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 
Abstract--The small time constants of power electronics 

devices lead to dynamic couplings with the electromagnetic 
transients of power networks, and thus complicate the modeling 
and stability analysis of power-electronics-based power systems. 
This paper presents a computationally-efficient approach to 
assess the small-signal stability of inverter-fed power systems. 
The power system is partitioned into individual components, 
including the power inverters, network impedances, and power 
loads. The state-space model of individual inverter is first built, 
where the frequency response and eigenvalue analysis collectively 
characterize the contributions of different controller parameters 
to the terminal behavior in a wide frequency range. These 
component models, together with the network equations, are then 
algebraically assembled based on the interconnection relations at 
their terminals. As a consequence, the state matrix of the whole 
system, which is essential to the system stability analysis, can be 
reformulated in a computationally-efficient way. The 
experimental results are finally given to validate the effectiveness 
of the modeling method and system stability analysis. 
 

Index Terms-- Stability, Small-Signal Model, Time Delay, 
Inverter-Fed Power System, Component Connection Method 

NOMENCLATURE 

ωi -- rotating angle frequency of ith inverter; 
δi  -- phase angle of output voltage of ith inverter; 
ωc -- cut off frequency of one-order low-pass filter;  
Llinei and Rlinei --inductance and resistance of ith line; 
Lloadi and Rloadi --inductance and resistance of ith load; 
Lfi -- inverter-side inductance of LCL filter; 
Lci -- grid-side inductance of LCL filter; 
Cfi -- capacitor of LCL filter; 
Vbusi -- ith bus voltage; 
iLineDQi--current of ith line on common frame (D-Q); 
iLoadDQi--current of ith load on common frame (D-Q); 
voi -- output voltage of ith DG unit; 
ioi -- output current of ith DG unit; 
v*

odqi -- voltage command of ith DG unit on individual frame (d-q); 
vodqi -- capacitor voltage of ith DG unit on individual frame (d-q); 
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iodqi -- output current of ith DG unit on individual frame (d-q); 
v*

invdq -- reference voltage of inverter; 
vinvdq  -- output voltage of inverter; 
i*

dqi -- current command of current controller of ith DG unit; 
idqi -- inverter-side inductance current of ith DG unit; 
pi, qi--instantaneous active and reactive power of ith inverter; 
Pi, Qi --average active and reactive power of ith inverter; 
mpi, nqi -- droop coefficient of ith DG unit. 

I.  INTRODUCTION 

he growing penetration of the power electronics-
interfaced renewable energy sources lead to the 
emergence of power-electronic-based power systems into 

electrical grids, such as wind farms [1], photovoltaic power 
plants [2], and micro-grids [3]. Those systems are featured 
with the high efficiency and flexibility in electric power 
generation and distribution, but are also more susceptible to 
the network disturbances in a wide frequency range [4]. In 
inverter-fed power systems, a number of oscillation 
phenomena have been reported, which includes the low-
frequency oscillations caused by the droop-enabled power 
control [5], and grid synchronization control [6]. In addition, 
the harmonic-frequency oscillations from hundreds of hertz to 
several kilohertz maybe happen, which is caused by the 
interaction of the inner control loops as well as the inductive 
or capacitive behavior of inverters [7]. It is undoubted that 
these oscillation phenomena will weaken the power quality 
and cause the instability of power system. 

The state-space approach, which was widely used for the 
power system stability analysis [8], has been applied to 
address the instability of the inverter-fed power systems. 
However, most of the research works concentrated on the low-
frequency oscillations associated with the power control loops, 
e.g. the droop-based power control [5], and the constant power 
control of active loads [9]. The interaction of the inner current 
and voltage control loops were commonly neglected [5]. A 
full-order state-space model including the dynamics of the 
inner current and voltage loops was developed in [4], where 
only the low-frequency oscillation modes were identified, and 
the effect of the digital control delay on the harmonic-
frequency modes were overlooked. On the other hand, the 
incorporation of the delay effect and inner control loops 
significantly increases the order of the system state matrix. 
The order-reduced model based on the specific oscillation 
modes is then needed for the system with a large number of 
inverters [9].  
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The impedance-based method is another stability analysis 
tool, which predicts the dynamic interactions of inverters 
based on the ratio of the inverter output impedance to the 
equivalent grid impedance seen by each inverter [9], [10]. 
Differing from the state-space approach, the impedance-based 
analysis is a localized method, which assesses the system 
stability at the point of connection of each inverter [11]. 
However, the impedance model only characterizes the input-
output relationship instead of the system internal states. It thus 
fails to perform the sensitivity analysis for identifying the 
participation of each state into the different oscillation modes.  

