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Abstract—In this paper, we investigate the problem of min-
imizing the sum of energy cost and thermal discomfort cost
in a long-term time horizon for a sustainable smart home
with a Heating, Ventilation, and Air Conditioning (HVAC) load.
Specifically, we first formulate a stochastic program to minimize
the time average expected total cost with the consideration of
uncertainties in electricity price, outdoor temperature, renewable
generation output, electrical demand, the most comfortable
temperature level, and home occupancy state. Then, we propose
an online energy management algorithm based on the frame-
work of Lyapunov optimization techniques without the need to
predict any system parameters. The key idea of the proposed
algorithm is to construct and stabilize four queues associated
with indoor temperature, electric vehicle charging, and energy
storage. Moreover, we theoretically analyze the feasibility and
performance guarantee of the proposed algorithm. Extensive
simulations based on real-world traces show the effectiveness
of the proposed algorithm.

Index Terms—Smart home, energy cost, thermal discomfort
cost, online energy management, renewable sources, energy
storage, HVAC, electric vehicle, dynamic pricing, random home
occupancy, Lyapunov optimization techniques

NOMENCLATURE

Indices

t Time slot index.

Constants

N Total number of time slots.

τ Duration of a time slot (hour).

θpv The PV generation efficiency.

Cpv Total radiation area of solar panels (m2).

ε Factor of inertia.

η Thermal conversion efficiency (heating).

A Overall thermal conductivity (kW/◦F ).

ω Time constant of system (hour).

emax Power rating of an HVAC system (kW).

Tmin Lower bound of comfort range (◦C).

Tmax Upper bound of comfort range (◦C).

T outmin Minimum outdoor temperature (◦C).

T outmax Maximum outdoor temperature (◦C).

vmax Maximum charging power of the EV (kW).

Dmax Maximum queueing delay of the queue Qt (hour).
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R Tolerant EV charging delay (hour)

ucmax Maximum ESS charging power (kW).

udmax Maximum ESS discharging power (kW).

γ Thermal cost coefficient (RMB/(oF )2).

Variables

rt Generation output of PV panels (kW).

ρt Solar radiation intensity (W/m2).

Tt Indoor temperature (◦C).

T out
t Outdoor temperature (◦C).

et HVAC input power at slot t (kW).

Qt EV energy queue (kW).

xt Service rate of the queue Qt (kW).

at Arrival rate of the queue Qt (kW).

Gt Stored energy level of the ESS (kWh).

gt Purchasing/selling power of a smart home (kW).

Bt Buying electricity price (RMB/kWh).

St Selling electricity price (RMB/kWh).

yt Charging or discharging power of the ESS (kW).

T ref
t+1 The most comfortable temperature (◦C).

πt+1 Home occupancy state at slot t+ 1.

Φ1,t Energy cost (RMB).

Φ2,t Thermal discomfort cost at slot t+ 1 (RMB).

Ht Virtual queue related to indoor temperature (◦F ).

Zt Virtual queue related to EV charging delay (slots).

Kt Virtual queue related to ESS control (kWh).

Lt Lyapunov function.

I. INTRODUCTION

As a next-generation power system, smart grid is typified

by an increased use of information and communications tech-

nology (ICT) in the generation, transmission, distribution, and

consumption of electrical energy. In smart grid, there are two-

way flows of electricity and information. As far as two-way

information flow is concerned, consumers and utilities could

exchange real-time information (e.g., electricity prices, power

usages) through smart meters. Consequently, some energy

management schemes could be developed to save energy cost

for consumers by exploiting the temporal diversity of elec-

tricity prices [1]–[3]. As large electricity consumers in power

grids, residential homes account for 30%-40% of the total

electricity consumption in a country (e.g., about 39% in U.S.

[4]). Therefore, it is of particular importance to carry out the

design of efficient energy management for residential homes.

In this paper, we mainly focus on the energy management

of smart homes, which are evolved from traditional homes

by adopting three components, namely the internal networks,

intelligent controls, and home automations [5].

http://arxiv.org/abs/1706.02831v3
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In a smart home, there are lots of appliances. In general,

such appliances could be divided into two types, i.e., inflexible

loads (e.g., lights, computers, and televisions) and flexible

loads (e.g., heating, ventilation, and air conditioning (HVAC)

systems, electric water heaters, electric vehicles (EVs), and

washing machines). In this paper, we mainly focus on the

scheduling of an HVAC system and an EV in a smart home,

since HVAC systems account for about 50% electricity con-

sumption of a smart home [4] and EV charging task represents

one of the most flexible loads (i.e., deferrable and interruptible

[6]). As a result, the temporal price diversity could be utilized

to save energy cost. In addition, distributed generation and

energy storage system are also considered in the smart home.

The purpose of this paper is to minimize the sum of energy

cost associated with appliances and thermal discomfort cost

related to occupants in a long-term time horizon with the

consideration of uncertainties in electricity price, outdoor

temperature, renewable generation output, electrical demand,

the most comfortable temperature level, and home occupancy

state. To achieve the above aim, we first formulate a problem

of minimizing the time average expected total cost for the

sustainable smart home with an HVAC load. Since there are

time-coupling constraints and the future system parameters are

unknown, it is challenging to solve the formulated problem.

Typically, the framework of Lyapunov optimization tech-

niques (LOT) [7] could be adopted to solve a time average

optimization problem and an online energy management al-

gorithm can be designed [8], [9]. Existing Lyapunov-based

energy management algorithms intend to buffer the power

demand requests of flexible loads in queues when electricity

prices are high and to serve the stored requests when electricity

prices are low. Different from flexible loads with specified

energy/power demands (e.g., EV), an HVAC system has un-

known power demand that is related to many factors, such as

the most comfortable temperature level decided by occupants,

the lower and upper bounds of indoor temperature, home

occupancy state, and outdoor temperature. Therefore, existing

Lyapunov-based energy management algorithms could not be

applied to our problem directly.

To avoid knowing about an HVAC power demand when

using the LOT framework, we construct a virtual queue

associated with indoor temperature. By stabilizing all queues

associated with indoor temperature, EV charging, and energy

storage device, we design a Lyapunov-based energy manage-

ment algorithm without predicting any system parameters and

knowing HVAC power demand.

The main contributions of this paper are summarized as

follows,

• We formulate a time average expected total cost mini-

mization for a smart home with an HVAC load consider-

ing uncertainties in electricity price, outdoor temperature,

renewable generation output, electrical demand, the most

comfortable temperature level, and home occupancy state.

• We propose an online energy management algorithm for

the formulated problem based on the LOT framework

without predicting any system parameters and knowing

the HVAC power demand. Moreover, we theoretically

analyze the feasibility and performance guarantee of the

proposed algorithm.

• Extensive simulation results based on real-world traces

show that the proposed algorithm can reduce energy cost

effectively with small sacrifice in thermal comfort.

The remaining of this paper is organized as follows. Section

II gives the literature review. In Section III, we describe the

system model and problem formulation. Then, we propose an

online algorithm to solve the formulated problem in Section

IV. In Section V, we conduct extensive simulations. Finally,

conclusions and future work are provided in Section VI.

