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Low-Complexity Distributed Predictive Automatic

Generation Control with Guaranteed Properties
Pablo R. Baldivieso Monasterios and Paul Trodden, Member, IEEE

Abstract—An automatic generation control scheme for multi-
area power systems is presented, based on the technique of
distributed model predictive control. Local area controllers solve
nested MPC problems in order to regulate states to steady values,
and reject the disturbances induced by tie-line interactions. The
approach achieves guaranteed constraint satisfaction, recursive
feasibility of the MPC problems and stability, while maintaining
on-line complexity similar to conventional MPC. A rigorous
off-line design methodology is given for selecting controller
parameters, and is demonstrated on an example 4-area system.

Index Terms—Load frequency control; automatic generation
control; model predictive control; distributed control.

I. INTRODUCTION

M
ODERN electrical power networks typically comprise

a number of control areas, each managed and operated

separately by regional-, independent- or transmission-system

operators (RTOs, ISOs or TSOs), and interconnected via

alternating current (AC) or high-voltage direct current (HVDC)

lines. Within these networks, load-frequency control (LFC) is

a fundamental responsibility of each area operator, and is the

problem of providing the necessary control actions within the

area in order to meet local demand, maintain reserve levels for

primary frequency controllers, and assist in keeping system

frequency and tie-line flows close to nominal values.

The problem of desiging automatic generation control (AGC)

schemes to fulfil the LFC function has attracted attention

since the 1950s. Numerous approaches have been proposed,

utilizing a broad range of classical and modern control

techniques (see, for example, [1]–[3] for recent surveys on

the topic). The AGC resides at the secondary level of the

traditional frequency control hierarchy, one layer above the

primary (droop) control, and the objectives and requirements

upon it are well understood [4]. In the simplest case of a

single area controlled by a single operator, the LFC function

can be achieved by adding an integral control loop to the

conventional droop (proportional) control in order to eliminate

offset in frequency. Multiple area LFC is, on the other hand,

a more challenging problem owing to the non-centralized

but interconnected organization of the network—each area

being operated independently, but with scheduled power flows

between areas—and uncoordinated decision making can lead

to errors, constraint and contract violations and even instability.

Model predictive control (MPC) has long been identified as a

leading candidate technique for LFC/AGC, and, more generally,

control problems in future power networks and smart grids.

P. R. Baldivieso and P. A. Trodden are with the Department of
Automatic Control & Systems Engineering, University of Sheffield,
Mappin Street, Sheffield S1 3JD, UK (e-mail: {prbaldivieso1,

p.trodden}@shef.ac.uk).

MPC is a well established, advanced control technique, popular

in industry [5] (particularly in process control [6]), and with

mature theoretical foundations [7], [8]. It excels in situations

where a control law is prohibitively difficult to determine offline,

such as in the presence of constraints. Because the control law

is implicitly (rather than explicitly) defined by the repeated

solving of an optimal control problem on-line, MPC is able

to handle constraints naturally and systematically. Moreover,

because an objective function is optimized every time the

optimal control problem is solved, MPC is advantageous for

systems where an economic cost is to be minimized, or a

performance metric is to be maximized.

One of the main barriers to adoption of MPC for power

system control (and, indeed, large-scale systems in general)

is its inherently centralized nature, which is at odds with the

structure of modern power systems as networks of decentralized,

interconnected and interacting systems. Thus, considerable

attention has been devoted to decentralized, distributed and hi-

erarchical forms of MPC [9], [10], wherein the control problem

and decision making is decomposed and distributed throughout

the system; local controllers make decisions independently and

share information in order to coordinate their actions. Many

proposals have been made—for excellent surveys see [9], [10].

For the LFC problem, the most notable use of distributed

MPC (DMPC) is [11], wherein the authors develop an AGC

scheme considering constraints on control inputs (but not

states or outputs). Local area controllers solve optimal control

problems independently, share the optimized predicted control

actions, and re-iterate until a satisfactory system-wide outcome

is achieved. The approach guarantees closed-loop stability and

(input) constraint satisfaction, even when the iterations are

terminated early; however, performance can be poor when

the iterations are few, owing to the conditions imposed in

order to guarantee stability. An earlier DMPC-based AGC

scheme [12] introduced this notion of local MPC-controlled

areas sharing predictions to aid coordination, but avoided

iterative/repeated solving of MPC optimization problems by

including contraction constraints as an alternative means to

guaranteeing system-wide stability; however, constraints were

not considered. More recently, representative constraints for

LFC (including generation rate constraints) were handled in

the practically oriented DMPC-based AGC schemes of [13]–

[15]; on the other hand, satisfaction of those constraints at all

times—and also stability—is assumed (or achieved by tuning)

rather than guaranteed. In terms of achieving desirable control

theoretic properties such as guaranteed stability, feasibility

and constraint satisfaction within the context of LFC/AGC,

the scheme of [16] is the most complete to date. With the

guaranteed properties come two weaknesses, however: first,
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the approach is fully decentralized and—moreover—relies

on restricting constraints in a conservative manner, leading

to potentially poor performance [17]. Secondly, the scheme

requires the explicit characterization, computation and use of

robust control invariant sets [18], the complexity of which

grows prohibitively with system order; thus, each area’s

dynamics are practically limited to second or third order.

