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Abstract— Energy disaggregation is the task of segregating the 

aggregate energy of the entire building (as logged by the 

smartmeter) into the energy consumed by individual appliances. 

This is a single channel (the only channel being the smart-meter) 

blind source (different electrical appliances) separation problem. 

The traditional way to address this is via stochastic finite state 

machines (e.g. Factorial Hidden Markov Model). In recent times 

dictionary learning based approaches have shown promise in 

addressing the disaggregation problem. The usual technique is to 

learn a dictionary for every device and use the learnt dictionaries 

as basis for blind source separation during disaggregation. Prior 

studies in this area are shallow learning techniques, i.e. they learn 

a single layer of dictionary for every device. In this work, we 

propose a deep learning approach – instead of learning one level 

of dictionary, we learn multiple levels of dictionaries for each 

device. These multi-level dictionaries are used as a basis for source 

separation during disaggregation. Results on two benchmark 

datasets show that our method outperforms state-of-the-art 

techniques.  

Index Terms—Energy Disaggregation, Non-intrusive Load 

Monitoring, Deep Learning, Dictionary Learning.  

I. INTRODUCTION 

NERGY disaggregation, is the task of segregating the 

combined energy signal of a building into the energy 

consumption of individual appliances. Currently, residential 

and commercial buildings account for 40% of total energy 

consumption [1], and studies have estimated that 20% of this 

consumption could be avoided with improvement in user 

behavior [2]. Disaggregation presents a way in which 

consumption patterns of individuals can be learned by the utility 

company. This information would allow the  utility  to  present  

this information  to  the  consumer,  with  the  goal  of  increasing 

consumer awareness about energy usage. Studies have shown 

that this is sufficient to improve consumption patterns [3]. 

The approach towards energy disaggregation is broadly 

based on the nature of the targeted household and commercial 

appliances. These appliances can be broadly categorised as 

simple two-state (on/off) appliances such as electrical toasters 

and irons; more complex multistate appliances like refrigerators 

and washing machines; and continuously varying appliances 

such as IT loads (printers, modems, laptops etc.). The earliest 

techniques were based on using real and reactive power 

measured by residential smart meters. The appliances’ power 

consumption patterns were modelled as finite state machines 

[4]. These techniques were successful for disaggregating simple 

two state and multistate appliances, but they performed poorly 

in the case of time-varying appliances which do not show a 

marked step increase in the power. Even in recent times, there 

are techniques that primarily disaggregate based on jumps and 

drops in the power signature [5, 6].  

More recent techniques, based on stochastic finite state 

machines (Hidden Markov Models) [7], have improved upon 

the prior approach. Another approach is based on learning a 

basis for individual appliances. Sparse coding and dictionary 

learning based approaches like [8] fall under this category. A 

recent study introduced the powerlet technique to learn energy 

signatures [9]. Given the limitations in space it is not possible 

to discuss all the prior studies in this area in detail; the interested 

reader should peruse [10].  

The success of deep learning over the past decade is a 

common knowledge. In this work, we give an alternate 

interpretation to sparse coding / dictionary learning – we show 

a relationship between dictionary learning and neural networks. 

Then we will show how the sparse coding approach can be 

extended to deeper architectures; thereby leading to deep sparse 

coding.  

In the sparse coding approach introduced in this context by 

[8], the idea is to learn a basis for each electrical appliance from 

training data. During disaggregation, the combined power 

(from several appliances) is assumed to be a superposition of 

the powers from individual appliances, and is expressed in 

terms of the learned basis. By estimating the loading 

coefficients, it is possible to calculate how much power was 

consumed by each appliance. Our basic extension is simple. 

Instead of learning a single level of basis / dictionary we learn 

multiple layers – motivated by deep learning in other areas. The 

concatenated multi-layered basis is used for signal 

disaggregation.  