To overcome the aforementioned drawbacks of the state-
space modeling and the impedance-based analysis, this paper 
presents a system stability analysis based on the Component 
Connection Method (CCM). The CCM is basically a 
reformulation of the conventional state-space model according 
to terminal characteristic. It is a computationally-efficient 
method to implement system modeling [12]-[13]. In this 
approach, the power system is first partitioned into individual 
components which can be represented by diagonal matrices. 
These component models are then assembled together 
according to their interconnection relationships at the 
terminals, which are characterized by a linear algebra matrix. 
A sparse state matrix can thus be obtained for the composite 
system model. Hence, compared to the impedance-based 
method, the CCM keeps the advantage of the component-
based modeling procedure, which is scalable for the system 
with a large number of inverters. It also inherits the 
participation analysis feature of the state-space approach.  

The CCM-based stability analysis was earlier introduced for 
the large transmission grid with the Thyristor-based Static Var 
Compensator and High Voltage Direct Current systems [13]- 
[14]. The main contributions of this work are: (1) A 
computationally-efficient approach to the small-signal stability 
assessment of the inverter-fed power system. (2) CCM-based 
small signal model of voltage-source inverters with multiple 
control loops, where the frequency response and eigenvalue 
analysis explain the contributions of different control 
parameters on terminal characteristic in a wide frequency 
range. (3) Both low- and high-frequency oscillation modes and 
the associated controller parameters are identified.  

The rest of this paper is organized as follows. In Section II, 
the principle of CCM is described first. Then, the CCM-based 
modeling procedure is formulated in detail in Section III. This 
is followed by the system stability analysis in Section IV, 
where both the low- and high-frequency oscillation modes are 
identified. Subsequently, the experimental results are 
presented in Section V to confirm the effectiveness of the 
theoretical analysis. Finally, the conclusions are drawn in 
Section VI. 

II.  THE BASIC PRINCIPLE OF CCM 

This section describes first the basic principle of 
Component-Connection Method (CCM). As shown in Fig. 
1(a), a general circuit diagram of an inverter-fed power system 
is given to illustrate the application of the CCM. In this work, 
the small-signal model of each inverter is independently built 
to characterize the terminal dynamic behavior of inverters, 
where the output currents of inverters and the voltages at the 
points of connection are interfacing variables to the network, 

and the modeling method can be used for the inverters with 
different control strategies, either voltage-mode or current-
mode control. To address the oscillations in a wide frequency 
range, the multiple control loops including power control, 
voltage control, and current control are modeled in this work.  

A. Component Connection Method (CCM) 

     In the procedure, each component is independently 
modeled. According to the principle of the CCM, the dynamic 
of the i-th component can be represented by the nonlinear 
differential equations given in [15], which are given below 

),( iiii uxfx 


                                          (1) 
),( iiii uxgy 

                                         (2) 

where xi, yi, ui denote the vectors of states, input, and output 
variables of the i-th component. The linearized state-space 
model of the i-th component can be derived as (3) and (4).    
 

 
(a) 

  
(b) 

Fig. 1. The diagram of inverter-fed power system applied in CCM. (a) System 
description. (b) The implementation of system modeling with CCM.   

 

    iiiii uBxAx 


                                   (3) 
iiiii uDxCy                                       (4) 

   The sign ‘Δ’ in (3) and (4) is removed in the following 
equations. Then, all the linearized models are assembled 
together to form a composite system model by diagonal 
matrices as 

        BuAxx 


                                       (5) 
DuCxy 

                                          (6) 
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where A, B, C, D are the diagonal matrices of the composite 
system, i.e. ),,,( 1 ni AAAdiagA  , ),,,,( 1 ni BBBdiagB  ,

),,,,( 1 ni CCCdiagC  , ),,,,( 1 ni DDDdiagD  , since the 

components are simply cascaded in diagonal.  Tni xxxx ,,,,1  ,  Tni uuuu ,,,,1  ,  Tni yyyy ,,,,1   

are the cascaded vectors of the states, input, and output 
variables of the components.  

