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Abstract—Further integration of distributed renewable energy 

sources in distribution systems requires a paradigm change in 
grid management by the distribution system operators (DSO). 
DSOs are currently moving to an operational planning approach 
based on activating flexibility from distributed energy resources 
in day/hour-ahead stages. This paper follows the DSO trends by 
proposing a methodology for active grid management by which 
robust optimization is applied to accommodate spatial-temporal 
uncertainty. The proposed method entails the use of a multi-
period AC-OPF, ensuring a reliable solution for the DSO. Wind 
and PV uncertainty is modeled based on spatial-temporal 
trajectories, while a convex hull technique to define uncertainty 
sets for the model is used. A case study based on real generation 
data allows illustration and discussion of the properties of the 
model. An important conclusion is that the method allows the 
DSO to increase system reliability in the real-time operation. 
However, the computational effort grows with increases in 
system robustness. 
 

Index Terms — Decision-making; uncertainty; distribution 
system operator; robust optimization; solar power; wind power. 

NOMENCLATURE 
The main notation used throughout the paper is stated next 

for quick reference. Other symbols are defined as required. 

A.  Parameters 
P∆  Power deviation of the vertices of the uncertainty set 

,η ηCh Dch  Charge and discharge efficiency 

B  Imaginary part in admittance matrix  
Bus  Number of buses 
C  Cost 

BatCapE
 Maximum capacity of energy storage systems 

MinE  Minimum energy in the energy storage system 

G  Real part in admittance matrix  
N  Number of unit resources 
T  Time horizon 
y  Series admittance of line that connects two buses 

shy  Shunt admittance of line that connects two buses 

B.  Variables 
θ  Voltage angle 

storedE  State of charge of the battery 

P  Active power 
Q  Reactive power 
r  Power flexibility used in the real-time stage 
S  Apparent power 

V  Voltage magnitude 

V  Voltage in polar form 

sbV  Voltage at slack bus 

V∆  Voltage level activated by the DSO in the transformer 
X  Binary variable 

C.  Subscripts 
cb  Index of capacitor bank units 
CB  Capacitor bank abbreviation 
Ch  Storage charge process 
Dch  Storage discharge process 
dg  Index of distributed generation units 

DG  Distributed generation abbreviation 
DR  Demand response abbreviation 
,i j  Bus index 

l  Index of load consumers 
L  Load consumers abbreviation 

lv  
Index of levels (tap changing) for capacitor banks and 
transformers 

pv  Index of photovoltaic power units 
PV  Photovoltaic power abbreviation 
s  Index of the vertices of the uncertainty set 
st  Index of energy storage system units 
su  Index of external supplier units 
SU  External supplier abbreviation 
t  Time index 
trf  Index of transformer units 

TRF  Transformer abbreviation 
w  Index of wind power units 
W  Wind power abbreviation 

D.  Superscripts 
act  Activation cost of resources in real-time stage 

_bid dw  Maximum offer of downward flexibility 

_bid up  Maximum offer of upward flexibility 
cut  Generation curtailment power for distributed generation 
dw  Downward flexibility 
op  Operating point of the power resource 
shed  Load shedding 
spill  Spillage of renewable energy 
up  Upward flexibility 

I.  INTRODUCTION 
HE continuous integration of distributed energy resources 
(DER) [1], specially renewable energy resources (RES), at 
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the distribution grid level will lead to the development of new 
models and methodologies to deal with the uncertainty of 
these resources [2]. Hence, traditional methodologies for 
operation and management of the distribution grid must be 
replaced by new active management methodologies, by which 
distribution system operators (DSOs) can contract/control 
power generation/consumption (flexibility) from DER to solve 
congestion/voltage problems in the distribution network [3]. 

An ideal approach would be to accommodate all traditional 
distribution grid management methods with new proactive 
management methods adapted to future distributions systems 
that include DER controllability to help in grid management. 
For instance, problems concerning network reconfiguration, 
voltage limit violation and overcurrent during short periods 
can be added to the proactive management method. 

Currently, DSOs in most European countries employ a 
reactive approach for grid management, imposing limits in 
terms of DER (mainly RES) integration in MV and LV levels. 
For instance, a survey applied under an EU project in several 
European countries showed that very few DSOs use the 
forecasts for operational purposes, as well as, contracting 
services to handle network constraints [4]. Furthermore, the 
degree of coordination between DER and the DSO control 
centers is very limited or non-existent in almost all countries. 

The flexibility potential from DER (including flexible 
operation/bids from RES) requires a change in the present 
paradigm. The trend is to implement proactive and preventive 
grid management functions based on forecasts with the 
possibility of reserving/controlling DER connected to the 
distribution grid. The goal of the DSO remains the same, i.e. 
to ensure that congestion, voltage and energy delivery 
problems are solved, while maintaining the proper operation 
of the system with adequate levels of safety, reliability and 
power quality. Under high RES integration levels, this goal 
can be met by combining multi-period optimal power flow 
(OPF) with uncertainty forecasts. 

Most of the literature proposals for the distribution grid 
management problem are based on stochastic methods with 
relaxation approaches to the OPF. However, DSOs usually 
operate under the premise of procuring a solution or scenario 
that ensures proper levels of robustness and reliability in the 
system. The regulatory framework “induces” risk aversion to 
both the DSO and transmission system operator.  

In this context, several methodologies have emerged for 
distribution grid management considering RES uncertainty. 
These methodologies are most often based on stochastic 
programming and robust optimization [5], [6]. A decentralized 
stochastic approach to manage a distribution network with PV 
production is proposed in [7]. However, the model only 
ensures effectiveness under radial networks. In [8], a 
stochastic method based on chance-constrained optimization 
for voltage control under PV uncertainty production is 
proposed, however, the method considers a probabilistic load 
flow that analyses the injection of PV power in the distribution 
system. The authors in [9] consider a point-estimate method to 
deal with wind uncertainty and a probabilistic OPF. However, 
the output from the stochastic OPF is a distribution of the 

decision variables. Nevertheless, for a DSO, a more 
appropriate output would be a single solution that is robust in 
all or a pre-defined percentage of the scenarios. Within this 
scope, robust OPF approaches should be taken into account. A 
robust DC OPF using quadratic programming with successive 
constraint enforcement is proposed in [10]. Similarly, [11] 
proposes a robust DC OPF using conditional value-at-risk to 
mitigate the risk of wind power in the system. As a proper 
analysis of distribution systems requires the modeling of an 
AC OPF, [12] proposes a robust AC OPF where the AC power 
flow constraints are relaxed through second-order cone 
programming. For an in-depth discussion on recent advances 
and developments in AC OPF and its application to smart 
grids, interested readers are referred to [13] and [14], 
respectively.  