It must be noted that our work is not related to hierarchical / 

structured dictionary learning techniques [11-13]; although the 

title of [13] carries the terms ‘deep’, ‘sparse’ and ‘coding’ – it 

is basically a hierarchical approach; not a deep one. 

Hierarchical learning is a shallow (single level) learning 

technique, where a single level of dictionary is learnt, but the 

dictionary atoms maintain a hierarchical structure. It is similar 

to ‘learning’ a wavelet like decomposition for ‘tree-structured’ 

sparsity on any piecewise smooth signal. 

Experimental results are carried out on two benchmark 

datasets – REDD and Pecan Street. We show that our proposed 

simple extension achieves better performance than state-of-the-

art shallow architectures.  

II. LITERATURE REVIEW  

A. Deep Learning  

Deep learning (stacked autoencoder and deep belief network) 

and dictionary learning fall under the purview of representation 

learning. However, the relationship between them are not well 

Deep Sparse Coding for Non-Intrusive Load 

Monitoring 

Shikha Singh and Angshul Majumdar, Senior Member IEEE 

E 



TSG-XXXXX-2016 

 

2 

explored.  

 
Fig. 1. Single Representation Layer Neural Network 

 

Fig. 1 shows the diagram of a simple neural network with one 

representation (hidden) layer. The problem is to learn the 

network weights between the input and the representation and 

between the representation and the target. This can be thought 

of as a segregated problem (see Fig. 2). 

 
Fig. 2. Segregating the Neural Network 

 

Learning the mapping between the representation and the 

target is straightforward. The challenge is to learn the network 

weights (from input) and the representation. Broadly speaking 

this is the topic of representation learning.  

 
Fig. 3. Restricted Boltzmann Machine 

 

Restricted Boltzmann Machine (RBM) [14] is one technique 

to learn the representation layer. The objective is to learn the 

network weights (W) and the representation (H). This is 

achieved by optimizing the Boltzman cost function given by:  

( , )
TH WXp W H e                 (1) 

Basically RBM learns the network weights and the 

representation / feature by maximizing the similarity between 

the projection of the input and the features in a probabilistic 

sense. Since the usual constraints of probability apply, 

degenerate solutions are prevented. The traditional RBM is 

restrictive – it can handle only binary data. The Gaussian-

Bernoulli RBM [15] partically overcomes this limitation and 

can handle real values between 0 and 1. However, it cannot 

handle arbitrary valued inputs (real or complex). 

Deep Boltzmann Machines (DBM) [16] is an extension of 

RBM by stacking multiple hidden layers on top of each other 

(Fig. 2). The RBM and DBM are undirected graphical models. 

For training deep architectures, targets are attached to the final 

layer and fine-tuned with back propagation.  

 
Fig. 4. Deep  Botlzmann Machine 

 

The other prevalent technique to train the representation 

layer of a neural network is by autoencoder [17]. The 

architecture is shown in Fig. 4.  

 
Fig. 5. Autoencoder 

 

2

, '
min ' ( )

FW W
X W WX              (2) 

The cost function for the autoencoder is expressed above. W 

is the encoder, and W’ is the decoder. The activation function φ 

is usually of tanh or sigmoid such that it squashes the input to 

normalized values. This prevents degeneracy in the solution. 

The autoencoder learns the encoder and decoder weights such 

that the reconstruction error is minimized. Essentially it learns 

the weights so that the representation ( )WX retains almost all 

the information (in the Euclidean sense) of the data, so that it 

can be reconstructed back. Once the autoencoder is learnt, the 

decoder portion of the autoencoder is removed and the target is 

attached after the representation layer.  

To learn multiple layers of representation, the autoencoders 

are nested into one another. This architecture is called stacked 

autoencoder.  

 
Fig. 6. Two-layer Stacked Autoencoder 

 

For such a stacked autoencoder, the optimization problem is 

complicated. 

