
TSG-XXXXX-2016

1

Abstract— Energy disaggregation is the task of segregating the

aggregate energy of the entire building (as logged by the

smartmeter) into the energy consumed by individual appliances.

This is a single channel (the only channel being the smart-meter)

blind source (different electrical appliances) separation problem.

The traditional way to address this is via stochastic finite state

machines (e.g. Factorial Hidden Markov Model). In recent times

dictionary learning based approaches have shown promise in

addressing the disaggregation problem. The usual technique is to

learn a dictionary for every device and use the learnt dictionaries

as basis for blind source separation during disaggregation. Prior

studies in this area are shallow learning techniques, i.e. they learn

a single layer of dictionary for every device. In this work, we

propose a deep learning approach – instead of learning one level

of dictionary, we learn multiple levels of dictionaries for each

device. These multi-level dictionaries are used as a basis for source

separation during disaggregation. Results on two benchmark

datasets show that our method outperforms state-of-the-art

techniques.

Index Terms—Energy Disaggregation, Non-intrusive Load

Monitoring, Deep Learning, Dictionary Learning.

I. INTRODUCTION

NERGY disaggregation, is the task of segregating the

combined energy signal of a building into the energy

consumption of individual appliances. Currently, residential

and commercial buildings account for 40% of total energy

consumption [1], and studies have estimated that 20% of this

consumption could be avoided with improvement in user

behavior [2]. Disaggregation presents a way in which

consumption patterns of individuals can be learned by the utility

company. This information would allow the utility to present

this information to the consumer, with the goal of increasing

consumer awareness about energy usage. Studies have shown

that this is sufficient to improve consumption patterns [3].

The approach towards energy disaggregation is broadly

based on the nature of the targeted household and commercial

appliances. These appliances can be broadly categorised as

simple two-state (on/off) appliances such as electrical toasters

and irons; more complex multistate appliances like refrigerators

and washing machines; and continuously varying appliances

such as IT loads (printers, modems, laptops etc.). The earliest

techniques were based on using real and reactive power

measured by residential smart meters. The appliances’ power

consumption patterns were modelled as finite state machines

[4]. These techniques were successful for disaggregating simple

two state and multistate appliances, but they performed poorly

in the case of time-varying appliances which do not show a

marked step increase in the power. Even in recent times, there

are techniques that primarily disaggregate based on jumps and

drops in the power signature [5, 6].

More recent techniques, based on stochastic finite state

machines (Hidden Markov Models) [7], have improved upon

the prior approach. Another approach is based on learning a

basis for individual appliances. Sparse coding and dictionary

learning based approaches like [8] fall under this category. A

recent study introduced the powerlet technique to learn energy

signatures [9]. Given the limitations in space it is not possible

to discuss all the prior studies in this area in detail; the interested

reader should peruse [10].

The success of deep learning over the past decade is a

common knowledge. In this work, we give an alternate

interpretation to sparse coding / dictionary learning – we show

a relationship between dictionary learning and neural networks.

Then we will show how the sparse coding approach can be

extended to deeper architectures; thereby leading to deep sparse

coding.

In the sparse coding approach introduced in this context by

[8], the idea is to learn a basis for each electrical appliance from

training data. During disaggregation, the combined power

(from several appliances) is assumed to be a superposition of

the powers from individual appliances, and is expressed in

terms of the learned basis. By estimating the loading

coefficients, it is possible to calculate how much power was

consumed by each appliance. Our basic extension is simple.

Instead of learning a single level of basis / dictionary we learn

multiple layers – motivated by deep learning in other areas. The

concatenated multi-layered basis is used for signal

disaggregation.

It must be noted that our work is not related to hierarchical /

structured dictionary learning techniques [11-13]; although the

title of [13] carries the terms ‘deep’, ‘sparse’ and ‘coding’ – it

is basically a hierarchical approach; not a deep one.

Hierarchical learning is a shallow (single level) learning

technique, where a single level of dictionary is learnt, but the

dictionary atoms maintain a hierarchical structure. It is similar

to ‘learning’ a wavelet like decomposition for ‘tree-structured’

sparsity on any piecewise smooth signal.

Experimental results are carried out on two benchmark

datasets – REDD and Pecan Street. We show that our proposed

simple extension achieves better performance than state-of-the-

art shallow architectures.

II. LITERATURE REVIEW

A. Deep Learning

Deep learning (stacked autoencoder and deep belief network)

and dictionary learning fall under the purview of representation

learning. However, the relationship between them are not well

Deep Sparse Coding for Non-Intrusive Load

Monitoring

Shikha Singh and Angshul Majumdar, Senior Member IEEE

E

TSG-XXXXX-2016

2

explored.

Fig. 1. Single Representation Layer Neural Network

Fig. 1 shows the diagram of a simple neural network with one

representation (hidden) layer. The problem is to learn the

network weights between the input and the representation and

between the representation and the target. This can be thought

of as a segregated problem (see Fig. 2).