In contrast to the literature, this paper contributes with a 
new methodology based on robust optimization for solving 
technical problems in the distribution network under RES 
forecast uncertainty, ensuring a single and safe solution that is 
more reliable than traditional approaches. The model 
minimizes the operating costs (flexibility activation) of the 
DSO, without relaxing any network constraints under a set of 
spatial-temporal trajectories. The methodology is proposed for 
a paradigm whereby the DSO preventively manages the 
distribution grid by contracting flexibility from DER in 
advance based on forecasted information. This is a recent 
trend in the scientific community [15]–[17]. Thus, the DSO 
will have more flexibility capacity to use in real-time 
operation, thereby increasing the safety and reliability of the 
system. This work has two major contributions to the state of 
art: (a) integration of spatial-temporal trajectories [18] to 
model RES, while using convex hull based techniques to 
model the uncertainty set; (b) active distribution grid 
management in a multi-period AC OPF, which is able to 
ensure the most reliable solution for the distribution grid. 

The paper is structured as follows. Section II describes the 
DSO management problem with a perspective on current and 
future trends. Section III presents the detailed formulation of 
the robust approach for the DSO problem on energy resources 
management under uncertainty. Section IV describes our 
empirical investigation based on a case study with real data. 
Section V gathers the most important conclusions. 

II.  FRAMEWORK FOR DISTRIBUTION GRID MANAGEMENT 

A.  Current Management 
The mission of a DSO is to ensure the quality and 

continuity of supply levels imposed by the regulatory 
framework. In the past, technical problems such as overcurrent 
and voltage limit violation were mitigated by planning 
network investments and changing the network configuration 
to meet the loads. Now, DSOs have additional flexibility in 
the network that allows them to solve the local technical 
problems in the operational domain, instead of solving them in 
a planning phase. The main benefits are investment deferral 
and reduced curtailment of DER.  

In the operating domain, the typical control actions are 
network reconfiguration, control of capacitor banks and 
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activation, though in a very limited way, of non-firm 
connection contracts associated with industrial loads and some 
DER. Information about forecasts and corresponding 
uncertainty is not embedded in the current grid-management 
functions. 

Nevertheless, the use of DER flexibility to help in the 
management of technical problems is of most interest to the 
DSO. The DER flexibility stands for the amount of power 
provided by the DERs that assist the DSO in grid 
management. This means that is a kind of ancillary services, 
but used by the DSO to solve congestion and voltage problems 
in the distribution system. As proposed in this work, a better 
use of DER flexibility can delay or even avoid the need for 
network expansion. That is, the DSO can use power flexibility 
provided by DERs to decongest the main power 
lines/transformers and control the voltage levels in the 
distribution grid. This gives a certain control freedom to DSO 
grid management. However, a long-term evaluation is 
recommended to estimate the savings of the proposed method 
in the system. Such economic savings must be compared with 
equivalent costs of network reinforcement to assess the 
usefulness of the proposed method in long-term. 

B.  Future Management 
With the continuous introduction of DERs, DSOs have been 

changing their operation and control paradigms. Thus, fully 
proactive grid management, by which DERs can be part of the 
solution for proper operation of the distribution system, is 
considered. However, RES are part of the problem since they 
have uncertain generation, thereby increasing the system 
operation uncertainties. Nevertheless, current developments in 
wind power technology mean that, to some extent, it is 
possible to reserve the available wind power to provide power 
flexibility [19]. In fact, field-tests with the real provision of 
ancillary services (such as frequency restoration reserves) 
from renewable power plants performed in Germany [20] and 
Belgium [21] have demonstrated that it is possible to provide 
reserve capacity with acceptable accuracy. In this way, future 

DSO management should integrate new methodologies to deal 
with RES uncertainty while considering this new capability of 
RES, as well as considering energy storage systems to help the 
DSO solve congestion problems and efficiently deliver energy 
[4]. 

A new structure for solving technical problems in the 
distribution grid is illustrated in Fig.1. The structure is divided 
into two stages is used: (i) contract of upward and downward 
flexibility services from DER at day-ahead time-horizon; and 
(ii) distribution grid management considering the flexibility 
contracted in the first stage and internal resources of the 
distribution network, accounting for the worst-case of 
uncertainty in the system. 

The first stage (day-ahead stage) is based on contracting 
upward and downward flexibility to be used during the real-
time stage (second stage) to manage the grid and solve 
congestion problems, accounting with the uncertainty of 
renewable sources. In the first stage, upward and downward 
flexibility bids, respectively given by Pbid_up and Pbid_dw, from 
the DER aggregators are provided to the DSO. The DSO 
contracts the flexibility to the DER aggregators based on 
capacity payments. It is noteworthy that wind and PV 
aggregators should guarantee the provision of the submitted 
upward and downward flexibility. For instance, by contracting 
generators or demand response electrically close to their point 
of power production. The DER aggregators provide to the 
DSO the flexibility bids of changing the operating point of 
their own resources for upward and downward power. The 
flexibility bids are defined based on the strategy of each 
aggregator to provide flexibility to the DSO. Wind and PV 
aggregators can define their bids based on expected profit 
from supplying this upward and downward flexibility to the 
DSO, accounting for the costs for changing their operating 
point [22]. 

In the real-time stage (second stage), the DSO manages the 
grid considering the flexibility contracted at day-ahead and the 
operating point of each DER, as well as its own internal 
flexibility under the limitations of the technical characteristics 
of the grid. We understand DSO internal flexibility as the use 
of static equipment, such as transformers with on-load tap-
changing (OLTC) ability, capacitor banks and storage 
systems. Storage systems owned or managed by the DSO help 
in the system management, providing additional multi-period 
flexibility and avoiding constrained situations. Additionally, 
the storage system contributes to reduce the impact of 
uncertain production on the system by absorbing or injecting 
power in cases of surplus or deficit of renewable generation. 

Nevertheless, the DSO may contract all the flexibility 
needed to cover foreseen distribution network problems, 
considering RES uncertainty and accounting for the economic 
efficiency of the process. That is the flexibility contracted 
should be optimized at least cost. Moreover, the core of the 
methodology lies on the use of a two-stage robust optimization 
approach to accommodate RES uncertainty, while providing 
solutions with high reliability levels. 

III.  METHODOLOGY 
The methodology is based on robust optimization to model 

RES uncertainty and solve the DSO management problem. 

Second Stage – Grid Management

Upward Downward

Technical Characteristics

Distribution
Network Limits

First Stage – Contracting Flexibility

Reserve Flexibility Bids

Wind + PV

Full AC OPF

Worst-case scenarios

Transformers (OLTC)

Capacitor Banks

DSO/network own resources

Storage Systems
(Charge/Discharge)

 
Fig. 1.   Diagram of the developed methodology. 
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A.  Uncertainty Set Definition 
Robust optimization requires the definition of uncertainty 

sets, e.g. vertices representative of the worst-case solution, as 
explained in [23]. Uncertainty sets can take different forms, 
for instance, constructing the uncertainty set through a 
polyhedral, ellipsoid or scenario set with spatial-temporal 
correlation is the most common in literature, among others 
[24]. 