   
' '

1 2 1 2

2
' '

1 2 2 1
, , ,
min

FW W W W
X W W W W X         (3) 

The workaround is to learn the layers are learnt in a greedy 

fashion [18]. First the outer layers are learnt (see Fig. 7); and 

using the features from the outer layer as input for the inner 

layer, the weights for the inner layer are learnt.  
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Fig. 7. Greedy Learning 

 

For training deep neural networks, the decoder portion is 

removed and targets attached to the inner layer. The complete 

structure is then fine-tuned with backpropagation. 

B.  Sparse Coding   

Kolter et al in [8], assumed that there is training data 

collected over time, where the smartmeter logs only 

consumption from a single device only. This can be expressed 

as Xi where i is the index for an appliance, the columns of Xi are 

the readings over a period of time.  

For each appliance they learnt a basis, i.e. they expressed: 

,  1...Ni i iX D Z i                 (3) 

where Di represents the basis/dictionary, Zi are the loading 

coefficients, assumed to be sparse and N is the total number of 

appliances.  

This is a typical dictionary learning problem with sparse 

coefficients – there are several ways to solve (1). The most 

popular being the KSVD algorithm by [19]. However in [8] a 

more direct optimization based approach was formulated. 
2

1,
min ,  1...N

i i
i i i iFD Z

X D Z Z i           (4) 

On top of (4), there is an additional constraint on the positivity 

of the loading coefficients to conform to physics.  

The problem (40 is non-convex. It is solved via alternating 

minimization. In one step, the sparse coefficients (Z’s) are 

updated assuming the codebook / dictionary (D) to be fixed 

(5a); in the next stage, the codebook is updated assuming the 

coefficients to be constant (5b). During the sparse coding stage, 

the negative values in the sparse code are put to zero. 
2

1
min

i
i i i iFZ

X D Z Z              (5a) 

2
min

i
i i i FD

X D Z                 (5b) 

In order to prevent degenerate solutions (where D is very large 

and Z is very small or vice versa) the dictionary atoms are 

normalized after every iteration.  

During actual operation, several appliances are likely to be in 

use simultaneously. In such a case (assuming reactive loads 

only) the aggregate power read by the smartmeter is a sum of 

the powers for individual appliances. Thus if X is the total 

power from N appliances (where the columns indicate 

smartmeter readings over the same period of time as in training) 

the aggregate power can be modeled as: 

i i i

i i

X X D Z                 (6) 

Given this model, it is possible to find out the loading 

coefficients of each device by solving the following sparse 

recovery problem, 

 
1

1
2

1
,...,

1

min | ... | ...
N

N FZ Z

N

Z

X D D

Z

           (7) 

Here a positivity constraint on the loading coefficients is 

enforced as well. This is a convex problem since the basis are 

fixed. Once the loading coefficients are estimates, one can 

easily compute the power consumption from individual devices 

–  

ˆ ,  1...Ni i iX D Z i                (8) 

We have discussed the fundamental concept behind sparse 

coding based energy disaggregation. In [8] and [9] more 

sophisticated codebook learning techniques have been 

proposed with additional penalty terms. Owing to limitations in 

space, we cannot discuss them here; the interested reader may 

peruse the aforesaid papers. In this work, we will show that 

even without complicated penalties, we improve upon the state-

of-the-art simply by learning deeper levels of dictionaries.  

III. PROPOSED DEEP SPARSE CODING  

 

 

 
Fig. 8. Dictionary Learning 

 

The popular interpretation for dictionary learning is that it 

learns a basis (D) for representing (Z) the data (X) (see Fig. 8); 

for sparse coding, the representation need be sparse. The 

columns of D are called ‘atoms’. In this work, we have an 

alternate interpretation of dictionary learning. Instead of 

interpreting the columns as atoms, we can think of them as 

connections between the input and the representation layer (Fig. 

9). To showcase the similarity, we have kept the color scheme 

intact in Fig. 8.  

 
Fig. 9. Neural Network type Interpretation 

 

Unlike a neural network which is directed from the input to 

the representation, the dictionary learning kind of network 

points in the other direction – from representation to the input. 

