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Abstract—This paper proposes dynamic power tariff (DPT), a 
new concept for congestion management in distribution networks 
with high penetration of electric vehicles (EVs), and heat pumps 
(HPs). The DPT concept is proposed to overcome a drawback of 
the dynamic tariff (DT) method, i.e., DPT can replace the price 
sensitivity parameter in the DT method, which is relatively unre-
alistic in practice. Based on the control theory, a control model 
with two control loops, i.e., the power flow control and voltage 
control, is established to analyze the congestion management 
process by the DPT method. Furthermore, an iterative method 
based on distributed optimization is proposed to determine the 
DPT rates, which enables active participation of aggregators in 
the congestion management. The case studies demonstrate the 
efficacy of the DPT method for congestion management in distri-
bution networks, and show its ability to save congestion man-
agement cost compared to the DT methods.  
 

Index Terms-- Congestion management, distribution system 
operator (DSO), distributed optimization, dynamic power tariff 
(DPT), electric vehicle (EV), heat pump (HP). 

I.  NOMENCLATURE 

Parameters 

, , _i t tA  coefficient matrix, describe the relations between 

the power consumption and temperature change 
of the household 

D  power transfer distribution factor (PTDF) 

, ,i t iE E  customer to load bus mapping matrix  

tF  line loading limit of active power 
,min

,
a
i tK  lower temperature limit 

,max
,
a
i tK  upper temperature limit 

BN  set of aggregators 

TN  set of planning periods 

LN  set of lines 

dN  set of demand bus 

V  voltage lower limit 
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0V  voltage at node 0 

LLY  the matrix obtained by removing the first row and 

column of the nodal admittance matrix  
Z  the inverse matrix of LLY  

tc  forecast baseline energy price  

,i td  discharging power of EVs due to driving 
min
ie  lower limit of the state of charge (SOC) level  
max
ie  upper limit of the SOC level 

,0ie  initial SOC level  
min
,i tp , max

,i tp  lower/upper charging power limit of EVs  
minˆ ip , maxˆ ip  lower/upper power limit of HPs  

t

cp  active conventional power at each load point 

t

cq  reactive conventional power at each load point 

,
im

i tu R  initial temperature 

  coefficient, step size 

1  coefficient for reconditioning of voltage control 

Variables 

, ,ev hp cp p p  power level of EV, HP and conventional loads of 

a household/customer 

,,i i tp p  charging power of EVs of one aggregator 

,ˆ ˆ,i i tp p  power consumption of HPs of one aggregator 

r , tr  energy-based regulation price, i.e., DT rates 
pr , p

tr  power-based regulation price, i.e., DPT rates 

R  matrix form of the DPT rates 

ts  total apparent power at each load point  

t  Lagrange multiplier (LM) of line limit constraint  

t  LM of load equation 

t  LM of voltage constraint 

Other Symbols 

im  the number of customers of aggregator i  

*n  cardinality of *N , i.e. * *n N  

1
*  L-1 norm of vector * 

 * j
 j-th element of vector * 

*   element-wise conjugate of complex vector/matrix 
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II.  INTRODUCTION 

ISTRIBUTION network management will play a key 
role in future power system management, because a large 

number of distributed generation (DG) and flexible demands 
such as electric vehicles (EVs) and heat pumps (HPs) will be 
extensively deployed for better balance of the production and 
consumption in future power systems with high penetration of 
renewables. Consequently, congestion problems might occur 
in distribution networks due to simultaneous charging or dis-
charging of flexible demands. Instead of reinforcement of 
distribution networks, distribution system operators (DSOs) 
can use smart coordination methods to avoid or mitigate the 
congestion. A number of such coordination methods have 
been proposed recently in the literature, such as direct control 
methods reviewed in [1] and indirect control methods, i.e., 
market-based methods, including the dynamic tariff (DT) [2]–
[5], distribution locational marginal price (DLMP) [6], [7], 
line shadow price  method [8], subsidy-based methods [9]–
[12], multiagent system method or transactive control method 
[13]–[16] and probabilistic congestion management methods 
[17]–[20].  