 As shown in Fig. 1(b), the interconnection relationship 
among the components can be represented by the algebra 
equations given as (7) and (8). 

           
aLyLu 21 

                                       (7) 
aLyLb 43 

                                        (8) 

where u and y are input and output vectors of the components, 
a and b are the input and output vectors of the system. L1, L2, 
L3, L4 are the component interconnection matrices. The desired 
state equation and output equation can be obtained by 
combining (5)-(6) and (7)-(8) as (9) and (10).  

           GaFxx 


                                          (9) 
JaHxb                                         (10) 

where CDLIBLAF 1
11 )(  , 22

1
11 )( BLDLDLIBLG  

,
CDLILH 1

13 )(  , 42
1

13 )( LDLDLILJ  

. The system 

stability can thus be predicted based on the eigenvalues of the 
state matrix F. Hence, instead of directly linearizing the 
nonlinear state-space model of the whole system, the CCM 
allows independently modeling the input-output relationships 
of the components and their interconnected network, and 
assemble them together by means of a simple linear algebraic 
matrix. In this way, the formulation procedure of the system 
state matrix can be significantly simplified. Fig. 1(b) depicts 
the application of the CCM in the studied power system, 
where the overall system is partitioned into DG inverters, 
power network and loads. 

III.  STEP-BY-STEP IMPLEMENTATION OF CCM-BASED 

MODELING  

This section presents the step-by-step implementation of the 
CCM for modeling the DG inverters and the exemplified 
system in Fig. 1(a).  

A.  Component modeling of Inverter 

 
Fig. 2. The diagram of DG inverter with local controller.  

 
Fig. 2 shows the block diagram of the DG inverter with 

local controller, which is composed of an LCL-filter, the 

droop-based power controller, the voltage controller, the 
current controller and the Pulse Width Modulation (PWM). 

The droop-based power controller achieves the power 
distribution among the paralleled inverters. The averaged 
active and reactive powers obtained from instantaneous power 
calculation block are viewed as the reference inputs of the 
droop controller. The voltage controller and current controller 
are adopted to perform voltage regulation of inverters. Small 
signal models of the droop controller, the voltage and current 
controllers have been well established in [3]-[4]. However, the 
effect of the time delay involved into the digital control 
implementation is often overlooked, which has recently been 
found to have an important impact on the high frequency 
oscillations [13].  

To reveal the effect of time delay, the time delay plant is 
modeled as (11), which includes one sampling period of 
digital computational delay (Ts) and the zero-order hold effect 
of (PWM) (0.5Ts). *

i
s

i VeV  

                                     (11) 

where 
*

iV  and iV  are the demanded and output voltage of the 

inverter, respectively. sT5.1  is the delay time. In this work, 

the third-order Pade approximation is used to approximate 
(11) for the better accuracy, which is given by 

32

32

)()(12)(60120

)()(12)(60120

sss

sss
e s









                       (12) 

  The small signal model of the time delay can be rewritten in 
a state-space form by (12). 

                      
*

ideldeldeldel VBxAx 


                                (13) 
*

ideldeldeli VDxCV                                  (14) 

where  Tdqdqdqdel xxxx 321 ,, are state variables of delay plant 

(13), deldeldeldel DCBA ,,,  are the parameter matrices of the delay 

plant.










q

d

del A

A
A

,










q

d

del B

B
B

,










q

d

del C

C
C











q

d
del D

D
D

，



















 /12/60/120

100

010

23
qd AA

, 

 Tqd BB 100
,

  /240/240 3 qd CC
, 

 1 qd DD
, 

 Tidqi VV **  , 
 Tidqi VV 

.  