Fig. 2. Segregating the Neural Network

Learning the mapping between the representation and the

target is straightforward. The challenge is to learn the network

weights (from input) and the representation. Broadly speaking

this is the topic of representation learning.

Fig. 3. Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM) [14] is one technique

to learn the representation layer. The objective is to learn the

network weights (W) and the representation (H). This is

achieved by optimizing the Boltzman cost function given by:

(,)
TH WXp W H e (1)

Basically RBM learns the network weights and the

representation / feature by maximizing the similarity between

the projection of the input and the features in a probabilistic

sense. Since the usual constraints of probability apply,

degenerate solutions are prevented. The traditional RBM is

restrictive – it can handle only binary data. The Gaussian-

Bernoulli RBM [15] partically overcomes this limitation and

can handle real values between 0 and 1. However, it cannot

handle arbitrary valued inputs (real or complex).

Deep Boltzmann Machines (DBM) [16] is an extension of

RBM by stacking multiple hidden layers on top of each other

(Fig. 2). The RBM and DBM are undirected graphical models.

For training deep architectures, targets are attached to the final

layer and fine-tuned with back propagation.

Fig. 4. Deep Botlzmann Machine

The other prevalent technique to train the representation

layer of a neural network is by autoencoder [17]. The

architecture is shown in Fig. 4.

Fig. 5. Autoencoder

2

, '
min ' ()

FW W
X W WX (2)

The cost function for the autoencoder is expressed above. W

is the encoder, and W’ is the decoder. The activation function φ

is usually of tanh or sigmoid such that it squashes the input to

normalized values. This prevents degeneracy in the solution.

The autoencoder learns the encoder and decoder weights such

that the reconstruction error is minimized. Essentially it learns

the weights so that the representation ()WX retains almost all

the information (in the Euclidean sense) of the data, so that it

can be reconstructed back. Once the autoencoder is learnt, the

decoder portion of the autoencoder is removed and the target is

attached after the representation layer.

To learn multiple layers of representation, the autoencoders

are nested into one another. This architecture is called stacked

autoencoder.

Fig. 6. Two-layer Stacked Autoencoder

For such a stacked autoencoder, the optimization problem is

complicated.

   
' '

1 2 1 2

2
' '

1 2 2 1
, , ,
min

FW W W W
X W W W W X   (3)

The workaround is to learn the layers are learnt in a greedy

fashion [18]. First the outer layers are learnt (see Fig. 7); and

using the features from the outer layer as input for the inner

layer, the weights for the inner layer are learnt.

In
p

u
t

Ta
rg

et

Representation

In
p

u
t

Ta
rg

et
Representation

W

X H

W2W1

X

H1 H2

In
p

u
t

Representation

O
u

tp
u

t=
In

p
u

t

Encoder Decoder

1W 1

TW

In
p

u
t

O
u

tp
u

t

H
id

d
en

 L
ay

er
 2

H
id

d
en

 L
ay

er
 32W 2

TW

TSG-XXXXX-2016

3

Fig. 7. Greedy Learning

For training deep neural networks, the decoder portion is

removed and targets attached to the inner layer. The complete

structure is then fine-tuned with backpropagation.

B. Sparse Coding

Kolter et al in [8], assumed that there is training data

collected over time, where the smartmeter logs only

consumption from a single device only. This can be expressed

as Xi where i is the index for an appliance, the columns of Xi are

the readings over a period of time.

For each appliance they learnt a basis, i.e. they expressed:

, 1...Ni i iX D Z i  (3)

where Di represents the basis/dictionary, Zi are the loading

coefficients, assumed to be sparse and N is the total number of

appliances.

This is a typical dictionary learning problem with sparse

coefficients – there are several ways to solve (1). The most

popular being the KSVD algorithm by [19]. However in [8] a

more direct optimization based approach was formulated.
2

1,
min , 1...N

i i
i i i iFD Z

X D Z Z i   (4)

On top of (4), there is an additional constraint on the positivity

of the loading coefficients to conform to physics.

The problem (40 is non-convex. It is solved via alternating

minimization. In one step, the sparse coefficients (Z’s) are

updated assuming the codebook / dictionary (D) to be fixed

(5a); in the next stage, the codebook is updated assuming the

coefficients to be constant (5b). During the sparse coding stage,

the negative values in the sparse code are put to zero.
2

1
min

i
i i i iFZ

X D Z Z  (5a)

2
min

i
i i i FD

X D Z (5b)

In order to prevent degenerate solutions (where D is very large

and Z is very small or vice versa) the dictionary atoms are

normalized after every iteration.