In all the above mentioned distributed congestion manage-
ment methods, including DT, line shadow price and multia-
gent system method, the optimization models established at 
the aggregator (agent) side are all quadratic. This is because 
linear optimization models may have multiple solutions in 
responding to a given set of prices (time series), leading to 
unpredictable/uncontrollable demand response, which is unde-
sirable for congestion management [4], [21]. In the DT meth-
od, quadratic terms come from the forecast price sensitivities; 
in the multiagent system method, the quadratic terms result 
from the objective to minimize the difference between the new 
schedule and the initial schedule. However, these require-
ments are not convenient in reality. For instance, it is usually 
very difficult to forecast price sensitivities; also, it is not logi-
cal to stick to the initial schedule since there are new set of 
prices and the customers should usually pursue the minimum 
cost, not the initial schedule. Besides, these are “assumptions” 
made by these methods, the aggregators (agents) may not 
choose to use price sensitivities or initial schedules in their 
objective functions at all. Therefore, it is necessary to propose 
a new type of congestion management price signal, by which 
the quadratic terms will be embedded in the optimization 
models at the aggregator side. 

In the congestion management methods proposed in the ex-
isting literature, the congestion price, e.g., DT or the price 
signal in the multiagent system method, is charged to the cus-
tomers without considering their power consumption levels. 
This does not reflect their contributions to the distribution 
network investment, operation and maintenance cost. As 
pointed out in [22], the distribution network cost mainly de-
pends on the peak power of the customers, not their total en-
ergy consumption. The dimension of the distribution network 
is mainly decided by the peak power. Therefore, [22] pro-
posed a new network tariff, namely, power band tariff, which 
can reflect the customers’ real contributions to the network 

cost more reasonably. However, the simple structure of the 
power band tariff cannot reflect the coordination of the peak 
power of each individual customer. For instance, the trans-
former capacity is much smaller than the summation of the 
fuses of all customers under the transformer, because the peak 
power does not occur simultaneously. On the other hand, the 
(hourly average) peak power is evaluated monthly or quarterly, 
which means that the monthly (quarterly) power band tariff 
cannot respond to the fast dynamics of the modern power sys-
tem with intermittent renewable energy and many distributed 
flexible demands. To overcome these drawbacks, this paper 
proposes a new tariff scheme, namely, dynamic power tariff 
(DPT), which can be employed for congestion management in 
distribution networks.  

The benefits of employing the DPT method for congestion 
management are summarized as follows. Firstly, with the DPT 
method, there are quadratic terms (DPT rates multiply the 
square of the hourly average power consumption) in the total 
cost model of the energy consumption for a customer, which 
is in the objective functions of the aggregators. This is im-
portant because, in this way, the aggregators have unique (def-
inite) responses to the price signals. Secondly, with this tariff 
scheme, the resulting quadratic terms in objective functions 
increase much faster than a linear function as with other tariff 
schemes. Therefore, those consuming higher power will pay 
much higher tariff than those consuming lower power, which 
reflects the real distribution of the network cost from a DSO 
point of view. Thirdly, the DPT method is calculated in a dis-
tributed manner, which means less forecast parameters re-
quired and higher certainty and commitment level from the 
aggregators (see explanation in section III). At last, DPT is 
time-varying (in this paper, it is assumed to be hourly based 
DPT, but it could have other time periods, such as 15 minutes); 
therefore, it can respond to fast dynamics of power systems 
with renewable energy and can be employed to solve conges-
tion in distribution networks due to the large-scale deployment 
of EVs or HPs. 

The main contributions of this paper are summarized as 
follows:1) Propose a power-based pricing mechanism, i.e., the 
DPT (Section III), which is quite different from the energy-
based pricing mechanisms in the existing literature, including 
DT [2]–[5]; 2) Formulate an iterative congestion management 
method based on the DPT (Section IV); 3) Perform case stud-
ies to validate the efficacy of the DPT method for congestion 
management. 

The rest of the paper is organized as follows. The DPT 
concept and implementation method are described in Section 
III. The mathematical formulation of the DPT method and the 
control diagram are presented in Section IV. In Section V, 
case studies are presented and discussed. The paper ends with 
the conclusions. 

