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Experimental Implementation of Frequency
Regulation Services Using Commercial Buildings

Luca Fabietti, Tomasz T. Gorecki, Faran A. Qureshi, Altuğ Bitlislioğlu, Ioannis Lymperopoulos, Colin N. Jones

Abstract—This paper illustrates the potential of commercial
buildings to act as frequency reserves providers through an
experimental demonstration conducted in a multi-zone university
building. The proposed control methodology is presented in
detail, including the control architecture, the controller design,
model identification, and hardware description. Finally, the
effectiveness of the presented approach is tested by means of
simulations and experiments in a controlled environment.

Index Terms—Ancillary services, commercial buildings, area
control signal, frequency regulation, model predictive control
(MPC).

I. INTRODUCTION

THE need to modify the current structure of the electric
grid into a more sustainable configuration motivates a rapid
increase in renewable generation. However, renewable energy
sources are intrinsically volatile and uncertain, which poses
new engineering challenges in order to guarantee the proper
and safe functioning of the grid [1].

One of the main instruments for regulating, at any time, the
balance between generated and consumed power is a set of
reserves also known as ancillary services. Ancillary services
can be divided into two categories: the first type corresponds
to those services that are activated to respond to normal
fluctuations of the grid. The second type is instead used in
case of a contingency as, e.g. the loss of a power plant [2].

In this paper, we focus on frequency regulation which falls
into the first category. In the Swiss market, the grid operator
buys reserve power over a specified period in the future
by means of weekly/daily auctions from a set of Ancillary
Services Providers (ASPs). During real-time operation, the
grid operator calculates the mismatch between generation and
production and computes the so-called Automatic Generation
Control Signal (AGC signal) required to close this gap. The
AGC is transmitted in real time to all participating ASPs that
activate according to the size of their accepted bids in the
auction.

Historically, these kinds of services were offered by the
supply-side which adapts power generation according to the
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AGC signal. However, maintaining generation resources in
standby comes at the cost of increased operating and mon-
itoring expenses. Moreover, the AGC is sampled at a high
frequency and even highly responsive generators are, in gen-
eral, not capable of offering precise power tracking [2].

Recent research has pointed out that the demand-side could
provide cheaper and more reliable ancillary services [3], [4].
In fact, because the AGC is close to a zero-energy signal,
storage technologies have been widely acknowledged to be the
ideal suppliers for this type of service. However, storage using
electric batteries has several drawbacks that currently prevent
their extensive use: they are expensive, not environmentally-
friendly and have a limited functional life. Therefore, the
research community has also considered different kinds of
controllable loads, such as buildings.

With 40% of the total energy consumption worldwide [5],
buildings represent a tremendous untapped energy storage
source. Furthermore, buildings are inherently characterized
by a large thermal inertia that allows to think of them as
virtual storage devices capable of decoupling production from
consumption.

The fact that commercial buildings are to be preferred,
for providing services to the grid, over residential buildings
has been underlined in many contributions [6], [7], [4]. The
reasons underpinning this choice can be summarized in the
following: 1) They are typically characterized by a larger
HVAC system with respect to residential buildings. This corre-
sponds to higher energy consumption which, due to the current
structure of the energy market, makes it easier for them to be
recognized as providers of ancillary services 2) The power
consumption of most commercial buildings can be varied
continuously as opposed to typical switched control systems
present in residential buildings 3) Most commercial buildings
are already equipped with energy management systems which
could facilitate the communication with the grid operator and
allow simpler variation of their energy consumption.

This paper presents experiments of AGC tracking carried
out over 10 hours periods in a 90 sq. meters (∼ 1,000 sq. ft.)
section of the Automatic control Lab at École Polytechnique
Fédérale de Lausanne (EPFL) with four different zones. Two
model-based methods are proposed to compute the optimal
flexibility bid, compared in simulation, and implemented on
the real system.