The aim of this paper is to develop a DMPC-based AGC

scheme that is implementable (in terms of the complexity of

the on-line computations and the ease of design) yet achieves

the desirable properties of guaranteed constraint satisfaction,

feasibility and stability. To this end, we propose a scheme that—

similar to [16] and other DMPC approaches with guaranteed

properties [19]–[21]—utilizes the “tube” concept from robust

MPC [22], but with key differences, the enumeration of which

also serves to define the contribution of the paper:

1) We present a distributed MPC-based approach to the

multi-area AGC problem that attains the desirable guar-

antees closed-loop stability, recursive feasibility and

constraint satisfaction without the need for supervision

or iteration/negotiation between controllers.

2) The distributed AGC employs a “nested” approach to

DMPC, based on the tube approach to robust MPC [22],

wherein the overall control law comprises two parts.

The first part arises implicitly from the solution of

a conventional MPC problem (albeit with tightened

constraints), and steers the local system states to steady-

state values. The second part rejects the effects of

disturbances acting on the local system; here, the mutual

interactions arising from the physical coupling of areas.

This second control law is—uniquely among DMPC

approaches—defined by a secondary MPC problem,

which is able to take into account shared information

from other area controllers, plus a robust control law

based on disturbance-invariant sets.

3) A distributed, offline design methodology is presented for

the rigorous determination of controller parameters. In

particular, we exploit the theory of disturbance-invariant

sets in order to compute, via the solving of a two linear

programs (LPs) for each area, the scaling factors to apply

to constraints in the MPC problems in order that their

satisfaction is guaranteed, and the robust control law. The

invariant sets—which can be very complex objects for

systems of third- or higher-order—are, however, merely

implicit, and are never explicitly constructed or included

in the MPC problems; thus, the complexity of the MPC

problems is similar to conventional MPC. This permits

the application of the proposed approach to systems with

higher-order local dynamics, such as the fourth-order

power systems studied in this paper.

A companion paper to this one, [23], presents the nested DMPC

approach in detail, including theoretical results and proofs. In

this paper, we present the core details of the approach while

limiting theoretical details and keeping the paper self contained.

The next section defines the LFC problem. In Section III,

the proposed AGC is presented, including MPC optimization

problems and control algorithm. The controller design proce-

dure and theoretical properties are given in Section IV. The

proposed approach is applied to an example 4-area system in

Section V. Finally, concluding remarks are made in Section VI.

II. THE LOAD FREQUENCY CONTROL PROBLEM

A. Multi-area Power System Model

We consider a network of M areas, where, in normal

operation, the frequency dynamics of area i ∈ {1, . . . ,M}
are governed by the classical linearized swing equation

Mi∆ω̇i = ∆pm
i −∆pe

i, (1)

where ∆ωi is the deviation of the aggregate rotor speed,

normalized to nominal/rated value (p.u.). The parameter, Mi,

is the aggregate mechanical starting time (seconds; equal to

twice the inertia constant Hi). The right-hand side variables

∆pm
i and ∆pe

i represent, respectively, the deviation of the

mechanical (input) power from nominal (p.u.) and the deviation

of the electrical (output) power from nominal (p.u.). The latter

comprises the load power deviation (from its nominal value)

in area i—consisting of a frequency independent component,

∆pd
i , and a frequency dependent component Di∆ωi—and the

net tie-line power deviation between area i and connected areas

j ∈ Ni:

∆pe
i = ∆pd

i +Di∆ωi +
∑

j∈Ni

∆pij . (2)

The tie-line power deviation ∆pij is modelled by the linearized

power flow equation

∆ṗtie
i =

∑

j∈Ni

∆ṗij =
∑

j∈Ni

P s
ij(∆ωi −∆ωj) (3)

where P s
ij is the synchronizing power coefficient of line (i, j)

and is assumed constant.

Combining (1)–(3) leads to the conventional damped swing

model1

Mi∆ω̇i +Di∆ωi = ∆pm
i −∆pd

i −∆ptie
i . (4)

In area i, the aggregated turbine and governor dynamics

are modelled by the following simplified dynamics. A speed

governor provides an output power in response to the difference

between the reference, or setpoint, power, ∆pref
i , and the droop

power 1
R
∆ωi, where R is the regulation factor, and is assumed

to have first-order dynamics with time constant T
g
i :

T
g
i ∆ṗv

i = −∆pv
i +∆pref

i −
1

R
∆ωi (5)

The turbine (prime mover) provides the mechanical power

∆pm
i —the input to the power system in area i—in response to

∆pv
i , and is assumed to have time constant T t

i :

T t
i∆ṗm

i = −∆pm
i +∆pvi . (6)

Note that more detailed models of the system can be considered,

provided that the underlying dynamic models are linear;

however, we consider this simplified, fourth-order model to

simplify the exposition of the proposed distributed control.

1Here, the “damping power” Di∆ωi arises from the frequency-dependent
portion of the load in area i, and not the common interpretation as damping
power generated by amortisseur windings, which is valid only for the case of
a single generator connected to an infinite bus.
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B. AGC Objective and Constraints

The objective of the AGC is to provide secondary-level

control in order to maintain—despite changes to load—the

system frequency close to nominal, tie-line power interchanges

close to scheduled values, and a sufficient level of reserve

for the primary frequency (droop) control. Typically, the Area

Control Error (ACE),

ACEi = βi∆ωi +
∑

j∈Ni

∆pij

is the performance measure of success of the AGC with respect

to meeting this goal, and should be maintained in each area

close to—and preferably at—zero. Note that, if ∆ωi is regulated

to zero in each area, despite load changes ∆pd
i , then ACEi = 0

and the goal is achieved. In fact, note that

(∆ptie
i ,∆ωi,∆pm

i ,∆pv
i ) = (0, 0,∆pd

i ,∆pd
i )

is an equilibrium for the system, when the load deviation in

area i is ∆pd
i , under the steady-state control ∆pref

i = ∆pd
i .

