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Abstract—This paper, by comparing three potential energy
trading systems, studies the feasibility of integrating a community
energy storage (CES) device with consumer-owned photovoltaic
(PV) systems for demand-side management of a residential neigh-
borhood area network. We consider a fully-competitive CES op-
erator in a non-cooperative Stackelberg game, a benevolent CES
operator that has socially favorable regulations with competitive
users, and a centralized cooperative CES operator that minimizes
the total community energy cost. The former two game-theoretic
systems consider that the CES operator first maximizes their
revenue by setting a price signal and trading energy with the grid.
Then the users with PV panels play a non-cooperative repeated
game following the actions of the CES operator to trade energy
with the CES device and the grid to minimize energy costs. The
centralized CES operator cooperates with the users to minimize
the total community energy cost without appropriate incentives.
The non-cooperative Stackelberg game with the fully-competitive
CES operator has a unique Stackelberg equilibrium at which
the CES operator maximizes revenue and users obtain unique
Pareto-optimal Nash equilibrium CES energy trading strategies.
Extensive simulations show that the fully-competitive CES model
gives the best trade-off of operating environment between the
CES operator and the users.

Index Terms—Community energy storage, demand-side man-
agement, game theory, neighborhood area network.

I. INTRODUCTION

Smart grid developments facilitate reliable and economical
demand-side management for leveling peak energy demands
and reducing energy costs [1]. Small-scale demand-side man-
agement as in residential gated communities has received
attention with the increasing popularity and cost reductions of
household-distributed renewable power generation and storage
technologies. Community energy storage (CES) devices can
be integrated with novel small-scale demand-side management
approaches to efficiently utilize onsite energy generation from
consumer-owned renewable power resources such as rooftop
photovoltaic (PV) systems [2]. These methods can create value
for end users by reducing energy costs without modifying their
electricity demand patterns [3]. In the context of the future
energy grid, small-scale demand-side management with CES
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devices would play a vital role with the rapid growth of solar
mini-grids such as Melbourne’s Codstream Network [4].

Small-scale demand-side management with a CES device
and behind-the-meter PV systems requires a feasible frame-
work with suitable incentives for all players. One potential
approach is to devise the load management optimization that
is controlled by a centralized entity. However, such centralized
strategies may inflate costs for individual players. Moreover,
robust operation of such a system would require system-wide
information available to the controller including users’ energy
information that may increase the communication overhead
[5]. In addition, the residential users may not subscribe to
such a demand-side management approach as the central
entity controls their personal energy decisions. A decentralized
framework that can distribute the energy decision-making to
individuals would be an effective alternative to overcome the
above challenges.

In this paper, three energy trading systems with different
CES operator structures are compared: a fully-competitive
CES operator in a non-cooperative Stackelberg game, a benev-
olent CES operator that has socially favorable regulations
with competitive consumers, and a centralized cooperative
CES operator that collaborates with the users to minimize the
total community energy costs. The former two systems use
game-theoretic approaches where the CES operator (leader)
moves first to maximize revenue. Users (followers) then fol-
low the CES operator’s actions to independently determine
optimal CES energy trading strategies in a non-cooperative
finitely repeated game. The fully-competitive CES operator
has two degrees of freedom to maximize revenue in a non-
cooperative Stackelberg game: energy price and their energy
transactions with the grid. Conversely, the benevolent CES
operator’s ability to maximize revenue is restricted with only
one degree of freedom, i.e., their energy transactions with the
grid, in a Stackelberg game. The centralized system serves
as a baseline to compare the performance of the decentralized
game-theoretic energy trading systems. We have the following
main contributions in this work:

1) The non-cooperative Stackelberg game between the
fully-competitive CES operator and users has a unique
Stackelberg equilibrium where users obtain unique
Pareto-optimal Nash equilibrium CES energy trading
strategies.

2) Performance analysis demonstrates,
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• Unlike in the centralized cooperative system, both
CES operator and users are simultaneously bene-
fited in the fully-competitive system while the grid
experiences load leveling.

• The community economic benefit is greater with
the fully-competitive system than the benevolent
CES model, and the fully-competitive system can
be implemented effectively with least CES battery
storage capacity of the three models.

The majority of Stackelberg game-theoretic demand-side
management methods in literature exploit demand flexibility of
consumers to obtain optimal system-wide objectives [6]–[8].
For example, the Stackelberg game in [7] achieves the optimal
load control of electrical appliances through an effective real
time pricing method. To the best of our knowledge, few game-
theoretic works achieve optimal load management by utilizing
energy from distributed energy resources as an alternative to
reshaping consumer demand profiles [9], [10]. For example,
the non-cooperative game in [10] determines optimal power
settings of consumer-owned controllable power sources, such
as gas turbines and energy storage devices, to minimize energy
costs. In contrast to the use of consumer-owned energy storage
devices as in [10], we study the use of increased flexibility
of a centralized CES device to utilize uncontrollable and
intermittent PV power generation to achieve demand-side
management without reshaping user demand. To this end, we
investigate the leader-follower interaction between the CES
operator and the users using Stackelberg games.

This work has two key differences to [11] where a non-
cooperative dynamic game between users is studied evaluating
only users’ autonomy to minimize costs. First, here, we devise
bi-level energy trading systems to incorporate autonomies of
both CES operator and users to minimize energy costs using
Stackelberg games. We also investigate the trade-off between
the CES capacity and community benefits, whereas [11] does
not impose energy capacity constraints for the CES device by
assuming that it has sufficient capacity at all times.