    The power angle relationship contributes to power 
distribution among different DG units. The local frame of 
DG1 (dq1) is selected as common frame (DQ), and the 
dynamics of other DG inverters and power network are 
transferred into DQ frame. The angle dynamic of the i-th DG 
can be represented as. 

comii  


                                   (15) 

   And the state-space model of power angle can be given as. 

                      ccccc uBxAx 


                                 (16) 
ccccc uDxCy                                   (17) 

where  icx   is the state variable,  Tcomicu  , ,  icy  , 
0cA ,  11 cB , 1cC ,  00cD . 

   The mathematical equation of droop controllers can be seen 
in Fig. 2. The small signal model of the droop controller can 
be obtained by combining and linearizing power calculation 
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block, low pass filter block and droop controller, which is 
given by (18) and (19). 

                  11111 uBxAx 


                                     (18) 
11111 uDxCy                                       (19) 

where  TQPx 111 , is the vector of two state variables,
 Toqiodioqiodi iiVVu ,,,1   is the vector of input variables, 
 Tioqiodi VVy ,, **

1   is the vector of output variables, and 

1111 ,,, DCBA  are parameter matrices of the power controller.  













c

cA



0

0
1

, 











0000

0000
1

odicoqicodicoqic

oqicodicoqicodic

VVii

VVii
B




, 






















0

00

0

1

pi

qi

m

n

C

,  421  OD . 0000 ,,, oqiodioqiodi VVii
 are the initial 

states of the output current and voltage of the i-th DG inverter.  
    As shown in Fig. 2, the control system of individual inverter 
is composed of droop-based power controller, current 
controller, voltage controller and Pulse Width Modulation 
(PWM). The voltage and current controller are performed by 
classical PI controller, which can be seen in [3]-[6]. Together 
with the small signal models of power angle relationship, 
power controller, voltage and current controller, LCL filter, 
and time delay, the component model of DG inverter is 
formulated as (20) and (21). 

                     iinviinviinviinvi uBxAx 


                            (20) 

inviinvii xCy 
                                      (21) 

where  Tdelodqiodqildqidqidqiiiiinvi xiviQPx ,,,,,,,,   is the vector 

of 19 state variables of inverter, including the states of power 
angle (δi), droop controller (Pi, Qi), voltage controller (φdqi), 

current controller (γdqi), LCL filter (ildqi, vodqi, iodqi), and delay 
plant (xdel). Bus voltages (Vbusi) and command current (iodqi

*) 
are defined as input vector of inverter, ui = [iodqi

*, Vbusi]. And 
output current of inverter (iodqi) is selected as the component 
output (yi) to connect power network. The terminal 
characteristic of inverter may be revealed by the closed-output 
admittance and closed-loop gain [10], which can be derived by 
the ratio of output current to inverter input as (22).  

inviinviinvi
i

oi
o BAsIC

su

si
Y 1)(

)(

)( 
                     (22) 

   Note that if the bus voltage (Vbusi) is selected as inverter 
input, the ratio of output to input is closed-loop output 
admittance. Alternatively, if the command current (iodqi

*) is 
selected as inverter input, the ratio of output to input is 
inverter closed-loop gain.  

B.  Terminal dynamic behavior of Inverter 
   The frequency response shows the impact of controller 
parameters on terminal dynamic behavior, and the eigenvalue 
trace commonly shows the different oscillation modes and 
damping characteristic. In this work, the merits of two 
domains are combined to provide comprehensive insights in a 
wide frequency range. The terminal characteristic of the 
inverter can be represented by output admittance in impedance 
model (22), which is able to directly reveal the contributions 
of different controller parameters in a wide frequency range. 
In this section, the impact of droop controller, voltage 

controller, current controller and time delay on terminal 
dynamic behavior is investigated.   

(1) The impact of droop controller on terminal behavior 

    To reveal the impact of droop controller on terminal 
dynamic behavior, the frequency response and eigenvalue 
trace of inverter is given in Fig. 3, which shows the terminal 
dynamic characteristic of individual inverter as the increase of 
reactive power-voltage droop coefficient (1e-3 to 5e-3, step: 
1e-3). It can be seen that the terminal characteristic of inverter 
in low frequency range (1Hz-10Hz) is significantly affected 
by reactive power droop coefficient, while the dynamic 
characteristic in high-frequency range is slightly affected.  