In our proposed methodology, construction of the 
uncertainty set is modeled through a scenario set with spatial-
temporal correlation. The methodology entails some 
assumptions. For simplicity, the uncertainty modeled in the 
methodology refers only to wind and solar power. Thus, the 
load profile for the next 24 hours is assumed to be known. 
Furthermore, note that spatial-temporal correlation is modeled 
in scenario generation for wind and solar power 
independently. This means that uncertain variables for wind 
and solar power are independent of each other. 

The uncertainty sets for wind and PV generation are 
constructed using a scenario set. The scenario set J is obtained 
through the generation of spatial-temporal trajectories (or 
scenarios). For each period, the deviation between the scenario 
set and the conditional mean forecast creates a cloud of 𝑁𝑁𝐽𝐽 
points representative of the uncertainty space. Then, the 
uncertainty set Ω is defined as the convex hull of these points 
constructed through the quickhull algorithm [25]. The vertices 
u of the uncertainty set Ω that are selected for the optimization 
process are represented by ΔPw(w,t,s) in the full problem 
formulation. In addition, the number of vertices of the convex 
hull can increase significantly when considering a large 
amount of intermittent resources, which can be intractable in 
the time frame available to the DSO to solve the problem. 
Thus, algorithms to reduce the number of vertices can be 
considered. The recursive Douglas-Peucker algorithm [26] is 
based on polyline simplifications and can reduce the number 
of vertices that characterize the uncertainty set. An improved 
and accelerated version of the algorithm [27] can be used to 
significantly reduce the vertices of the uncertainty set. 

B.  General Problem Formulation 
The problem relates to minimizing the operating costs of 

the DSO. A multi-period and multi-stage robust optimization 
problem is modeled. In the first stage (day-ahead stage), the 
DSO contracts the flexibility to the DER to be used in the 
second stage (real-time operation), where the power system is 
operated under the uncertainty of the renewable energy 
resources. In the second stage, the DSO manages the 
distribution system based on the worst-case of the uncertainty. 
Thus and based on the flexibility contracted at day-ahead, the 
DSO is prepared to manage the grid under any realization of 
wind and solar power covered by the uncertainty set. Similar 
problems are commonly solved in the literature using multi-
stage robust optimization techniques [5], [23]. A general form 
of the robust optimization problem is expressed as 

( ) ( )+∑ ∑
T T

DA RT
t tx u yt t

min C x max min C y  (1) 

( ). . 0,DA
ts t A x ≤  (2) 

( ), 0,RT
th y u =  (3) 

( ), , 0,≤RT
tg x y u  (4) 

where the vector x includes the day-ahead decision vectors for 
contracting flexibility, while real-time adjustments with 
respect to the contracted flexibility are included in the vector 
of recourse variables y, accounting for the vertices u of the 
uncertainty set Ω, i.e. u ∈ Ω. Ct

DA(x) stands for the cost 
function of contracting flexibility in day-ahead that composes 
the objective function of the first-stage. On the other hand, 
Ct

RT(y) is the cost function of operating the distribution system 
in real-time that composes the recourse function. All the 
constraints involving only first-stage variables are modeled in 
the form of (2). In contrast, constraints including recourse 
variables are divided into equalities (3) and inequalities (4).  

C.  Full Mathematical Formulation 
This section starts by presenting and explaining the full 

objective function and respective constraints of the first-stage 
problem, followed by the full objective function and 
constraints relating to the recourse stage. It is noteworthy that 
the problem is modeled as a mixed-integer nonlinear 
optimization problem, by comprising a full AC OPF model.  

The first-stage decisions comprise the flexibility contracted 
by the DSO in the day-ahead market, where the objective 
function Ct

DA(x) is modeled as 

( )

( )

( )

( )

( , ) ( , ) ( , ) ( , )
1

( , ) ( , ) ( , ) ( , )
1

( , ) ( , ) ( , ) ( , )
1

( , ) ( , ) ( , ) ( , )
1

DG

W

PV

L

N
up up dw dw
DG dg t DG dg t DG dg t DG dg t

dg

N
up up dw dw
W w t W w t W w t W w t

w
N

up up dw dw
PV pv t PV pv t PV pv t PV pv t

pv

N
up up dw dw
DR l t DR l t DR l t DR l t

l

C P C P

C P C P

C P C P

C P C P

=

=

=

=

+ +

+ +

+ +

+ ∀

∑

∑

∑

∑ { }1,..., .t T∈

 (1a) 

The decision variable vector x considers the first-stage 
variables 

{ }, , , , , , , .up dw up dw up dw up dw
DG DG W W PV PV DR DRx P P P P P P P P=   

The first-stage constraints considering the upper bound of 
upward and downward flexibility offers for DG units (2a) and 
(2b), respectively, are given by 

{ } { }_
( , ) ( , ) 1,..., , 1,..., ,≤ ∀ ∈ ∀ ∈up bid up

DG dg t DG dg t DGP P t T dg N  (2a) 

{ } { }_
( , ) ( , ) 1,..., , 1,..., .dw bid dw

DG dg t DG dg t DGP P t T dg N≤ ∀ ∈ ∀ ∈  (2b) 
In addition, wind and PV aggregators are modeled with the 

ability of upward and downward flexibility, i.e. it is assumed 
that wind power producers can provide some flexibility [19]. 
The wind power for downward flexibility is constrained by the 
operating point of the wind power aggregator PW(w,t)

op , as in 
(2c), while the wind power for upward flexibility is 
constrained by the wind bid for reserving power, as in (2d). 

{ } { }( , ) ( , ) 1,..., , 1,..., ,≤ ∀ ∈ ∀ ∈dw op
W w t W w t WP P t T w N   (2c) 

{ } { }_
( , ) ( , ) 1,..., , 1,..., .up bid up

W w t W w t WP P t T w N≤ ∀ ∈ ∀ ∈  (2d) 
These constraints are also applied to the PV aggregators. 
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Similarly, the upper and lower bounds for the DR aggregators 
are given by 

{ } { }_
( , ) ( , ) 1,..., , 1,..., ,≤ ∀ ∈ ∀ ∈up bid up

DR l t DR l t LP P t T l N   (2e) 

{ } { }_
( , ) ( , ) 1,..., , 1,..., ,≤ ∀ ∈ ∀ ∈dw bid dw

DR l t DR l t LP P t T l N  (2f) 

where PDR(l,t)
bid_up is the maximum amount of load that can be 

reduced (offer). 
The objective function and constraints related to the 

recourse stage are then described. Following adaptive robust 
theory, the inner max min problem given by Ct

RT(y) can be 
replaced by an auxiliary variable β representing the worst-case 
recourse. 