The remainder of this paper is structured as follows. Sec-
tion II presents related work. The system models are described
in Section III, and Section IV describes the centralized en-
ergy trading system. The two game-theoretic energy trading
systems are discussed in Section V. Section VI discusses
simulation results, and conclusions are drawn in Section VII.

II. RELATED WORK

There is a rich literature on demand-side management
that exploits user demand flexibility to achieve economic
power system improvements. For example, dynamic pricing
for consumption scheduling [12], load shifting methods [1],
[13], [14], and incentive-based demand response programs
[15], [16] have been investigated. We study demand-side man-
agement with a CES device to utilize household-distributed PV
power generation without modifying users’ energy demands.

Prior works have examined centralized control of distributed
power resources, such as renewable power sources and storage
devices, for effective energy management [17], [18]. Decen-
tralized control of energy resources has been proposed to

increase system reliability and robustness [5]. In particular,
game theory has been applied to analyze interactions between
distributed energy resources in power system [19], [20]. The
authors in [21] achieve cost-effective energy management
through a non-cooperative game that schedules consumer-
owned energy storage devices and appliances. In [22], the au-
thors study a cooperative game-theoretic approach to achieve
optimal load balancing using a CES device where users share
the stored energy of the CES device to contribute towards
community’s overall demand-side management. In contrast,
we investigate a non-cooperative hierarchical energy trading
system between a CES device and users based on Stackelberg
game theory. Moreover, compared to [22], the charging and
discharging mechanism of the CES device in this paper
employs user-owned PV energy generation to achieve demand-
side management.

One branch of demand-side management literature employs
Stackelberg game theory to study interactions between utility
companies and consumers for optimal demand-side manage-
ment [23]–[26]. Another branch of Stackelberg game-theoretic
demand-side management research explores the interaction of
energy consumers with energy market intermediaries such as
aggregators that represent demand-side [27]–[29]. In these
papers, the aggregator acts as the middleman between elec-
tricity users and the energy market and operates as the energy
supplier to the users by selling electricity bought from the
utility to downstream consumers. Moreover, an aggregator is
responsible to effectively adjust the consumers’ aggregated
energy demand profile declared to the energy market. To this
end, aggregators utilize demand flexibility of users so that the
users’ compound demand profile satisfies power system needs
such as operating limits of the distribution network [29].

The proposed energy trading model in this paper has
several differences compared to classical aggregation-based
approaches. In particular, the CES operator does not operate
as the middleman between the users and the energy market
and does not control the amalgamated demand profile of the
users. Rather, the CES operator acts as a third-party that
encourages users with PV energy generation to trade PV
energy with the CES device that can be dispatched to supply
peak energy demand of the participating users. Furthermore,
in our system, participating users interact separately with the
utility and the CES operator whereas in classical aggregator-
based approaches, users merely interact with the aggregator.

The Stackelberg game between a shared-facility controller
and users in [30] yields effective demand-side management by
managing consumer demand with an energy storage device at
the controller-side that is enabled to charge and discharge with
the grid. In contrast, in this paper, the charging and discharging
mechanism of the CES device is intended to accommodate
energy trading strategies from PV energy generation of users.
In doing so, we focus on exploiting onsite energy generation
from user-owned PV systems for demand-side management as
an alternative to energy consumption scheduling of users.

III. SYSTEM CONFIGURATION

In this section, we describe the classification of energy
consumers and the models of energy costs and the CES device.
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TABLE I
TABLE OF NOTATION.

Variable/parameter Definition Variable/parameter Definition

A Set of participating users. XA(t)
Aggregate CES energy trading amounts of the users
A at time t.

P Set of non-participating users. CCES(t) Cost of the CES operator at time t.

S(t)
Set of participating users with excess PV energy at
time t. CA(t) Aggregate costs of the users A at time t.

D(t)
Set of participating users with energy deficits at time
t. SA(t) Aggregate surplus energy of the users A at time t.

T Time period of analysis. β+, β−
Charging and discharging inefficiencies of the CES
device; (0 < β+ ≤ 1, β− ≥ 1).

H Total number of time steps in T . α Leakage rate of the CES device; (0 < α ≤ 1).
I Number of users in A. QM Maximum energy capacity of the CES device.

xn(t)
Energy traded with the CES device by user n at time
t. Lmax Maximum allowable grid load.

ln(t) Energy traded with the grid by user n at time t. v, w Indices of rows and columns of a matrix.

en(t) Energy demand of user n at time t. δt, φt
Positive time-of-use tariff constants of the grid at
time t.

gn(t) PV energy generation of user n at time t. θ Real-valued scalar.
sn(t) Surplus PV energy of user n at time t. r Iteration number.

lQ(t)
Energy traded between the CES device and the grid
at time t. τ Small positive value.

q(t) CES charge level at the end of time t. Γ
Stage game of the repeated game among the users
A.

L(t) Total grid load at time t. X Strategy set of the users A at time t.
lP (t) Total grid load of the users P at time t. R Revenue of the CES operator.
p(t) Unit grid energy price at time t. C Set of cost functions of the users A at time t.

a(t)
Unit energy price charged by the CES device at time
t. Q Strategy set of the CES operator.