This is what is called ‘synthesis dictionary learning’ in signal 

processing. The dictionary is learnt so that the features (along 
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with the dictionary) can synthesize / generate the data.  

Till date dictionary learning / sparse coding had been a 

shallow architecture. The dictionary (D1) is learnt such that the 

features (Z) synthesize the data along (X) with the dictionary. 

This is expressed as, 

1X D Z                    (9) 

We propose to extend the shallow learning into multiple layers 

– leading to deep sparse coding. Mathematically, the 

representation at the second layer can be written as: 

1 2X D D Z                  (10) 

Note that it is not possible to collapse the two dictionaries 

D1D2 (10) into a single level of dictionary (D1) (9); the two 

formulations would not be equivalent. This is because (9) is a 

bi-linear problem whereas (10) is a tri-linear problem; therefore 

the features obtained from (9) would not be the same as those 

of (10) even if the dimensions match.  

In (10) we show two levels of dictionaries; we can go deeper, 

to 3 and 4 layers; in that case deep dictionary learning can be 

expressed as (for N layers), 

1 2... NX D D D Z                (11) 

There is no theoretical reason for finding deeper 

representations. However, proponents of deep learning argue 

that by finding deeper representations one can find more 

compact and abstract features that helps in the learning task. 

Usually there is a trade-off between going deeper and over-

fitting. As one goes deeper, more and more parameters need to 

be learnt; thus the requirement for training data increases (leads 

to over-fitting). To prevent this one needs to find a compromise 

between abstraction and over-fitting.  

There are two ways to solve it (11). The first one is a greedy 

approach. This is easy since the basic building blocks (shallow 

dictionary learning) are already available. But the limitation of 

this technique is that there is no feedback between the layers. 

The second solution (the exact solution) has not been hitherto 

solved. In this work we solve it variable splitting followed by 

alternating minimization. We will discuss both the solutions in 

the next two sub-sections. 

A. Greedy Solution  

This is the easier of the two solutions. Here, for the first layer, 

we express: 1 2... NZ D D Z ; so that the problem (11) can be 

formulated as, 

1 1X D Z                  (12) 

The coefficient Z1 in the first layer is not sparse, hence the 

learning problem can be phrased as, 

1 1

2

1 1
,

min
FD Z

X D Z                (13) 

This is solved by alternating minimization. 

1

2

1 1 1min
FZ

Z X D Z              (14a) 

1

2

1 1 1min
FD

D X D Z              (14b) 

Iterations are continued till local convergence.  

In the second layer, we substitute 2 3... NZ D D Z , leading to 

1 2 2Z D Z                  (15) 

As before, this can be solved via alternating minimization. This 

can be continued till the last layer. At this layer, the formulation 

turns out to be, 

1N NZ D Z                  (16) 

Here, the coefficient needs to be sparse. Hence the alternating 

minimization turns out to be the same as sparse coding (5).  

This is an easy approach. The basic building blocks for 

solving this problem are well studied. There are theoretical 

studies on single layer dictionary learning that prove optimality 

of alternating minimization regarding convergence (to local 

minima) [20-23]. But the problem with the greedy approach is 

that, information flows only in one direction, there is no 

feedback from latter layers to previous ones. Usually in deep 

learning, this issue is addressed by fine-tuning. However there 

is no scope of fine-tuning here since it is an unsupervised 

problem – there are no targets / outputs from which one can 

back-propagate.  

B. Exact Solution  

The goal is to solve (11). The exact solution is expressed as, 

1 2 3

2

1 2 1, , ,
min ... N FD D D Z

X D D D Z Z          (17) 

An elegant way to address this problem is to use the Split 

Bregman approach [24]; variable splitting is a standard 

technique in signal processing these days [25-27]. We substitute

1 2... NY D D Z and in order to enforce equality at convergence, 

introduce the Bregman relaxation variable (B1). This leads to, 

1 2 3 1

2

1 1
, , , ,

2

1 1 2 1 1

min

...