In parallel, looking at equalities constraints from the 
recourse function (related to ht

RT(y,u) in equation (3)), the 
decision variable vector y contains 

, , , , , , , , , , , , , ,
,

, , , , , , , , , , , , ,θ

 ∆ ∆ =  
∆  

up dw cut up dw spill up dw spill up dw shed
∆G ∆G ∆G W W W W PV PV PV PV ∆R ∆R L

∆ch Ch SU SU ∆G L CB stored CB TRF i sb TRF ij

r r P r r P P r r P P r r P
y

P P P Q Q Q Q E X X V V V
  

including active and reactive power balance, reactive power 
consumption, capacitor banks tap-changing, transformers with 
on-load tap-changing, and energy storage balance. Thus, the 
active power balance in each bus yields, 

( )

( )

( )

, , ,
( , ) ( , , ) ( , , ) ( , , )

1

( , , ) ( , , ) ( , , )
1 1

, , , ,
( , ) ( , , ) ( , , ) ( , , ) ( , , )

1

=

= =

=

+ − − +

+ − +

+ ∆ + − − +

∑

∑ ∑

∑

∆G

SU ST

W

N
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∆G dg t ∆G dg t s ∆G dg t s ∆G dg t s
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N N
i i i

SU su t s ∆ch st t s Ch st t s
su st
N

op i i up i dw i spill i
W w t W w t s W w t s W w t s W w t s

w
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1
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=

=
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+

∑

∑

PV

L

N
op i i up i dw i spill i

PV pv t PV pv t s PV pv t s PV pv t s PV pv t s
pv

N
op i up i dw i shed i i

∆R l t ∆R l t s ∆R l t s L l t s L l t
l

ii i t s i t s j t s ij ij t s

P P r r P

P r r P P
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) ( , )

( , ) ( , ) ( , )

sin

1,..., , 1,..., , 1,..., ,

θ

θ θ θ
∈

+

∀ ∈ ∀ ∈ ∀ ∈ = −

∑
i

ij ij t s
j TL

Bus S ij t s i t s j t s

B

t T i N s N

  

(3a) 

where PW(w,t)
op  is the conditional mean forecast of wind 

producer scheduled at day-ahead market and ΔPW(w,t,s) is the 
deviation of wind power production in the vertices from the 
conditional mean forecast that models the uncertainty set. 
PSU(su,t,s) is the energy provided by external suppliers to the 
distribution system through upstream connections, i.e. the 
energy that comes from the transmission system to supply the 
consumption of the distribution network. In parallel, it is 
assumed that the reactive power balance only considers 
reactive power provided by DG (CHP) units, external 
suppliers and capacitor banks, formulated as 

( )

{ } { } { }

( , , ) ( , , ) ( , , ) ( , , , )
1 1 1 1 1

2
( , ) ( , ) ( , ) ( , ) ( , )

( ,

sin cos

1,..., , 1,..., , 1,..., ,

θ θ

θ

= = = = =

∈

− + + =

− −

∀ ∈ ∀ ∈ ∀ ∈
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∑

DG SU CB levelsL

i

N N N NN
i i i i

DG dg t s L l t s SU su t s CB cb t s lv
dg l su cb lv

i t s j t s ij ij t s ij ij t s ii i t s
j TL

Bus S ij t s

Q Q Q Q

V V G B B V

t T i N s N ) ( , ) ( , )θ θ= −i t s j t s

 
(3b) 

where the reactive power production for DG (CHP) units takes 
into account the active power production from the day-ahead 

market, as well as the upward and downward active power 
flexibility scheduled by the DSO with a fixed tanΦ = 0.3 [28]. 

( )
{ } { } { }

, , ,
( , , ) ( , ) ( , , ) ( , , ) ( , , ) tan

1,..., , 1,..., , 1,...,

φ= + − −

∀ ∈ ∀ ∈ ∀ ∈

op i up i dw i cut
DG dg t s DG dg t DG dg t s DG dg t s DG dg t s

DG S

Q P r r P

t T dg N s N
 (3c) 

Furthermore, the reactive power consumption in the system 
is modeled based on the relation between the total active 
power consumption and tanΦ for each load l. tanΦ for each 
load l is usually assumed as 0.3 [29]. 

( )
{ } { } { }

( , , ) ( , ) ( , ) ( , , ) ( , , ) ( , , ) tan

1,..., , 1,..., , 1,...,

φ= − + − −

∀ ∈ ∀ ∈ ∀ ∈

op dw up shed
L l t s L l t DR l t DR l t s DR l t s L l t s

L S

Q P P r r P

t T l N s N
  (3d) 

Furthermore, the reactive power consumption is partly 
provided by generators and static equipment in the network. 
Capacitor banks are used to provide reactive power to the 
transformer, located at the substation. It is assumed that this 
equipment is owned by the DSO. Traditionally, capacitor 
banks have levels of reactive power production, and can be 
modeled as 

{ } { } { } { }
( , , , ) ( , , ) ( , , , )

1,..., , 1,..., , 1,..., , 1,..., ,

levels
CB cb t s lv CB cb t lv CB cb t s lv

CB S levels

Q Q X

t T cb N s N lv N

=

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
  (3e) 

{ } { } { }

( , , , )
1

1

1,..., , 1,..., , 1,..., .

levelsN

CB cb t s lv
lv

CB S

X

t T cb N s N
=

=

∀ ∈ ∀ ∈ ∀ ∈

∑
 (3f) 

In addition, transformers with OLTC ability are used to 
ensure voltage control in the substation. It is assumed that the 
transformers are owned by the DSO. Thus, the voltage impact 
of each tap-changing level in the secondary bus of the 
transformer is known. The tap-changing constraints can be 
modeled as  

{ } { } { } { }
( , , , ) ( , , ) ( , , , )

1,..., , 1,..., , 1,..., , 1,..., ,

levels
TRF trf t s lv TRF trf t lv TRF trf t s lv

S TRF levels

V V X

t T s N trf N lv N

∆ =

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
  (3g) 

{ } { } { }

( , , , )
1

1

1,..., , 1,..., , 1,..., ,

levelsN

TRF trf t s lv
lv

S TRF

X

t T s N trf N
=

=

∀ ∈ ∀ ∈ ∀ ∈

∑
 (3h) 

{ } { } { }

( , ) ( , ) ( , , , )
1

1,..., , 1,..., , 1,..., ,

levelsN
ref

sb t s sb t s TRF trf t s lv
lv

S TRF

V V V

t T s N trf N
=

= + ∆

∀ ∈ ∀ ∈ ∀ ∈

∑
 (3i) 

where ∆VTRF(trf,t,s,lv) is the voltage level that will be activated 
by the DSO in the transformer unit at slack bus. In parallel, 
VTRF(trf,t,lv)

levels  depicts all the possible levels available on the 
OLTC ability of the transformer. Finally, XTRF(trf,t,s,lv) is a 
binary decision variable which defines the activation of the 
chosen level. Moreover, the battery balance of storage units 
follows 

{ } { } { }

( , , ) ( , 1, ) ( ) ( , , ) ( , , )
( )

1

1,..., , 1,..., , 1,...,

stored st t s stored st t s Ch st Ch st t s Dch st t s
Dch st

ST S

E E P P

t T st N s N

h
h−= + −

∀ ∈ ∀ ∈ ∀ ∈
 (3j) 

where energy from previous period, and charge and discharge 
ability are considered. 