Cn(t) Total energy cost of user n at time t. Υ
Stackelberg game between the fully-competitive CES
operator and the users A.

L−n(t)
Total grid load except the grid load of user n at time
t. L CES operator.

Xn(t) Strategy set of user n at time t. a Vector of CES energy price; a ∈ <H×1.

x̃n(t)
Best response of CES energy trading strategy of user
n at time t. lQ

Vector of grid energy of the CES device; lQ ∈
<H×1.

x(t)
CES energy trading strategy profile of the users A
at time t; x(t) ∈ <1×I . ρ Matrix of decision variables of the CES operator.

The definitions of notations in the subsequent sections are
given in Table I.

A. Demand-Side Model

The demand-side of the community is divided into partic-
ipating users A and non-participating users P . The users A
have their own PV panels without local energy storage devices,
and they participate in the energy management optimization by
trading energy with the grid and/or the CES device. We assume
that each user in A has a decision-making controller in their
household to perform their local energy trading optimization.
The users P consume energy only from the grid as they do not
have local power generation capabilities and do not participate
in the demand-side management optimization.

The users A are subdivided into two time-dependent cate-
gories: surplus users S(t) and deficit users D(t). We divide
the time period T , typically one day, into H equal time steps
of length ∆t with discrete time t = 1, 2, · · · , H . We consider
|S(t)| = IS(t), |D(t)| = ID(t), and |A| = I = IS(t) + ID(t).

At each time t, user i ∈ S(t) evaluates the optimal energy
amount that they can sell to the CES device, and user j ∈ D(t)
decides optimal energy amount that can be bought from the
CES device. These strategies are determined day-ahead, and
we assume that the users A have accurate forecasts of their

energy demands and PV power generation for the next day.
According to the energy balance at user n ∈ A

ln(t) = xn(t) + en(t)− gn(t). (1)

Note that xn(t) > 0 when the user is charging (or selling
energy to) the CES device and xn(t) < 0 when discharging
(or buying energy from) the CES device. The surplus energy
of n ∈ A at time t is given by sn(t) = gn(t) − en(t). We
specify

0 ≤ xi(t) ≤ si(t), ∀i ∈ S(t), t ∈ T ,
sj(t) ≤ xj(t) ≤ 0, ∀j ∈ D(t), t ∈ T .

(2)

B. Community Energy Storage Model

In this paper, the energy storage model is similar to that in
[10]. At each time t, the CES device may exchange energy
lQ(t) with the grid in addition to its energy transactions with
the users A. Here, lQ(t) > 0 if the CES device is charging
from the grid, and lQ(t) < 0 if it is selling energy to the grid.

Without loss of generality, consider splitting xn(t) and lQ(t)
such that xn(t) = x+n (t) − x−n (t) and lQ(t) = l+Q(t) − l−Q(t)

where x+n (t), l+Q(t) ≥ 0 are the charging strategy profiles and
x−n (t), l−Q(t) ≥ 0 are the discharging strategy profiles of the
CES device at time t. Once inefficiencies are introduced, all
optimal solutions satisfy x+n (t)x−n (t) = 0 and l+Q(t)l−Q(t) = 0
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at all times to avoid simultaneous charging and discharging
of the CES device [10]. We introduce β+ and β− to consider
conversion losses of the CES device. For instance, if x+ energy
is sold to the CES device, then the charge level only increases
by β+x+. Similarly, β−x− energy must be discharged to
obtain x− energy from the CES device. If q(t − 1) is the
charge level at the beginning of time t, then q(t) is given by

q(t) = αq(t− 1) + β+χ+ − β−χ− (3)

where χ+ =
[∑I

n=1 x
+
n (t) + l+Q(t)

]
and χ− =[∑I

n=1 x
−
n (t) + l−Q(t)

]
.

Using (3), we write (4) to ensure the CES charge level
within its energy capacity limit at each time t as

0 � q(0)η + Ψ
(
χ+ − χ−)β � QM (4)

where q(0) is the initial charge level, and QM ∈ <H×1 with
all its entries being QM . Additionally, η ∈ <H×1 has [η]v =
αv , Ψ ∈ <H×H is a lower triangular matrix that has elements
[Ψ]v,w = αv−w, β = [β+, β−]T , 0 is the H-dimensional zero
column vector, and χ+, χ− are the H-dimensional column
vectors with all their entries being χ+, χ−, respectively. Note
that (4) is the vector algebra form of the linear recurrence
relation (3).

Assuming q(0) is within the CES device’s safe operating
region, we set (5) to ensure the continuous operation of the
CES device for the next day and to prevent over-charging or
over-discharging during T [18]

q(H) = q(0). (5)

C. Energy Cost Models
The unit electricity price of the grid at time t is assumed

to have a constant baseline component and a variable real-
time component that is proportional to the total grid load at
time t [1], [10]. In this work, the total grid load at time t is
L(t) =

∑I
n=1 ln(t) + lQ(t) + lP(t). In this paper, we assume,

at each time t, 0 < L(t) for non-negative grid pricing and
L(t) < Lmax where Lmax is the maximum allowable load on
the grid without compromising voltage and line capacity limits
of the grid. The unit electricity price of the grid at time t is
given by p(t) = φtL(t) + δt where φt and δt are determined
according to a day-ahead market clearing process [10]. With
similar analysis to [1], the resulting grid energy cost function
at time t, p(t)L(t), is a strictly convex function with respect
to L(t).