A. Related work

Model-based control strategies such as Model Predictive
Control (MPC) have been extensively studied and successfully
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applied on buildings in order to reduce their operating costs
[8], [9]. Several simulation studies have also been conducted
on buildings showing their capability of offering ancillary
services. In [10], Hao et al. propose a control architecture to
track the regulation signal by modulating power consumption
of the ventilation system. In another interesting contribution,
Hindi et al. [11] design a multirate MPC controller to jointly
manage the provision of both regulation and demand-response
to compensate for demand-supply imbalances. In [12] the
authors describe a formal method to characterize, as a virtual
battery, the deviation in power consumption that a building
can support around a nominal consumption. Another relevant
contribution is provided by [13] where Maasoumy et al.
propose an MPC min-max approach to define and quantify
the admissible flexibility of a single-zone commercial building.
Finally, aggregation of multiple buildings is considered in [14]
and [15], where Vrettos et al. propose a three-level control
architecture for the provision of frequency control reserves by
a set of office buildings.

All the previously mentioned works focused on simulations;
on the experimental side, very few contributions have been
published. In [6], [13] authors empirically estimate the po-
tential power flexibility of a university building. The power
consumption of the main ventilation system is indirectly varied
acting on the supply duct static pressure setpoint value. Dif-
ferent experiments are conducted showing how the consequent
fluctuating air mass flow does not affect occupants’ comfort.
Another published example of implemented HVAC control for
frequency regulation is [7] where power tracking is provided
by adjusting fan power consumption. In particular, the building
receives a filtered version of the AGC signal which is then
tracked with respect to the nominal baseline computed by the
pre-existing building controller. Experiments were conducted
on a 40,000 sq. ft. over a 40 minutes time duration.

B. Contribution of the paper

Based on our previous works [12], [16], in this paper
we present the design of two MPC based controllers for
the provision of frequency regulation services using multi-
zone commercial buildings. We extend previous results, firstly
providing a formal method to quantify the flexibility of a com-
mercial building in a multi-input framework. The construction
of the uncertainty sets based on real recorded data is discussed,
and two different strategies to solve the problem are compared
with extensive simulations. Secondly, at-scale experiments of
AGC tracking following the rules imposed by the current
regulation of the electricity market in Switzerland are reported.
To the best of the authors’ knowledge, this work represents the
first report of experimental results for frequency regulation,
based on real recorded AGC signals, using a commercial
building over a realistic time range, and the first work that
applies a formal method to compute an optimal bid for AGC
provision on an real system.

C. Structure of the manuscript

The rest of this paper is organized as follows. In Section II
we present the problem formulation of ancillary service pro-
vision using commercial buildings. In Section III, we describe

TABLE I
PARAMETERS DESCRIPTION

Symbol Description
a AGC signal
γ Capacity Bid
p̄ Baseline Electric Power Consumption

pref = p̄+ γa Power Consumption Tracking Reference
ε = pref − p Tracking error

u Command to the HVAC
q Thermal input to the building
p Power consumption of the HVAC
y Output of the building
w Weather Disturbance

the controller design. In Section IV, simulation studies are
analyzed. Section V describes experimental results. Section VI
provides a discussion on the applicability of the method
proposed, while Section VII summarizes our conclusions and
proposes some future improvements and directions.

II. PROBLEM STATEMENT

In the following, the formulation of the problem is intro-
duced and tailored to the particular structure of the Swiss
electricity market. In most countries, the process of frequency
ancillary services is, however, similar. The reader is referred
to [17] and reference therein for an exhaustive overview of
frequency and voltage control ancillary services in power
systems.

Notation: Throughout the article, Rl denotes the l-
dimensional real space, upper case letters are used for matrices
and lower case for vectors. ai represents the value of vector
a at time i whereas, bold letters are used to denote sequences
over time, e.g. , p = [pT0 , p

T
1 , . . . , p

T
N−1]T .

The tracking service procurement, for the case of buildings,
involves two phases as illustrated in Figure 1: bidding and
tracking.

The bidding phase is done offline and consists in advertising
to the grid operator two quantities, namely a baseline energy
consumption p̄, and a capacity bid γ. The latter represents the
highest deviation (in absolute value) in power consumption
with respect to the purchased baseline the ASP is willing to
track over the activation period. More specifically, if a bid of
γ = 1MW is accepted, the provider will then receive an AGC
signal with a maximum magnitude of ± 1MW .

γ p̄i

x +
-
+ Controller HVAC

Building

Bidding

Tracking

ai γai εi ui

qi
yi

wi

pi

Fig. 1. Architecture of the control system for tracking service procurement.