III.  DYNAMIC POWER TARIFF METHOD FOR CONGESTION 

MANAGEMENT 

In this section, the concept of DPT is presented. After-
wards, the implementation of the DPT concept for congestion 

D
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management in distribution networks is discussed.  

A.  Power Tariff Concept 

Power tariff is different from the normal energy-based 
network tariff. Assume that a typical household has EVs, a HP 
and some other conventional loads, and the hourly average 

power levels of them are evp , hpp , and cp , respectively (as-

sume a smart meter is installed). For a customer with normal 
network tariff, the total tariff paid to the DSO will be 

( )ev hp cr p p p t   . However, for one under the power tariff 

scheme, the total network tariff will be 2( )p ev hp cr p p p t   . 

Here, t is usually the same as one planning period, which is 
normally a unit of time, e.g., 1 hour; therefore, t can be ig-
nored for brevity. A comparison between these two tariffs 
regarding cost calculation is shown in Table I. The DT and all 
other types of congestion prices from the existing congestion 
management methods, such as line shadow price  method [8], 
the multiagent method [13]–[16],  has a tariff per energy unit 
as r , while the power tariff has a tariff per energy unit as 

( )p ev hp cr p p p  . It can be seen that the total network cost 

under the power tariff scheme will have quadratic terms, 
which is very important in the distributed congestion man-
agement method as it can avoid multiple solution problems of 
linear optimization models [4], [21]. In addition, the network 
cost increases faster under the power tariff scheme than under 
the normal tariff scheme, which is illustrated in Fig. 1. Cus-
tomers with power less than the break-even power p pay less 

under the power tariff scheme than under the normal tariff 
scheme; while customers with power higher than p  pay more 

under the power tariff scheme than under the normal tariff 
scheme. 

 
TABLE I 

COMPARISON OF DPT AND DT REGARDING COST CALCULATION 
 

 
DPT 

DT and other types of 
congestion price 

Power tariff 
(DKK/kW/ 
kWh) 

pr  - 
Tariff per 
unit energy 
(DKK/kWh) ( )p ev hp cr p p p   r   
Energy 
consumed 
(kWh) ( )ev hp cp p p t    ( )ev hp cp p p t    

Total tariff 
cost (DKK) 

2( )p ev hp cr p p p t    ( )ev hp cr p p p t    

 
It is worth mentioning that the power tariff scheme can be 

combined with other tariff schemes. For instance, a customer 
can choose the normal tariff scheme (e.g., the flat tariff rate) 
for its nonflexible demands, because it doesn’t want to change 
the consumption pattern for the purpose of com-
fort/convenience; meanwhile, it can choose the power tariff 
scheme for its flexible demands to reduce cost and support the 
power grid. It can also be the case that, some customers 
choose the power tariff, while others choose the normal tariff. 

Due to the limited space, this paper will not go into details 
about all the combinations, which is straightforward after 
comprehending one of them. In the following, the focus is the 
case that one customer chooses flat tariff for its nonflexible 
demands (which will be dropped in objective functions, since 
they are constant) and power tariff for flexible demands. 

 

 
Fig. 1. Growing speed of total cost with power tariff and normal tariff 

 

B.  Congestion Management through Power Tariff 

    1)  Implementation Scenario One: FPT+DT 
In this scenario, power tariff has a fixed rate, i.e., fixed 

power tariff (FPT). Employing FPT will lead to quadratic 
terms in aggregator side optimization models, which can re-
place the price sensitivity terms required by the DT method 
[4]. Therefore, FPT can be combined with the DT method to 
solve congestion. Due to the space limit, this paper will not 
discuss this implementation scenario in detail. This implemen-
tation scenario is similar to the original DT method [4], except 
that the price sensitivity terms are replaced by the FPT terms. 
    2)  Implementation Scenario Two: DPT 

In this scenario, power tariff has a dynamic rate (varying 
with location and time period), i.e., DPT. This scenario is the 
focus of the rest of the paper. DPT can replace DT completely 
in congestion management of distribution networks, as it cre-
ates the same incentives as the DT method does for the cus-
tomers/aggregators to reschedule their energy planning and 
avoid/alleviate potential congestion during planning stage. 