In our game-theoretic systems, the CES operator adopts
prices for energy transactions with the users A. Then, in these
systems Cn(t) is given by

Cn(t) = p(t)ln(t)− a(t)xn(t) (6)

where ln(t) is given by (1). Both fully-competitive and benev-
olent CES operators obtain revenue through energy trading
with the grid and the users A. Assuming that the CES operator
exchanges energy with the grid at the grid energy price, we
consider the CES revenue as

R =

H∑
t=1

(
−a(t)

I∑
n=1

xn(t)− p(t)lQ(t)

)
. (7)

However, in the centralized energy trading system, the CES
operator does not obtain revenue from energy trading with the
users A. In this regard, we do not consider a separate revenue
function as (7), and the cost of user n ∈ A is derived as in
(6) disregarding the term a(t)xn(t).

IV. CENTRALIZED ENERGY TRADING SYSTEM

This section describes the community energy trading system
with a centralized cooperative CES operator that solves the
optimization problem of minimizing the total energy cost
paid by the entire community to the grid. Note that this
centralized approach serves as a baseline to compare the
performance of the decentralized game-theoretic systems in
Section V. Here, we assume that the users A communicate
their energy demand and PV energy generation profiles to the
CES operator, and the operator also has the perfect knowledge
of the community participation percentage. The CES operator
schedules the energy transactions across the community by
solving the optimization problem

min

H∑
t=1

p(t)L(t) (8)

subjects to constraints (2), (4), and (5).
Note that in this system, (8) does not include a price signal

for the CES operator’s energy transactions with the users A
and consequently, the operator has no direct incentive. It also
requires impractical information exchange and cooperation.
The cooperating participating users similarly do not have direct
incentives as their personal energy costs may inflate for the
benefit of the overall community. All of these reasons make
the centralized cooperative energy trading system less feasible.
Even though this centralized approach is not appropriate for
the general circumstances of the considered energy trading
scenario, it is still a potential implementation of the energy
trading between the CES device and the users A.

V. DECENTRALIZED ENERGY TRADING SYSTEMS

In our decentralized energy trading systems, the CES op-
erator, as the leader, interacts with the users A to maximize
their revenue (7). The users A follow the leader’s actions to
minimize their individual energy costs in (6) by manipulating
xn(t). We develop Stackelberg game-theoretic frameworks to
analyze the hierarchical CES-user energy trading interactions.
To derive the solutions to the Stackelberg games, we adopt
insights from backward induction [31]. To this end, first, the
actions of the users A are derived based on the knowledge
of actions of the CES operator. Then our analysis proceeds
backward to determine the actions of the CES operator.

A. Objective of the Participating Users

Here, each user n ∈ A seeks to minimize their personal en-
ergy costs. Therefore, in response to any suitable ρ = [a, lQ]
of the CES operator, user n ∈ A minimizes their energy cost
in (6) at each time t. The cost function (6) is quadratic with
respect to both ln(t) and xn(t). We consider

Cn(t) = K2ln(t)2 +K1ln(t) +K0 (9)
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where K2 = φt, K1 = (φtL−n(t) + δt − a(t)), and K0 =
−a(t)sn(t).

Since (9) depends on the actions of the other users n′ ∈
A\n, we formulate a non-cooperative game Γ ≡ 〈A,X , C〉
among the users A at each time t ∈ T to determine their opti-
mal strategies. Here, X =

∏I
n=1Xn(t) where Xn(t) of user

n ∈ A subject to constraints (2), and C = (C1(t), . . . , CI(t)).
We denote x(t) = [x1(t), · · · , xI(t)]. Each user n ∈ A
selects their strategy xn(t) ∈ Xn(t) to minimize the cost
function Cn(xn(t),x−n(t)) ≡ Cn(t). Here, x−n(t) is the
CES energy transaction strategy profile of the users n′ ∈ A\n.
Therefore, each user n ∈ A determines

x̃n(t) = argmin
xn(t)∈Xn(t)

Cn(xn(t),x−n(t)). (10)

To make the game-theoretic analysis tractable, we assume
that the users A have accurate day-ahead predictions of PV
power generation and energy demand. Consequently, playing
the game Γ at each time t = 1, 2, · · · , H by the users A
using ρ turns into a non-cooperative finitely repeated game
with perfect information where Γ is the stage game [31].

Proposition 1. For any given values of a(t) and lQ(t), the
stage game Γ obtains a unique pure-strategy Nash equilibrium.

Proof: Nash equilibrium implies no player can gain by
unilaterally changing their own strategy while the others play
their Nash equilibrium strategies [31]. For feasible x−n(t),
(9) is strictly convex since its second derivative with respect to
xn(t) is positive as φt > 0 [32]. Therefore, each participating
user’s objective function in (10) is strictly convex. Addition-
ally, the individual strategy sets are compact and convex due
to linear inequalities (2). Therefore, a unique Nash equilibrium
with pure strategies for the game Γ is obtained [33].