In parallel, inequality constraints (related to gt
RT(x,y,u) in 

(4)), the decision variable vector y contains  
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, , , , , , , , , , , ,
,

, , , , , , , , , , ,θ β

 ∆ ∆ =  
  

up dw cut up dw up dw up dw shed
∆G ∆G ∆G W W W PV PV PV ∆R ∆R L

∆ch Ch CB TRF stored ∆ch Ch SU SU i ij

r r P r r P r r P r r P
y

P P X X E X X P Q V
  

and include operating costs for balancing the system, upper 
and lower bounds of active and reactive power to the upward 
and downward flexibility of all energy resources, as well as 
non-simultaneity of storage devices, transformers and lines 
capacity, upper and lower bounds of voltage angles and 
magnitude, and declaration of non-negative variables. 

Thus, the inequality constraint for the operating costs for 
upward and downward flexibility of different aggregators is 
considered (4a). Aggregators with distributed generation, wind 
and PV related with uncertainty and DR are modeled as 
external entities that provide flexibility and information about 
their resources’ electrical location to the DSO. On the other 
hand, it is assumed that storage units, capacitor banks and 
transformers with OLTC ability are owned by the DSO, and 
therefore these resources are modeled to balance the 
distribution system, with 

( )

( )

( )

( , ) ( , , ) ( , , ) ( , ) ( , , )
1

( , ) ( , , ) ( , , ) ( , ) ( , , )
1
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=

=
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∑

∑

∑
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N
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l
N
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P
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1 1
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S
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(4a) 

where the upper and lower bounds of the activation of active 
power for DG units considering the upward and downward 
flexibility are given by (4b) and (4c), respectively, while the 
generation curtailment power is expressed in (4d), where 
PDG(dg,t)

op  is the operating point of the DG units. This gives 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,..., ,up up
DG dg t s DG dg t DG Sr P t T dg N s N≤ ∀ ∈ ∀ ∈ ∀ ∈   (4b) 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,..., ,dw dw
DG dg t s DG dg t DG Sr P t T dg N s N≤ ∀ ∈ ∀ ∈ ∀ ∈  (4c) 

{ } { } { }
( , , ) ( , ) ( , , )

1,..., , 1,..., , 1,..., .

cut op dw
DG dg t s DG dg t DG dg t s

DG S

P P r

t T dg N s N

≤ −

∀ ∈ ∀ ∈ ∀ ∈
 (4d) 

In addition, wind and PV aggregators are modeled with the 
ability of upward and downward flexibility. The wind power 
for activating upward flexibility is constrained by the wind 
contracted in the first-stage decision for reserve power, as in 
(4e), while the wind power for activating downward flexibility 
is constrained by the downward flexibility contracted in the 
first-stage decision, as in (4f). When the downward flexibility 
is insufficient to the meet the DSO requirement, wind spillage 
can be used, being constrained by (4g). 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,..., ,up up
W w t s W w t W Sr P t T w N s N≤ ∀ ∈ ∀ ∈ ∀ ∈   (4e) 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,..., ,dw dw
W w t s W w t W Sr P t T w N s N≤ ∀ ∈ ∀ ∈ ∀ ∈  (4f) 

{ } { } { }
( , , ) ( , ) ( , , ) ( , , )

1,..., , 1,..., , 1,..., .

spill op dw
W w t s W w t W w t s W w t s

W S

P P r P

t T w N s N

≤ − + ∆

∀ ∈ ∀ ∈ ∀ ∈
 (4g) 

These constraints are also applied to the PV aggregators. In 
parallel, the upper and lower bounds for the activation of DR 
aggregators are given by 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,..., ,up up
DR l t s DR l t L Sr P t T l N s N≤ ∀ ∈ ∀ ∈ ∀ ∈   (4h) 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,..., ,dw dw
DR l t s DR l t L Sr P t T l N s N≤ ∀ ∈ ∀ ∈ ∀ ∈  (4i) 

{ } { } { }( , , ) ( , ) 1,..., , 1,..., , 1,..., ,shed
DR l t s L l t L SP P t T l N s N≤ ∀ ∈ ∀ ∈ ∀ ∈  (4j) 

where the load shedding is limited by the load in the system. 
Storage technical limits in each period t combine distinct 
inequalities constraints. Thus, the storage devices are used to 
reduce congestion when needed. Furthermore, the cost of 
using charge and discharge ability is modeled in eq. (4a). It is 
assumed that the costs for charge and discharge already 
consider the battery degradation over time [30]. Upper and 
lower bounds for energy stored in the battery, as well as the 
charge and discharge limit per storage unit are modeled as  

( , ) ( , , ) ( , )Min st t stored st t s BatCap st tE E E≤ ≤   (4k) 

( , , ) ( , ) ( , , )
Max

Ch st t s Ch st t Ch st t sP P X≤  (4l) 

( , , ) ( , ) ( , , )
Max

Dch st t s Dch st t Dch st t sP P X≤  (4m) 

{ } { } { }
( , , ) ( , , ) 1

1,..., , 1,..., , 1,..., ,
Ch st t s Dch st t s

ST S

X X

t T st N s N

+ ≤

∀ ∈ ∀ ∈ ∀ ∈
 (4n) 

where the charge and discharge ability of each storage unit 
cannot occur at the same time, as in (4n). Furthermore, the 
energy flow from upstream networks is limited through 
transformers that adapt the voltage level from high voltage to 
medium voltage. Therefore, the external supplier provides 
energy to the DSO through these transformers, which results 
in a constraint considering the upper limit of the transformers, 
such that 

( ) { }

{ } { } { }

2 2
2

( , , ) ( , , )
1 1

, 1,..., ,

1,..., , 1,..., , 1,...,
= =

   
+ ≤ ∀ ∈   

   
∀ ∈ ∀ ∈ ∀ ∈

∑ ∑
SU SUN N

i i Max
SU su t s SU su t s trf

su su

Bus S TRF

P Q S t T

i N s N trf N
  (4o) 

Similarly, the thermal limit of distribution lines constrains 
the power flowing from bus i to bus j, and vice-versa, such as  

*

( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , ),Max
i t s ij ij t s sh i i t s TL ij t s i t s j t sV y V y V S V V V + ≤ = −    (4p) 

{ } { } { }

*

( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , ),

1,..., , , 1,..., , 1,..., ,

Max
j t s ij ji t s sh j j t s TL ji t s j t s i t s

Bus S

V y V y V S V V V

t T i j N s N i j

 + ≤ = − 

∀ ∈ ∀ ∈ ∀ ∈ ≠
 (4q) 

where the bus voltage magnitude limits are represented by 
{ } { }( , ) , 1,..., , 1,...,i i

Min i t s Max SV V V t T s N≤ ≤ ∀ ∈ ∀ ∈   (4r) 
assuming that the voltage magnitude is fixed and defined by 
the DSO for the slack bus (upstream bus connection).  
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IV.  EVALUATION OF DISTRIBUTION GRID MANAGEMENT 
This section presents a case study that illustrates the 

application of the proposed models and their respective 
performance. The presented case study has been chosen to 
cover a diversity of uncertain situations, allowing 
demonstration of the proposed model. The simulation was 
performed with MATLAB and GAMS. 