(2) The impact of voltage and current controller on terminal 
behavior 

   To investigate the impact of voltage and current controller 
on terminal dynamic behavior, the frequency response and 
eigenvalue trace of inverter are shown in Fig. 4 and Fig. 5, 
which shows the terminal characteristic of inverter as the 
increase of proportional gain of voltage controller. It can be 
observed that the proportional gain of voltage controller and 
current controller have dramatic effects on high-frequency 
performance of inverter (500 Hz-1000 Hz), and the eigenvalue 
trace of individual inverter also indicates the same effect in 
high-frequency range. 

   
                                    (a)                                                          (b)   
Fig. 3. Terminal characteristic of inverter as the increase of droop coefficient 
(1e-3 to 5e-3, step: 1e-3) without considering time delay. (a). Frequency 
response of inverter terminal characteristic. (b). Eigenvalue trace of individual 
inverter.  

                               
            (a)                                                           (b)      

Fig. 4. Terminal characteristic of inverter as the increase of proportional gain 
of voltage controller (0.01 to 0.05, step: 0.01) without considering time delay 
(a). Frequency response of inverter terminal dynamic behavior. (b). 
Eigenvalue trace of individual inverter. 
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                                     (a)                                                          (b)      
Fig. 5. Terminal characteristic of inverter as the increase of proportional gain 
of current controller (2 to 6, step: 1) without considering time delay. (a). 
Frequency response of inverter terminal dynamic behavior. (b). Eigenvalue 
trace of individual inverter. 

(3) The impact of time delay on terminal behavior 

   Once time delay is considered, the terminal behavior will be 
dramatically affected. Fig. 6 shows the frequency response of 
individual inverter with the increase of sampling time. 
   Fig. 6(a) shows the frequency response characteristic of 
inverter output admittance as the increase of sampling time. It 
can be seen that the time delay has an essential effect on high-
frequency performance of inverter output admittance.  
   The frequency response obtained from Fig. 3-6 shows that 
the controller parameters in multiple control loops have 
different contributions on inverter terminal behavior in 
different frequency range.  
 

                                      
            (a)                                                     (b) 

Fig. 6. Terminal characteristic of inverter as the increase of sampling time 
(Ts=1/10000, 1/8000, 1/6000). (a). Frequency response of inverter terminal 
behavior. (b). Eigenvalue trace of individual inverter.   
 

C. Component modeling of Power Network and Loads 
 

The power network and loads as shown in Fig. 7 are 
modeled as individual components. The different inverter 
components are connected and coupled by power network.  

 
Fig. 7. Component of network and loads 

The state equations of the i-th line current and load current 
on the DQ frame could be represented as (23) and (24). 

3

3

11

11

busQ
Linei

busQi
Linei

LineDicomLineQi
Linei

Linei
LineQi

busD
Linei

busDi
Linei

LineQicomLineDi
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
















(i=1,2) (23) 

busQi
Loadi

LoadDicomLoadQi
Loadi

Loadi
LoadQi

busDi
Loadi

LoadQicomLoadDi
Loadi

Loadi
LoadDi

V
L

ii
L

R
i

V
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ii
L

R
i

1

1



















 (i=1,2,3) (24) 

   The linearized state equations of lines and loads can be 
given as (25)-(26) by linearizing (23)-(24).  

34321 busDQiLinebusDQiiLineLineDQiiLinecomiLineLineDQi VAVAiAAi 




(25) 

busDQiiLoadLoadDQiiLoadcomiLoadLoadDQi VAiAAi 321 



 (26) 

where 










0

0
1

LineDi

LineQi
iLine i

i
A

, 
























Linei

Linei

Linei

Linei

iLine

L

R
L

R

A

0

0

2





,  

























Linei

Linei
iLine

L

L
A

1
0

0
1

3

, 



















Linei

Linei
iLine

L

L
A

1
0

0
1

4











0

0
1

LoadDi

LoadQi
iLoad i

i
A

,  


























Loadi

Loadi

Loadi

Loadi

iLoad

L

R
L

R

A

0

0

2





, 



















Loadi

Loadi
iLoad

L

L
A

1
0

0
1

3

 