II. LITERATURE REVIEW

There have been many studies on investigating energy

management for smart homes. In [10], Tsui et al. proposed a

convex optimization framework with L1 regularization for the

home energy management, which can handle appliances with

ON and OFF operational statuses. In [11], Liu et al. inves-

tigated the transformation from single-time scale into multi-

time scale to reduce the computational complexity for the op-

timization of home energy management. In [12], Huang et al.

formulated a chance-constrained programming optimization

problem to minimize energy cost of appliances considering

uncertainties in a smart home. In [13], Keerthisinghe et al.

proposed a scheme to schedule distributed energy resources

in a smart home using an approximate dynamic program-

ming with temporal difference learning. In [14], Zhang et

al. developed a learning-based demand response strategy for

an HVAC system in a smart home to minimize energy cost

without affecting customer’s comfort of living. In [15], Hansen

et al. proposed a partially observable Markov decision process

approach to minimize the energy cost in a smart home. In [16],

Basit et al. designed a scheme based on Dijkstra algorithm

to minimize the energy cost of all devices in a home. In

[17], Deng et al. proposed a temporally-decoupled algorithm

to control the indoor temperature of smart buildings with next-

hour electricity price. Though some positive results have been

obtained in aforementioned research efforts, they either im-

plicitly/explicitly assume that future system parameters could

be forecasted perfectly or known exactly, or require parameter

forecasting.

To avoid the forecasting of system parameters, some online

energy management methods have been developed based on

the LOT framework [8], [18]–[21]. In [8], Guo et al. proposed

a Lyapunov-based cost minimization algorithm for multiple

residential households in a smart neighborhood. In [18], Li et

al. investigated the joint energy storage management and load

scheduling at a residential site with renewable integration and

designed a real-time solution. In [19], Yang et al. designed

a cost-effective and privacy-preserving energy management

strategy for smart meters by using a battery. In [20], Huang

et al. presented an adaptive electricity scheduling algorithm to

minimize the microgrid operation cost with the consideration

of quality-of-service in electricity. In [21], Shi et al. proposed a

real-time energy management strategy in microgrids consider-

ing physical constraints associated with the power distribution

network. However, the above-mentioned works do not consider

the online energy management for a smart home considering

an HVAC system.
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In [9], Fan et al. investigated the online energy management

problem for a smart home with an HVAC load based on the

LOT framework. Specifically, this paper intends to minimize

energy cost by buffering the power demand requests of appli-

ances in queues when electricity prices are high and serving

requests when electricity prices are low. However, different

from loads with specific energy/power demands (e.g., EV), an

HVAC load has unknown power demand in each time slot

that is related to many factors, such as the most comfort-

able temperature level decided by occupants, the lower and

upper bounds of indoor temperature, room occupancy state,

and outdoor temperature. Thus, the HVAC power demand is

randomly generated in [9] and can not reflect the true demand

of the HVAC system. Though the Lyapunov optimization

technique is also adopted to design online energy management

strategy for a smart home with an HVAC system, this paper

has several aspects different from [9]: (1) by introducing a

virtual queue associated with indoor temperature, our proposed

algorithm operates without knowing the HVAC power demand

in each time slot; (2) we jointly consider the minimization of

energy cost and thermal discomfort cost; (3) random home

occupancy, energy storage system, and selling electricity are

jointly considered; (4) all system control parameters which

affect algorithmic feasibility are explicitly derived.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Loads

Smart

meter

Generators ESS

Home energy management system

Power flow Information flow

Smart home

Utility

grid

 

Fig. 1. Illustration of a smart home.

The smart home considered in this paper is shown in Fig. 1,

where there are two-way communications between the smart

home and the utility grid. Thus, real-time electricity price

and power usage could be known by the smart home and the

utility grid, respectively. In addition, the smart home could buy

electricity from the utility grid and sell electricity back to the

utility grid. In the smart home, some devices are connected

to a low-voltage DC/AC bus for energy exchange, such as

distributed generators (e.g., wind turbines or solar panels), en-

ergy storage system (ESS), home energy management system

(HEMS), and loads. As the central controller of the smart

home, HEMS manages the way of energy generation, storage,

and consumption. Specifically, through two-way information

flow, HEMS could collect system states (e.g., renewable gen-

eration output, electricity price, outdoor temperature, energy

demand, and home occupancy state) and send control signals

to controllable devices. As far as loads are concerned, we

mainly consider flexible loads such as HVAC and EV, while

the demands of other loads are satisfied by HEMS instantly

and not considered in the optimization problem. In addition,

HEMS operates in slotted time, i.e., t ∈ [0, T ], where T is the

total number of time slots. Moreover, the duration of a time

slot τ is normalized to a unit time so that power and energy

could be used equivalently.

A. Renewable energy model

We consider the solar energy supply in the smart home. Let

rt be the maximum generation output of photovoltaic (PV)

solar panels at slot t. Then, rt could be estimated by the

following model [22], i.e.,

rt = θpvCpvρt, ∀ t (1)

where θpv denotes the PV generation efficiency, Cpv is the total

radiation area of solar panels (in m2), and ρt represents the

solar radiation (in W/m2).

B. Load model

1) HVAC model: Generally, an HVAC system has two kinds

of operational modes, i.e., heating and cooling. In this paper,

we mainly focus on the heating mode in the winter and

our designed algorithm could be extended to accommodate

the cooling mode in the summer by taking the changes of

equations (2) and (17)-(19) into consideration, e.g., the second

“+” in (2) should be “-” when the cooling mode is considered.

According to [23], the indoor temperature dynamics caused

by an HVAC system could be obtained as follows

Tt+1 = εTt + (1− ε)(T out
t +

η

A
et), ∀ t (2)

where Tt and T out
t denote the indoor temperature and outdoor

temperature, respectively; η is thermal conversion efficiency,

and A is the overall thermal conductivity in kW/◦F ; ε =
e−τ/ω; ω is the system time constant.

In this paper, we consider an HVAC system with inverter,

i.e., the HVAC system can adjust its input power et continu-

ously [24]. Let emax be the rating power of the HVAC system,

we have

0 ≤ et ≤ emax, ∀ t. (3)

For one person in the smart home, he/she would feel com-

fortable when the indoor temperature varies within a range,

e.g., 20◦C ∼ 25◦C. Thus, we have the following constraints,

Tmin ≤ Tt ≤ Tmax, ∀ t, (4)

where Tmin and Tmax are lower and upper bounds of the

comfort range, respectively.

2) EV charging model: When an EV is connected to the

DC/AC bus in the smart home, EV should send a charging

request to the HEMS. To be specific, the charging request

is represented by a 3-tuple (s, c, E), where s, c and E
denote the starting time, completion time and energy demand,

respectively. To fully utilize the temporal diversity of dynamic

prices, the energy demand of the EV should be satisfied

intelligently, i.e., executing charging when electricity prices

are low and deferring charging process when electricity prices
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are high. To intelligently satisfy the energy demand of the EV

without violating the completion time, we adopt an energy

queue Qt as follows,

Qt+1 = max[Qt − xt, 0] + at, ∀t, (5)

where xt and at are service and arrival processes of the

energy queue, respectively. Since the LOT framework could

transform a long-term optimization problem into many online

subproblems through the queue stability control, introducing

the energy queue Qt contributes to online scheduling of EV

charging as in [25].

Denote the maximum value of xt by xmax, where xmax ≥
amax (amax = maxt at) so that it is always possible to make

the queue Qt stable. Note that there is no need to serve the

energy demand that is greater than Qt, we have

0 ≤ xt ≤ min{xmax, Qt}, ∀t. (6)

Since the charging power of an EV is limited, the EV can

add at most an energy demand vmax to Qt in a time slot,

where vmax denotes the maximum charging power of the EV.