During actual operation, several appliances are likely to be in

use simultaneously. In such a case (assuming reactive loads

only) the aggregate power read by the smartmeter is a sum of

the powers for individual appliances. Thus if X is the total

power from N appliances (where the columns indicate

smartmeter readings over the same period of time as in training)

the aggregate power can be modeled as:

i i i

i i

X X D Z   (6)

Given this model, it is possible to find out the loading

coefficients of each device by solving the following sparse

recovery problem,

 
1

1
2

1
,...,

1

min | ... | ...
N

N FZ Z

N

Z

X D D

Z

  (7)

Here a positivity constraint on the loading coefficients is

enforced as well. This is a convex problem since the basis are

fixed. Once the loading coefficients are estimates, one can

easily compute the power consumption from individual devices

–

ˆ , 1...Ni i iX D Z i  (8)

We have discussed the fundamental concept behind sparse

coding based energy disaggregation. In [8] and [9] more

sophisticated codebook learning techniques have been

proposed with additional penalty terms. Owing to limitations in

space, we cannot discuss them here; the interested reader may

peruse the aforesaid papers. In this work, we will show that

even without complicated penalties, we improve upon the state-

of-the-art simply by learning deeper levels of dictionaries.

III. PROPOSED DEEP SPARSE CODING

Fig. 8. Dictionary Learning

The popular interpretation for dictionary learning is that it

learns a basis (D) for representing (Z) the data (X) (see Fig. 8);

for sparse coding, the representation need be sparse. The

columns of D are called ‘atoms’. In this work, we have an

alternate interpretation of dictionary learning. Instead of

interpreting the columns as atoms, we can think of them as

connections between the input and the representation layer (Fig.

9). To showcase the similarity, we have kept the color scheme

intact in Fig. 8.

Fig. 9. Neural Network type Interpretation

Unlike a neural network which is directed from the input to

the representation, the dictionary learning kind of network

points in the other direction – from representation to the input.

This is what is called ‘synthesis dictionary learning’ in signal

processing. The dictionary is learnt so that the features (along

1W
1

TW

In
p

u
t

V
ir

tu
al

 O
u

tp
u

t
Hidden Layer 1/3

In
p

u
t

H
id

d
e

n
 L

ay
e

r
1

V
ir

tu
al

 In
p

u
t

Hidden Layer 2

H
id

d
en

 L
ay

er
 3

V
ir

tu
al

 O
u

tp
u

t

2W 2

TW

…
=

x D z

x D z

.

.

.

TSG-XXXXX-2016

4

with the dictionary) can synthesize / generate the data.

Till date dictionary learning / sparse coding had been a

shallow architecture. The dictionary (D1) is learnt such that the

features (Z) synthesize the data along (X) with the dictionary.

This is expressed as,

1X D Z (9)

We propose to extend the shallow learning into multiple layers

– leading to deep sparse coding. Mathematically, the

representation at the second layer can be written as:

1 2X D D Z (10)

Note that it is not possible to collapse the two dictionaries

D1D2 (10) into a single level of dictionary (D1) (9); the two

formulations would not be equivalent. This is because (9) is a

bi-linear problem whereas (10) is a tri-linear problem; therefore

the features obtained from (9) would not be the same as those

of (10) even if the dimensions match.

In (10) we show two levels of dictionaries; we can go deeper,

to 3 and 4 layers; in that case deep dictionary learning can be

expressed as (for N layers),

1 2... NX D D D Z (11)

There is no theoretical reason for finding deeper

representations. However, proponents of deep learning argue

that by finding deeper representations one can find more

compact and abstract features that helps in the learning task.

Usually there is a trade-off between going deeper and over-

fitting. As one goes deeper, more and more parameters need to

be learnt; thus the requirement for training data increases (leads

to over-fitting). To prevent this one needs to find a compromise

between abstraction and over-fitting.

There are two ways to solve it (11). The first one is a greedy

approach. This is easy since the basic building blocks (shallow

dictionary learning) are already available. But the limitation of

this technique is that there is no feedback between the layers.

The second solution (the exact solution) has not been hitherto

solved. In this work we solve it variable splitting followed by

alternating minimization. We will discuss both the solutions in

the next two sub-sections.

A. Greedy Solution

This is the easier of the two solutions. Here, for the first layer,

we express: 1 2... NZ D D Z ; so that the problem (11) can be

formulated as,

1 1X D Z (12)

The coefficient Z1 in the first layer is not sparse, hence the

learning problem can be phrased as,

1 1

2

1 1
,

min
FD Z

X D Z (13)

This is solved by alternating minimization.

1

2

1 1 1min
FZ

Z X D Z  (14a)

1

2

1 1 1min
FD

D X D Z  (14b)

Iterations are continued till local convergence.

In the second layer, we substitute 2 3... NZ D D Z , leading to

1 2 2Z D Z (15)

As before, this can be solved via alternating minimization. This

can be continued till the last layer. At this layer, the formulation

turns out to be,

1N NZ D Z  (16)

Here, the coefficient needs to be sparse. Hence the alternating

minimization turns out to be the same as sparse coding (5).