The best response x̃n(t) of user n ∈ A to x−n(t) can be
found using

∂Cn(t)

∂xn(t)

∣∣∣∣
xn(t)=x̃n(t)

= 2K2(x̃n(t)− sn(t)) +K1 = 0. (11)

By solving (11) for all participating users I , using the expres-
sions of K1 and K2 in (9), the optimal response of user n ∈ A
at the Nash equilibrium, x̃∗n(t), can be written as a function
of the CES operator’s output variables a(t) and lQ(t)

x̃∗n(t) = sn(t)− ε(t),
ε(t) = −(I + 1)−1[φ−1t (a(t)− δt)− lP(t)− lQ(t)]. (12)

Given the Nash equilibrium as in (12), parameters δt and
φt can be chosen such that x̃∗n(t) satisfies (2) for given
a(t), lQ(t), and lP(t). However, for general application of our
system, we consider constraints in the CES operator’s revenue
maximization problem so that the CES operator’s selection of
a(t) and lQ(t) assures that the Nash equilibrium (12) satisfies
(2). This procedure is explained in the next subsection.

B. Objective of the Community Energy Storage Operator

In the decentralized energy trading setting, the CES oper-
ator’s primary objective is to maximize the revenue in (7).
According to backward induction, if we substitute (12) into

(7), the CES operator’s utility maximization can be simplified
to a quadratic optimization problem to determine

ρ∗ = argmax
ρ∈Q

H∑
t=1

(λa(t)2 + µa(t) + νlQ(t)2 + ξlQ(t)) (13)

where λ = −I(I + 1)−1φ−1t , µ = I(I + 1)−1(lP(t) +
φ−1t δt) −

∑I
n=1 sn(t), ν = −φt(I + 1)−1, and ξ = −(I +

1)−1(φtlP(t)+δt). To ensure that users’ actions obtained from
(12) satisfy (2), at each time t, the CES operator selects a(t)
and lQ(t) such that

max[{sj(t)}I ] ≤ ε(t) ≤ 0, if A = D(t),

0 ≤ ε(t) ≤ min[{si(t)}I ], if A = S(t),

ε(t) = 0, otherwise.

 (14)

Hence, in addition to (4) and (5), we consider (14) in Q
depending on the nature of the users A at time t.

The objective function in (13) is strictly concave since its
Hessian matrix is negative definite for all a, lQ ∈ Q as
coefficients λ, ν < 0. Moreover, Q is non-empty, closed and
convex as it is only subject to linear constraints. Therefore,
(13) always has a unique maximum [32]. It is important to
note that (13) is a quadratic program and hence, it can be
solved by using non-linear programming methods such as the
interior point method described in [32].

C. Benevolent CES Operator Model

After describing the objectives of the users A and the CES
operator, in this section, we analyze the Stackelberg energy
trading competition between the benevolent CES operator and
the users A. Consider if xn(t) = sn(t), ∀n ∈ A and ∀t ∈ T ,
then these user strategies are at the Nash equilibrium of the
game Γ if and only if ε(t) = 0 at each time t. As a result

a(t) = δt + φt(lQ(t) + lP(t)). (15)

In this model, the price constraint (15) applies as an
auxiliary constraint for the CES operator at each time t when
maximizing their revenue in addition to (4) and (5). Then, the
objective function in (13) can be written as a function of lQ(t)
only by substituting (15) into (13). Thus, the objective of the
CES operator in the benevolent scenario is to find

l̄Q = argmax
lQ∈Q

H∑
t=1

(γ1lQ(t)2 + γ2lQ(t) + γ3) (16)

where γ1 = −φt, γ2 = −δt − φt(lP(t) +
∑I

n=1 sn(t)), and
γ3 = −

∑I
n=1 sn(t)(δt + φtlP(t)).

In the Stackelberg game, the CES operator, as the leader,
firstly determines optimal lQ(t) by solving (16) and then their
energy price a(t) using (15) for each time t ∈ T . Using these
values, the users A determine optimal strategies of xn(t) by
playing the game Γ at each time t. As a result, at the Nash
equilibrium of the game Γ, the energy requirements of the
users A are shifted on to the CES device such that x̃∗n(t) =
sn(t). Hence, l̃∗n(t) = (x̃∗n(t)− sn(t)) = 0, ∀n ∈ A, ∀t ∈ T .

In this system, the CES operator does not have full freedom
to maximize the revenue in (13) with the additional constraint
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(15). Here, p̄(t) = δt+φt(lP(t)+ l̄Q(t)) = ā(t) where l̄Q(t) is
the CES device’s grid load at time t at its maximum revenue
in (16) since the users P and the CES device are the only
remaining energy loads on the grid as the users A shift their
net energy requirements sn(t) to the CES device. We consider
this as a benevolent CES operator that is regulated by the users
A to amalgamate all their energy requirements into one entity
with storage capabilities for better demand-side management.

D. Fully-competitive CES Operator Model

This section explains the non-cooperative Stackelberg game
between the fully-competitive CES operator and the users A.
In the system, the CES operator first sets ρ to maximize their
revenue in (13) and broadcasts them to the users A. Using
these signals, the users A repeat the non-cooperative game Γ
at each time t. In contrast to the benevolent CES model, in
this system, the CES operator regulates ε(t) by considering the
nature of the users A at each time t as given in (14). Hence,
the CES operator’s objective is identical to (13).