During operation of the network, any constraints should be

satisfied. Constraints may arise from physical or operational

limits, or from considerations of safety or economy. In this

paper, we allow for all system variables be constrained in a

general way; in particular, defining the state of area i as xi =
(∆ptie

i ,∆ωi,∆pm
i ,∆pv

i ) and its control input as ui = ∆pref
i ,

we express the constraints as

xi ∈ Xi ui ∈ Ui (7)

This includes, for example, the case of simple bounds on some

or all of the variables (e.g, |∆ωi| ≤ Ω). Assumptions on the

sets Xi and Ui will be given in Section III-C.

The problem we consider is design of a distributed AGC

scheme for the multi-area system, in order to maintain ACE

around zero, despite load disturbances, while satisfying all

constraints. By distributed, we mean that the control of

the multi-area system is performed by a set of independent

controllers that may exchange information: each control area

is managed by a single controller that provides the signal ui in

response to both local area information and information shared

between areas.

Remark 1: From the perspective of each area, which may

itself be a large and interconnected power system, the control

is centralized and the control signal ui (the reference power)

needs to be allocated to individual producers and generating

units. The standard approach is to use participation factors,

as explained in [24] and employed in, for example, [14] in

the deregulated power system context. We consider this aspect

of the AGC problem to be beyond the scope of this paper,

which is focused on developing—at the whole-system scale—a

multi-area control strategy with theoretical guarantees.

Remark 2: The fourth-order system (1)–(6) is an aggregated,

reduced-order model of the true dynamics within each area.

As such, it contains internal, “fictitious” states—aggregated

governor and turbine power deviations—that have no direct

physical meaning and cannot be measured in a real system.

However, their presence means that the model captures more

accurately the dynamics of power and frequency within each

area. In Section III, the control algorithm we propose assumes,

for simplicity, full state measurements, including of these

internal states; however, we discuss how these states can be

estimated from available measurements in a real power system.

C. The Challenge for Control

The continuous-time dynamics of area i may be written in

the compact form

ẋi = Āiixi + B̄iui + B̄d
i di +

∑

j∈Ni

Āijxj . (8)

This model is linear with two disturbances: the first disturbance,

di, is the load power deviation ∆pd
i . The second disturbance

arises from the dynamic coupling (the dependence of ẋi on

xj), itself a consequence of the physical connection (tie-lines)

between area i and areas j ∈ Ni.

A compound, centralized model of the multi-area system

may be obtained as

ẋ = Āx+ B̄u+ B̄dd (9)

where x, u and d are the stacked vectors of all the xi,

ui and di respectively. The second disturbance—from the

dynamic coupling between areas—disappears, being absorbed

into the term Ax, and leading to a conventional linear model

with process disturbance. For this problem—of rejecting the

disturbance d while satisfying all constraints—the ingredients

sufficient to synthesize an MPC controller with guarantees

are well known [7]; however, the control law u = κ(x) is

centralized and permits the dependence of the control ui for

area i on states xj for areas j 6= i.

The non-centralized problem—of designing area-by-area

control laws that achieve the control objective collectively—is

more challenging, for at least two reasons. Firstly, the control

problems are coupled via the states, and cannot be solved

independently. To circumvent this, a decentralized (ignoring

coupling) or distributed (with information shared between areas)

approach may be taken. In either case, constraint satisfaction

and stability are not easy to guarantee, since the actions of the

controller are based on missing or inaccurate state information.

The second reason is specific to MPC, because a discrete-

time model of the system dynamics is usually required.

(Continuous-time formulations are emerging, but are subject

to computational and practical hurdles [25], [26]). Exact

discretization of the centralized dynamics destroys sparsity

in the system matrices (Ā, B̄); decomposing the discrete-time

centralized system leads to M discrete-time local systems

densely coupled via states and inputs. In other words, artificial

(rather than physical) direct links are created between areas in

order to retain accuracy of the discrete-time model (c.f., Kron

reduction). Inexact discretization methods, on the other hand,

can maintain sparsity but the accuracy of the prediction model

is compromised; closed-loop performance can suffer.

The next section details how we tackle these two issues; in

particular, a sparsity-preserving discretization method is chosen,

with justification, and the information sharing between area

controllers is defined and explained.
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III. DISTRIBUTED PREDICTIVE AGC

In this section, the proposed distributed predictive AGC

is presented, beginning with a description of the control

architecture and laws, and concluding with formal definitions

of the MPC optimization problems and the control algorithm.

A. Control Architecture for Area i

We discretize the dynamics of the system on an area-by-area

basis; that is, discretization of each of the local area models (8),

rather than discretization of the composite model (9). The

zero-order hold discretization method is employed because

of its accuracy and suitability to MPC: it models well how

the MPC controller provides controls to the real plant, as

piecewise constant signals, and, in fact, is usually an exact

method. Inexactness arises in this case because of how the

interactions are modelled, as exogeneous disturbances acting

on each area. However, this approach preserves the sparsity

in the system-wide dynamics2, and has the advantage that

the discretization process requires only local knowledge about

area i plus the Aij , which depends on only the synchronizing

power coefficient of tie-line (i, j). The resulting discrete-time

counterpart to (8) is

x+
i = Aiixi +Biui +Bd

i di +
∑

j∈Ni

Aijxj (10)

where x+
i is the successor state.This model still cannot be

employed directly within an MPC optimization problem for

area i, owing to the state coupling—the dependency on xj . To

decouple area models, we express the net action of the state

coupling as a local disturbance acting on the dynamics of i:

x+
i = Aiixi +Biui +Bd

i di + wi,

where wi ,
∑

j∈Ni
Aijxj . We then define a nominal model

of the local area dynamics

x̄+
i = Aiix̄i +Biūi +Bd

i di. (11)

This model, which omits the state coupling and depends on

only local variables, can then be used for predictions within

a conventional MPC controller; this would define an implicit

nominal control law ū0
i −uss

i = κ̄i(x̄i−xss
i ). The direct use of

ui = ū0
i as the control action is problematic, however, because

the interactions (disturbances wi) have been entirely neglected;

the controller is non-robust and constraint satisfaction is not

guaranteed for anything other than wi ≡ 0.