FD D D Z Y

N F

X D Y

Y D D Z B Z 



   

         (18) 

To simplify (18) we substitute, 2 3... NY D D Z and introduce 

another Bregman relaxation variable. This leads to, 

1 2 3 1 2

2 2

1 1 1 1 2 2 1
, , , , ,

2

2 2 3 2 1

min

...

F FD D D Z Y Y

N F

X D Y Y D Y B

Y D D Z B Z



 

   

   

   (19) 

The process of substitution and introduction of Bregman 

variables can be continued till the last level. This leads to the 

following formulation, 

1 2 3 1 2

2 2

1 1 1 1 2 2 1
, , , , , ,...,

2

1 1 1 1

min

...

N
F FD D D Z Y Y Y

N N N N F

X D Y Y D Y B

Y D Z B Z



   

   

    

  (20) 

Although this is not exactly a separable problem, we can use 

the method of alternating directions to break it down to several 

simpler sub-problems. Showing it for N levels is cumbersome, 

so we do it for 3 levels without loss of generality.  

1

2

1 1P1:min
FD

X D Y  

1

2 2

1 1 1 1 2 2 1P2:min
F FY

X D Y Y D Y B     

2

2

1 1 2 2P3:min
FD

Y B D Y   

2

22

1 1 1 2 2 2 2 3 2P4:min
F FY

Y B D Y Y D Z B       

3

2

2 2 3P5:min
FD

Y B D Z   
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2

3 2 2 3 1
P6:min

FZ
Y B D Z Z     

All the sub-problems, P1-P5, are linear least squares 

problems having a closed form solution. Therefore solving the 

sub-problems is straightforward. The last problem P6 is an l1-

minimization problem that can be solved efficiently using 

iterative soft thresholding [28].  

In every iteration, the Bregman relaxation variable needs to be 

updated as follows, 

1 1 2 2 1B Y D Y B    

2 2 3 2B Y D Z B    

There are two stopping criteria for the Split Bregman 

algorithm. Iterations continue till the objective function 

converges (to a local minima). The other stopping criterion is a 

limit on the maximum number of iterations. We have kept it to 

be 200. 

C. Energy Disaggregation  

In energy disaggregation by sparse coding, a codebook is 

learnt for every appliance [8] (3). The codebook learnt in prior 

studies are shallow. In this work, we propose to learn deep 

sparse codebook for every appliance; instead of (3) we will have 

for every appliance,  
( ) ( ) ( ) ( )

1 2 ...i i i i

NX D D D Z               (21) 

We have changed the notation a bit for ease of expression. The 

superscript denotes the ith appliance.  

The codebook / dictionary for every appliance is learnt using 

the proposed technique (greedy or exact). Here we enforce the 

usual constraints – i) non-negativity of sparse coefficients, and 

ii) normalization of codebook.  

Once the codebook for every appliance is learnt the 

disaggregation proceeds as before (7). The only difference 

between the previous shallow techniques and the proposed 

technique is that the codebook for each appliance is a cascade 

of codebooks / dictionaries – not a single one as in (6).  

1

1
2

( ) ( )

,...,

1

min | ... | ...
N

i N

Z Z F

N

Z

X D D

Z

           (22) 

where
( ) ( ) ( ) ( )

1 2 ...i i i i

ND D D D . 

Once the loading coefficients are solved for, the energy 

consumed by individual appliances is calculated as before, i.e. 

multiplying the cascaded codebook with the corresponding 

coefficients. 

IV. EXPERIMENTAL EVALUATION 

In recent times, several research papers have been published 

proposing alternate signatures for load monitoring. In [29] a 

new current sensor is proposed. In [30], a derivative power 

signature is investigated for non-intrusive load monitoring. In a 

similar vein, [31] empirically tests a V-I trajectory based load 

signature. Even though the research on alternate signatures is 

promising, most studies on NILM depend on the standard 

smart-meter data for monitoring. Therefore in this work we will 

follow the same. We evaluate on two popular datasets – REDD 

and Pecan Street.  