The second phase is tracking. This phase is performed
online as follows: considering the current state of the net-
work, the power system operator will compute, at time i, a
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normalized AGC signal ai, which will be sent to the service
providers according to their respective accepted bids, so that
the magnitude of the AGC signal they receive is proportional
to their bid. The providers then have to modify their power
consumption pi so that

|εi| := |pi − p̄i − γai| ≤ rγ (1)

where p̄i is the baseline purchased for timestep i, pi the actual
power consumption at timestep i, ai the normalized AGC
signal and γ is the capacity bid. r represents the maximum
tracking error allowed, as a percentage of the total submitted
bid. This essentially states that the provider must consume the
sum of the baseline power it has purchased and the scaled
AGC signal it receives and that its tracking error εi must be
less than a percentage of the capacity bid γ.

The goal of the controller is to choose the inputs to the
HVAC system u in order to maintain the tracking error small
enough as specified by equation (1), and, at the same time,
satisfy constraints on the system.

At the time of bidding, the provider is therefore faced
with an economic decision that can be conceptualized by the
following optimization problem:

Problem 1 (Bidding Problem).

minimize Ea[J(γ, p̄,a)]
s.t. ∀a ∈ Ξ

u ∈ U(x, ψ,w),
‖ε‖∞ ≤ qγ

(2)

where the tracking signal a is uncertain and the decision
variables are the capacity bid γ, the committed baseline con-
sumption p̄, the input trajectory u and the power consumption
trajectory p. U(x, ψ,w) is a set representing the admissible
input trajectories for the system and whose construction is
detailed in Section II-B.

At the time of decision, the AGC signal a is not known
yet. Therefore this problem is an “uncertain” optimization
problem [18], [19]. The cost function J captures the total cost
of operation and depends on the power consumption p, and
the AGC signal a. Since the uncertainty is not yet revealed, it
is minimized in expected value. Constraints, on the other hand,
are handled in a robust fashion, and need to be satisfied for all
values of the uncertainty in a set Ξ. This modeling choice is
motivated by the market rules: the tracking requirement holds
at all times irrespective of the tracking signal a.

The AGC signal a is revealed progressively and it is possible
to re-adjust the control action u accordingly, therefore the goal
of Problem 1 is not to fix decisions u once and for all, but to
rather optimize over control policies so that u = π(a). This
type of uncertain optimization is referred to as a multi-stage
optimization problem. In the bidding problem, the first stage
variables are the capacity γ and the baseline p̄, while variables
u and p are later stages variables. The problem therefore has
N+1 stages. Notice that the total duration of the bid is fixed in
advance (for example one day), and is divided into N stages,
according to how often the uncertainty is revealed and the
control decision readjusted. Problem 1 can be thought of as
an optimization over causal control policies π, i.e. decisions

at stage k depend only on observation of the uncertainty up
to time k.

In order to solve Problem 1, the following elements need
to be defined:
• the choice of the cost function J (Section II-A)
• the set of feasible trajectories U (Section II-B)
• the choice of the uncertainty set Ξ (Section II-C)
• the parametrization of the control policy π (Section III)

A. Choice of the cost function J

The building receives a payment proportional to the capacity
bid and pays for the energy it purchases. This part of the cost
is deterministic. The balance between the two depends on the
difference between the cost of power and the unit reward price
for capacity. In this work, the goal is to illustrate AGC tracking
by buildings, therefore we maximize the capacity participation,
i.e. J = −γ. It has been shown in a previous work [16]
that most of the economic benefit in participating in ancillary
services provision comes from the capacity bid. Therefore this
is reasonable simplification. We refer the reader to [16] for the
treatment of the full cost function.

B. Building and HVAC modeling

A dynamic model of the building and the HVAC is nec-
essary. We assume that the models take a discrete-time state-
space form:

HVAC:

 ψi+1 = fHVAC(ψi, ui, wi)
qi = g(ψi, ui, wi)
pi = h(ψi, ui, wi)

(3)

Building:
{
xi+1 = Axi +Bqqi +Bwwi

yi = Cxi
(4)

where xi and ψi are the state vectors describing the building
and HVAC system, respectively, ui the command inputs to
the HVAC system (set-points, switching on/off sequences,
etc.), qi the vector of thermal power inputs provided by the
HVAC to each zone, pi the electric power consumption of the
HVAC, yi the zone air temperatures at time step i, and wi

the vector of external disturbance affecting the system. The
system is subject to a number of constraints. We define comfort
constraints at the level β as |yi − Tref| ≤ β. The inputs are
also constrained to lie in a convex set which describes physical
limitations for the equipment u ∈ U.
We define the admissible input trajectories set as:

U(x̄, ψ̄,w) =


u

ψi+1 = fHVAC(ψi, ui, wi)
qi = g(ψi, ui, wi)
xi+1 = Axi +Bqqi +Bdwi

yi = Cxi
|yi − Tref| ≤ β
ui ∈ U
x0 = x̄, ψ0 = ψ̄
∀i = 0, . . . , N − 1,


(5)

where x̄, and ψ̄ describe the current state of the system.
U(x̄, ψ̄,w) represents the set of all the input trajectories that
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preserve occupants comfort while respecting physical limits
of the actuators. Note that the building is also affected by
external perturbations w including weather and internal gains.
It is assumed that these perturbations can be forecast. In
the bidding phase, they are, therefore, assumed to be known
in advance and we enforce u ∈ U(x̄, ψ̄, w̃) with w̃ the
forecast for the disturbance. We will see in Section V-C
how experiments demonstrated that forecasting errors did not
compromise the performance of the algorithm in a significant
way.

C. Uncertainty set construction

In this section, two methods for the construction of the
uncertainty set related to the AGC signal are presented.

In the first method, the uncertainty set is obtained by
constructing the convex hull of a finite number, Ns, of past
realizations of the AGC signal a. The analytic description of
the resulting set, Ξts, reads:

Ξts =


Ns∑
j=1

λ(j)a(j) |
∑
j

λ(j) = 1, λ(j) ≥ 0

 (6)

For the second method, a data-driven design approach is
also used to construct the uncertainty set. It is known a priori
that the normalized AGC signal has magnitude at most one.
Therefore, we have Ξ ⊆ B∞(1) = {a | ‖a‖∞ ≤ 1}. Using the
uncertainty set Ξ = B∞(1) disregards statistical information
about the uncertainty available under the form of scenarios.
An approach inspired by [20] can be used for uncertainty
set design. The key idea is to use the scenarios to fit the
uncertainty set in an optimization problem. Focusing on the
integral of the AGC signal, we notice that: a) it is not too large
in past scenarios, b) it intuitively is a key factor in determining
if the system can support this signal. We propose to build the
set Ξ as follows:

Ξms = {a | ‖a‖∞ ≤ 1, ‖ cumsum(a)‖∞ ≤ smax} (7)

where cumsum(a) denotes the cumulative sum of the signal a
((cumsum(a))i =

∑i
k=1 ak). smax is chosen as the worst-case

cumulative sum on a number Ns of previously observed AGC
realizations.

A conceptual sketch of the two uncertainty sets is given
in Figure 2. In addition to the historical scenarios, Ξms
contains more extreme realizations that are less likely to be
observed in reality. If the same set of samples is used in both
approximations, Ξts ⊂ Ξms and using the latter set will lead
to more conservative solutions.

III. SOLUTION TO THE BIDDING PROBLEM

In this section, we propose two different methods, detailed
respectively in Section III-A and Section III-B, to approximate
the uncertain bidding Problem 1. Finally, Section III-C is
devoted to the description of the online tracking controller.

A. Two-stage approximation

This solution method approximates the bidding Problem 1
by a two-stage robust optimization problem. Instead of having
a multi-stage control policy parametrized by u = π(a), a two-
stage control policy is assumed. The causality requirements are
relaxed and it is assumed that the uncertainty is revealed for
the whole prediction horizon at once. First stage variables are
the capacity γ and the baseline power consumption p̄ which
are decided before the realization of the random parameter
a, while the second-stage decisions u can depend on the
realization of the uncertain parameter. Ξts is used as an
uncertainty set in this solution method.

For each scenario of the uncertain parameter, there is a
separate trajectory of second-stage decision variables resulting
in the following optimization problem:

minimize −γ
s.t. u(j) ∈ U(x̄, ψ̄, w̃),

‖ε(j)‖∞ ≤ qγ
∀j = 1, . . . , Ns

(8)

where the superscript j defines the optimization variables
corresponding to the jth scenario of the uncertain parameter
and Ns is the total number of scenarios. The baseline power
consumption p̄ and the capacity γ are fixed over the whole
activation period.