A.  Outline 
The case study is partially based on the case study 

presented in [31]. The original distribution network is 
presented in [32], while the energy mix in 2050 used for 
updating the network is proposed in [33]. Fig. 2 shows an 11 
kV distribution network with 37 buses (NBus=37), connected to 
the high voltage network through two power transformers of 
10 MVA each. For simplicity in the analysis of the case study, 
the DERs are aggregated by technology, so one aggregator 
represents a specific type of DER technology. However, note 

TABLE I: CONSUMERS CHARACTERISTICS. 
 

Load Bus 
Active power consumption LP  (kW) 

Max Mean Min 
1 3 1190.5 734.7 429.9 
2 4 1015.6 644.5 237.0 
3 6 1184.2 662.8 101.7 
4 7 1259.1 777.0 453.9 
5 9 1252.4 845.5 619.9 
6 10 1040.9 693.3 343.5 
7 12 1030.1 635.7 371.4 
8 14 1.9074 1210.3 445.1 
9 16 2598.3 1730.6 857.5 

10 18 1184.2 799.5 586.1 
11 20 1184.2 662.8 101.7 
12 21 1190.5 734.7 429.2 
13 23 1272.3 847.4 419.9 
14 24 1252.4 845.5 619.9 
15 26 1030.1 635.7 371.4 
16 28 878.8 557.6 205.0 
17 29 996.1 557.5 85.5 
18 31 1001.4 618.0 361.0 
19 32 1011.9 674.0 333.9 
20 34 1252.4 701.0 107.5 
21 36 1074.1 681.6 250.6 
22 37 1030.1 635.7 371.4 

 

TABLE II: TRANSFORMER AND CAPACITOR BANK CHARACTERISTICS. 
 

Equipment Number of 
units 

Number of 
Tap-changing 

levelsN  

Tap-changing 
capacity 

levels
TRFV , levels

CBQ  

Cost TRFC ,

CBC  (m.u. 
per change) 

Transformer 2 21 0.1 p.u. 0.19 
Capacitor Bank 1 5 0.2 Mvar 0.47 

 

TABLE III: ENERGY STORAGE SYSTEM CHARACTERISTICS. 
 

Equipment Number 
of units 

Charge 
maximum 

power 
Max

ChP  
(kW) 

Discharge 
maximum 

power 
Max

DchP  
(kW) 

Capacity 

BatCapE  
(kWh) 

Charge 
cost ChC  

(m.u./kWh) 

Discharge 
cost DchC  
(m.u./kWh) 

ESS 4 150 200 250 0.030 0.065 
 

TABLE IV: GENERAL CHARACTERISTICS AND OPERATING POINT FOR DER. 
 

DER Number of 
units 

Total installed 
power 

Operating point opP  (MW) 
Max Mean Min 

CHP 3 2.5 (Mva) 1.5 1.15 1 
External 
supplier 1 20 (Mva) - - - 

PV 22 7.74 (MWp) 5.55 1.96 0 
Wind 2 2.5 (MW) 1.88 1.77 1.52 
DR 22 4.65 (MW) 0.1 0.03 0 

 

TABLE V: DER UPWARD AND DOWNWARD FLEXIBILITY AND COSTS. 
 

DER Upward cost upC (m.u./kWh) Downward cost dwC (m.u./kWh) 
Max Mean Min Max Mean Min 

CHP 0.15 0.10 0.05 0.09 0.06 0.03 
PV - 0.11 - - 0.06 - 
Wind - 0.10 - - 0.05 - 
DR - 0.22 - - 0.17 - 

 

TABLE VI: DER ACTIVATION AND CURTAILMENT COSTS. 
 

DER 
Activation cost 

actC  (m.u./kWh) 
Curtailment cutC / spillage spillC / 

load shedding shed
LC  (m.u./kWh) 

CHP 0.18 0.36 
PV 0.13 0.30 
Wind 0.12 0.30 
DR – load 0.26 0.90 

 
 

 
 

Fig. 2.   37-Bus distribution network (adapted from [32]). 
 

 
Fig. 3.   Profile of the total power consumption in the distribution grid.  
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that the model has been designed to deal with aggregators with 
a mixed portfolio. In each consumption point (NL=22), the 
aggregation of the available DR is also considered. The 
distribution network supplies energy to 1908 consumers (1850 
domestic consumers, 2 industries, 50 commercial stores, and 6 
service buildings) [32]. The consumption characteristics in 
each consumption bus, as well as the consumption profiles of 
each type of consumer are the same as those used in [31]. 
Table I summarizes the consumption in each bus. The total 
load consumption in each period for the distribution network 
is shown in Fig. 3. 

    1)  DSO Internal Resources 
The DSO is the owner of some equipment installed in the 

network that supports grid management. Thus transformers 
with OLTC, capacitor banks and energy storage systems are 
considered. The general characteristics of the transformers and 

capacitor bank are shown in Table II. The on-load tap-changer 
of the transformers can lead to a maximum deviation in the 
voltage level of 0.1 p.u. A cost for using tap-changing ability 
based on [34] is considered, since its use reduces the lifetime 
and increases the maintenance of the equipment. The capacitor 
bank tap-changing of reactive power production can reach a 
maximum reactive power of 0.8 Mvar. As for the 
transformers, the capacity bank lifetime reduces with the 
number of changes of the tap position. The cost for tap-
changing is based on the formula for capacity bank tap-
changing [34]. Throughout the network, energy storage 
systems with charging and discharging ability are installed. 
All the ESS equipment has the same characteristics, shown in 
Table III. The charge ηCh and discharge ηDch efficiency 
coefficients of storage systems are 0.8. It is noteworthy that 
the discharge price incorporates a degradation cost of 0.03 
m.u./kWh, based on the study in [30]. 

    2)  DER in the Network 
The distribution network considers different aggregators of 

DER, each representing a different DER. Table IV provides 

general information on the DER. In addition, the operating 
point of the DER is given by a previous dispatch from the 
market.  

All DERs are able to provide flexibility based on their 
generation level. Table V shows the costs of upward and 
downward flexibility of the different aggregators. The upward 
and downward flexibility of CHP, external suppliers and DR 
go from its level of operating point to its maximum and 
minimum level of output power, respectively. In addition, it is 
assumed in the validation stage (real-time simulation with 
measured data) of the robust solution that the upward and 
downward flexibility costs increases by 20% when procured 
during the validation stage. That is, it is assumed that the real-
time activation of these resources is more expensive. The costs 
for real-time activation, CHP curtailment, renewable spillage 
and load shedding are shown in Table VI. 