A. REDD Dataset  

We report results on two datasets. The first one is the  REDD 

dataset [32] – a moderate size publicly available dataset for 

electricity disaggregation. The dataset consists of power 

consumption signals from six different houses, where for each 

house, the whole electricity consumption as well as electricity 

consumptions of about twenty different devices are recorded. 

The signals from each house are collected over a period of two 

weeks with a high frequency sampling rate of 15kHz. In the 

standard evaluation protocol, the 5th house is omitted since the 

data from this one is insufficient.  
TABLE I 

DESCRIPTION OF APPLIANCES IN HOUSES  

House Appliances 

1 Electronics,   Lighting,   Refrigerator, Disposal, Dishwasher, 

Furnace, Washer   Dryer,   Smoke   Alarms, Bathroom  GFI,  

Kitchen  Outlets, Microwave 

2 Lighting,  Refrigerator,  Dishwasher, Washer   Dryer,   

Bathroom   GFI, Kitchen Outlets,  Oven,  Microwave, Electric 

Heat, Stove 

3 Electronics,   Lighting,   Refrigerator, Disposal, Dishwasher, 

Furnace, Washer   Dryer,   Bathroom   GFI, Kitchen Outlets, 

Microwave, Electric Heat, Outdoor Outlets 

4 Lighting,    Dishwasher,    Furnace, Washer Dryer, Smoke 

Alarms, Bathroom GFI, Kitchen Outlets, Stove, Disposal, Air 

Conditioning 

6 Lighting, Refrigerator, Disposal, Dishwasher, Washer Dryer, 

Kitchen Outlets, Microwave, Stove 

 

The disaggregation accuracy is defined by [32] as follows,  

  

Acc = 1-

ŷ
t

( i) - y
t

( i)

n

å
t

å

2 y
t

t

å
 

where t denotes time instant and n denotes a device; the 2 factor 

in the denominator is to discount the fact that the absolute value 

will “double count” errors. There may be other metrics for 

evaluating disaggregation results like precision, recall and F-

measure or more recent measures proposed in [33], but 

disaggregation accuracy is still widely accepted and we 

continue using it here.  

We compare the performance of our proposed method with 

the Factorial HMM (FHMM) based technique [32], Powerlet 

based Energy Disaggregation (PED) [9], sparse coding (SC) 

and discriminating sparse coding (discSC) [8]. As outlined by 

[32] – there are two protocols for evaluation. In the first one 

(called ‘training), a portion of the data from every household is 

used as training samples and rest (from those households) is 

used for prediction; this is the easier of the two protocols. In the 

second mode, the data from four households are used for 

training and the remaining one is used for prediction (called 

‘testing’); this is a more challenging problem. In this work, we 

carry out experiments on the more challenging problem, i.e. 

testing protocol. 

The results are shown in Table II. The SC and discSC yields 

the best results for 144 atoms. For our method (both greedy and 

exact) the number of atoms are 144-100-80 in three layers. The 

table shows that our method is considerably superior compared 
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to all other disaggregation techniques.  The results are as 

expected. Results from discriminative sparse coding is slightly 

better than shallow sparse coding, but it worse compared to 

ours. The improvement from  our greedy technique is decent, 

but it is not the best. The results obtained from our proposed 

exact solution yields the best results.  
 