We take, therefore, a robust approach to this problem by

employing a second, ancillary, controller in order to reject the

disturbances; see Figure 1. The ancillary controller acts on the

error between true state xi and nominal state x̄i, defined as

ei , xi − x̄i. This error is governed by the dynamics

e+i = Aiiei +Bifi + wi, (12)

where fi , ui − ūi. The main idea, then, is for the overall

control system to employ a two-degree-of-freedom control law

ui − uss
i = κ̄i(x̄i − xss

i ) + κi(ei),

2For an interesting discussion of, and contribution to, sparsity-preserving
discretization, see [27]

Area i
Main

MPC-i

Ancillary

MPC-i

+
ū0

i

x̄i

f0

i

ui xi

(ei, x̄i)

x̄j , j 6= i

Fig. 1. Block diagram of the proposed DMPC-AGC. The main MPC computes
the optimal nominal control ū0

i based on local state measurements. The

ancillary MPC provides a control f0

i , computed taking into account shared
predictions x̄j from other control areas.

which is intended to steer the nominal system (x̄i, ūi) to its

steady state and, in turn, regulate the error system (ei, fi) to

zero. For the latter, we propose an ancillary MPC controller,

which uses information about the planned trajectories from the

connected areas, and is described next.

B. Ancillary Controller Description

The aim of the ancillary controller is to drive the error ei
to zero, while satisfying constraints. This error is governed,

however, by the uncertain dynamics (12); a robust controller

could be designed, but the problem here is that disturbance wi

is not just a random signal to be rejected, but is a well-behaved

input directly related to the state trajectories of other areas,

about which information can be obtained.

Therefore, the approach we take is to split the error, ei, into

a planned part, ēi, and an unplanned part, êi. The former is

regulated by a secondary MPC controller, which is able to take

into account the shared predictions from other areas, while the

latter is regulated by a robust controller. In order to design the

ancillary MPC, we define a second nominal model for area i

x̂+
i = Aiix̂i +Biûi +Bd

i di +
∑

j∈Ni

Aij x̄j . (13)

This model includes planned states, x̄j , for other areas instead

of true states, xj . Defining ēi , x̂i − x̄i, we obtain

ē+i = Aiiēi +Bif̄i + w̄i (14)

where f̄i , ûi − ūi and w̄i ,
∑

j∈Ni
Aij x̄j , and make the

following observations: this model of the error involves only

nominal states and inputs, plus a planned disturbance w̄i that

arises from the planned trajectories of other control areas;

therefore, this planned error model is suitable for use as a

prediction model within an MPC controller, to steer ēi to zero.

At this point, we note, however, that the planned error is not

the same as the true error. In particular, if ei = xi − x̄i and

ēi = x̂i − x̄i, then

(ei − ēi)
+ = Aii(ei − ēi) +Bi(fi − f̄i) +

∑

j∈Ni

Aijej .

We define this residual error as the unplanned error êi = ei−ēi,

alongside an unplanned disturbance ŵi ,
∑

j∈Ni
Aijej , so

ê+i = Aiiêi +Bif̂i + ŵi. (15)
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Therefore, as proposed, the error ei = ēi + êi has been

split into a planned part and an unplanned part; note that

wi = w̄i + ŵi. We propose to handle the planned part via an

ancillary MPC control law f̄0
i = κ̂i(ēi; w̄i)—where w̄i is the

sequence of planned disturbances obtained from the predictions

of other areas—and the unplanned part via a robust control law

f̂i = κ̃i(êi). Thus, the control law of the ancillary controller is

f0
i = κi(ei) = κ̂i(ēi; w̄i) + κ̃i(êi) = f̄0

i + f̂i. (16)

The overall control law for area i is then

ui = ū0
i +f0

i = uss
i + κ̄i(x̄i−xss

i )+ κ̂i(ēi; w̄i)+ κ̃i(êi). (17)

This law has the advantage, among others, that is conceptually

clear in the sense that each term of the law is aimed to

tackle a different problem. The first term regulates the nominal

subsystem to its steady state values; the second term drives

the planned error to zero using the information arising from

the neighbouring areas; the third term provides robustness

to unplanned errors and disturbances. The precise definitions

and detailed synthesis of these terms in the control law are

presented in later in this section. Before that, we describe

how the planned and unplanned disturbances may be bounded,

which is a prerequisite to taking a robust control approach.

C. Bounding Local Area Disturbances

The state and input for area i are subject to the constraints (7),

about which we make the following assumption.

Assumption 1: The set Xi is a polyhedral, the set Ui is

polytopic, and each contains the origin in its interior.

To explain our terminology, we define a polyhedron as the

(convex) intersection of a finite number of closed halfspaces,

and a polytope as a bounded polyhedron. Therefore, the state

constraint set may be unbounded, but the input constraint set

is required to be bounded.