In this work, virtual resistors are introduced between node 
and ground to simplify voltage equations [4]. The influence of 
the virtual resistor on the system stability will be analyzed 
later. Then, the node voltages can be represented on the 
common DQ frame as (27) and (28). )( LoadDQiLineDQioDQiNbusDQi iiirV 

                   (27) 
)( )1(1)1(   iLoadDQLineDQiLineDQNibusDQ iiirV 

    (28) 

D.  Algebra Interconnection of Components 
The advanced merit of CCM is to combine different 

components by algebra interconnection, where only input-
output relationship is concerned and the state matrix is 
reformulated in a computationally-efficient way.  

The component model of the power network and loads are 
obtained by combining (27)-(28) as (29). 

netnetnet

netnetnetnetnet

xCy

uBxAx






                              (29) 

where 
 TLoadDQiLoadDQLineDQiLineDQnet iiiix ,,,,, 11 

is the vector of 

state variables of the network and loads, 
),,,,( 2322212221 LoadLoadLoadLineLinenet AAAAAdiagA  ,  Tcombusibusnet VVu ,,,1 

, 
 TLoadDQiLoadDQLineDQiLineDQnet iiiiy ,,,,, 11 

. 

Finally, the composite system model is formulated by 
combining (20), (21) and (29) as (30). 

TTT

TTTTT

xCy

uBxAx






                                   (30) 

),,,( 1 netinviinvT AAAdiagA  , ),,,( 1 netinviinvT BBBdiagB  ,
),,,( 1 netinvinvT CCCdiagC   ,  TnetinviinvT xxxx ,,,1   are state 

variables of network and loads.  
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    The input variable of inverter model (20) can be rewritten 
by sparse matrix Li as (31) and the input variable of network 
component (29) may be rewritten by sparse matrix Lnet as (32).  

iii yLu 
 (i=1,2,…,k)                                 (31) 

netnetnet yLu 
                                     (32) 

   Then, the interconnection relationship between component 
inputs and outputs can be given by combining (31) and (32) as 
(33). 

TTT yLu                                          (33) 

where 
 TnetkT uuuuu ,,,, 21 

,
 TnetkT yyyyy ,,,, 21 

.
),,...,,( 21 netkT LLLLdiagL   

The composite system model can be obtained by according 
to (30) and (33) as (34).  

Fxx 


                                           (34) 
where TTTT CLBAF  . In the modeling procedure, each 

inverter component is connected to power system according to 
terminal characteristic, so that the system model can be 
extended easily as the increase of inverters and power loads.      

IV.  SMALL-SIGNAL STABILITY ASSESSMENT 

The eigenvalues of state matrix (F) is able to indicate the 
stability and damping characteristic. In this work, the 
eigenvalue trajectory of state matrix is calculated to assess the 
small-signal stability in a wide frequency range caused by 
multiple control loops. The test system parameters are listed in 
Table I.  

Table I Test System Parameters 

Parameters Value Parameters Value 
Rated 

Voltage 220 V Frequency 50 Hz 

DC 
Voltage 750V 

Switching 
Frequency 

10 kHz 

Lf1/Lf2 1.5 mH/1.5 mH Ts 100 µs 

Cf1/Cf2 25 µF/25 µF LLoad1/RLoad1 155 mH/64 Ω 

Lc1/Lc2 1.8 mH/1.8 mH LLoad2/RLoad2 156 mH/64 Ω 

LLine1/RLine1 1.8 mH/0.2 Ω LLoad3/RLoad3 245 mH/80 Ω 

LLine2/RLine2 1.8 mH/0.2 Ω mp1/mp2 1e-4/1e-4 

nq1/nq2 1e-3/1e-3 Kpv1/Kpv2 (0.04-0.056) 

Kiv1/Kiv2 100/100 Kpc1/Kpc2 (8-12) 

 

 
    (a)                                                    (b) 

Fig. 8. Eigenvalue trace diagram of the small signal model. (a) The proposed 
small signal model with considering time delay. (b) Conventional small signal 
model without considering time delay. 
 

   Fig. 8(a) shows that the eigenvalue trace diagram of small 
signal model considering time delay of digital control system. 