When E > vmax, multiple time slots are needed to finish the

submission of total energy demand E. Similar to [25], the EV

submits the energy demand at slot t according to the following

equation,

at =







vmax, s ≤ t < s+ κ;
E − κvmax, t = s+ κ;
0, otherwise,

(7)

where κ =
⌊

e
vmax

⌋

.

To ensure that the average length of Qt is finite, we have

the following constraint, i.e.,

lim sup
T→∞

1

T

∑T−1

t=0
E{Qt} <∞. (8)

Since (8) is not enough to ensure that the charging comple-

tion time is not violated, we adopt the following constraint,

Dmax ≤ R, (9)

where Dmax is the maximum queueing delay of the queue

Qt; R denotes the tolerant EV charging service delay, which

is equal to c− s− κ.

C. ESS model

Let yt be the charging or discharging power of the ESS at

slot t. Then, we have

−udmax ≤ yt ≤ ucmax, ∀t, (10)

where ucmax > 0 and udmax > 0 are maximum charging

power and discharging power, respectively. Following the ESS

models in [8], [20], [26], the dynamics of energy levels in the

ESS could be expressed by

Gt+1 = Gt + yt, ∀t, (11)

where Gt represents the stored energy of the ESS at time

slot t. Though the ESS model with perfect charging and

discharging efficiency parameters is considered in this paper,

the proposed Lyapunov-based algorithm can be extended to

incorporate more complex ESS models, please see [27] for

details.

Since the energy level should fluctuate within a certain

range, we have

Gmin ≤ Gt ≤ Gmax, ∀t, (12)

where Gmax and Gmin denote the maximum and the minimum

capacity of the ESS, respectively.

D. Power balancing

Let gt be the energy transaction between the smart home and

the main grid at slot t. Specifically, gt > 0 means electricity

purchasing while gt < 0 means electricity selling. Then,

according to the real-time power balancing, we have

gt + rt = et + xt + yt, ∀ t. (13)

E. Problem formulation

With the above models, the energy cost due to the electricity

selling or buying is given by

Φ1,t =

(

Bt − St

2
|gt|+

Bt + St

2
gt

)

, (14)

where Bt ∈ [Bmin, Bmax] and St ∈ [Smin, Smax] denote the

price of buying and selling electricity at slot t, respectively.

We assume that selling prices are not higher than purchasing

prices, i.e., Bt ≥ St for all t. In other words, the smart home

cannot make profit by greedily purchasing energy from the

utility grid and then selling it back to the utility grid at a

higher price simultaneously. Such assumption is commonly

made in existing works [20] [28]. In addition, the intuition

behind (14) is that just a variable gt is needed to reflect the

electricity purchasing or selling. For example, when gt ≤ 0,

Φ1,t = Stgt. For the case gt > 0, Φ1,t = Btgt.
Similar to [29], we model the thermal discomfort cost of

occupants at slot t by

Φ2,t = γπt+1(Tt+1 − T ref
t+1)

2, (15)

where γ is the cost coefficient with unit $/(oF )2, which

reflects the relative importance of discomfort cost with respect

to energy cost; T ref
t+1 denotes the most comfortable level for

occupants in slot t+ 1 (e.g., 22.5oC), and its value could be

decided by occupants at slot t. Binary variable πt+1 represents

the home occupancy state at time slot t + 1 (“1” denotes

occupancy and “0” denotes vacancy). When πt+1 = 0, Φ2,t

would be zero since there is no occupant at home. The value

of πt+1 could be decided by the last occupant, who is going

to leave the home at slot t. If no human participation is

expected, smart devices with sensors could be deployed to

implement behavior awareness (e.g., leave home) and execute

the corresponding operations [30].

With above-mentioned models, we formulate a problem to

minimize the sum of energy cost and thermal discomfort cost

as follows,

(P1) min lim sup
N→∞

1

N − 1

N−2
∑

t=0

E{Φ1,t +Φ2,t} (16a)

s.t. (2)− (6), (8)− (13), (16b)
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where E denotes the expectation operator, which acts on

random purchasing/selling electricity prices Bt/St, outdoor

temperatures T out
t , renewable generation outputs rt, EV elec-

trical demand at, the most comfortable temperature level T ref
t+1,

and home occupancy state T ref
t+1; the decision variables of P1

are et, xt, yt and gt.

IV. ALGORITHM DESIGN

A. The proposed online algorithm

There are two challenges involved in solving P1. Firstly,

the constraints (2), (5), (11) introduce time couplings, which

means that the current decision would affect future deci-

sions. Secondly, future parameters are unknown, e.g., elec-

tricity prices and outdoor temperatures. To handle the “time-

coupling” property, typical methods are based on dynamic

programming [31], which suffers from “the curse of dimen-

sionality” problem. Recently, the LOT framework was often

adopted to deal with the above challenges [8] [9]. Existing

Lyapunov-based energy management algorithms intend to

buffer the power demand requests of appliances (e.g., EV) in

queues and to serve such requests when electricity prices are

low. Different from EVs with specified energy/power demands,

an HVAC load has unknown power demand in each time slot

that is related to many factors, such as the most comfortable

temperature level decided by occupants, the lower and upper

bounds of indoor temperature, room occupancy state, and

outdoor temperature. Thus, we need to redesign an algorithm

to deal with the HVAC load. The key idea of the proposed

algorithm is summarized as follows:

• Constructing virtual queues associated with indoor tem-

perature, EV charging delay and ESS.

• Obtaining the drift-plus-penalty term according to the

LOT framework.

• Minimizing the upper bound given in the right-hand-side

of the drift-plus-penalty term.

Based on the above idea, we can propose an online energy

management algorithm without predicting any system parame-

ters and knowing HVAC power demand in each time slot. Note

that the purpose of constructing virtual queues is to guarantee

the feasibility of constraints (4), (9), and (12). By stabilizing

such queues, the proposed algorithm could operate without

violating the constraints (4), (9), and (12). Specific proof can

be found in Theorems 1-3.

To begin with, three mild assumptions are made about

system parameters so that the system is controllable, i.e.,

T outmax ≤ Tmax, (17)
η

A
emax + T outmin ≥ Tmin, (18)

Tmax − Tmin > ψ, (19)

where T out ∈ [T outmin, T outmax], ψ = (1 − ε)(T outmax −
T outmin + η

Ae
max). Note that the first assumption is very

common for the heating mode in the winter since the highest

temperature in the winter is always less than the comfortable

temperature levels (e.g., Fig. 2(a) shows that T outmax is about

10oC, while Tmax is about 25oC.). In addition, the second

assumption simply implies that the temperature decay can be

compensated by injecting the maximum power of the HVAC

system (this is required by any an HVAC system). The last

assumption could also be satisfied easily in practice, e.g., when

we set the parameters as follows [29] [17]: Tmax = 23.5◦C,

Tmin = 20◦C, ε = 0.96, T outmax − T outmin = 10◦C, η = 1,

A = 0.14kW/◦F , emax = 10kW , we have ψ = 4.8571oF <
Tmax − Tmin = 6.3oF . The intuition behind (19) is that the

control parameter V max
1 in (33) should be greater than zero,

i.e., d > 0.