If xj ∈ Xj , it follows that wi =
∑

j∈Ni
Aijxj is bounded

within a set Wi, given by

Wi ,
⊕

j∈Ni

AijXj (18)

In this definition, the symbol
⊕

denotes the Minkowski

summation of the sets AijXj , over j ∈ Ni, and where AijXj is

the linear mapping of the set Xj by the matrix Aij , defined as

{Aijxj : xj ∈ Xj}. The Minkowski sum of two sets A ⊂ R
n

and B ⊂ R
n is A⊕ B , {a+ b : a ∈ A, b ∈ B}.

Assumption 2: The disturbance set Wi is a polytope satisfy-

ing Wi ⊂ interior (Xi).
Essentially, Assumption 2 is a weak-coupling assumption

that limits the strength of inter-area tie lines. Moreover, it

is a necessary assumption in order for the controller design

procedure described in Section IV-B to succeed. On the

other hand, when the coupling is sufficiently weak it is an

assumption that is easy to meet by judicious selection of the

state constraints. In particular, owing to the structure of the

multi-area dynamics, it is sufficient to impose state constraints

on only the frequency deviation in each area in order to

guarantee that Wi is polytopic (closed and bounded). This has

the added advantage that there is no need to impose constraints

on the other, internal states, which would have no clear physical

meaning.

We note that the disturbance wi =
∑

j∈Ni
Aijxj is bounded

provided that states xj satisfy constraints. However, we have

split xj into a nominal part plus error: xj = x̄j + ej . Thus,

our approach is to ensure, via the main MPC, that x̄j ∈ αx
jXj ,

where αx
j ∈ [0, 1), and, via the ancillary controller, that ej ∈

(1 − αx
j )Xj . Then xj ∈ Xj and, moreover, w̄i and ŵi are

bounded within polytopes W̄i and Ŵi; these sets are defined

later.

D. Main MPC-i Optimization Problem

Recall that the main MPC controller steers the states of

area i to steady-state values, using the nominal (disturbance-

free) prediction model (11). The associated MPC optimization

problem is defined as follows.

V̄i
0
(x̄i; di) = min

ūi

N−1
∑

k=0

ℓi
(

x̄i(k)− xss
i , ūi(k)− uss

i

)

(19)

subject to, for k = 0 . . . N − 1,

x̄i(0) = x̄i, (20a)

x̄i(k + 1) = Aiix̄i(k) +Biūi(k) +Bd
i di, (20b)

x̄i(k) ∈ αx
i Xi, (20c)

ūi(k) ∈ αu
i Ui, (20d)

x̄i(N) = xss
i . (20e)

The stage cost function is, for simplicity, quadratic:

ℓi(xi, ui) , x⊤
i Qixi + u⊤

i Riui,

where Qi and Ri are positive-definite matrices. The input

and state constraint sets are scaled by factors (αx
i , α

u
i ); how

these scaling factors are selected in order to ensure constraint

satisfaction and recursive feasibility of the optimization problem

will be described in Section IV. In regard to the load disturbance

di, and the availability of measurements to the controller, we

make the following assumptions.

Assumption 3 (Piecewise constant disturbances): The distur-

bance di = ∆pd
i for area i is piecewise constant.

Assumption 4 (State and disturbance measurements): The

state xi and disturbance di are known at each time instant by

the local controller.

Remark 3: In practice, of course, accurate measurements

of the states and disturbances are not available, and estimates

must be used. In that case, it is conventional in MPC to employ

a state observer [28], which provides both state estimates and

disturbances. In the distributed setting of MPC, our previous

work [29]—based on [30]—shows how the robust control

approach can be extended to handle only (noisy) output

measurements, with only limited modifications and modest

additional complexity, while maintaining theoretical guarantees.

In the current paper, however, we make Assumption 4 in order

to focus on the LFC control problem, rather than the whole

estimation and control problem, and keep the presentation

concise and simple.

Remark 4: Elaborating further on the previous remark,

the model (1)–(6), which contains internal aggregated states,
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requires an initial state measurement, or estimate, in order

to provide predictions. In a real power system, not all of

these states have direct physical meaning or can be measured.

However, we note that the model is fully observable from

measurements of either the tie-line power flows or local area

frequency. Therefore, if tie-line flow or frequency measure-

ments are available, then all states can be estimated.

Note that the state xi is not required by the main MPC

controller, which propagates its own internal state x̄i, but

rather the ancillary controller in order to determine the error

xi − x̄i. The disturbance measurement is used in order

to calculate the steady-state equilibrium pair (xss
i , u

ss
i ); the

following assumption applies to these values.

Assumption 5 (Steady state feasibility): For each area i, the

steady-state values satisfy xss
i ∈ αx

i Xi and uss
i ∈ αu

i Ui.

The solution of the main MPC problem is the control

sequence ū
0
i ,

{

ū0
i (0), ū

0
i (1), . . . , ū

0
i (N − 1)

}

, from which

the following implicit control law is defined:

ū0
i = uss

i + κ̄i(x̄i − xss
i ) = uss

i + ū0
i (0).

Next, we define the ancillary MPC-i optimization problem,

yielding the remaining terms of the control law (17).