TABLE II 
COMPARING DISAGGREGATION ACCURACIES FOR REDD  

House (tested on) FHMM SC discSC PED Proposed (Greedy) 

(L2L2L1) 

Proposed (Exact) 

1 46.6 57.17 58.11 46.0 60.76 

 

64.26 

2 50.8 65.42  68.25 49.2 71.05 

 

74.93 

3 33.3 41.06 42.40 31.7 43.50 

 

48.26 

4 52.0 60.25 73.76 50.9 76.75 

 

79.02 

6 55.7 58.06 53.93 54.5 61.71 

 

64.19 

Aggregate 47.7 56.39 59.29 46.5 62.75 66.13 

 
TABLE III 

COMPARING DISAGGREGATION ACCURACIES FOR PECAN STREET  

House (tested on) FHMM SC discSC PED Proposed (Greedy) 

(L2L2L1) 

Proposed (Eaxct) 

1 75.55 89.43 90.53 75.96 92.96 94.09 

2 42.99 65.34 66.90 43.57 74.94 79.20 

3 64.13 81.50 82.02 66.21 83.64 87.82 

4 51.56 61.79 71.19 52.75 74.70 79.62 

5 52.20 53.49 62.14 52.69 62.50 70.05 

6 10.00 54.62 54.68 13.92 52.92 60.36 

7 53.75 49.03 54.61 55.06 60.44 67.84 

8 32.94 51.91 52.85 33.94 60.66 66.92 

9 75.50 74.27 75.35 75.06 77.40 80.40 

10 46.26 56.28 63.34 48.38 67.25 71.06 

11 33.05 53.59 59.30 33.69 67.37 72.30 

12 44.12 65.79 69.20 45.97 71.75 75.21 

13 50.25 62.97 69.63 51.11 74.80 77.34 

14 70.79 82.79 84.67 72.52 87.30 90.86 

15 50.93 60.73 61.21 50.62 61.98 69.51 

16 74.45 85.51 86.84 75.82 88.78 90.11 

17 90.15 84.94 85.64 89.91 81.12 83.40 

18 57.93 75.28 75.86 58.90 77.68 81.26 

19 45.74 55.67 58.93 47.00 61.90 67.89 

20 48.06 59.40 64.73 48.81 69.23 74.37 

21 57.87 56.58 58.67 57.03 60.73 66.80 

22 35.67 50.70 52.11 38.60 48.14 56.76 

23 68.75 81.30 84.28 71.26 87.69 90.09 

24 62.43 75.14 78.73 65.99 85.85 89.28 

25 39.44 49.76 50.20 37.59 51.89 58.23 

26 31.94 49.97 51.49 32.60 53.06 59.31 

27 42.68 45.40 50.54 43.11 55.50 60.75 

28 68.07 77.39 78.31 69.07 79.63 84.08 

29 31.00 55.65 55.65 31.00 57.11 66.02 

30 35.75 53.09 55.68 38.85 55.18 63.96 

31 38.81 52.09 52.92 40.03 51.44 59.82 

32 47.24 63.95 67.30 59.92 71.79 75.60 

33 71.00 66.88 68.69 67.06 67.25 69.22 

34 31.37 48.47 50.37 33.92 49.74 58.31 

35 45.36 48.95 51.10 45.90 58.74 63.50 

36 26.89 44.87 49.95 30.13 52.02 58.34 

37 30.73 50.68 54.51 38.71 59.42 64.31 

38 38.28 60.04 61.92 41.09 62.85 65.55 
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39 63.95 73.79 76.91 64.06 83.15 85.82 

40 47.32 52.86 53.25 50.09 51.11 61.79 

41 47.51 46.19 50.76 55.03 53.10 62.06 

42 51.10 61.91 65.63 51.85 68.97 72.56 

43 60.70 72.52 77.94 61.37 84.83 87.24 

44 28.41 55.35 56.89 29.18 58.90 65.32 

45 56.53 78.47 81.79 58.51 84.66 87.09 

46 35.16 49.17 54.55 39.06 61.89 69.74 

47 41.75 71.46 73.67 49.38 72.67 76.77 

Aggregate 49.07 62.06 64.96 50.90 67.58 72.72 

 
TABLE IV 

NORMALIZED ERROR FOR COMMON DEVICES  

Appliance FHMM SC discSC PED Proposed (Greedy) Proposed (Exact) 