The PV and wind power from aggregators are modeled as 
random variables. Upward and downward flexibility is used 
according the bids that these aggregators submit to the DSO. 
The downward flexibility bid is equal to the energy operating 
point of these aggregators, previously scheduled in the market. 
The scenarios for wind power generation over the 24-hour 
periods can be found in [35], [36]. The offering bids were 
determined for a 24-hour period based on [22]. The use of the 
constant strategy has been assumed. The constant strategy 
splits part of the available wind power for energy and upward 
flexibility [22]. For PV aggregators, a scenario generation 
based on probability forecasts for short-term production has 
been performed. The probabilistic forecast was based on the 
quantile forecast from [37]. These quantiles were used to 
generate the scenarios and bids. The scenario generation 
process described in [38] has been used to generate the spatial-
temporal trajectories or scenarios. The bids were performed 
based on the constant approach shown in [22].  

A different number of vertices of the uncertainty set (NS) 
have been used in this study for comparison of the 
performance of the methodology, i.e. robust approach with 3, 
4 and 6 vertices has been selected. 

B.  Results 

    1)  Day-ahead Solution 
A number of simulations for the robust approach 

considering a different number of vertices have been 
performed. The number of vertices collected for building the 
uncertainty set was based on the efficiency of the 
methodology in terms of computational performance and 
solution quality. In contrast, the deterministic simulation is 
based on the deterministic version of the proposed robust 
model, where the conditional mean forecast of wind and PV is 
used as the expected power generation for these resources. 

The total operating costs for 24-hour period simulation 
considering a comparison between the deterministic and 
robust approach are shown in Table VII. It can be concluded 
that increasing the number of vertices of the robust 
optimization approach will generate a more robust solution to 
the system, which results in a higher cost to the DSO. The 
high cost of the robust model with 6 vertices is due to 
reserving more flexibility in the system for some periods. 

TABLE VII: DAY-AHEAD TOTAL OPERATIONS COSTS, FLEXIBILITY AND LOAD 
SHEDDING FOR A 24-HOUR PERIOD SIMULATION. 

 

Model Deterministic Robust 3 
vert. 

Robust 4 
vert. 

Robust 6 
vert. 

DG flex (MW) 1.195 1.298 1.325 1.375 
DR flex (MW) 2.633 3.645 3.814 4.108 
Storage (MW) 0.511 0.450 0.455 0.461 
Load shedding (MW) 0 0 0 0 
Flex cost (m.u.) 23.722 23.95 24.01 24.063 
Operating cost (m.u.) 23.722 23.95 24.01 24.063 

TABLE VIII: TOTAL EXPECTED OPERATIONS COSTS; FLEXIBILITY AND LOAD 
SHEDDING OF 24 HOUR PERIOD SIMULATION AFTER THE VALIDATION PROCESS. 

 

Model Deterministic Robust 3 
vert. 

Robust 4 
vert. 

Robust 6 
vert. 

DG flex (MW) 1.192 1.229 1.250 1.314 
DR flex (MW) 2.923 3.112 3.168 3.215 
Storage (MW) 0.116 0.167 0.237 0.270 
Load shedding (MW) 0.698 0.421 0.273 0.130 
Flex cost (m.u.) 23.718 23.859 23.928 23.969 
Operating costs (m.u.) 24.413 24.234 24.155 24.053 
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Fig. 4 presents an hourly comparison of the contracted 
flexibility for upward and downward for all resources (wind, 
PV, CHP and DR). In general, robust approach reserves a 
higher level of upward and downward flexibility, since the 
solution is based on the worst-case solution. Periods 18 to 23 
present higher contracted flexibility, since congestion 
situations are expected in the power transformer and in the 
network branches.  

    2)  Validation of the Day-ahead Solution 
The validation stage entails performing an hourly optimal 

power flow considering out-of-sample data of wind and PV 
and the reserved/contracted flexibilities by the DSO. One 
hundred new wind and PV realization scenarios have been 
generated based on the real measurement data, accounting 
with upward and downward deviations of 20% from the 
measurement data. 

Besides this, only the flexibility contracted by the DSO to 
the aggregators can be used during the validation stage. 
Flexibility contracted is used to solve congestion in the 
system. In cases where contracted flexibility is not enough to 
solve the congestion problem, wind and PV curtailment and 
load shedding are used to balance the system as last resort 
measures. From this, it is possible to evaluate the robustness 
of the proposed solution and compare with the traditional 
deterministic approach. The traditional approach relies on an 
OPF scheduling based on point forecast information. Table 
VIII shows the total expected operating costs of each approach 
after the validation process. One can see that, as expected, the 
robust approach ensures lower operating costs than the 
traditional DSO approach (1.07% more efficient). This is due 
to the broad flexibility that is scheduled under the worst-case 
of the robust approach in each hour. 

Comparing the results of the traditional and the robust 
approach under the day-ahead scheduling and during the 
validation process (Table VII and Table VIII), one can verify 
that robust approaches reserve more flexibility during the day-
ahead scheduling that can be used during the validation 
process, resulting in lower expected operating costs after the 
validation stage. Thus, in this case study, from a financial 
point of view, the proposed approach is better than the 
traditional deterministic DSO approach (present-day practice). 

For instance, if the DSO chooses the robust approach instead 
of the deterministic in the day-ahead market for 0.341 m.u. 
more (24.063-23.722, Table VII), it would have a saving of 
0.360 (24.413-24.053, Table VIII) in the validation stage, 
which means 0.019 m.u. of net saving. 

Although the cost savings are small since the case study is 
a daily analysis, a yearly analysis can represent a significant 
saving for the DSO. However, it is possible that a different 
case study may show distinct behavior. That is, in cases with 
low levels of uncertain production and congestion problems, 
robust approach may be more expensive and therefore perform 
poorer than the traditional approach, yet ensuring high levels 
of system reliability. Additionally, the proposed approach also 
ensures higher reliability by requiring less load shedding than 
the traditional approach. 

The behavior of the deterministic approach under the 
validation process for the 24-hour period is illustrated in Fig. 5 
a). The blue area represents the flexibility contracted at the 
day-ahead stage, while the red area shows the load shedding 
used by the deterministic approach during the validation. The 
green line represents the total power used by the DSO to 
manage the grid during the validation process, while the blue 
line shows the flexibility used by the deterministic approach 
during the validation process. One can see that the flexibility 
contracted in the day-ahead is not enough to solve the 
congestion problem that occurred during the real-time 
operation. Thus, load shedding is used by the DSO to manage 
this congestion. 

Fig. 5 b) depicts the behavior of the proposed approach 
under the validation process. One can see that, in most of the 
periods, the contracted flexibility is more than enough to solve 
congestion problems that occur during real-time operation. 
However, between 17 and 18 periods, there is a need for extra 
power to solve congestion. Thus, load shedding is used to 
manage the congestion, accounting for a high penalty. 

Comparing the results of the deterministic - Fig. 5 a) - and 
proposed - Fig. 5 b) - approaches, one can identify different 
behavior and portions of the scheduled and used flexibility. 
The proposed approach reserves more flexibility than the 
deterministic approach, which is useful during the real-time 
operation. Thus, the proposed approach infers less operating 
costs than the equivalent deterministic approach after the 
validation process due to the lower need of load shedding 
(extremely expensive) to manage congestion in the system. 