B. Multi-stage approximation

The second approximation scheme we present relies on the
main assumption that the system to be controlled is linear. This
assumption is discussed in Section VI. The main advantage
of this second approach is that the multi-stage structure of
the original Problem 1 is preserved. It is known that solving
a multi-stage problem based on a scenario tree approach is
subject to the so-called “curse of dimensionality”, meaning
that complexity increases exponentially with the number of
stages. A popular approach is therefore to use decision rules
[21] to parametrize the policy space and reduce it to a finite
dimensional one. We use linear decision rules due to their
simple form and nice computational properties:

ui =

i∑
j=0

Mi,jaj + vi (9)

where Mi,j and vi are the new decision variables. To shorten
notation, we vectorize equation (9) as:

u = Ma + v (10)

The uncertainty set considered in this solution method is
Ξms. The problem takes the form:

minimize −γ
s.t. u ∈ U(x̄, ψ̄, w̃)

u = Ma + v
‖ε‖∞ ≤ qγ
∀a ∈ Ξms

(11)

Under technical assumption (mostly convexity of the set Ξms),
problem (11) can be transformed into a convex program.
For more details the reader is referred to [12] where the
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⌅ts ⌅ms

Fig. 2. Conceptual sketch of the construction of sets Ξts and Ξms. The grey
dots, that represent possible realization of the the unknown AGC signal, are
used to fit the two uncertainty sets as described in section II-C.

challenge of optimizing simultaneously the uncertainty set and
the control policy is tackled.

Remark 1. The two approaches differ in their level of con-
servatism. Problem (11) requires the solution to be immune to
all possible signals drawn from the polytope Ξms. Secondly,
the causality requirement is relaxed in Problem (8), which
is an optimistic assumption in the sense that it improves
the optimal value of the problem. It can be shown that the
optimal objective value function is lower in Problem (8)
than in Problem (11). On the other hand, the multi-stage
approach has the advantage of retaining the original multi-
stage structure and the causality requirement with a limited
sacrifice of performance.

C. On-line operation

In the preceding sections, the bidding problem was detailed.
This problem is solved at the beginning of the activation period
to determine the capacity bid γ and the baseline p̄. These
quantities are then fixed for the duration of the activation. In
closed-loop, slightly modified versions of problems (8) and
(11) are respectively solved at each time step with a shrinking
horizon, and with the baseline power consumption p̄ and
the power capacity γ being fixed. In the two-stage case, the
problem is further modified such that the first time step of
the input and the state trajectories are first stage variables
while variables for the rest of the horizon are still second
stage decision variables. In both cases, the aim of the closed-
loop controller is to determine a feasible command input to
the HVAC system, u0, to each zone so that a high quality
tracking service is provided while making sure that thermal
constraints are satisfied.

IV. SIMULATION RESULTS

This section compares in simulation the two-stage and the
multi-stage approximations discussed in Section III-A, and
III-B, respectively.

A. Simulation setup

The model of the experimental setup, described in Sec-
tion V-B, is used for simulations. The sampling period is
chosen equal to 15 minutes which provides a nice compromise
between temporal resolution of the control and computational
complexity of the problem formulation. The comfort range for

temperature is chosen as 21 ◦C to 25 ◦C (β = 2oC). Perfect
tracking of the unknown AGC signal is also required (r = 0).

To solve the bidding Problem 1 and compute the maximum
power capacity that the building can support over the acti-
vation period, we use both the two-stage and the multi-stage
approach. To this end, the two problems (8) and (11) are solved
using, as the uncertainty set, the two robust sets Ξms and Ξts,
respectively. In particular, the two sets are constructed offline
as described in Section II-C. The scenarios used to perform
this task are obtained by breaking the yearly normalized AGC
signal of 2013 into 876 ten hour samples. It is assumed in
simulation that the temperature is close to 5oC, which was
the one used for steady-state computation. Solving the two
bidding problems results in different values for the optimal
bid γ? and baseline p̄?. To test the robustness, and quality
of the solution, historical realizations of the AGC signal of
2014 are considered for validation. The AGC for 2014 is also
broken into 876 ten hours test instances. Each ten-hours test
AGC sample is multiplied by the optimal power capacity γ
and added to the baseline p̄ to obtain the total power signal
to be tracked by the system. For the two-stage approximation,
an open loop optimization problem is solved for each ten hour
test sample to optimally distribute the power across the four
zones while respecting the comfort constraints. Similarly, for
the multi-stage approximation, the optimal affine control law
parametrized by M? and d? is used to compute the open-loop
trajectories of the zones temperature. The result is depicted in
Figure 3.