DPT does not contain energy prices. Therefore, the aggre-
gators, who represent the owners of the flexible demands, 
need to buy electricity from an electricity (energy) market, 
such as the day-ahead spot market in Nordic (Nord pool) or 
the day-ahead market of the California ISO in USA. An im-
portant task in the implementation of the DPT method for 
congestion management is to determine a proper DPT rate for 
each node (load bus) and each time period according to the 
network conditions and forecasted nonflexible load level, so 
that the energy schedules of the aggregators respect the net-
work limits. As the DPT method works together with the day-
ahead spot market, the time periods for the DPT rates are typi-
cally 24 hourly based periods of the next day, i.e., in line with 
the day-ahead market. With the DT method, the DT rates are 
determined by the DSO through a centralized optimization. 
Unlike the DT method, DPT rates are determined by iterative 
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interactions between the DSO and aggregators. The detailed 
procedure of implementing the DPT method for congestion 
management is illustrated in Fig. 2. Step 1, the DSO initiates 
the iterative process by sending out tentative DPTs (=0). Step 
2, the aggregators will separately make their own optimal pur-
chasing plans by minimizing the energy cost and the network 
tariff cost. Step 3, the aggregators will send back the tentative 
demand responses (DRs) to the DSO. Step 4, with the new 
information, the DSO will be able to identify the congestion 
points (if any) and modify the DPT rates according to the 
identified congestion. Step 5, the DSO sends out the new 
DPTs to the aggregator and the iterative process continues (go 
back to Step 2) till the network constraints are satisfied and 
the final DPT rates are determined. As in many other conges-
tion management methods, Step 4 is to identify the congestion 
risk and allocate the risk to the responsible party through the 
DPT calculation (the DPT is also a locational price). Step 2 is 
to optimize the energy consumption plan by each aggregator 
taking into account the congestion risk reflected in the DPT. 
Steps 2~5 form an iterative process to finally reach an optimal 
planning with respect to the network constraints. 

In the DPT method, the overall optimization problem is not 
known to the DSO or the aggregators. Each aggregator opti-
mizes its own planning problem, which is smaller and easier 
to solve. In this sense, the DPT method is a distributed optimi-
zation method. In the DPT method, it is required that the ag-
gregators keep the energy consumption level within the 
capacity that is revealed in the last iteration DR. In this sense, 
congestion management by the DPT method is more certain 
(the DSO is more confident about the congestion management 
result) and transparent (easy to be understood/accepted by the 
participants) than the normal DT method. 

 
 

 
Fig. 2. Illustration of the DPT method for congestion management 

 

IV.  CALCULATION OF DYNAMIC POWER TARIFF RATES 

A.  Mathematical Formulation of DPT Method 

    1)  Formulation at the aggregator side: 
In the DPT method, the optimizations at the aggregator side 

are important and part of the determination of the DPT rates. 
It is assumed that the aggregators are purely economic units 
and have no information of the network conditions. Therefore, 
they cannot directly consider any of the network constraints. 
They make energy schedules based on the requirements of the 

flexible demands and prices, including the forecasted energy 
prices, and the DPTs received from the DSO. Other fixed cost 
(such as taxes) will not be considered since it does not change 
the optimal energy schedule decisions (or can be merged into 
the forecast energy prices). In order to facilitate the study, 
residential EVs and HPs are chosen to be the flexible demands. 
Many other types of flexible demands in reality can be well 
represented by the combination of EVs and HPs. 

An aggregator can use a quadratic function to represent the 
total cost including energy consumption and network tariff as 
shown in (1). The quadratic term in (1) is due to the DPT re-
ceived from the DSO ( tR is the DPT; therefore, it is a fixed 

parameter for the optimizations at the aggregator side). Unlike 
the DT method, which requires price sensitivity coefficients 
by forecasting in order to have a quadratic programming for-
mulation [4], the DPT method can have a quadratic program-
ming formulation by the power tariff concept. The optimal 
planning problem for aggregator i is formulated as (1)-(5). 