This is an easy approach. The basic building blocks for

solving this problem are well studied. There are theoretical

studies on single layer dictionary learning that prove optimality

of alternating minimization regarding convergence (to local

minima) [20-23]. But the problem with the greedy approach is

that, information flows only in one direction, there is no

feedback from latter layers to previous ones. Usually in deep

learning, this issue is addressed by fine-tuning. However there

is no scope of fine-tuning here since it is an unsupervised

problem – there are no targets / outputs from which one can

back-propagate.

B. Exact Solution

The goal is to solve (11). The exact solution is expressed as,

1 2 3

2

1 2 1, , ,
min ... N FD D D Z

X D D D Z Z  (17)

An elegant way to address this problem is to use the Split

Bregman approach [24]; variable splitting is a standard

technique in signal processing these days [25-27]. We substitute

1 2... NY D D Z and in order to enforce equality at convergence,

introduce the Bregman relaxation variable (B1). This leads to,

1 2 3 1

2

1 1
, , , ,

2

1 1 2 1 1

min

...

FD D D Z Y

N F

X D Y

Y D D Z B Z 



   

 (18)

To simplify (18) we substitute, 2 3... NY D D Z and introduce

another Bregman relaxation variable. This leads to,

1 2 3 1 2

2 2

1 1 1 1 2 2 1
, , , , ,

2

2 2 3 2 1

min

...

F FD D D Z Y Y

N F

X D Y Y D Y B

Y D D Z B Z



 

   

   

 (19)

The process of substitution and introduction of Bregman

variables can be continued till the last level. This leads to the

following formulation,

1 2 3 1 2

2 2

1 1 1 1 2 2 1
, , , , , ,...,

2

1 1 1 1

min

...

N
F FD D D Z Y Y Y

N N N N F

X D Y Y D Y B

Y D Z B Z



   

   

    

 (20)

Although this is not exactly a separable problem, we can use

the method of alternating directions to break it down to several

simpler sub-problems. Showing it for N levels is cumbersome,

so we do it for 3 levels without loss of generality.

1

2

1 1P1:min
FD

X D Y

1

2 2

1 1 1 1 2 2 1P2:min
F FY

X D Y Y D Y B   

2

2

1 1 2 2P3:min
FD

Y B D Y 

2

22

1 1 1 2 2 2 2 3 2P4:min
F FY

Y B D Y Y D Z B     

3

2

2 2 3P5:min
FD

Y B D Z 

TSG-XXXXX-2016

5

2

3 2 2 3 1
P6:min

FZ
Y B D Z Z   

All the sub-problems, P1-P5, are linear least squares

problems having a closed form solution. Therefore solving the

sub-problems is straightforward. The last problem P6 is an l1-

minimization problem that can be solved efficiently using

iterative soft thresholding [28].

In every iteration, the Bregman relaxation variable needs to be

updated as follows,

1 1 2 2 1B Y D Y B  

2 2 3 2B Y D Z B  

There are two stopping criteria for the Split Bregman

algorithm. Iterations continue till the objective function

converges (to a local minima). The other stopping criterion is a

limit on the maximum number of iterations. We have kept it to

be 200.

C. Energy Disaggregation

In energy disaggregation by sparse coding, a codebook is

learnt for every appliance [8] (3). The codebook learnt in prior

studies are shallow. In this work, we propose to learn deep

sparse codebook for every appliance; instead of (3) we will have

for every appliance,
() () () ()

1 2 ...i i i i

NX D D D Z (21)

We have changed the notation a bit for ease of expression. The

superscript denotes the ith appliance.

The codebook / dictionary for every appliance is learnt using

the proposed technique (greedy or exact). Here we enforce the

usual constraints – i) non-negativity of sparse coefficients, and

ii) normalization of codebook.

Once the codebook for every appliance is learnt the

disaggregation proceeds as before (7). The only difference

between the previous shallow techniques and the proposed

technique is that the codebook for each appliance is a cascade

of codebooks / dictionaries – not a single one as in (6).

1

1
2

() ()

,...,

1

min | ... | ...
N

i N

Z Z F

N

Z

X D D

Z

    (22)

where
() () () ()

1 2 ...i i i i

ND D D D .

Once the loading coefficients are solved for, the energy

consumed by individual appliances is calculated as before, i.e.

multiplying the cascaded codebook with the corresponding

coefficients.

IV. EXPERIMENTAL EVALUATION

In recent times, several research papers have been published

proposing alternate signatures for load monitoring. In [29] a

new current sensor is proposed. In [30], a derivative power

signature is investigated for non-intrusive load monitoring. In a

similar vein, [31] empirically tests a V-I trajectory based load

signature. Even though the research on alternate signatures is

promising, most studies on NILM depend on the standard

smart-meter data for monitoring. Therefore in this work we will

follow the same. We evaluate on two popular datasets – REDD

and Pecan Street.