1) Constructing virtual queues: To guarantee the feasibility

of (4), we define a virtual queue as a shifted version of indoor

temperature Tt as follows,

Ht = Tt + Γ, (20)

where Γ is a constant, which is specified in the Theorem 1

of Section IV-B. Continually, the dynamics of Ht could be

obtained below,

Ht+1 = εHt + (1− ε)(Γ + T out
t +

η

A
et), (21)

where the above equation could be obtained by integrating (2)

with (20).

In addition, to satisfy the requirement of (9), we define a

delay-aware virtual queue Zt as follows,

Zt+1 =

{

[Zt − xt + ξ]+, Qt > xt,
0, Qt ≤ xt,

(22)

where [⋄]+ , max{⋄, 0}; ξ is a fixed parameter, which

represents the arrival rate of the virtual queue Zt when the

queue Qt > xt, while xt represents the service rate of Zt.

According to our previous work [3], it can be known that

(9) could be guaranteed when the queues Qt and Zt have

finite upper bounds. Moreover, the maximum queueing delay

Dmax = ⌈(Qmax + Zmax)/ξ⌉. In next section, we will show

that such upper bounds indeed exist.

To guarantee the feasibility of (12), we define a virtual

queue as a shifted version of ESS energy level Gt as follows,

Kt = Gt + α, (23)

where α is a constant, which is specified in the Theorem 3 of

Section IV-B. Continually, the dynamics of Kt is given by

Kt+1 = Kt + α, (24)

2) Obtaining drift-plus-penalty term: In addition to keeping

three virtual queues stable, the actual energy queue Qt should

also be stabilized so that (8) could be satisfied. Thus, we define

a Lyapunov function below,

Lt =
1

2
(H2

t +Q2
t + Z2

t +K2
t ). (25)

Define Ψt , (Ht, Qt, Zt,Kt), the one-slot conditional

Lyapunov drift could be calculated as follows,

∆t = E{Lt+1 − Lt|Ψt}, (26)

where the expectation is taken with respect to the randomness

of electricity prices, outdoor temperatures, renewable gen-

eration output, EV charging demand, the most comfortable

temperature level, and home occupancy state, as well as the

chosen control decisions.
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Taking (25) into consideration, we have

Lt+1 − Lt =
(

ϕH + ϕQ + ϕZ + ϕK

)

, (27)

where ϕH = 1
2 (H

2
t+1 − H2

t ), ϕQ = 1
2 (Q

2
t+1 − Q2

t ), ϕZ =
1
2 (Z

2
t+1 − Z2

t ), ϕK = 1
2 (K

2
t+1 −K2

t ). Specifically, ϕH , ϕQ,

ϕZ , and ϕK have the following upper bounds, i.e.,

ϕH =
1

2
(H2

t+1 −H2
t )

< Ω0 + ε(1− ε)Ht(Γ + T out
t +

η

A
et), (28)

ϕQ =
1

2
(Q2

t+1 −Q2
t ) < Ω1 +Qt(at − xt), (29)

ϕZ =
1

2
(Z2

t+1 − Z2
t ) < Ω2 + Zt(ξ − xt), (30)

ϕK =
1

2
(K2

t+1 −K2
t ) < Ω3 +Ktyt, (31)

where Ω0 = (1−ε)2

2 max
(

(Γ + T outmin)2, (Γ + T outmax +

η
Ae

max)2
)

, Ω1 = (xmax)2+(amax)2

2 , Ω2 = 1
2 max(ξ2, (xmax)2),

Ω3 = (max(ucmax ,udmax))2

2 .

By adding a function of the expected total cost over one slot

to (26), we can obtain the drift-plus-penalty term as follows,

∆Yt = ∆t + V E{Φ1,t +Φ2,t|Ψt}

≤
∑4

l=1
Ωl + E{Ktyt − (Qt + Zt)xt|Ψt}

+ E{ε(1− ε)Ht(Γ + T out
t +

η

A
et)|Ψt}

+ V E{Φ1,t +Φ2,t|Ψt}, (32)

where V is a weight parameter that implements a tradeoff

between queue stability and total cost reduction.

3) Minimizing the upper bound: Since the main principle

of the Lyapunov-based algorithm is to choose control actions

that minimize the upper bound given in the right-hand-side

of the drift-plus-penalty term. Then, the proposed algorithm

could be described by the Algorithm 1, where P2 is a convex

optimization problem with four variables and its solution could

be solved efficiently using available convex methods (e.g.,

interior point methods) or tools (e.g., CVX). In addition, the

value of Tt+1 with et = 0 is described by Tt+1|et=0 for

brevity. The lines 6-7 denote that the HVAC power input would

be zero if the home is not occupied in the next time slot

and Tt+1|et=0 is still greater than Tmin, which contributes to

saving energy cost without affecting the thermal comfort of

occupants.

Note that updating Ht, Qt, and Kt according to

(21), (5), (24) means that the constraints (2), (5), (11)

could be satisfied by the proposed algorithm. Moreover,

(3), (6), (10), (13) are explicitly incorporated in P2. Thus,

the remaining constraints (i.e., (4), (8), (9), (12)) are not

considered in Algorithm 1. In the next section, we will show

the feasibility of the proposed algorithm for P1 by proving

that (4), (8), (9), (12) could be satisfied.

B. Algorithm feasibility

Let (e∗t ,x∗t ,y∗t ,g∗t ) be the optimal solution of P2, we have

the following three Lemmas and three Theorems, which show

Algorithm 1 : Home Energy Management Algorithm

1: For each slot t do

2: At the beginning of slot t, observe Ψt,T
out
t , Bt, St, rt,

at, T
ref
t+1, πt+1;

3: Choose gt, et, xt, and yt as the solution to P2:

4: (P2) min Ktyt − (Qt + Zt)xt + ε(1 − ε)Ht(Γ + T out
t +

η
Aet) + V (Φ1,t +Φ2,t)

5: s.t. (3), (6), (10), (13)

6: If πt+1 = 0 and Tt+1|et=0 ≥ Tmin

7: et = 0, gt = xt + yt − rt
8: End

9: Update Ht, Qt, Zt and Kt according to (21),(5),(22), (24);

10: End

that the constraints (4), (8), (9), (12) could be satisfied by the

proposed algorithm.

Lemma 1. The optimal HVAC operation decision of the

proposed algorithm has the following properties, where bt =

2V γπt+1(1 − ε)2η/A(T out
t −

T ref
t+1−εTt

1−ε ), ct = 2V γπt+1(1 −

ε)2η/A(T out
t + η

Ae
max −

T ref
t+1−εTt

1−ε ).

1) If V Smin + bt > −ε(1− ε)Ht
η
A , et = 0.

2) If V Bmax + ct < −ε(1− ε)Ht
η
A , et = emax.

Proof: See Appendix A.

Based on Lemma 1, Theorem 1 could be derived as follows.

Theorem 1. If the initial temperature S0 ∈ [Tmin, Tmax],
the proposed algorithm with fixed parameters V ∈ (0, V max

1 ]
and Γ ∈ [Γmin, Γmax] would offer the following guarantee,

i.e., Tt ∈ [Tmin, Tmax] for all time slots, where

V max
1 =

(1− ε) η
Ad

(Bmax − Smin) + f
, (33)

Γmin =
V Smin + bmin

−ε(1− ε) η
A

+
h

ε
, (34)

Γmax =
V Bmax + cmax

−ε(1− ε) η
A

+
m

ε
. (35)

In above formulas, d = Tmax − Tmin − (1 − ε)(T outmax +
η
Ae

max − T outmin), f = 2γ(1 − ε)2η(T outmax − T outmin +

emax+ ε(Tmax
−Tmin)+(T refmax

−T refmin)
1−ε )/A, h = (1−ε)(T outmax+

η
Ae

max)− Tmax, m = (1− ε)T outmin −Tmin, bmin = mint bt,
cmax = maxt ct, T

refmax = maxt T
ref
t , T refmin = mint T

ref
t .