 
, ,ˆ, , , , ,

, ,

ˆ ˆmin   ( ) ( )

ˆ( ) ( )

i t i t

T

T

T T
p p i t i t i t i i t i t

t N

T
t i t i t

t N

p p E R E p p

c p p





  





 1
 (1) 

subject to, 
 min max

, _ , _ 0 , ,
_

( ) , , ( , )i i t i t i i t i t i t
t t

e p d e e t N   



      , (2) 

 min max
, , ,    i t i t i t Tp p p t N    , (3) 

 ,min ,max
, , , _ , _ , ,

_

ˆ   ,a a
i t i t t i t i t i t T

t t

K A p u K t N


     , (4) 

 min max
, , , , ,

ˆ ˆˆ ˆ ˆ     , ( , )i t i t i t T i t i tp p p t N      . (5) 

Constraints (2) - (3) are from the limits of EVs. Constraint 
(4) represents the thermal limits of households and (5) gives 
the input power limits of HPs. Constraint (4) is derived from 
the thermal process analysis of the household and the HP as 
shown in [4]. 

After solving the optimal problem, the aggregator i  will 

have a tentative optimal plan * *
, ,ˆ( , )i t i tp p . Then (6) can be used 

to formulate the aggregated DR for aggregator i  , which will 
be sent to the DSO. 

 , , ,ˆ( ),a
i t i i t i t tp E p p t N      (6) 

    2)  Formulation at the DSO side: 
At the DSO side, there is no optimization model involved, 

but the network limits are checked. After receiving the DR 
results, ,

a
i tp , from all of the aggregators, the DSO will firstly 

determine the total apparent power load, ts , for each bus us-

ing (9) and (10). Then, it will use a dc load flow method to 
determine the power flow of each feeder and the voltage level 
of each bus by (7) and (8), respectively. The method to esti-
mate an approximate voltage level for each bus (the left side 
of (8)) is proposed by [23]. The inequalities of (7) and (8) are 
to compare the power flow and voltage level with the network 
limits, respectively.  

 Re( ) , ,  ( )t t T tD s F t N     (7) 
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2

00

1
1 Re( ) , ,  ( )t T t

V
Zs t N

VV
     (8) 

 ,Re( ) , ,  ( )
B

c a
t t i t T t

i N

s p p t N 


     (9) 

 Im( ) ,c
t t Ts q t N    (10) 

The Matrix Z is the inverse matrix of the partial nodal ad-
mittance matrix LLY , which is a submatrix of the full admit-

tance matrix ( 00Y represents the slack bus), 

00 0

0

L

L LL

Y Y
Y

Y Y

 
  
 

. 

Vectors t and t in (7) and (8) can be deemed as ‘margin-

al’ prices of the network cost with respect to power flow lim-
its and voltage limits, respectively. The marginal prices are 
positive if the corresponding network constraint has an effect 
on the DR of the aggregators, i.e., when the constraint is bind-
ing; otherwise, it will be zero. Even though the DSO does not 
need to model an optimization problem, it should check the 
network limits by establishing and evaluating the network 
constraints (7) and (8). 

Vectors t and t play an important role in determining 

proper DPT rates, i.e., tR . They are determined iteratively. 

Initially, they are zero, i.e., (1) 0t  , (1) 0t   and (1) 0tR  . 

Then after receiving DR results ( )
,
a k
i tp  from the aggregators 

( k  refers to the k-th iteration, and ( )
,
a k
i tp is the optimal solu-

tion based on the k-th DPT, i.e., ( )k
tR ), ( )k

ts can be determined. 