A. REDD Dataset

We report results on two datasets. The first one is the REDD

dataset [32] – a moderate size publicly available dataset for

electricity disaggregation. The dataset consists of power

consumption signals from six different houses, where for each

house, the whole electricity consumption as well as electricity

consumptions of about twenty different devices are recorded.

The signals from each house are collected over a period of two

weeks with a high frequency sampling rate of 15kHz. In the

standard evaluation protocol, the 5th house is omitted since the

data from this one is insufficient.
TABLE I

DESCRIPTION OF APPLIANCES IN HOUSES

House Appliances

1 Electronics, Lighting, Refrigerator, Disposal, Dishwasher,

Furnace, Washer Dryer, Smoke Alarms, Bathroom GFI,

Kitchen Outlets, Microwave

2 Lighting, Refrigerator, Dishwasher, Washer Dryer,

Bathroom GFI, Kitchen Outlets, Oven, Microwave, Electric

Heat, Stove

3 Electronics, Lighting, Refrigerator, Disposal, Dishwasher,

Furnace, Washer Dryer, Bathroom GFI, Kitchen Outlets,

Microwave, Electric Heat, Outdoor Outlets

4 Lighting, Dishwasher, Furnace, Washer Dryer, Smoke

Alarms, Bathroom GFI, Kitchen Outlets, Stove, Disposal, Air

Conditioning

6 Lighting, Refrigerator, Disposal, Dishwasher, Washer Dryer,

Kitchen Outlets, Microwave, Stove

The disaggregation accuracy is defined by [32] as follows,

Acc = 1-

ŷ
t

(i) - y
t

(i)

n

å
t

å

2 y
t

t

å

where t denotes time instant and n denotes a device; the 2 factor

in the denominator is to discount the fact that the absolute value

will “double count” errors. There may be other metrics for

evaluating disaggregation results like precision, recall and F-

measure or more recent measures proposed in [33], but

disaggregation accuracy is still widely accepted and we

continue using it here.

We compare the performance of our proposed method with

the Factorial HMM (FHMM) based technique [32], Powerlet

based Energy Disaggregation (PED) [9], sparse coding (SC)

and discriminating sparse coding (discSC) [8]. As outlined by

[32] – there are two protocols for evaluation. In the first one

(called ‘training), a portion of the data from every household is

used as training samples and rest (from those households) is

used for prediction; this is the easier of the two protocols. In the

second mode, the data from four households are used for

training and the remaining one is used for prediction (called

‘testing’); this is a more challenging problem. In this work, we

carry out experiments on the more challenging problem, i.e.

testing protocol.

The results are shown in Table II. The SC and discSC yields

the best results for 144 atoms. For our method (both greedy and

exact) the number of atoms are 144-100-80 in three layers. The

table shows that our method is considerably superior compared

TSG-XXXXX-2016

6

to all other disaggregation techniques. The results are as

expected. Results from discriminative sparse coding is slightly

better than shallow sparse coding, but it worse compared to

ours. The improvement from our greedy technique is decent,

but it is not the best. The results obtained from our proposed

exact solution yields the best results.

TABLE II
COMPARING DISAGGREGATION ACCURACIES FOR REDD

House (tested on) FHMM SC discSC PED Proposed (Greedy)

(L2L2L1)

Proposed (Exact)

1 46.6 57.17 58.11 46.0 60.76

64.26

2 50.8 65.42 68.25 49.2 71.05

74.93

3 33.3 41.06 42.40 31.7 43.50

48.26

4 52.0 60.25 73.76 50.9 76.75

79.02

6 55.7 58.06 53.93 54.5 61.71

64.19

Aggregate 47.7 56.39 59.29 46.5 62.75 66.13

TABLE III

COMPARING DISAGGREGATION ACCURACIES FOR PECAN STREET

House (tested on) FHMM SC discSC PED Proposed (Greedy)

(L2L2L1)

Proposed (Eaxct)