Proof: See Appendix B.

Lemma 2. The optimal EV charging decision of the pro-

posed algorithm has the following properties:

1) If Qt + Zt < V Smin, x∗t = 0.

2) If Qt + Zt > V Bmax, x∗t = min{xmax, Qt}.

Proof: See Appendix C.

Based on Lemma 2, Theorem 2 could be derived as follows.

Theorem 2 Suppose xmax ≥ max[amax, ξ]. If Q0 = Z0 =
0, the proposed online algorithm has the following properties:

1) Qt is bounded by Qmax = V Bmax + amax, Zt is

bounded by Zmax = V Bmax + ξ.

2) Maximum queueing delay Dmax =
⌈

2V Bmax+amax+ξ
ξ

⌉

.

Proof: See Appendix D.
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Lemma 3. The optimal ESS decision of the proposed

algorithm has the following properties:

1) If Kt > −V Smin, we have y∗t ≤ 0.

2) If Kt < −V Bmax, we have y∗t ≥ 0.

Proof: See Appendix E.

Based on Lemma 3, Theorem 3 could be derived as follows.

Theorem 3. If the initial energy level G0 ∈ [Gmin, Gmax],
the proposed algorithm with fixed parameters V ∈ (0, V max

2 ]
and α ∈ [αmin, αmax] would offer the following guarantee,

i.e., Gt ∈ [Gmin, Gmax] for all slots, where

V max
2 =

Gmax −Gmin − (ucmax + udmax)

(Bmax − Smin)
, (36)

αmin = −V Smin + ucmax −Gmax, (37)

αmax = −V Bmax − udmax −Gmin, (38)

Proof: See Appendix F.

Theorems 1-3 show that the constraints (4), (8), (9), (12)

could be ensured under the proposed algorithm. Since other

constraints are explicitly considered in Algorithm 1, we have

the conclusion that the proposed algorithm is feasible to the

original problem P1. In next section, we will use real-world

traces about outdoor temperature, electricity price and PV

generation to test the effectiveness of the proposed algorithm.

C. Performance guarantee

In this subsection, we analyze the performance guarantee of

the proposed algorithm in Theorem 4.

Theorem 4. If purchasing/selling electricity prices Bt/St,

outdoor temperatures T out
t , renewable generation outputs rt,

EV electrical demand at, the most comfortable temperature

level T ref
t+1, and home occupancy state T ref

t+1 are i.i.d. over

slots, the proposed algorithm offers the following performance

guarantee, i.e., lim sup
N→∞

1
N−1

∑N−2
t=0 E{Φ1,t+Φ2,t} ≤ y1+

Θ
V ,

where y1 is the optimal objective value of P1.

Proof: See Appendix G.

Since Θ is a complex function of V , the above optimality

gap would not monotonically decreases with the increase of

V . Specially, when ε = 1, Θ becomes a constant. At this

time, the performance of the proposed algorithm would be

better given a greater V . When uncertain parameters are non

i.i.d over slots, performance analysis could be conducted using

“multi-slot drift” in [7], which will be our future work.

V. PERFORMANCE EVALUATION

A. Simulation setup

The main simulation parameters are given as follows:

T = 744 hours, τ =1 hour, Tmax = 25oC, T ref
t+1 =

22.5oC for home occupancy, η = 1, A = 1
15kW/

◦F [17],

S0 = 22.5oC, V = min{V max
1 , V max

2 }, Γ = Γmax (we set

Γmin = Γmax), α = αmax, St = 0.9Bt [28], θpv = 0.2
[22], Cpv = 30m2, Gmax = 20kWh [8], Gmin = 5kWh,

udmax = ucmax = 1kW [8], ε = 0.985, vmax = 3kW ,

emax = 8kW (the power could support the heating of a

room with 136 m2)1. Suppose E follows a uniform discrete

1http://item.gome.com.cn/A0006199221-pop8009870115.html?intcmp=list-
9000000700-1 1 1

distribution with parameters 4 and 18, EV charging time is

[7pm, 6am]. Thus, we have R = 5. According to the Theorem

2, we set ξ = (2V Bmax + vmax)/(R − 1). In simulations,

we adopt the hourly outdoor temperature data2 and retail

electricity price data associated with the Nanjing City of China

in January of 2017, which are shown in Figs. 2(a)-(b). For

renewable generation information, we use the hourly solar

radiation data3 associated with the Golden city of the USA in

January of 2017. Due to the lack of home occupancy traces,

we adopt the sport data related to the step number in January

of 2017 to approximate home occupancy states, which was

collected by an iPhone automatically. To be specific, if the total

step number during an hour is larger than a given threshold,

the home is assumed to be unoccupied. Otherwise, the home

is occupied. In this paper, we set the threshold as 1800 (i.e.,

2 seconds per step)4 and the obtained home occupancy trace

is shown in Fig. 2(d).

To show the effectiveness of the proposed algorithm, three

baselines are adopted as follows:

• Baseline-1 (B1): similar to [23], [34], B1 intends

to maintain the most comfortable temperature level

T ref
t+1 for occupants by drawing the power et =

max(0,min(emax, Aη

(

T ref
t+1−εTt

1−ε −T out
t

)

)) when the home

is occupied. When πt+1 = 0 and Tt+1|et=0 ≥ Tmin, we

set et = 0. In addition, B1 does not consider ESS and

serves EV charging demand instantly.

• Baseline-2 (B2): B2 intends to implement the temporally-

decoupled algorithm as in [17] with perfect one-step price

forecasting when the home is occupied, which results in

an optimal HVAC control if (3) is neglected. Moreover,

random occupancy is also considered in B2, i.e., when

πt+1 = 0 and Tt+1|et=0 ≥ Tmin, we set et = 0.

In addition, B2 does not consider ESS and serves EV

charging demand instantly.

• Baseline-3 (B3): the proposed algorithm is equivalent to

B3 when ESS control is not considered (i.e., udmax =
ucmax = 0kW ).

B. Simulation results

1) Algorithm feasibility: According to Theorems 1-3, the

algorithmic feasibility of the proposed algorithm could be

verified by checking the normal ranges of indoor temperature,

ESS energy level, and EV charging delay. As shown in Fig. 3,

indoor temperature under the proposed algorithm and ESS

energy level always fluctuate within their respective normal

ranges. Moreover, the maximum EV charging delay is less

than R = 5. Therefore, the proposed algorithm is feasible to

the original problem P1. In addition, it can be observed that

B1 intends to maintain the most comfortable level when the

home is occupied. When the home is unoccupied, B1 will

turn off the HVAC system if that decision would not result

in a temperature below Tmin in the next time slot. For B2,

2http://data.cma.cn/
3http://midcdmz.nrel.gov/srrl bms/historical/
4Though the above threshold-based decision may mistake other cases (e.g.,

office occupancy) for home occupancy, it is still effective for the hours of
sleep, e.g., 22pm-7am.
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Fig. 2. Random input data used in simulations.
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Fig. 3. The feasibility of the proposed algorithm (given ε = 0.98, Tmin
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oC, γ = 0).
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Fig. 6. The impact of γ (given ε = 0.98, Tmin
= 15

oC).

the increase or decrease of the indoor temperature depends on

the relationship between Bt and Bt+1. When Bt < εBt+1,

the temperature will increase for pre-heating. Otherwise, the

indoor temperature will decrease.