B. Analysis of results

As seen in Figure 3 there are a few differences between the
two approaches both in terms of bid capacity and of thermal
response of the system while providing AGC tracking. The
multi-stage approach is more conservative and results in a
capacity bid of ±1.85kW while the two-stage approach results
in a capacity bid of ±3.2kW . This is visible in the bottom
plots of Figure 3 where the AGC signals and their maximum
amplitude are shown. The computed capacity represents 25%
and 43% of the maximum available power, respectively. The
resulting temperature trajectories in the four zones of the
building for all the considered AGC test samples are shown
in the top plots of Figure 3. For the multi-stage approach,
the zone temperatures stay more closely around 23 ◦C which
represents the most robust state to be in to absorb both positive
and negative realizations of the AGC. For the two stage
approach, temperatures are closer to the constraints and violate
the constraint slightly for a few AGC test samples.

V. EXPERIMENTAL RESULTS

A. Testbed description

The experiments were conducted in four office rooms
accounting for a total area of 90 sq. meters. The rooms
are characterized by a concrete heavyweight structure with
limited glass surface. For the sake of experiments, the original
heating system consisting of hot water based radiators was
switched off and each room was equipped with a commercial
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Fig. 3. Open-loop predictions for the AGC multi-stage and two-stage controller for real AGC signals from 2014. The obtained capacity and baseline obtained
off-line on data of 2013 are used to compare the two approaches applying 876 different signals extracted from the data set of 2014. Upper: Temperature in
each of the 4 zones (different colors) during activation period. Lower: AGC signals superimposed on the computed baseline (black dashed line) and capacity
bid bounds.

electric heater. For temperature measurements, Aeotec Z-
Wave Multisensor were used. The sensors communicate their
measurements to a local server through a Z-Wave network.
Finally, all the acquired data are uploaded to a web database
with a five minutes frequency.

The heaters are rated at 1850 Watts at 230 Volts, summing
up to a total maximum power capacity of 7400 Watts. The
heaters are normally equipped with a thermostat and a switch
to adjust the level of heating between three distinct levels.
In order to be able to modulate their power consumption
continuously, the heaters were customized with additional
hardware that allows pulse width modulation (PWM) at 4 Hz.

Power modulation of the heaters is managed by custom Bea-
gleBone Black (BBB) micro-computers. The communications
is handled using YARP [?] which is an open-source software
supporting cross-platform data interchange. All four heaters
are centrally controlled by the tracking controller running on
the main server. The server collects temperature measurements
from the web database, decides on the allocation of the AGC
signal among heaters and communicates the power reference
to the microcomputers, through Ethernet. A schematic of the
system is depicted in Figure 4.

B. Modeling and Validation

The model of the HVAC system in our experimental setup
is relatively simple. The control input to the system is repre-
sented by the pulse-width modulation ratio α to each heater, so
that ui = αi and U = [0, 1]4. This directly results in an electric
power consumption which is a linear map of the control input,
i.e., p = αPmax. Finally, the heaters being resistive elements,
the power consumption directly translates into a thermal input
to the building, so that q = p = αPmax.

The model of the building (4) takes as inputs the thermal
fluxes from the radiators and outputs the temperatures in each
zone. It captures how the heat is circulated in the room.