In more detail, the difference between the expected 
operating costs of the deterministic and robust approaches is 
illustrated in Fig. 6. From the cumulative distribution function 
it is possible to evaluate the probability of the scenarios 
occurring in a range of expected operating costs. For instance, 
an expected operating cost of up to 24.148 m.u. is expected to 
happen in 80% of the scenarios for the robust 6 vertices 
approach, while the same cost is most likely to occur in 
14.69% of the scenarios for the deterministic approach. This 
highlights the effectiveness of the proposed approach to the 
problem. In more detail, the horizontal axis of Fig. 6 covers 
less than 1 m.u. because the model considers that the 
regulation of reactive power by the DG is mandatory and non-
remunerated, and therefore the regulation of capacitor bank is 
not used in the present case study. Additionally, one can see 
that there is always need for flexibility, and therefore the 

 
Fig. 4.   Contracted flexibility by the DSO under deterministic and robust 
approach with 6 vertices. 
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deterministic approach presents worse results than robust 
approaches. Moreover, it is noteworthy that the proposed 
methodology allows the DSO to control the number of 
vertices, thereby to some extent controlling the robustness of 
the obtained solution. Still, this is a heuristic method to solve 
the problem which does not guarantee to find the global 
optima and therefore the most robust solution. 

    3)  Computational Performance 
The computations were carried out with DICOPT [39] as 

an MINLP solver on an Intel Core i5 2.70 GHz processor with 
8 GB RAM. All modeling was performed in the GAMS [40] 
modeling language. The deterministic approach was 
performed for 8 minutes, while the robust 3, 4 and 6 vertices 
were performed for 2.5h, 6.4h and 16.2h, respectively. The 
robust approach takes a high computational time to converge, 
due to the complexity of the proposed formulation. 

One way of reducing the complexity of the methodology is 
through linearization of the nonlinearity. In this way, the AC 
OPF can be formulated in the format of a second-order cone 
programming [41] or semidefinite programming [42], which 
are convex models that can be efficiently solved. However, 

these models usually give approximate solutions for the 
nonlinear solution. Improved methods, such as strong second-
order cone programming relaxations based on McCormick 
relaxation to improve the approximation of the convex region 
of bilinear constraints have been emerging. Such advanced 
methods, reduce the optimality gap in relation to the 
traditional nonlinear models [43]. Other recent developments 
in AC OPF can be found in [13]. 

On the other hand, the computational performance can also 
be improved by considering different optimization algorithms, 
such as meta-heuristics. These optimization algorithms are 
somehow able to provide approximate solutions of the AC 
OPF problem, requiring less computational effort to solve the 
problem [44]. 

Nevertheless, a combination of reducing the complexity of 
the problem through mathematical optimization techniques 
and the use of meta-heuristics to improve the computational 
performance is the most likely evolution for the proposed 
methodology. 

V.  CONCLUSIONS 
Increasing the flexibility of DER will allow the DSO to 

reserve this flexibility to handle local technical problems in 
the distribution system, thereby, improving security of supply. 

This work proposes a new method for DSO distribution 
grid management under spatial-temporal uncertainty. It is 
assumed that the DSO applies a preventive approach on grid 
management by reserving flexibility from DER at the day-
ahead stage. The results show that such an approach is more 
expensive than present-day practice at the day-ahead stage, but 
cheapest on the operating day, i.e. the robust approach 
provides savings in the DSO operating costs by reserving 
some flexibility at the day-ahead stage to be used during real-
time operation, avoiding extra penalties. In addition, results 
show that the level of robustness depends on the modeling of 
the uncertainty set, i.e. the number of vertices of the 
uncertainty set to use in the optimization process. However, 
the price of robustness is paid in the computational effort. An 
important conclusion from this work is that robust solutions 
increase the reliability of the distribution system, representing 
a preventive approach for grid management. 

       
 
Fig. 5.   Contracted, used flexibility and load shedding (in expectation) over 24-hour for a) deterministic and b) robust (6 vertices) approaches under real-time 
operation. 

a) b) 

 
Fig. 6.   Empirical cumulative distribution function of expected operating costs 
for deterministic (blue line), robust 3 vertices (green line), robust 4 vertices 
(red line) and robust 6 vertices (brown line) approaches.  
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Nevertheless, the use of this methodology by the DSO 
requires a yearly evaluation between the costs saved by this 
approach and its usefulness (perhaps, measured by the number 
of events in a year where the method is useful). Thus, future 
work should focus on this trade-off, as well as on improving 
the computational performance of the optimization algorithm, 
potentially by combining meta-heuristics with mathematical 
optimization techniques to assure tractable, robust solutions. 

APPENDIX 
The general adaptive robust optimization for a single period 

is formulated as the following three-level optimization 
problem: 

+DA RT
tx u y

minC x max minC y  (5a) 

. . : ,λ+ =s t Tx Hy u  (5b) 

0 : ,µ≥y  (5c) 
. . ∈s t u W  (5d) 

. . ,≤s t Ax a  (5e) 
0,≥x  (5f) 

where T and H are matrices defining the left-hand-side of 
recourse constraints, λ and μ are vectors of Lagrange 
multipliers associated with equalities and inequalities 
constraints of recourse stage. A is a matrix defining the left-
hand-side of first stage constraints and a is a vector defining 
the right-hand-side of first stage constraints. 

Considering that the optimization problem from (5) cannot 
be solved directly given its min-max-min structure, the inner 
minimization problem can be replaced by its dual formulation. 
Thus, the optimization problem assumes the form of 

( ) λ+ − TDA

x u y
minC x max max u Tx  (6a) 

. . ,µ+ =T RTs t H y C  (6b) 

0,µ ≥  (6c) 
∈u W  (6d) 

. . ,≤s t Ax a  (6e) 
0,≥x  (6f) 

The two-level formulation in (6) is more complex due to 
the presence of the bilinear term arising as the product of the 
dual variable λ and the uncertain parameter u in the objective 
function. However, following the proof on [23] the optimal 
solution will be at one of the vertices of the polyhedral 
uncertainty set W. In addition, the vector x of first stage 
variables do not appear in the constraints of the single 
maximization problem, so the feasible polyhedral is 
independent of the first stage decisions, thereby it has a finite 
number of vertices s =1,…,Ns. Thus a variable β representing 
the worst-case recourse cost can be added to the model, 
replacing the max-max problem, such as 

β+DA

x
minC x  (7a) 

{ }. . 1,..., ,β ≥ ∀ ∈RT
s Ss t C y s N  (7b) 

{ }1,..., ,+ = ∀ ∈s s STx Hy u s N  (7c) 

{ }0 1,..., ,≥ ∀ ∈s Sy s N  (7d) 
,≤Ax a  (7e) 

0,≥x  (7f) 
where all the recourse constraints (7b) to (7d) are listed for all 
vertices s of the uncertainty set. 
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