2) The impact of Tmin: Since the proposed algorithm

adjusts the HVAC power input dynamically according to the

current electricity price, larger temperature range would result

in lower energy cost. With the increase of Tmin, normal

temperature range (Tmax − Tmin) decreases. Consequently,

the proposed algorithm and B3 achieve higher energy cost

but lower ATD (i.e., Average Temperature Deviation from the

most comfortable level T ref
t+1: ATD = 1

Non−1

∑N−2
t=0 |Tt+1 −

T ref
t+1|πt+1, and Non denotes the total number of time slots with

home occupancy) as shown in Fig. 4. Moreover, the proposed

algorithm could reduce energy cost by 36.3% compared with

B1 with small sacrifice of ATD (ATD=1.295). When V ≥ 13,

the proposed algorithm achieves lower energy cost than B3.

Otherwise, B3 achieves lower energy cost than the proposed

algorithm. The reason is that a small control parameter V
would affect the utilization of temporal price diversity as

shown in [2].

3) The impact of ε: The performance of the proposed

algorithm under varying ε is demonstrated by Fig. 5, where

the proposed algorithm generally achieves lower energy cost

given a larger ε. The reason is that larger ε would result in less

thermal loss given the same time horizon, which contributes

to reaping the benefits of temporal price diversity under our

proposed algorithm. Here, the temporal price diversity means

that the proposed algorithm would increase power inputs when

electricity prices are low so that power inputs associated with

high electricity prices in later time slots could be reduced,

resulting in lower energy cost. When ε ≥ 0.98, the energy

cost begins to increase. The reason is that a small V will lead

to a small actual temperature range as shown in Fig. 5(c).

Compared with B3, the proposed algorithm could reduce

energy cost without the sacrifice of ATD under the given

configuration. Though B2 has the lowest energy cost, its ATD

is also the largest. Therefore, B2 is not necessarily the best

scheme when energy cost and thermal discomfort cost are

jointly considered.

4) The impact of γ: Fig. 6 illustrates the performance of

the proposed algorithm and three baselines under varying γ.

It can be found that the proposed algorithm achieves the

lowest total cost when γ falls within an appropriate range, e.g.,

[0.002, 0.016] (no vacancy) and [0.002, 0.02] (with vacancy).

Specifically, when the tolerant ATD is smaller than 2oC, the

proposed algorithm could achieve lower energy cost than B1

by 40.41% and 38.95% when the home is always occupied and

randomly occupied, respectively. In contrast, B2 achieves the

best performance in a much smaller range [0, 0.001] since its

thermal discomfort cost would be the largest given a larger γ
as shown in Fig. 6(c). When γ is large enough (e.g., γ > 0.02),

B1 would achieve the best performance since the thermal

discomfort cost of B1 is the smallest one and the corresponding

energy cost is a constant, which are illustrated by Figs. 6(b)

and (c). In summary, the proposed algorithm offers an effective

way of controlling the HVAC system when home occupants

care about both energy cost and thermal comfort.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the energy management of

a sustainable smart home with an HVAC load and random

occupancy. To minimize the sum of energy cost and thermal

discomfort cost in a long-term time horizon, we proposed an

online energy management algorithm based on the LOT frame-

work without predicting any system parameters. Different

from existing Lyapunov-based energy management algorithms,

the proposed algorithm does not require submitting unknown

power demands of an HVAC system into an energy queue.

Extensive simulation results based on real-world traces showed

the effectiveness of the proposed algorithm. In the future, we

plan to investigate the online HVAC control in a commercial

building [34], e.g., how to allocate the air supply rate of every

zone or room in realtime while taking thermal discomfort of

occupants into consideration. Moreover, we plan to investigate

the impact of HVAC load aggregation [35] in a residential

building on end-user comfort, e.g., given some households

enrolled in a demand response program, how to minimize

the average thermal discomfort of these households without

violating the total power reduction/increase requirement during

a demand response event.

APPENDIX A

PROOF OF LEMMA 1

Proof: Let (e∗t ,x∗t ,y∗t ,g∗t ) be the optimal solution of P2.

1) When V Smin + bt > −ε(1 − ε)Ht
η
A , suppose e∗t >

0. To prove that the above assumption does not hold,

we construct another solution (0,x∗t ,y∗t ,g⋄t ). According to

power balance, we have g⋄t = g∗t − e∗t . Let the optimal

objective value of P2 be Ω2 and the objective value with

the new solution (0,x∗t ,y∗t ,g⋄t ) be Ω⋄

2, respectively. Then,

we can compare Ω2 with Ω⋄

2 under different symbols of

g⋄t and g∗t as follows.

• When g∗t < 0, we have g⋄t < 0 since g⋄t = g∗t − e∗t
and e∗t > 0. Then, Ω2−Ω⋄

2 = (V St+ε(1−ε)Ht
η
A+

bt)e
∗

t > (V Smin + ε(1− ε)Ht
η
A + bt)e

∗

t > 0.

• When g∗t > 0 and g⋄t > 0. Then, Ω2−Ω⋄

2 = (V Bt+
ε(1− ε)Ht

η
A + bt)e

∗

t > (V Smin + ε(1− ε)Ht
η
A +

bt)e
∗

t > 0.

• When g∗t > 0 and g⋄t < 0. Then, Ω2−Ω⋄

2 > (V Bt+
ε(1− ε)Ht

η
A + bt)e

∗

t > (V Smin + ε(1− ε)Ht
η
A +

bt)e
∗

t > 0.

Taking the above three cases into consideration, we have

the conclusion that e∗t = 0 when V Smin+ bt > −ε(1−
ε)Ht

η
A .

2) When V Bmax + ct < −ε(1 − ε)Ht
η
A , suppose e∗t <

emax. To prove that the above assumption does not hold,

we construct another solution (emax,x∗t ,y∗t ,g⋄t ). Accord-

ing to power balance, we have g∗t − g⋄t = e∗t − emax.

Let the optimal objective value of P2 be Ω2 and the

objective value with the new solution (emax,x∗t ,y∗t ,g⋄t )

be Ω⋄

2, respectively. Then, we can compare Ω2 with Ω⋄

2

under different symbols of g⋄t and g∗t as follows.

• When g∗t > 0, we have g⋄t > 0 since g∗t < g⋄t . Then,

Ω2−Ω⋄

2 > (V Bt+ε(1−ε)Ht
η
A +ct)(e

∗

t −e
max) >

(V Bmax + ε(1− ε)Ht
η
A + ct)(e

∗

t − emax) > 0.

• When g∗t < 0 and g⋄t < 0. Then, Ω2−Ω⋄

2 > (V St+
ε(1− ε)Ht

η
A + ct)(e

∗

t − emax) > (V Bmax + ε(1−
ε)Ht

η
A + ct)(e

∗

t − emax) > 0.

• When g∗t < 0 and g⋄t > 0. Then, Ω2 − Ω⋄

2 >
V Stg

∗

t −V BtG
⋄

t +(ε(1−ε)Ht
η
A+ct)(e

∗

t −e
max) >

(V Bmax + ε(1− ε)Ht
η
A + ct)(e

∗

t − emax) > 0.