Fig. 4. Schematic of the experimental setup

Each zone was modeled with a second order Auto Regressive
model with exogenous inputs (ARX) [22] calibrated using
experimental data that were collected during December 2014.
The model takes the form:

δyk+1 = a(z)δyk + bq(z)δqk + bw(z)δwk (12)

where z denotes the delay operator and δy = y − yss with
yss the steady state around which the model is identified.
Definitions of δq and δw are identical. Due to nighttime
experiments, the main source of disturbance is the outside
temperature. Due to their slowly varying nature, no dynamic
model was identified for the effect of w: instead, a steady-state
relation between qss and wss is identified. Through regulation
experiments, it has been identified that to maintain an indoor
temperature of 23oC when the outside temperature is at an
average 5oC, the thermal input required was qss = pss =
[0.18, 0.27, 0.72, 0.9] kW which corresponds to a command
input to the heaters equal to uss = [0.10, 0.15, 0.40, 0.50].
The full model of the building is obtained by combining the
individual models of the rooms and has four inputs (heat
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The computed trajectory is then compared with the actual measurements.

input in each room) and four outputs (temperatures). It is
transformed from input-output form to state-space form as
required in equation (4). Figure 5 validates the model for
one of the rooms by comparing the actual and the simulated
indoor temperature driven by the same input sequence for a
time horizon of 10 hours. The model adequately captures the
dynamics of the real system with a maximum prediction errors
that is smaller than 0.5oC for the whole prediction horizon.
Similar results were obtained for the other rooms and are not
reported for the sake of space.

C. Experiment

Experiments have been performed to test the algorithms
described in Sections III-A and III-B. Experiments have been
conducted over periods of 10 hours from 8 pm to 6 am
on different days in February and March 2015. During the
experiments, the outside conditions were relatively consistent
with outdoor temperature ranging from 4 to 10oC. In partic-
ular, since the outside temperatures were close to the ones
experienced during the identification procedure, the identified
steady-state model for outside temperature could be used.
For the computation of the bid, it was assumed that the
temperature at the beginning of the experiment is 23oC to
allow a meaningful comparison between different days, and
with the simulation results. Therefore, the temperature was
regulated to this value before each experiment. Since the same
model and initial condition was used in simulation and in the
experiment, the result of the bidding problem were the same,
as detailed in Section IV-A, with optimal bids that correspond
to 25 and 43 % of the installed capacity, respectively.

For the experiments, different realizations of the AGC signal
were used for testing. After the commitment of the bid and
baseline, the computation of the control inputs, which deter-
mines how energy is split across the rooms, is performed with
a time step of 15 minutes, therefore allowing to compensate
partly for forecast errors. In practice, the frequency of update
of the AGC signal is faster than 15 minutes, but the controller
computed can be used to apply control actions at a faster rate.
A rate of one minute was used in the experiments. A Kalman
filter is used to estimate the state of the system.
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Fig. 7. Open-loop validation of battery multi-stage approach applying
an ”extreme signal extracted form the polytope Ξms. Upper: Temperature
variation for each zone. Middle Up: Power distribution among zones. Middle
Down: Extreme signal variation and capacity bid. Lower: Extra energy stored.

After computing optimal bids solving respectively Prob-
lems (8) and (11), 4 closed-loop experiments were run, ap-
plying two different values of the AGC signal. Results are
reported in Figure 6. For each experiment, four subplots are
shown. The first one shows the evolution of the temperature in
the four rooms, the second depicts the total power consumption
in the four rooms and how it is split between the rooms. It
can also be observed there how the energy dispatch in the four
rooms is re-adjusted in closed loop every 15 minutes. The third
plot shows the scaled AGC signal that needs to be tracked
and the fourth plot shows the integral of the AGC signal over
time, which represents the energy stored in the system as a
result of the tracking. In the case of the two-stage method, the
computed bid is higher and, therefore, results in larger tracking
requirements which drive the temperature closer to the comfort
limits. This confirms the results obtained in simulations. Small
constraint violations are observed in the case of the two-stage
method. This is expected since already in the case of perfect
predictions and no model mismatch in simulations, the two-
stage method displays an “agressive” behaviour and runs very
close to the constraints. The magnitude of those violations is
however below 0.5oC.

It has already been highlighted that the conservatism of
the multi-stage approach is partly due to the fact that it
makes sure the system can track specific realizations of the
AGC signal that are not very likely to be met in practice.
One such ”extreme” signal was chosen and another closed
loop experiment was run. Results are shown in Figure 7.
An interesting feature visible in this figure is the correlation
between the temperatures in the rooms and the integral of the
AGC signal (that can be thought of as the energy stored in
the system as a result of tracking the AGC). It validates the
idea that a battery is a reasonable proxy for the building in the
sense that the building can also be “charged” and “discharged”
with thermal energy over time to provide flexibility.