AC 3.16 0.90 0.70 2.52 0.89 0.80 

Dryer 51.47 16.57 2.04 35.69 1.11 1.02 

Dishwasher 6.48 4.23 1.25 6.08 0.66 0.62 

Microwave 4.96 4.55 0.84 4..3 0.76 0.70 

Furnace 0.89 0.79 0.63 0.93 0.58 0.55 

Fridge 2722.8 916.53 516.3 986.30 490.56 401.78 

Washer 21.80 8.75 0.93 19.62 0.59 0.55 

 

  

B. REDD Dataset  

We conduct this experiment on a subset of Dataport dataset 

available in NILMTK (non-intrusive load monitoring toolkit) 

format, which contains 1 minute circuit level and building level 

electricity data from 240 houses.  The data set contains per 

minute readings from 18 different devices: air conditioner, 

kitchen appliances, electric vehicle, and electric hot tub heater, 

electric water heating appliance, dish washer, spin dryer, 

freezer, furnace, microwave, oven, electric pool heater, 

refrigerator, sockets, electric stove, waste disposal unit, security 

alarm and washer dryer. We are assigning about 80% of the 

homes to the training set and the remaining 20% of the homes 

to the test set.  To prepare training and testing data, aggregated 

and sub-metered data are averaged over a time period of 10 

minutes. This is the usual protocol to carry out experiments on 

the Pecan street dataset. Each training sample contains power 

consumed by a particular device in one day while each testing 

sample contains total power consumed in one day in particular 

house.  

The number of atoms for different techniques remain the 

same as before. The results are shown in Table III. The 

conclusion remains the same as before. Our method 

outperforms other techniques by a wide margin. The interesting 

observation here is that by deep sparse coding, we are able to 

get significantly larger improvement on homes where the 

disaggregation accuracy was previously lower, e.g. 6-8, 15, 29 

etc. 

For the Pecan Street dataset, we also study the variation of 

performance with respect to different electrical appliances. The 

metric used here is Normalized Error. The results are shown in 

Table IV. The results show that our proposed method yields the 

best disaggregation in terms of normalised error for every 

device. FHMM and PED yields significantly worse results. 

Sparse coding and discriminating sparse coding yield 

reasonably good results but is worse than our proposed deep 

sparse coding. 

 

 

 

 
Fig. 10. Energy Disaggregation: Qualitative Look. Left – Proposed Greedy 

Method; Right – discSC [8]. 

 

To visually show the disaggregation results for the Pecan 

Street dataset, some samples are shown in the Fig. 10. The red 

plot shows the actual energy consumed and the blue plot the 

predicted energy. One can see that even with our proposed 

greedy method, the estimated and the actual values are close, 

while results from [8] are considerably off. 
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V. CONCLUSION 

The problem of energy disaggregation has attracted attention of 

the machine learning community in recent times. Broadly 

speaking it is a single channel blind source separation problem. 

The current trend in disaggregation is to learn a dictionary for 

each device by taking into account some prior information 

regarding the same. The learnt dictionaries are used for blind 

source separation leading to disaggregation. 

So far all the techniques for learning the basis are shallow, 

i.e. a single layer of dictionary is learnt for each device. Given 

the success of deep learning in various machine learning 

applications, we propose to learn multiple layers of dictionaries 

for each device. We call this – deep sparse coding. 

Experimental results on two benchmark datasets show that our 

proposed method is always better than the state-of-the-art 

methods in energy disaggregation.  

The shortcoming of our work (and all other studies based on 

sparse coding / dictionary learning) is that, it cannot be used for 

real-time disaggregation. If such be the need, HMM based 

techniques [36] would be more suitable.  

Prior studies [8, 9] have shown that better results can be 

obtained (for shallow techniques) when further assumptions 

regarding the device are made. In future we would like to 

incorporate it into our deep learning framework and hope to 

improve the results even further. On a practical front, we would 

like to see if our technique can be used to disaggregate specific 

loads, e.g. one may be interested in consumption of heavy loads 

such as AC [35, 36]. 
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