It can be seen from Fig. 8(a) that the time delay has a dramatic 
effect on harmonic-frequency (8000 rad/s) oscillation modes. 
As the increase of proportional gains of inner controller, the 
harmonic-frequency modes move towards unstable region. In 
contrast, the eigenvalue trace diagram without considering 
time delay is shown in Fig. 8(b), where the harmonic-
frequency oscillation characteristic are far away from unstable 
region, which are not dominant poles and slightly affects 
system stability. Hence, the high-frequency oscillation modes 
caused by time delay fail to be observed by previous small 
signal models.  

A.  Low-frequency Oscillation Assessment 

 An inverter-fed power system with 2 inverters is first 
modelled to perform low-frequency instability assessment. 
The effect of active power and reactive power droop gains on 
low-frequency oscillation is investigated in this section. 
Fig.9(a) shows the low-frequency (20-70 rad/s) eigenvalue 
trace as the active power droop gain (mp) of power controllers 
increases from 0.1e-3 to 3e-3. The oscillation modes will 
move toward the right-half plane (unstable region) as the 
increase of active power droop coefficients. It is apparent that 
the oscillation modes represent the dynamics of active power 
sharing among inverters. Also, Fig. 9(b) shows the low-
frequency oscillation modes move towards the right-half plane 
(unstable region) as the increase of the reactive power droop 
coefficients. 

 
        (a)                                                        (b) 

Fig. 9. Low-frequency stability analysis. (a) Eigenvalue trajectory as the 
increase of active power droop gains of power controller    (0.1e-3 <mp < 3e-
3). (b) Eigenvalue trajectory as the increase of reactive power droop gain of 
power controllers (1e-3 < nq < 30e-3). 

B.  High-frequency Instability assessment 

Furthermore, the high-frequency (9000 rad/s) stability is 
assessed for the exemplified power system. Fig. 10(a) shows 
the eigenvalue traces of the composite model (34) when the 
proportional gain of voltage controllers increase. It can be 
seen that two complex-conjugate pairs dominate the high-
frequency oscillation modes. These eigenvalues are highly 
sensitive to the proportional gain of voltage controller, where 
the modes represent the high-frequency dynamics. The 
eigenvalue analysis shows that the modes move towards the 
right-half plane (unstable region) as Kpv increases. It can also 
be seen that the high frequency modes are sensitive to the 
parameters of the voltage controller.  

Fig. 10(b) shows the eigenvalue trace of high frequency 
modes when the proportional gain of current controller is 
within the range from 2 to 12, where the high frequency 
modes move towards the right-half plane as Kpc increases. The 
system would be unstable if Kpc is larger than 9.  
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   As demonstrated in Section II, virtual resistors were 
introduced to define node voltages. In this section, the 
influence of virtual resistor on the system stability is 
investigated. Fig. 11 shows the eigenvalue trajectory as the 
increase of virtual resistor from 600 Ω to 1000 Ω. It can be 
observed that virtual resistors have an essential effect on the 
fundamental frequency oscillation modes (50Hz), and slightly 
affect the system stability. 
 

  
     (a)                                                         (b) 

Fig. 10. High-frequency eigenvalue trajectory (a) Eigenvalue trajectory as the 
increase of proportional gain of voltage controller (0<Kpv<0.06). (b) 
Eigenvalue trajectory as the increase of proportional gain of current controller 
(2<Kpc <12). 
 

  
Fig. 11. The eigenvalue trajectory as the increase of virtual resistor (rn) (600 Ω 
< rn <1000 Ω). 

V.  EXPERIMENTAL VERIFICATION 

 To validate the CCM-based small-signal stability analytical 
method, the experimental verification is performed. The 
photograph and configuration of test system is shown in 
Fig.12, and the system parameters are listed in Table I.  

 

 
(a) 

 
(b) 

Fig. 12. System configuration. (a) The photo of experimental setup. (b) Circuit 
configuration.   

A.  Low-frequency Instability Assessment 

 

          
              (a)                                                (b) 

    
               (c)                                                  (d) 

Fig. 13. Experimental results in the low-frequency oscillation case (mp = 
0.62e-3, np = 1e-3). (a) Inverter1 output current. (b) Inverter2 output current. 
(c) Inverter1 output power. (c) Inverter2 output power. 
 