E. Ancillary MPC-i Optimization Problem

The prediction model (14) employed by the ancillary

controller uses information (state predictions) obtained from

connected areas. This information originates from the solutions

of the main optimization problems, to form the sequence of

planned disturbances w̄i =
{

w̄i(0), w̄i(1), . . . , w̄i(N)
}

. With

this, the ancillary MPC optimization problem is defined as

V̂ 0
i (ēi; w̄i) = min

f̄i

H−1
∑

k=0

ℓi
(

ēi(k), f̄i(k)
)

(21)

subject to, for k = 0 . . . H − 1,

ēi(0) = ēi, (22a)

ēi(k + 1) = Aiiēi(k) +Bif̄i(k) + w̄i(k), (22b)

ēi(k) ∈ βx
i Xi, (22c)

f̄i(k) ∈ βu
i Ui, (22d)

ēi(H) = 0. (22e)

Similar to the main problem, the constraints are scaled by

factors βx
i and βu

i ; the selection of these scaling constants will

be described in the next section. The prediction horizon of this

problem is H; since the disturbance sequence satisfies w̄i(N) =
0, then setting H ≥ N + 1 will ensure that the disturbance is

dealt with within the first N steps of the predictions, with the

remaining H −N steps allowing drive the predicted error to

zero, as required by the terminal constraint (22e).

Solving this problem yields the optimal control sequence

f̄
0
i , {f̄0

i (0), f̄
0
i (1), . . . , f̄

0
i (H − 1)} and, moreover, defines

the implicit control law that is the first of the two terms in the

ancillary control law (16):

f̄0
i = κ̂i(ēi; w̄i) = f̄0

i (0).

F. Ancillary Robust Control Law

The first term in the ancillary control law (16) handles the

planned error ēi in response to the planned disturbance w̄i. The

unplanned error êi, on the other hand, is perturbed (via (15))

by the unplanned disturbance, ŵi, which is non-deterministic.

Therefore, for the second term in the ancillary control law

we propose a robust controller based on the theory of robust

invariant sets. To this end, we need the following definition.

Definition 1 (RCI set): A set R is robust control invariant

(RCI) for a system x+ = f(x, u, w) and constraint set X, U

and W if (i) R ⊂ X and (ii) for all x ∈ R, there exists a

u ∈ U such that x+ = f(x, u, w) ∈ R, ∀w ∈ W.

In the context of the unplanned error dynamics (15),

with the constraint sets defined (following the arguments in

Section III-C) as
(

(1−αx
i )Xi, (1−αu

i )Ui

)

and the disturbance

set Ŵi that can now be defined as

Ŵi ,
⊕

j∈Ni

(1− αx
j )AijXj ,

it is possible to define a RCI set, R̂i, and an associated

invariance-inducing control law κ̃i(·) such that for any element

of this set, êi ∈ R̂i, the associated control action is

f̂i = κ̃i(êi).

This robust control law is the second of the two terms in (16);

its existence and design is discussed in Section IV.

G. Distributed Control Algorithm

Each area is controlled according to the following algorithm.

Algorithm 1 (Distributed Predictive AGC for Area i):

Initial data: Sets Xi, Ui; matrices (Aij , Bij) for j ∈ Ni;

constants αx
i , αu

i , βx
i , βu

i ; states x̄i = xi(0), ēi = 0, w̄i = 0,

and V ∗
i = +∞.

Online Routine:

1) At time k, controller state x̄i and disturbance di, solve

(19) s.t. (20) to obtain ū
0
i and state predictions x̄

0
i .

2) Transmit x̄0
i to controllers j ∈ Ni.

3) Compute w̄
0
i = {w̄0

i (l)}l from received x̄
0
j , where

w̄0
i (l) =

∑

j∈Ni
Aij x̄

0
j (l), l = 0 . . . N .

4) At controller state ēi, solve (21) s.t. (22) to obtain f̄0
i :

if feasible and V̂ 0
i (ēi; w̄

0
i ) ≤ V ∗

i , set w̄i = w̄
0
i and

V ∗
i = V̂ 0

i (ēi; w̄
0
i ); else, solve (21) s.t. (22) using the

previous disturbance sequence w̄i.

5) Measure local state xi, calculate êi = xi − x̄i − ēi, and

apply ui = ū0
i + f̄0

i + f̂i, where f̂i = κ̃i(êi).
6) Update controller states as x̄+

i = Aiix̄i +Biū
0
i +Bd

i di
and ē+i = Aiiēi + Bif̄

0
i + w̄i, where w̄i = w̄i(0),

and w̄
+
i = {w̄i(1), . . . , w̄i(N), 0} and V ∗+

i = V ∗
i −

ℓi(ēi, f̄
0
i ).

7) Set k = k+1, x̄i = x̄+
i , ēi = ē+i , w̄i = w̄

+
i , V ∗

i = V ∗+
i ,

and go to Step 1.

In step 4, a feasibility check is performed: if the ancillary

problem using the newly updated disturbance sequence w̄
0
i

is infeasible, or does not attain the required cost decrease in

order to maintain the stability guarantee, then the ancillary

problem is re-solved using previous sequence w̄i; in fact, this
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second problem is guaranteed to be feasible, as established in

Section IV-C. Next, we present in detail the design procedure

for the scaling constants and robust control law.

IV. CONTROLLER DESIGN AND THEORETICAL PROPERTIES

The design of the robust controller f̂i = κ̃i(êi), and

subsequent selection of the scaling factors that restrict the

constraints in the MPC problems, is based on the theory of

optimized robust control invariance [18]; therefore, we begin

with an introduction to the main concepts.

A. Optimized Robust Control Invariance

The optimized robust control invariance approach of [18]

proposed a novel characterization of an RCI set for a system

x+ = Ax+Bu+ w and constraint set (X,U,W) as

Rh(Mh) =

h−1
⊕

l=0

Dl(Mh)W with µ(Rh(Mh)) =

h−1
⊕

l=0

MlW.