1 75.55 89.43 90.53 75.96 92.96 94.09

2 42.99 65.34 66.90 43.57 74.94 79.20

3 64.13 81.50 82.02 66.21 83.64 87.82

4 51.56 61.79 71.19 52.75 74.70 79.62

5 52.20 53.49 62.14 52.69 62.50 70.05

6 10.00 54.62 54.68 13.92 52.92 60.36

7 53.75 49.03 54.61 55.06 60.44 67.84

8 32.94 51.91 52.85 33.94 60.66 66.92

9 75.50 74.27 75.35 75.06 77.40 80.40

10 46.26 56.28 63.34 48.38 67.25 71.06

11 33.05 53.59 59.30 33.69 67.37 72.30

12 44.12 65.79 69.20 45.97 71.75 75.21

13 50.25 62.97 69.63 51.11 74.80 77.34

14 70.79 82.79 84.67 72.52 87.30 90.86

15 50.93 60.73 61.21 50.62 61.98 69.51

16 74.45 85.51 86.84 75.82 88.78 90.11

17 90.15 84.94 85.64 89.91 81.12 83.40

18 57.93 75.28 75.86 58.90 77.68 81.26

19 45.74 55.67 58.93 47.00 61.90 67.89

20 48.06 59.40 64.73 48.81 69.23 74.37

21 57.87 56.58 58.67 57.03 60.73 66.80

22 35.67 50.70 52.11 38.60 48.14 56.76

23 68.75 81.30 84.28 71.26 87.69 90.09

24 62.43 75.14 78.73 65.99 85.85 89.28

25 39.44 49.76 50.20 37.59 51.89 58.23

26 31.94 49.97 51.49 32.60 53.06 59.31

27 42.68 45.40 50.54 43.11 55.50 60.75

28 68.07 77.39 78.31 69.07 79.63 84.08

29 31.00 55.65 55.65 31.00 57.11 66.02

30 35.75 53.09 55.68 38.85 55.18 63.96

31 38.81 52.09 52.92 40.03 51.44 59.82

32 47.24 63.95 67.30 59.92 71.79 75.60

33 71.00 66.88 68.69 67.06 67.25 69.22

34 31.37 48.47 50.37 33.92 49.74 58.31

35 45.36 48.95 51.10 45.90 58.74 63.50

36 26.89 44.87 49.95 30.13 52.02 58.34

37 30.73 50.68 54.51 38.71 59.42 64.31

38 38.28 60.04 61.92 41.09 62.85 65.55

TSG-XXXXX-2016

7

39 63.95 73.79 76.91 64.06 83.15 85.82

40 47.32 52.86 53.25 50.09 51.11 61.79

41 47.51 46.19 50.76 55.03 53.10 62.06

42 51.10 61.91 65.63 51.85 68.97 72.56

43 60.70 72.52 77.94 61.37 84.83 87.24

44 28.41 55.35 56.89 29.18 58.90 65.32

45 56.53 78.47 81.79 58.51 84.66 87.09

46 35.16 49.17 54.55 39.06 61.89 69.74

47 41.75 71.46 73.67 49.38 72.67 76.77

Aggregate 49.07 62.06 64.96 50.90 67.58 72.72

TABLE IV

NORMALIZED ERROR FOR COMMON DEVICES

Appliance FHMM SC discSC PED Proposed (Greedy) Proposed (Exact)

AC 3.16 0.90 0.70 2.52 0.89 0.80

Dryer 51.47 16.57 2.04 35.69 1.11 1.02

Dishwasher 6.48 4.23 1.25 6.08 0.66 0.62

Microwave 4.96 4.55 0.84 4..3 0.76 0.70

Furnace 0.89 0.79 0.63 0.93 0.58 0.55

Fridge 2722.8 916.53 516.3 986.30 490.56 401.78

Washer 21.80 8.75 0.93 19.62 0.59 0.55

B. REDD Dataset

We conduct this experiment on a subset of Dataport dataset

available in NILMTK (non-intrusive load monitoring toolkit)

format, which contains 1 minute circuit level and building level

electricity data from 240 houses. The data set contains per

minute readings from 18 different devices: air conditioner,

kitchen appliances, electric vehicle, and electric hot tub heater,

electric water heating appliance, dish washer, spin dryer,

freezer, furnace, microwave, oven, electric pool heater,

refrigerator, sockets, electric stove, waste disposal unit, security

alarm and washer dryer. We are assigning about 80% of the

homes to the training set and the remaining 20% of the homes

to the test set. To prepare training and testing data, aggregated

and sub-metered data are averaged over a time period of 10

minutes. This is the usual protocol to carry out experiments on

the Pecan street dataset. Each training sample contains power

consumed by a particular device in one day while each testing

sample contains total power consumed in one day in particular

house.

The number of atoms for different techniques remain the

same as before. The results are shown in Table III. The

conclusion remains the same as before. Our method

outperforms other techniques by a wide margin. The interesting

observation here is that by deep sparse coding, we are able to

get significantly larger improvement on homes where the

disaggregation accuracy was previously lower, e.g. 6-8, 15, 29

etc.

For the Pecan Street dataset, we also study the variation of

performance with respect to different electrical appliances. The

metric used here is Normalized Error. The results are shown in

Table IV. The results show that our proposed method yields the

best disaggregation in terms of normalised error for every

device. FHMM and PED yields significantly worse results.

Sparse coding and discriminating sparse coding yield

reasonably good results but is worse than our proposed deep

sparse coding.

Fig. 10. Energy Disaggregation: Qualitative Look. Left – Proposed Greedy

Method; Right – discSC [8].

To visually show the disaggregation results for the Pecan

Street dataset, some samples are shown in the Fig. 10. The red

plot shows the actual energy consumed and the blue plot the

predicted energy. One can see that even with our proposed

greedy method, the estimated and the actual values are close,

while results from [8] are considerably off.