Then, t , t and tR can be updated by, 

 ( 1) ( ) ( )( Re( ) ),k k k
t t t t TD s F t N         , (11) 

 ( 1) ( ) ( )
2

00

1
 ( 1 Re( ) ),k k k

t t t T

V
Z s t N

VV
            (12) 

 ( 1) ( 1) ( 1)
2

0

Re( )
,

T
k T k k

t t t T

Z
R D t N

V
        . (13) 

In (11) and (12),  represents a proper step size, and the 
term after   is the residual of constraints  (7) and (8), respec-
tively. The justification of (11)-(13) will be discussed in Sec-
tion IV.B by a metaphor based on the control theory. There is 
an implicit requirement for the marginal prices t and t , i.e., 

they must be nonnegative; therefore, they are modified by, 

 ( )t t    , (14) 

 ( )t t   , (15) 

i.e., if they are negative, they will be replaced with zero. 
When the iteration converges, the residuals in (11) and (12) 

will be nonpositive, which means constraints (7) and (8) are 

satisfied. There are ( 1) ( )k k
t t     , ( 1) ( )k k

t t     and  

( 1) ( )k k
t tR R    , where t and t are modified values using 

(14) and (15), and  is a small tolerance. The final DPT rates 
are the same as the last iteration DPT rates (Fig. 2). 

Although the term ‘marginal price’, e.g., t and t , is used 

in this subsection to explain the calculation of the DPT, it is 

not the same as the one (dual variable, or Lagrange multiplier) 
in the duality theory of optimization [24], since there is no 
optimization involved at the DSO side. Besides, even though 
one can establish an overall optimization at the DSO side like 
the one for the DT method [4], its Lagrange multipliers can 
only be employed to calculate DT rates, but not the DPT rates. 
In next subsection (IV.B), the marginal prices and the DPT 
will be explained with the knowledge of the control theory. 

B.  Control Diagram of the Iteration Process 

From the DSO point of view, the price-based congestion 
management process is an indirect control process. The ag-
gregators respond to the price signals from the DSO (e.g., DT 
or DPT), and the DSO can adjust the price signals such that 
the responses from the aggregators can respect the network 
limits. 

The control framework of the whole congestion manage-
ment process is shown in Fig. 3. The target system comprises 
of the distribution network and two actors, i.e., the DSO and 
aggregators. The aggregators receive the DPTs and make their 
own optimal planning (DR). Then, the planning results are 
sent to the DSO. After gathering the planning results from the 
aggregators, the DSO performs load flow analysis and deter-
mines the network status, including line flows and voltage 
profiles. Then, the power flows are sent to the power flow 
controller (upper part of the diagram), and the voltage profiles 
are sent to the voltage controller (lower part of the diagram). 

The received signals (flows and voltages) are compared 
with the references respectively, and then the error signals are 
multiplied by the step size  . Then the signals enter two in-
tegrators, which are corresponding to (11) and (12), respec-
tively. Afterwards, two limiters force the signals to be 
nonnegative, which are corresponding to (14) and (15), re-
spectively. 

 

 
Fig. 3. Illustration of the control framework 
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Then the signals (marginal prices for line flow and voltage 

respectively) are transformed to DPTs by the matrix TD and 

matrix 2
0Re( ) /TZ V , respectively. However, signals from the 

voltage controller are much smaller than those from the power 
flow controller due to, e.g., different units. It is necessary to 
magnify the signals from the voltage controller by a factor ( 1 , 

see ‘signal transform 2’ in Fig. 3) to be comparable to those 
from the power flow controller. Otherwise, the voltage con-
troller will be too slow and the overall control process will 
slow down. Due to the two limiters, the references are not 
followed unless the corresponding signals (  and   in Fig. 3) 
are positive. This means that when there is congestion, the 
marginal price and DPT will be positive and the correspond-
ing power flow limit or voltage limit will be binding. This 
actually is consistent with the conclusion in the optimization 
theory [24]. 

V.  CASE STUDIES 

A.  Case study parameters 

The single line diagram of the Bus 4 distribution network 
of the Roy Billinton Test System (RBTS) [25] (shown in Fig. 
4) is chosen for the case study. Line segments of the feeder 
one are labeled as shown in Fig. 4, among which L2, L4, L6, 
L8, L9, L11, and L12 refer to the transformers connecting the 
corresponding load points (LP1 to LP7). There are 38 load 
points (LP1~LP38) in total. The data of these load points are 
listed in Table II. Assume that the DSO has improved the 
power factor of the conventional consumption by reactive 
power compensation, and the remaining reactive power con-
sumption is 10% of the conventional active power consump-
tion.  