Taking the above three cases into consideration, we have

the conclusion that e∗t = emax when V Bmax + ct <
−ε(1− ε)Ht

η
A .

APPENDIX B

PROOF OF THEOREM 1

Proof: We will prove that the above inequalities are

satisfied for all time slots by using mathematical induction

method. Since Tmin ≤ S0 ≤ Tmax, the above inequalities

hold for t=0. Suppose the above-mentioned inequalities hold

for the time slot t, we should verify that they still hold for the

time slot t+1. The specific proof detail is given as follows.

• If V Smin+bt
−ε(1−ε) η

A

− Γ < Tt ≤ Tmax. Then, the optimal

HVAC decision is et = 0 according to the Lemma 1.

As a result, Tt+1 = εTt + (1 − ε)T out
t ≤ εTmax + (1 −

ε)T outmax ≤ Tmax, where (17) is incorporated. Similarly,

Tt+1 ≥ V Smin+bt
−(1−ε) η

A

− εΓ + (1 − ε)T outmin > Tmin, where

Γ = Γmax is adopted.

• If Tmin ≤ Tt < V Bmax+ct
−ε(1−ε) η

A
− Γ, then, the optimal

HVAC decision is et = emax according to the Lemma 1.

Continually, Tt+1 ≤ V Bmax+ct
−(1−ε) η

A

− εΓ+ (1− ε)(T outmax +
η
Ae

max) < Tmax, where Γ = Γmin is adopted. Similarly,

Tt+1 ≥ εTmin+(1−ε)( η
Ae

max+T outmin) ≥ Tmin, where

(18) is incorporated.

• If V Bmax+ct
−ε(1−ε) η

A

− Γ ≤ Tt ≤ V Smin+bt
−ε(1−ε) η

A

− Γ, Tt+1 ≤
V Smin+bt
−(1−ε) η

A

−εΓ+(1−ε)(T outmax+ η
Ae

max) ≤ Tmax, where

Γ = Γmin is adopted. Similarly, Tt+1 ≥ V Bmax+ct
−(1−ε) η

A
−εΓ+

(1− ε)T outmin ≥ Tmin, where Γ = Γmax is adopted.

APPENDIX C

PROOF OF LEMMA 2

Proof: Let (e∗t ,x∗t ,y∗t ,g∗t ) be the optimal solution of P2.

1) When Qt + Zt < V Smin, suppose x∗t > 0. To prove

that the above assumption does not hold, we construct

another solution (e∗t ,0,y∗t ,g⋄t ). According to power bal-

ance, we have g⋄t = g∗t − x∗t . Let the optimal objective

value of P2 be Ω2 and the objective value with the new

solution (e∗t ,0,y∗t ,g⋄t ) be Ω⋄

2, respectively. Then, we can

compare Ω2 with Ω⋄

2 under different symbols of g⋄t and

g∗t as follows.

• When g∗t < 0, we have g⋄t < 0 since g⋄t = g∗t − x∗t
and x∗t > 0. Then, Ω2 − Ω⋄

2 = −(Qt + Zt)x
∗

t +
V Stx

∗

t = (V St − Qt − Zt)x
∗

t > (V Smin − Qt −
Zt)x

∗

t > 0.

• When g∗t > 0 and g⋄t > 0. Then, Ω2−Ω⋄

2 = −(Qt+
Zt)x

∗

t +V Btx
∗

t = (V Bt−Qt−Zt)x
∗

t > (V Smin−
Qt − Zt)x

∗

t > 0.
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• When g∗t > 0 and g⋄t < 0. Then, Ω2−Ω⋄

2 > (V Bt−
Qt−Zt)x

∗

t > (V St−Qt−Zt)x
∗

t > (V Smin−Qt−
Zt)x

∗

t > 0.

Taking the above three cases into consideration, we have

the conclusion that x∗t = 0 when Qt + Zt < V Smin.

2) When Qt + Zt > V Bmax, suppose x∗t <
min{xmax, Qt}. To prove that the above assump-

tion does not hold, we construct another solution

(e∗t ,min{xmax, Qt},y∗t ,g⋄t ). According to power balance,

we have g∗t −g
⋄

t = x∗t −min{xmax, Qt}. Let the optimal

objective value of P2 be Ω2 and the objective value

with the new solution (e∗t ,min{xmax, Qt},y∗t ,g⋄t ) be Ω⋄

2,

respectively. Then, we can compare Ω2 with Ω⋄

2 under

different symbols of g⋄t and g∗t as follows.

• When g∗t > 0, we have g⋄t > 0 since g⋄t > g∗t . Then,

Ω2−Ω⋄

2 = (Qt+Zt−V Bt)(min{xmax, Qt}−x
∗

t ) >
(Qt + Zt − V Bmax)(min{xmax, Qt} − x∗t ) > 0.

• When g⋄t < 0 and g∗t < 0. Then, Ω2 −Ω⋄

2 = (Qt +
Zt − V St)(min{xmax, Qt} − x∗t ) > (Qt + Zt −
V Bmax)(min{xmax, Qt} − x∗t ) > 0.

• When g∗t < 0 and g⋄t > 0. Then, Ω2 − Ω⋄

2 >
V Stg

∗

t−V Btg
⋄

t+(Qt+Zt)(min{xmax, Qt}−x
∗

t ) >
(Qt + Zt − V Bmax)(min{xmax, Qt} − x∗t ) > 0.

Taking the above three cases into consideration, we have

the conclusion that x∗t = min{xmax, Qt} when Qt +
Zt > VBmax.

APPENDIX D

PROOF OF THEOREM 2

Proof:

1) We prove the part 1 using the mathematical induction

method. It can be observed that Q0 < Qmax. Suppose

we have Qt ≤ Qmax, then, we need to prove that

Qt+1 ≤ Qmax. If Qt ≤ V Bmax, Qt+1 ≤ Qt + at ≤
V Bmax + amax = Qmax. If Qt ≥ V Bmax, then,

xt = min{xmax, Qt} according to the Lemma 2. Then,

Qt+1 ≤ max{amax, Qt} ≤ Qmax. In summary, we have

Qt ≤ Qmax. As a result, (8) could be satisfied. Similarly,

we can prove that Zt is bounded by Zmax = V Bmax+ξ.

The detail is omitted for brevity.

2) In section III-A, we know that maximum queueing delay

is given by Dmax = ⌈(Qmax + Zmax)/ξ⌉. Taking the

expressions of Qmax and Zmax into consideration, we

have Dmax =
⌈

2V Bmax+amax+ξ
ξ

⌉

. Given the tolerant EV

charging service delay R, we can obtain the minimum

ξ. In summary, (9) could be satisfied under the proposed

algorithm.

APPENDIX E

PROOF OF LEMMA 3

Proof: Let (e∗t ,x∗t ,y∗t ,g∗t ) be the optimal solution of P2,

1) When Kt > −V Smin, suppose y∗t > 0. To prove that the

above assumption does not hold, we construct another

solution (e∗t ,x∗t ,0,g⋄t ). According to power balance, we

have g⋄t = g∗t − y∗t . Let the optimal objective value of

P2 be Ω2 and the objective value with the new solution

(e∗t ,x∗t ,0,g⋄t ) be Ω⋄

2, respectively. Then, we can compare

Ω2 with Ω⋄

2 under different symbols of g⋄t and g∗t as

follows.