0 50 100 150
0

1

2

3

4

5

6

el
ec

tr
ic

 s
to

ve

0 50 100 150
0

1

2

3

4

5

6

7

e
le

c
tr

ic
 s

to
v
e

0 50 100 150
0

50

100

150

200

250

300

350

re
fr

ig
er

at
or

0 50 100 150
0

50

100

150

200

250

300

350

re
fr

ig
er

at
or

0 50 100 150
0

5

10

15

20

25

ov
en

0 50 100 150
0

5

10

15

20

25

o
v
e
n

TSG-XXXXX-2016

8

V. CONCLUSION

The problem of energy disaggregation has attracted attention of

the machine learning community in recent times. Broadly

speaking it is a single channel blind source separation problem.

The current trend in disaggregation is to learn a dictionary for

each device by taking into account some prior information

regarding the same. The learnt dictionaries are used for blind

source separation leading to disaggregation.

So far all the techniques for learning the basis are shallow,

i.e. a single layer of dictionary is learnt for each device. Given

the success of deep learning in various machine learning

applications, we propose to learn multiple layers of dictionaries

for each device. We call this – deep sparse coding.

Experimental results on two benchmark datasets show that our

proposed method is always better than the state-of-the-art

methods in energy disaggregation.

The shortcoming of our work (and all other studies based on

sparse coding / dictionary learning) is that, it cannot be used for

real-time disaggregation. If such be the need, HMM based

techniques [36] would be more suitable.

Prior studies [8, 9] have shown that better results can be

obtained (for shallow techniques) when further assumptions

regarding the device are made. In future we would like to

incorporate it into our deep learning framework and hope to

improve the results even further. On a practical front, we would

like to see if our technique can be used to disaggregate specific

loads, e.g. one may be interested in consumption of heavy loads

such as AC [35, 36].

ACKNOWLEDGEMENT

We would like to thank Department of Electronics and

Information Technology (Government of India) for the Grant

Number ITRA/15(57)/Mobile/HumanSense/01.

REFERENCES

[1] L. Perez-Lombard, J. Ortiz and C. Pout, “A review on buildings energy

consumption information”, Energy and buildings, Vol. 40, pp. 394–398,

2008.
[2] J. Froehlich, E. Larson, S. Gupta, G. Cohn, M. Reynolds and S. N. Patel,

“Disaggregated End-Use Energy Data for the Smart Grid”,. IEEE

Pervasive Computing, Vol. 10 (1), pp. 28-39, 2011
[3] T. Babaei, H. Abdi, C. P. Lim, S. Nahavandi, “A study and a directory of

energy consumption data sets of buildings”, Energy and Buildings, Vol.

94 (1), pp. 91-99, 2015.
[4] H. G. Wells, “Nonintrusive appliance load monitoring”, Proceedings of

the IEEE, Vol. 80, pp. 1870-1891, 1992.
[5] M. Dong; C. M. Paulo, W. Xu and C. Y. Chung, “Non-Intrusive Signature

Extraction for Major Residential Loads”, IEEE Transactions on Smart

Grid, Vol. 4 (3), pp. 1421-1430, 2013.
[6] J. Paris; John S. Donnal; Steven B. Leeb, “NilmDB: The Non-Intrusive

Load Monitor Database”, IEEE Transactions on Smart Grid, Vol. 5 (5),

pp. 2459 – 2467, 2014.
[7] H. Kim, M. Marwah, M. Arlitt, G. Lyon and J. Han, “Unsupervised

Disaggregation of Low Frequency Power Measurements”, SDM, pp. 747-

758, 2011.
[8] Z. Kolter, S. Batra and A. Y. Ng. “Energy Disaggregation via

Discriminative Sparse Coding”, NIPS, pp. 1153-1161, 2011.

[9] E. Elhamifar and S. Sastry, “Energy Disaggregation via Learning
'Powerlets' and Sparse Coding”, AAAI 2015.

[10] A. Zoha, A. Gluhak, M. A Imran and S. Rajasegarar, “Non-Intrusive Load

Monitoring Approaches for Disaggregated Energy Sensing: A Survey”,
Sensors, Vol. 12, pp. 16838-16866, 2012.

[11] Y. Suo, M. Dao, U. Srinivas, V. Monga, T. D. Tran, “Structured

Dictionary Learning for Classification”, arXiv:1406.1943

[12] L. Bar and G. Sapiro, “Hierarchical dictionary learning for invariant

classification”, IEEE ICASSP, pp. 3578 - 3581, 2010.
[13] H. Dong, B. Wang, C.-T. Lu, “Deep Sparse Coding Based Recursive

Disaggregation Model for Water Conservation”, IJCAI, 2013.

[14] R. Salakhutdinov, A. Mnih, G. Hinton, “Restricted Boltzmann machines
for collaborative filtering”, ICML, 2007.