LP
1

LP
8

LP
10

LP
13

L2
L8

 
Fig. 4. Single line diagram of the distribution network 

 
TABLE II 

LOAD POINT DATA 
 

load points 
customer 

type 

peak conv. 
act. power 
per point 

(kW) 

peak 
conv. 
react. 
(kVar) 

number 
of cus-
tomers 

per point 
LP1-4,LP8-11, 
LP15-19,LP23-26 residential 886.9 88.69 200 
LP5,LP12,LP20,LP27 residential 813.7 81.37 200 
LP6,LP7,LP13,LP14, 
LP21,LP22,LP28,LP29 commercial 671.4 67.14 10 

The key parameters of the simulation are listed in Table III. 
The lower voltage limit is set to be 0.948 p.u. in order to have 
a small margin (0.006~0.008 p.u.) compared to the assumed 
physical limit 0.94 p.u. The EV availability shown in  Fig. 5 is 
from the driving pattern study in [26]. The household area is a 
random number between 100 and 200 (m2). 
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Fig. 5. EV availability 

 
 

TABLE III 
KEY PARAMETERS OF THE SIMULATION MODEL ([26], [27]) 

 
parameter value 

EV battery size 25 kWh 
Peak charging power 11 kW (3 phase) 
Energy consumption per km 150 Wh/km 
Minimum SOC 20% 
Maximum SOC 85% 
Average driving distance 40 km 
COP of HP 2.3 
Min Temp. of the House 20  
Max Temp. of the House 24  
Voltage rating = 

0V  11 kV 
Lower voltage limit 0.948 p.u. 
L2 limit (kW) 1100 
L3 limit (kW) 7000 
L4 limit (kW) 2700 
   0.6 

1  10 
x/r ratio of line 0.4~0.6 
x/r ratio of transformers ≈6 

 

B.  Case study results 

The simulation was carried out using the GAMS/CPLEX 
optimization software [28] for the DR (optimization) at the 
aggregator side, and a Matlab script for the iteration control at 
the DSO side, including the DPT calculation and convergence 
check.  
    1)  Congestion Management Results: 

Firstly, the DR at the aggregator side was performed with 
initial zero DPT (the forecast system prices (base price) are 
the same as in case studies for the DT method, which can be 
seen in Fig. 12). The line loading profiles were determined by 
the DSO after receiving DRs from the aggregators. As shown 
in Fig. 6, there is congestion at hours 17, 18, 19 and 24. Then 
the iteration starts. When the iteration converges, the final 
DPT can be determined and is shown in Fig. 7 (Feeder 1) and 
Fig. 8 (Feeder 3). The line/transformer loadings of L2, L3 and 
L4 and the voltage profile of a critical bus (LP4) after using 
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the DPT method are shown in Fig. 9 and Fig. 10, respectively. 
It is shown that both line/transformer loadings and voltage 
profile are within the allowed limits.  

 

 
Fig. 6. Line loading results with the initial DPT=0 

 

 
Fig. 7. DPT for different load points of Feeder 1 (DPTs for LP2-4 are the 
same as LP5) 

 

 
Fig. 8. DPT for different load points of Feeder 3 

 
Fig. 9. Line loading results after using the DPT method 
 

 
Fig. 10. Voltage profile of LP4, LP19 and LP22 

 
    2)  Comparison among Households: 

In order to support the second statement made in Section II 
regarding the benefits of using DPT method, i.e., the higher 
power household pays much more tariff than the lower power 
household, the detailed simulation results of the first 50 
households on LP19 are studied. Among the 50 households, 

the house sizes vary between 100~200 2m  (affect the HP 
power) and the EV energy demand varies between 1~20 kWh 
per day. The results are shown in Fig. 11, where one can see 
that the total tariff increases much faster than linear growth as 
normally seen in other congestion pricing schemes, including 
the DT method. 
    3)  Comparison with DT Method: 