• When g∗t < 0, we have g⋄t < 0 since g⋄t = g∗t − y∗t
and y∗t > 0. Then, Ω2 − Ω⋄

2 = (Kt + V St)y
∗

t ≥
(Kt + V Smin)y∗t > 0.

• When g∗t > 0 and g⋄t > 0. Then, Ω2 −Ω⋄

2 = (Kt +
V Bt)y

∗

t > (Kt + V St)y
∗

t > (Kt + V Smin)y∗t > 0.

• When g∗t > 0 and g⋄t < 0. Then, Ω2 − Ω⋄

2 >
Kty

∗

t + V Btg
∗

t − V Stg
⋄

t > (Kt + V St)y
∗

t >
(Kt + V Smin)y∗t > 0.

Taking the above three cases into consideration, we have

the conclusion that y∗t ≤ 0 when Kt > −V Smin.

2) When Kt < −V Bmax, suppose y∗t < 0. To prove that

the above assumption does not hold, we construct an-

other solution (e∗t ,x∗t ,0,g⋄t ). According to power balance,

we have g⋄t = g∗t −y
∗

t . Let the optimal objective value of

P2 be Ω2 and the objective value with the new solution

(e∗t ,x∗t ,0,g⋄t ) be Ω⋄

2, respectively. Then, we can compare

Ω2 with Ω⋄

2 under different symbols of g⋄t and g∗t as

follows.

• When g∗t > 0, we have g⋄t > 0 since g⋄t = g∗t − y∗t
and y∗t < 0. Then, Ω2 − Ω⋄

2 = (Kt + V Bt)y
∗

t ≥
(Kt + V Bmax)y∗t > 0.

• When g⋄t < 0 and g∗t < 0. Then, Ω2 −Ω⋄

2 = (Kt +
V St)y

∗

t > (Kt + V Bmax)y∗t > 0.

• When g⋄t > 0 and g∗t < 0. Then, Ω2 −Ω⋄

2 > (Kt +
V Bt)y

∗

t +V (Bt−St)g
⋄

t > (Kt+V Bt)y
∗

t > (Kt+
V Bmax)y∗t > 0.

Taking the above three cases into consideration, we have

the conclusion that y∗t ≥ 0 when Kt < −V Bmax.

APPENDIX F

PROOF OF THEOREM 3

Proof: We will prove that the above inequalities are

satisfied for all time slots by using mathematical induction

method. Since Gmin ≤ G0 ≤ Gmax, the above inequalities

hold for t=0. Suppose the above-mentioned inequalities hold

for the time slot t, we should verify that they still hold for the

time slot t+1. The specific proof detail is given as follows.

• If −V Smin − α < Gt ≤ Gmax. Then, the optimal ESS

decision is y∗t ≤ 0 according to the Lemma 3. As a result,

Gt+1 = Gt + y∗t ≤ Gmax. Similarly, Gt+1 ≥ −V Smin−
α− udmax > Gmin, where α = αmax is adopted.

• If Gmin ≤ Gt < −V Bmax−α, then, the optimal ESS de-

cision is y∗t ≥ 0 according to the Lemma 1. Continually,

Gt+1 ≤ −V Bmax−α+ucmax ≤ Gmax, where α = αmin

is adopted. Similarly, Gt+1 ≥ Gmin + y∗t ≥ Gmin.

• If −V Bmax − α ≤ Gt ≤ −V Smin − α, Gt+1 ≤
−V Smin − α + ucmax ≤ Gmax, where α = αmin is

adopted. Similarly, Gt+1 ≥ −V Bmax − α − udmax ≥
Gmin, where α = αmax is adopted.
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APPENDIX G

PROOF OF THEOREM 4

Proof: To prove the performance of the

proposed algorithm, we first define some equations

as follows, i.e., a = lim sup
N→∞

1
N−1

∑N−2
t=0 E{at}, x =

lim sup
N→∞

1
N−1

∑N−2
t=0 E{xt}, y = lim sup

N→∞

1
N−1

∑N−2
t=0 E{yt},

e = lim sup
N→∞

1
N−1

∑N−2
t=0 E{et}. Then, we have y = 0

based on the constraint (11). Similarly, we have
A
η (T

min − T outmax) ≤ e ≤ A
η (T

max − T outmin) based

on the constraint (2). In addition, based on the constraint (5),

we have a ≤ x. Then, we consider the following optimization

problem as follows,

(P3) min lim sup
N→∞

1

N − 1

N−2
∑

t=0

E{Φ1,t +Φ2,t} (39a)

s.t. (3), (6), (9), (10), (13), (39b)

A

η
(Tmin − T outmax) ≤ e ≤

A

η
(Tmax − T outmin), (39c)

a ≤ x, (39d)

y = 0; (39e)

Note that (2),(4) are replaced by (39c), (5),(8) are replaced

by (39d),(11),(12) are replaced by (39e). Since any feasible

solution of P1 is also feasible to P3, we have y2 ≤ y1, where

y2 and y1 are the optimal objective values of P3 and P1, re-

spectively. Using the Theorem 4.5 in [7], the conclusion could

be obtained similarly, i.e., if purchasing/selling electricity

prices Bt/St, outdoor temperatures T out
t , renewable generation

outputs rt, EV electrical demand at, the most comfortable

temperature level T ref
t+1, and home occupancy state T ref

t+1 are

i.i.d. over slots and P3 is feasible, there exists a stationary,

randomized policy that takes control decision (x∗t , e
∗

t , y
∗

t , g
∗

t )

purely as a function of current system observation parame-

ters and provides the following performance guarantee, i.e.,

E{Φ∗

1,t + Φ∗

2,t} ≤ y2, E{y∗t } = 0, E{a∗t } ≤ E{x∗t }, and
η
AE{e∗t } ≤ Tmax − T outmin. Continually, when using the

proposed algorithm, we have

∆Yt = ∆t + V E{Φ1,t +Φ2,t|Ψt}

≤
∑4

l=1
Ωl + E{Kty

∗

t − (Qt + Zt)x
∗

t |Ψt} (40)

+ E{ε(1− ε)Ht(Γ + T out
t +

η

A
e∗t )|Ψt}

+ V E{Φ∗

1,t +Φ∗

2,t|Ψt},

≤
∑4

l=1
Ωl + V y2 +Υ, (41)

≤Θ + V y1, (42)

where Υ = ε(1−ε)(Tmax+Γ)(Tmax+Γ+(T outmax−T outmin)),
Θ =

∑4
l=1 Ωl + Υ, (40) holds due to that the proposed

algorithm minimizes the upper bound given in the right-

hand-side of the drift-plus-penalty term over all other control

strategies, including the optimal stationary and randomized

control strategy; (41) is obtained by incorporating the results

of a stationary, randomized control strategy associated with

P3. In addition, Ht ≤ Tmax + Γ, T out
t ≤ T outmax. By

arranging the both sides of the above equations, we have

E{∆t} + V E{Φ1,t + Φ2,t} ≤ Θ + V y1. Continually, we

have V
∑N−2

t=0 E{Φ1,t +Φ2,t} ≤ Θ(N − 1) + V (N − 1)y1 −
E{LN−1} + E{L0}. Dividing both side by V (N − 1), and

taking a lim sup of both sides. Then, let N → ∞, we have

lim supN→∞

1
N−1

∑N−2
t=0 E{Φ1,t +Φ2,t} ≤ y1 + Θ

V , which

completes the proof.
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