In this scenario, the bi-level interaction between the CES op-
erator and the users A can be formulated as a non-cooperative
Stackelberg game Υ. We represent the strategic form of Υ as
Υ ≡ 〈{L,A}, {Q,X}, {R, C}〉 where the CES operator L is
the leader, the usersA are the followers, and all other notations
are defined as in the preceding sections.

Proposition 2. The game Υ obtains a unique Stackelberg
equilibrium.

Proof: The non-cooperative game Γ between the users
A has a unique Nash equilibrium for given a(t) and lQ(t)
of the CES operator (see Proposition 1). There is also a
unique solution of the CES operator’s revenue maximization
(13). Therefore, the game Υ obtains a unique Stackelberg
equilibrium as soon as the CES operator determines their
unique revenue maximizing strategy ρ∗ while the users A play
their unique Nash equilibrium strategy profile x∗(t) at each
time t.

Note that, according to backward induction, the Stackelberg
equilibrium strategies of the CES operator and the users A, ρ∗

and x∗n(t) ∈ x∗(t), are equal to the solution of (13) and the
resulting x̃∗n(t) after substituting a∗(t), l∗Q(t) ∈ ρ∗ in (12),
respectively. The Stackelberg equilibrium strategies satisfy

Cn(x∗(t), ρ∗) ≤ Cn(xn(t),x∗
−n(t),ρ∗),

∀n ∈ A, ∀xn(t) ∈Xn(t), ∀t ∈ T , (17)

R(X∗,ρ∗) ≥ R(X∗,ρ), ∀ρ ∈ Q (18)

where x∗
−n(t) is the Nash equilibrium strategy profile

of the users A except user n at time t, and X∗ =
(x∗(1)

T
, . . . ,x∗(H)

T
) is the H-tuple of Nash equilibrium

strategy profiles of the users A at each t in response to ρ∗.

Proposition 3. At the Stackelberg equilibrium of the game
Υ, the Nash equilibrium CES energy trading strategy profile
x∗(t) of the users A achieved by playing the game Γ is Pareto
optimal.

Proof: Let us consider the energy trading strategies of
the users A and the CES operator at the Stackelberg equi-
librium of the game Υ at any t ∈ T : [x∗(t), a∗(t), l∗Q(t)].
Assume there is any feasible x

′
(t)(6= x∗(t)) such that

x
′
(t) Pareto dominates x∗(t). Define XA(t) (see Table I)

at x
′
(t) and x∗(t) as X

′

A(t) and X∗A(t), respectively, where
X

′

A(t) = X∗A(t)+θX∗A(t). First, assume θ is a non-zero scalar.
Due to the introduced change of X∗A(t) to X

′

A(t), the CES
device is forced to over-charge or over-discharge violating (5).
Therefore, the CES operator has to divert from their strategy
l∗Q(t) to l

′

Q(t) = l∗Q(t) − θX∗A(t) in order to satisfy (5) that
ensures the sustainable operation of the CES device throughout
the day. For example, if the CES charge level rises due to
the introduced change, the CES operator has to discharge the
increased amount of energy to the grid. Note that, in doing so,
the Stackelberg equilibrium grid price p∗(t) does not change
as the total grid load does not change.

Then at the new operating point CCES(t) is given by

CCES(t) = a∗(t)X
′

A(t) + p∗(t)l
′

Q(t), (19)

and CA(t) is

CA(t) = p∗(t)
(
X

′

A(t)− SA(t)
)
− a∗(t)X

′

A(t) (20)

where SA(t) =
∑I

n=1 sn(t). By substituting X
′

A(t) =
X∗A(t) + θX∗A(t) and l

′

Q(t) = l∗Q(t) − θX∗A(t) into (19)
and (20), it is evident that if CA(t) decreases, then CCES(t)
increases and vice versa. Such a situation is not led by the
CES operator and hence there is no feasible x

′
(t) ∈ X\x∗(t)

that Pareto dominates x∗(t) after obtaining the Stackelberg
equilibrium.

Moreover, when θ = 0, X
′

A(t) = X∗A(t). This implies
that if at least one user in A changes their Nash equilibrium
strategy to another strategy, then the other users have to change
their aggregate CES energy trading strategies by the same
energy amount such that X

′

A(t) = X∗A(t). In this situation, the
grid price p∗(t) and the unit energy price of the CES device
a∗(t) are unchanged. Hence, a reduction in one user’s energy
cost due to a change in their operating point would lead to an
increase in the cost of at least one of the other users. Hence,
with θ = 0, for given [a∗(t), l∗Q(t)], it is infeasible to adopt any
x

′
(t) ∈ X\x∗(t) such that Cn(x

′
(t)) ≤ Cn(x∗(t)),∀n ∈

A and Cn(x
′
(t)) < Cn(x∗(t)) for some n ∈ A. This

concludes the proof of the proposition.
A two-step iterative algorithm was used to determine the

Stackelberg equilibrium in the game Υ as shown in Algo-
rithm 1. In the first step, the CES operator determines ρ
that maximizes (7) under constraints (4), (5), and (14) by
using the CES energy trading strategies of the users A. In
the second step, the users A solve (10) using (12). To achieve
the convergence of the algorithm, similar to [10], we adopt
the termination criterion ‖ρ(r) − ρ(r−1)‖2/‖ρ(r)‖2 ≤ τ where
ρ(r) represents ρ calculated at the iteration r.