The set µ(Rh(Mh)) is the set of invariance-inducing control

actions, defined as µ(Rh) , {µ(x) : x ∈ Rh} = {u ∈ U :
x+ ∈ Rh, ∀w ∈ W}. The matrices Dl(Mh), l = 0 . . . h are

D0(Mh) = I, Dl(Mh) , Al +

l−1
∑

j=0

Al−1−jBMj , l ≥ 1

with Mj ∈ R
m×n and Mh , (M0,M1, . . . ,Mh−1), such

that Dh(Mh) = 0; the latter is ensured by setting h greater

than or equal to the controllability index of (A,B). The set

of matrices that satisfy these conditions is given by Mh ,

{Mh : Dh(Mh) = 0}. Constraint satisfaction is guaranteed

if Rh(Mh) ⊆ ηX and µ(Rh(Mh)) ⊆ θU, with (η, θ) ∈
[0, 1]× [0, 1].

As shown in [18], the linear programming (LP) problem to

compute these sets is

min{δ : γ ∈ Γ}, (23)

where γ = (Mh, η, θ, δ), and the set Γ = {γ : Mh ∈
Mh,Rh(Mh) ⊆ ηX, µ(Rh(Mh)) ⊆ θU, (η, θ) ∈ [0, 1] ×
[0, 1], qηη + qθθ ≤ δ}; qη and qθ are weights to express

a preference for the relative contraction of state and input

constraint sets. Feasibility of this problem is linked to the

existence of an RCI set: if (23) is feasible, then Rh(Mh)
exists and satisfies the RCI properties [18].

B. Design Procedure

In our context, the RCI LP problem is useful because

solving it provides an invariance-inducing robust control law—a

suitable candidate for the third term in the overall control law—

plus some scaling constants that outer-bound (with respect to

the state and input constraint sets) the size of the RCI set and its

corresponding set of control actions. Therefore, we employ the

RCI LP problem as the key ingredient in the following design

procedure, for each area. The design starts with determining an

RCI set for the overall error, ei, and the overall disturbance set

Wi, because the latter is known. The real aim is to determine

an RCI control law for the unplanned error, êi, and unplanned

disturbance set Ŵi; however, the latter is not known until the

scaling constants αx
i for each area have been determined.

1) The problem (23) associated with the dynamics e+i =
Aiiei+Bifi+wi and known constraint set (Xi,Ui,Wi)
is solved to yield γi,h = (Mi,h, ηi, θi, δi), where ηi and

θi are scalings of Xi and Ui such that Ri,h ⊂ ηiXi and

µi(Ri,h) ⊂ θiUi respectively.

2) Given that, under the RCI control law fi = µi(ei), ei ∈
Ri,h ⊂ ηiXi and fi ∈ µ(Ri,h) ⊂ θiUi, we select

αx
i = 1− ηi

αu
i = 1− θi,

for the scaling factors in the main MPC problem. Then

xi = x̄i + ei ∈ αx
i Xi ⊕ ηiXi = Xi, as required, with

a similar expression for ui. These scaling factors are

transmitted to connected areas.

3) Given αx
j and αu

j for j ∈ Ni, the set Ŵi is computed

and the RCI problem (23), now associated with êi =
Aiiêi + Bif̂i + ŵi and (Xi,Ui, Ŵi), is re-solved for

γ̃(i,h) = (Mi,h, η̃i, θ̃i, δ̃i), yielding the scaling factors

ξxi = η̃i

ξui = θ̃i.

These scaling factors inform us that R̂i,h ⊂ ξxi Xi and

µi(Ri,h) ⊂ ξui Ui; that is the regions of the constraint sets

that the third-term robust control law occupies in response

to the unplanned error and unplanned disturbance.

4) The selection of the constants βx
i and βu

i for the ancillary

MPC problem is made as

βx
i = 1− αx

i − ξii

βu
i = 1− αu

i − ξui .

Then xi = x̄i + ēi + êi ∈ αx
i Xi ⊕ βiXi ⊕ ξxi Xi = Xi, as

required, with a similar expression for ui.

5) The control law f̂i = κ̃i(êi) = µi(êi) is computed from

the matrices Mi,h, using the minimal selection map

procedure described in [31].

It is worth noting that, although the theory of RCI sets

is used in the design procedure, no RCI sets (which are

complex objects for medium-to-high-dimensional dynamics) are

explicitly computed or constructed. In contrast, other iteration-

free distributed MPC methods not only compute these sets

offline, during design, but also employ them online, in the

constraints of the MPC problems. The approach proposed here

retains the complexity of conventional, nominal MPC.

Finally, we note that the success of the design—and, indeed,

the applicability of the proposed approach to the multi-area

LFC problem—depends on the feasibility of the RCI LP

problems. In turn, the feasibility of these problems depends

on the strength of the inter-area coupling, because of the need

to satisfy Assumption 2. If the problems are feasible and

the design procedure succeeds, then we may conclude that

the inter-area coupling is sufficiently weak in order to apply

the proposed control approach and obtain the guarantees of

constraint satisfaction and stability. If, on the other hand, the

problem in Step 1 is infeasible, then the conclusion is that the
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the inter-area coupling is too strong in order to perform the

LFC via the proposed distributed control approach.

C. Theoretical Results

If the design is successful, then the theoretical results of

recursive feasibility, guaranteed constraint satisfaction, and

asymptotic stability follow; for details and proofs, see [23].

