+p(l—w)(1 - 9)E[A‘Z,Ah |caser] E[pr — palpr < pal and sincev is already increased, we can reduce the coefficient

w * 6 by reducing the probability of positive load deviation
P[6* > 0] = 6. Since this effect holds for ang[A] > 0
with a symmetric distribution, any individual deviationath

In the last expressionk is a constant, the, has normal balances the aggregate deviation can reduce the expected
distribution with the meapy, thenp = 0.5. Also, the expected price. The same logic holds for cases wi{A] < 0 or
value of A is assumed to be zero by consumerswse 0.5. w = P[A > 0] < 0.5 when reducing the aggregate deviation

+ (1= p)wbB[ 8- |cases] Elp, — palpr > pa]

Also we have: benefits the individual consumer. In simulations, this@ft@n
further reduce the final price to < pg4, as it is illustrated in
E[Pd—Pr|Pr >pd] = _E[pd _pr|pr <Pd] F|g[@

We simplify the final formulation accordingly as:
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