VI. DISCUSSION ABOUT THE EXPERIMENTAL SETUP

A. Applicability to HVAC systems
1) Electric Heating: The electric heaters were chosen for

the following reasons: 1) Modelling electric heaters is simple
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(c) 2nd AGC signal
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Fig. 6. Four experiments of AGC tracking. Two selected AGC signals, extracted from real data of 2013, are used to test and compare the two proposed
controllers. Upper: Temperature variation for different zones. Each color corresponds to the measured temperature in each zone. Middle Up: Power distribution
among zones. Middle Down: AGC signal variation and capacity bid. Lower: Integral of the AGC

2) It is possible to measure their power consumption directly,
therefore, permitting to analyze the validity of the results.
3) They are highly responsive elements which permits to vary
their power consumption at high frequency. This is a key ele-
ment to offer frequency regulation services as fast continuous
control is required. 4) Electric heating represents a significant
share of the heating provision for residential and commercial
buildings in Switzerland. In particular, recent federal statistics
have revealed the presence of a quarter million electric-based
heating units accounting for 4% of the total Swiss electricity
consumption [23].

2) Nonlinear HVAC dynamics: In general, the main prac-
tical issue is to obtain a predictive model describing the
conversion between electric power to the thermal state of the
building as in V-B. This is a challenging task and represents
one of the main limitations in the applications of MPC ap-
plied to building climate control. Nevertheless, many research
efforts have been made to address this problem and there
exist different modeling procedures based on first principle
models. The reader is referred to [8] and references therein for
more details. On the other hand, our experiments have shown
that the relationship between thermal power input and zone
temperatures can be identified with limited data successfully,
and can be also supported by the use of software tools such

as detailed in [24]. While the model of the system does not in
principle need to be linear, the methods rely on a linear model
in order to form tractable reformulations of Problems (8)
and (11). It is known that the response of typical HVAC
systems may display nonlinear characteristics, especially on
fast time scales. It is important to notice that, in the method
we propose, the model of the HVAC is not taking into account
the fastest dynamics. The model should be able to predict the
behaviour of the HVAC on medium and slow time scales (5
to 15 minutes and above), which usually displays milder non-
linearities. Nevertheless, many methodologies, mainly based
on sequential linearization or SQP approaches, have been
proposed in the literature to tackle the complexity of the
original non-linear, non-convex problem [9], [25], [26].

3) Required Supporting Elements: As it is in general not
possible to modulate the power consumption of standard
HVAC equipment at a fast pace, the last missing element is
a resource capable of absorbing the fastest components of the
tracking signal. In our case, the electric heaters are capable of
that, but it has been shown in [7] that variable frequency drive
fans can be used to provide fast modulation without affecting
the rest of the HVAC system significantly. Another viable
possibility is to couple the building with a storage element
such as an electric battery. An investigation of the requirements
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Fig. 8. Characteristics of the battery needed to absorb the fastest components
of the AGC signal. Power ratings are in blue and energy capacity in red.
Solid line is the worst case over one year, and dashed line represents the size
needed to cover 99% of the signal. Values are computed for a ±1kW offered
tracking capacity.

for an electric battery needed to support the provision of the
service in Switzerland is given in the following.

The yearly normalized AGC signal for 2014 is considered.
First, we split the signal into a fast and a slow component.
Second, we assume the building HVAC system to track the
slow component of the signal, whereas the fast component
is directly injected in the storage element. This process is
repeated for several cutting frequencies mimicking different
capabilities of the building HVAC. By doing this, we obtain
requirements of the supporting battery both in terms of power
and capacity specifications as a function of the cutting fre-
quency. The results obtained using the battery model [27] are
displayed in Figure 8.

VII. CONCLUSION

We presented an MPC framework for the provision of
ancillary services using commercial buildings acting in the
Swiss energy regulation scheme. We described how to for-
mally assess the variation in power consumption that a build-
ing can support without impacting occupants’ comfort. The
effectiveness of the proposed approach has been demonstrated
by means of simulation studies, and through experiments in a
real multi-zone office building.

In this paper, we focused on overnight experiments. To
extend the experiments to the day, more detailed modelling
of the disturbances affecting the system, is needed, especially
solar radiation which largely impact the system dynamics.
Another research direction is to replicate the experimental
results on a more typical and more complex HVAC system
including for example chillers, heat pumps, fans.
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