[15] K.H. Cho, T. Raiko and A. Ilin, "Gaussian-Bernoulli deep Boltzmann

machine," IEEE IJCNN, pp.1-7, 2013.
[16] R. Salakhutdinov and G. Hinton, “Deep Boltzmann Machines”,

AISTATS, 2009.

[17] N. Japkowicz, S. J. Hanson and M. A. Gluck, “Nonlinear autoassociation
is not equivalent to PCA”, Neural Computation, Vol. 12 (3), pp. 531-545,

2000.

[18] Y. Bengio, “Learning deep architectures for AI”, Foundations and Trends
in Machine Learning, Vol. 1(2), pp. 1-127, 2009.

[19] M. Aharon, M. Elad and A. Bruckstein, “K-SVD: An Algorithm for

Designing Overcomplete Dictionaries for Sparse Representation”, IEEE
Transactions on Signal Processing, Vol. 54(11), pp. 4311-4322, 2006.

[20] P. Jain, P. Netrapalli and S. Sanghavi, “Low-rank Matrix Completion

using Alternating Minimization”, STOC, 2013.
[21] A. Agarwal, A. Anandkumar, P. Jain and P. Netrapalli, “Learning

Sparsely Used Overcomplete Dictionaries via Alternating Minimization”,

COLT, 2014.
[22] D. A. Spielman, H. Wang and J. Wright, “Exact Recovery of Sparsely-

Used Dictionaries”, COLT, 2012

[23] S. Arora, A. Bhaskara, R. Ge and T. Ma, “More Algorithms for Provable
Dictionary Learning”, arXiv:1401.0579v1

[24] T. Goldstein and S. Osher, “The Split Bregman Method for L1-
Regularized Problems”, SIAM Journal on Imaging Sciences, Vol. 2 (2),

pp. 323-343, 2009.

[25] Z. Qin, D. Goldfarb and S. Ma, “An Alternating Direction Method for
Total Variation Denoising”, Optimization Methods & Software, Vol. 30

(3), pp. 594-615, 2015.

[26] M. V. Afonso, J. M. Bioucas-Dias, M. A. T. Figueiredo, “Fast Image
Recovery Using Variable Splitting and Constrained Optimization”, IEEE

Transactions on Image Processing, Vol. 19 (9), pp. 2345-2356, 2010

[27] D. S. Weller, S. Ramani and J. A. Fessler, “Augmented Lagrangian with
Variable Splitting for Faster Non-Cartesian L1-SPIRiT MR Image

Reconstruction”, IEEE Transactions on Medical Imaging, Vol. 33 (2), pp.

351-361, 2014.
[28] I. Daubechies, M. Defrise and C. De Mol, “An iterative thresholding

algorithm for linear inverse problems with a sparsity constraint”,

Communications on Pure and Applied Mathematics, Vol. 4 (57), pp.
1413–1457, 2004.

[29] P. Gao, S. Lin, W. Xu, “A Novel Current Sensor for Home Energy Use

Monitoring”, IEEE Transactions on Smart Grid, Vol. 5 (4), pp. 2021 –
2028, 2014.

[30] T. D. Huang; Wen-Sheng Wang; Kuo-Lung Lian, “A New Power

Signature for Nonintrusive Appliance Load Monitoring”, IEEE
Transactions on Smart Grid, Vol. 6 (4), pp. 1994 – 1995, 2015.

[31] T. Hassan, F. Javed and N. Arshad, “An Empirical Investigation of V-I

Trajectory Based Load Signatures for Non-Intrusive Load Monitoring”,
IEEE Transactions on Smart Grid, Vol. 5 (2), pp. 870 – 878, 2014.

[32] Z. Kolter and M. J. Johnson, “REDD: A public data set for energy

disaggregation research”, SustKDD, 2011.
[33] S. Makonin and F. Popowich, “Nonintrusive Load Monitoring (NILM)

Performance Evaluation”, Energy Efficiency, Vol. 8 (4), pp. 809–814

2015.

[34] S. Makonin, F. Popowich, I. V. Bajic, B. Gill and L. Bartram, “Exploiting

HMM Sparsity to Perform Online Real-Time Nonintrusive Load

Monitoring”, IEEE Transactions on Smart Grid, Vol. PP (99), pp. 1-11,
2015.

[35] Y. Ji, P. Xu and Y. Ye, “HVAC terminal hourly end-use disaggregation

in commercial buildings with Fourier series model”, Energy and
Buildings, Vol. 97, pp. 33-46, 2015.

[36] K. X. Perez, W. J. Cole, J. D. Rhodes, A. Ondeck, M. Webber, M. Baldea,

T. F. Edgar, “Nonintrusive disaggregation of residential air-conditioning
loads from sub-hourly smart meter data”, Energy and Buildings, Vol. 81,

pp. 316-325, 2015.