Proposition 1 (Recursive feasibility and constraint satisfac-

tion): For each area i ∈ M controlled according to Algorithm 1,

given a feasible initial state xi(0) the main and ancillary MPC

problems remain feasible at each time step, and state and input

constraints are satisfied for all time.

For the stability result, the following assumption is required.

Assumption 6 (Decentralized stabilizability): The RCI control

laws ui = κ̃i(xi) asymptotically stabilize x+ = Ax+Bu.

Theorem 1 (Asymptotic stability): For each area i ∈ M, for

a constant disturbance di the state xss
i is asymptotically stable.

V. EXAMPLE: A 4-AREA POWER SYSTEM

We study an example 4-area power system, proposed in [32]

as a benchmark system for distributed MPC applied to AGC,

with the parameter values given in Table I. In each area, the

magnitude of the control input—the reference power ∆pref
i —is

limited to 0.5 p.u. in area 1, 0.65 p.u. in areas 2 and 3, and

0.55 in area 4. The connectivity of the network is described

by the synchronizing power coefficients of lines:

P s
12 = P s

21 = 2 P s
23 = P s

32 = 2 P s
34 = P s

43 = 2

State constraints in each area are imposed on only frequency

deviations, as |∆ωi| ≤ 0.05 p.u. The rest of the states are

not constrained. The overall constraint set Xi is a polyhedron

(closed but not bounded) but, in view of the coupling structure,

the resulting disturbance set Wi is a polytope (closed and

bounded) satisfying Assumption 2. For the distributed MPC

design, the continuous-time dynamics are discretized area-by-

area using zero-order hold (as described in Section II) and

TABLE I
PARAMETERS OF THE EXAMPLE POWER SYSTEM.

Area 1 Area 2 Area 3 Area 4

Mi 12 10 8 8
Ri 0.05 0.0625 0.08 0.08
Di 0.7 0.9 0.9 0.7
T t
i

0.65 0.4 0.3 0.6

T
g
i

0.1 0.1 0.1 0.1

TABLE II
DESIGNED VALUES OF CONSTRAINT SCALING FACTORS.

Area 1 Area 2 Area 3 Area 4

αx
i 0.9545 0.9545 0.9545 0.9545

βx
i 0.0434 0.0434 0.0434 0.0434

ξxi 0.0021 0.0021 0.0021 0.0021
αu
i 0.9909 0.9588 0.9917 0.9544

βu
i 0.0085 0.0389 0.0078 0.0431

ξui 0.0006 0.0023 0.0004 0.0025

a sampling period of 0.1 s; this is chosen according to the

shortest rise time within the system, with care taken to avoid

under- or over-sampling. Cost function matrices are set to

Ri = 10, Qi = diag(500, 0.01, 0.01, 10). After following the

design procedure described in Section IV, the scaling factors in

Table II are obtained. Recall that the state and input constraints

are scaled, respectively, by factors αx
i and αu

i in the main

MPC-i problem, and factors βx
i and βu

i in the ancillary MPC-i

problem; the robust control law for the unplanned error occupies

a region of, respectively, ξxi and ξui times the state and input

constraints. To intepret these results, consider, for example,

area 3: 99.1% of the input constraint (on the reference power)

is reserved for the main controller, which designs the nominal

plan to steer the states to the required steady-state values. Of

the remaining 0.9%, 0.8% is allocated to the ancillary MPC

controller, which handles the planned error, while the final

0.1% is required by the robust controller for dealing with

unplanned error. The network is subjected to the load power

deviation schedule shown in Table III; Figure 2 shows the

response for area 3. The area states are shown to settle to

steady-state values, while frequencies remain bounded and

around zero. Additionally, the planned error is seen to be

larger in magnitude than the unplanned error, which justifies

the choice of not considering the whole error as unplanned by

taking a conventional robust approach.

VI. CONCLUSIONS

This paper has presented a novel DMPC-based approach

to automatic generation control in multi-area power systems.

The scheme attains desirable guaranteed properties—constraint

satisfaction, feasibility and stability—by employing a three-

term control law in each area; the first term steers states

to steady values, the second handles planned disturbances

and errors, while the third term robustly rejects unplanned

disturbances. The algorithm requires the solution of two MPC

problems per area at each time step, albeit the complexity of

these is similar to conventional MPC. A detailed off-line design

methodology was proposed, and demonstrated on an example

4-area system.

Finally, we remark that the price of obtaining the guarantees

of the proposed approach is conservatism: if the inter-area

coupling is too strong, then the design procedure will fail

and the proposed approach will not be applicable. On the

other hand, if the design procedure succeeds then the coupling

is sufficiently weak, as was the case in the 4-area system

demonstrated in Section V.

REFERENCES

[1] H. Shayegi, H. A. Shayanfar, and A. Jalil, “Load frequency control
strategies: A state-of-the-art survey for the researcher,” Energy Conversion

and Management, vol. 50, pp. 344–353, 2009.

TABLE III
TIMING, LOCATION AND MAGNITUDE OF LOAD POWER CHANGES, ∆pd

i
.

Time step 5 15 20 40 40

Area i 1 2 3 3 4

∆pd
i

+0.15 −0.15 +0.12 −0.12 +0.28



IEEE TRANSACTIONS ON SMART GRID 9

−0.12

0

0.12 ∆pm
3

∆pv
3

0

1

·10−2

∆ptie
3

∆ω3

10 20 30 40 50 60

−0.5

0

0.5

1

·10−2

time step, k
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