   Fig. 13 shows that the experimental results in low-frequency 
oscillation case when the active power droop gain (mp) of the 
power controllers increase. Fig. 13(a)-(b) shows the output 
current of inverter1 and inverter2. Also, Fig. 13(c)-(d) shows 
the output power of inverter1 and inverter2, respectively. 
Fig.14 shows that the experimental results in the low-
frequency oscillation case when the reactive power droop gain 
(nq) of the power controller increases, where the output current 
of inverter1 and inverter2 is shown in Fig. 14(a)-(b). 
Fig.14(c)-(d) shows the output power of inverter1 and 
inverter2, respectively.  
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     (a)                                                    (b) 

 
     (c)                                                     (d) 

Fig. 14. Experimental results in low-frequency oscillation case (mp = 0.1e-3, 
np = 18e-3). (a) Inverter1 output current. (b) Inverter2 output current. (c) 
Inverter1 output power. (c) Inverter2 output power. 

B.  High-frequency instability assessment 

Fig. 15 shows that the experimental results in the unstable 
case when the proportional gains (Kpv) of the voltage 
controller vary. The output current of the inverters and 
network voltages are depicted in Fig. 15(a)-(b) and Fig. 15(c)-
(d). It can be seen that the high-frequency oscillation happens, 
when the proportional gains (Kpv) of the voltage controllers are 
set as 0.056. 

 

  
      (a)                                                        (b) 

 
         (c)                                                           (d) 

Fig. 15. Experimental results in the unstable case (Kpv=0.053, Kpc =8). (a) 
Inverter1 output current. (b) Inverter2 output current. (c) Bus1 phase-to-phase 
voltage. (d) Bus2 phase-to-phase voltage.  

On the contrary, the output current of the inverters and 
network voltages are stablized as shown in Fig. 16(a)-(b) and 
Fig. 16(c)-(d) after decreasing the proportional gains of the 
controllers.  

Fig. 17 depicts the experimental results in the unstable case, 
when the proportional gains (Kpc) of the current controller are 
in the unstable region. The output current of inverters and 
network voltages are depicted in Fig. 17(a)-(b) and Fig. 17(c)-
(d), respectively. It can be seen that high-frequency oscillation 
still happens, when the proportional gains (Kpc) of the current 
controller are set as 11. The results from the eigenvalue 
analysis agree with the experimental results. The simulation 
and experimental results, together with analysis results shown 
in Fig. 10, indicate that the high proportional gains of inner 
control loops result in the harmonic-frequency oscillations. 

   
     (a)                                                        (b) 

 
      (c)                                                            (d) 

Fig. 16. Experimental results in the stable case (Kpv=0.04, Kpc=8). (a) 
Inverter1 output current. (b) Inverter2 output current. (c) Bus1 phase-to-phase 
voltage. (d) Bus2 phase-to-phase voltage.  

   
      (a)                                                      (b)                       

 
         (c)                                                          (d) 

Fig. 17 Experimental results in unstable case (Kpv=0.04, Kpc=12). (a) Inverter1 
output current. (b) Inverter2 output current. (c) Bus1 phase-to-phase voltage. 
(d) Bus2 phase-to-phase voltage.  
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VI.  CONCLUSION 

   This paper addresses a CCM-based modeling and small-
signal stability analysis method for inverter-fed power system 
used in different frequency range. First, the power system is 
partitioned into different components, and each component is 
independently modeled. Then, all the component models are 
assembled to form a composite system model according to 
terminal interconnection relationship. The terminal 
characteristic of inverter is investigated by means of frequency 
response and eigenvalue trace analysis. Finally, an eigenvalue-
based approach is proposed to assess low-frequency and high-
frequency instability, the influence of controller parameters on 
small-signal stability is assessed through the eigenvalue trace 
diagram. The analytical results show that both low-frequency 
and high-frequency instability may happen in inverter-fed 
power system, which indicates the parameters of multiple 
control loops have different contributions on instability 
phenomena in a wide frequency range. Experimental results 
are given for validating the proposed stability analytical 
method. 
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