The users’ response in (12) is their optimal response at
each time t for a given feasible ρ by the CES operator. This
implies that, in Algorithm 1, the CES energy trading strategies
of the users A will converge once ρ converges to a fixed
point. Consequently, Algorithm 1 converges as the variation
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of ρ decreases after a certain number of iterations. Hence,
Algorithm 1 converges approximately to a fixed point once
the termination criterion is satisfied for sufficiently small τ .

Algorithm 1 Game to obtain the Stackelberg equilibrium
Step 1:

1: r ← 1.
2: if r = 1
3: The CES operator selects a feasible starting point for ρ

and broadcasts it to the users A.
4: else
5: The CES operator maximizes (7) subject to constraints

(4), (5), and (14) using X̃
∗

and broadcasts ρ to the users
A.

6: end if
Step 2:

7: Each user n ∈ A determines x̃∗n(t) at each time t

using (12) and ρ, and X̃
∗

=
(
x̃∗(1)

T
, · · · , x̃∗(H)

T )
is announced to the CES operator.

8: r ← r + 1.
9: Repeat from 2 until ‖ρ(r) − ρ(r−1)‖2/‖ρ(r)‖2 ≤ τ .

10: Return X̃
∗

and ρ as the Stackelberg equilibrium.

VI. RESULTS AND DISCUSSION

For numerical simulations, we consider a residential com-
munity of 40 people with 30%, 40%, and 50% participating
users. We obtain the average daily domestic PV power gener-
ation and user electricity demand profiles from [34]. We use
H = 48, ∆t = 30 min, QM = 80 kWh, q(0) = 0.25QM , α =
0.91/48, β+ = 0.9, β− = 1.1 [10], and τ = 0.002. Parameter
φt is selected in each case such that φpeak = 1.5 × φoff peak
where the peak period is 16:00-23:00. The value of φpeak is
then set such that the predicted daily unit price range of the
grid is the same as a reference time-of-use unit electricity price
range used in Sydney, Australia [35]. δt is a constant across
time such that predicted average grid price matches the average
price of the reference signal. To compare results, we consider
a baseline energy trading system without a CES device where
the users A trade energy exclusively with the main power
grid that has the same energy cost model in Section III. In
particular, PV energy producers sell all surplus PV energy
directly to the grid.

A. Performance of Algorithm 1

In this section, the convergence of Algorithm 1 is examined.
To show that Algorithm 1 converges to the theoretical opti-
mum at the Stackelberg equilibrium of the fully-competitive
CES model, we consider the optimization (13) that gives the
CES operator’s theoretical optimal revenue at the Stackelberg
equilibrium according to backward induction. To solve the
optimization problem given in (13), we used the interior-
point algorithm specified in the “fmincon” solver in the MAT-
LAB optimization toolbox. Fig. 1 illustrates that Algorithm 1
reaches the theoretical optimal revenue of the CES operator
within the first 2 iterations with 30% participating users. Here,

Fig. 1. Convergence of Algorithm 1 with 30% participating users in the
fully-competitive CES model.

as the initial conditions, the vector l(1)Q was considered as 0.
Then, the elements of a(1) were selected such that x̃∗n(t) val-
ues, obtained by using l(1)Q , a(1), and (12), satisfy (4), (5), and
(14). However, Algorithm 1 reaches the termination criterion
‖ρ(r) − ρ(r−1)‖2/‖ρ(r)‖2 ≤ τ after r = 4 iterations because
the CES operator adjusts their strategy ρ until the termination
criterion is achieved. Similarly, the algorithm converges after
r = 11 and r = 13 iterations when the community has 40%
and 50% participating users, respectively.

B. Preliminary Study of Three Energy Trading Systems

Consider the case with 40% participating users to demon-
strate our CES models. In Fig. 2, we illustrate the variations
of price signals of the CES operator and the grid in the fully-
competitive CES model and the grid price of the baseline.
Fig. 2 shows that the introduction of the CES device reduces
the peak grid electricity price in the competitive CES model
compared to the baseline. Before 09:00, when there is little
PV energy and all participating users are deficit users, the CES
operator sets a price above the equilibrium grid price such that
it is unfavorable for any of the deficit users to purchase energy.
Subsequently, the users A may not buy energy from the CES
device during this period. During the day, when PV energy
is plentiful, and through the evening peak, when electricity
demand is greatest, it is favorable for the CES operator to trade
energy with the users A. Therefore, at these times the CES
price approaches the equilibrium grid price in a similar way
to the benevolent CES model. In turn, the users A transfer the
majority of their energy transactions to the CES device. In the
benevolent and the centralized cooperative CES models, there
are more energy transactions between the CES device and the

Fig. 2. Variation of electricity prices with 40% participating users in the
fully-competitive CES model and the baseline.
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users A than in the fully-competitive CES model. Fig. 3 shows
that this causes a greater reduction in the peak grid price.

More energy transactions between the CES device and
the users A require greater CES storage capabilities (see
Fig. 4), and subsequently, there are more energy transactions
between the CES device and the grid: the fully-competitive
case requires 58% less absolute energy traded between the
CES device and the grid than the benevolent case.