A comparison between the DPT method and the DT meth-
od for congestion management was conducted. The DT meth-
od was employed for congestion management of the same 
network and conditions (EVs and HPs). As mentioned in Sec-
tion II, the price sensitivity plays an important role in the DT 
method. Therefore, the DT method was employed under dif-
ferent assumptions about the price sensitivity, i.e., sensitivity 
= 0.0001, 0.001, 0.01, 0.1, respectively. The resulting DTs 
(for LP22) can be seen in Fig. 12, which clearly shows the 
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impact of the price sensitivity coefficients on the DTs, espe-
cially when the sensitivity   0.01 (the DTs are quite similar 
when sensitivity   0.01; therefore, not shown in the figure). 
They are different for the congestion hours, i.e., hour 18, 19 
and 24. This implies uncertainties about the congestion man-
agement results by the DT method, as different aggregators 
may choose different price sensitivities as they want (includ-
ing zero, which may lead to failure of the DT method).  

 

 
Fig. 11. Total paid tariff of each individual household on LP19 at hour 24 

 

 
Fig. 12. DT method: Forecast system prices (base price) and final prices (in-
cluding DT with different sensitivity coefficients) with respect to different 
sensitivities. 
 

 
    4)  Convergence Observation: 

The key variables, including the line flow and voltage, the 
corresponding marginal prices t and t , and the DPT rates, 

are observed in the iteration process. The results are shown in 
Fig. 13. It can be seen that t is settled down after 50 itera-

tions and t is settled down after 400 iterations, because the 

voltage controller is a bit slower than the power flow control-
ler for the purpose of avoiding strong interference between the 
two controllers. Also, the consecutive congestion at hour 17, 
18 and 19 makes is very challenging for the control to settle 
down. If there is only a single congestion hour, the control can 

settle down after about 10 iterations. In practice, the iteration 
process should be automated. The overall time for the conges-
tion management using the DPT method is depending on how 
many iterations are needed for convergence and the time 
needed for one communication between the DSO and aggre-
gators. The optimization at each aggregator is very fast (less 
than 0.5 second in this simulation) because the problem is 
fully decomposable.   

 

 
 

Fig. 13 Iteration observation of some key variables 

 
    5)  Other Discussions: 

At the DSO side, the DSO only needs to forecast the con-
ventional active and reactive power consumption of each load 
points with the DPT method. It doesn’t need to forecast the 
price sensitivities or the flexible demands as in the DT meth-
od. At the aggregator side, the forecast is almost the same for 
the DPT method and the DT method. Depending on the con-
tracts between the aggregators and their customers, the aggre-
gators may need to forecast the demand level and the 
availability of the flexible demands, or their customers report 
this information to them. Therefore, the DPT method needs 
less forecasting than the DT method in general. 

When the distribution system becomes larger and there are 
more households (more EVs and HPs), the congestion man-
agement with the DPT method does not necessarily become 
more complicated or need more computation time for the fol-
lowing two reasons. Firstly, the computation at the DSO side 
is only algebra calculation (no optimization involved), which 
takes almost no time. The computation at the aggregator side, 



 9

i.e., the optimization, is totally decomposable because there is 
no coupling constraint, such as network constraints. The opti-
mization can be done in parallel for each household and then 
the results can be summed up. Secondly, the iteration number 
is very much related to how many congestion points and hours 
in the distribution networks, not the size of the network or the 
number of variables. Therefore, the DPT method can be easily 
employed for a scaled-up system. 

VI.  CONCLUSIONS 

This paper proposes the DPT method for congestion man-
agement in distribution networks with high penetration of EVs 
and HPs. The DPT method employs the power tariff concept, 
leading to a quadratic programing problem in the optimiza-
tions at the aggregator side without using price sensitivity 
coefficients as in the DT method. In addition, the DPT method 
is implemented through an iteration process, which can have 
the aggregators participate in the congestion management ex-
plicitly, implying more certainty and commitment level from 
the aggregators. The case studies have validated the efficacy 
of the DPT method for congestion management, and shown its 
ability of saving network tariff cost for the customers with 
lower power consumption level.  
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