Fig. 5 shows the sensitivity of community benefits of the
three systems to CES battery capacity. The community benefit
is the sum of absolute electricity cost savings of the users
A∪P compared to the baseline and the CES revenue. As part
of the CES revenue obtains from energy costs incurred by
the users A (see (7)), the community benefit reflects the total
reduction in costs paid by the community (all users and the
CES operator) to the grid compared to the baseline. All models
have optimal energy storage requirements corresponding to the
peaks in Fig. 5. The fully-competitive CES model requires a
battery capacity less than 70 kWh to provide peak community
benefit compared to the other models. The centralized CES
model considers load management of the entire community,
not only the users A, and therefore, requires a significantly
larger storage capacity for optimal performance.

Table II compares the performance of the three systems
over several metrics with different percentages of the users
A. Here, the percentage cost savings and the peak-to-average
ratio reductions are calculated compared to the baseline.
When combined with the CES inefficiencies and price signal
limitations, the CES operator revenue reduces from the fully-
competitive through benevolent to centralized case in each
user-percentage case. Conversely, as the CES device enacts
greater demand-side management by reducing the peak-to-

Fig. 3. Variation of grid electricity prices of the different CES operator
models with 40% participating users.

Fig. 4. Charge levels of the CES device for the different CES operator
models with 40% participating users.

Fig. 5. Sensitivity of community benefit to energy storage capacity for the
different CES operator models with 40% participating users.

Fig. 6. Distribution of individual participating user cost savings with 30%
users in the fully-competitive CES model.

average ratio, the average cost saving of a user in A increases.
The average cost saving of a user in A is similar under the
fully-competitive and benevolent CES models, then increases
notably under the centralized CES model. In fairness point of
view, the users A enjoy greater savings than the users P . For
example, with 40% participating users in the fully-competitive
CES model, a participating user receives 29.4% cost saving
on average and a non-participating user only receives 7.92%
cost saving on average. The CES revenue is greatest for the
fully-competitive CES model and decreases significantly to a
loss under the centralized CES model (see Table II). This is
because the fully-competitive model allows complete freedom
to the CES operator to maximize revenue (13) while the
benevolent CES operator is restricted to set a price and the
centralized model eliminates the CES price signal. Overall,
the total community benefit of introducing the CES device
is greatest for the centralized CES followed by the fully-
competitive CES and then the benevolent CES (see Table II).
On average, the fully-competitive CES model provides 81%
of the centralized model’s economic benefit compared with
only 68% for the benevolent CES model. Overall, the fully-
competitive system gives the best trade-off of cost benefits
between the CES operator and the users A of the three systems
while delivering significant load leveling.

Fig. 6 depicts the distribution of cost savings for individual
participating users when the fully-competitive system has
30% participating users who have surplus energy distributions
as shown in Fig. 7. According to these figures, the users
those who have a greater amount of surplus energy are more
benefited by the system than the users with less amount of
surplus energy.

Having insights for the feasibility of the fully-competitive
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TABLE II
PERFORMANCE OF THE THREE CES MODELS WITH DIFFERENT FRACTIONS OF PARTICIPATING USERS (PU). PAR IS PEAK-TO-AVERAGE RATIO.

Performance Metric Average PU Cost Savings (%) CES Operator Revenue
(AU cents)

Community Benefit
(AU cents) PAR Reduction (%)

PU Fraction 30% 40% 50% 30% 40% 50% 30% 40% 50% 30% 40% 50%
Competitive CES 27.6 29.4 31.4 323 344 373 945 1023 1123 30.3 31.7 33.1
Benevolent CES 30.7 32.4 34.9 229 191 160 856 852 889 33.8 35.9 38.3
Centralized CES 61.2 62.0 64.2 -22 -72 -150 1193 1267 1369 37.0 38.2 39.5

Fig. 7. Distribution of surplus energy of 30% participating users in the
community.

CES model, to investigate the effects of imperfect energy
forecasts on the system, we introduce proportional variance
white noise errors to the PV power and energy demand
forecasts [11]. When averaged over a large number of sim-
ulations, the mean absolute percentage energy forecast error
is equal to half of percentage white noise variance [36].
For 40% participating user case, when the mean absolute
percentage forecast error changes from 0% to 50%, the average
community user cost saving compared to the baseline was only
reduced from 11.95% to 11.84%, and the average participating
user saving was reduced from 29.37% to 29.21%. Here, for
each 10% increase in mean absolute forecast error, the average
community user cost saving decreased by nearly 0.02% while
the average participating user cost saving declined by approx-
imately 0.04%. Similar trends were observed for both 30%
and 50% participating user cases. Therefore, the cost benefits
of the fully-competitive CES model are robust to imperfect
demand and PV energy forecasts.

VII. CONCLUSION

Community energy storage (CES) devices offer significant
opportunities for user electricity cost savings, operator rev-
enue, and peak-to-average ratio reduction of the grid. These
benefits were shown to increase with the fraction of the
participating users in the community. We have investigated
three different CES operator models for community-level
demand-side management and presented a fully-competitive
CES operator model in a non-cooperative Stackelberg game
that produces the best trade-off of operating environment
between the CES operator and the users.

Interesting future work could focus on introducing more
energy trading flexibility from different distributed genera-
tion sources and investigating fairness aspects between par-
ticipation and non-participation in the decentralized fully-
competitive energy trading system. Moreover, the proposed

fully-competitive energy trading strategies in this paper could
be extended to achieve socially optimal behavior of the system.
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