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.

Abstract—Integration of electricity and heat distribution net-
works offers extra flexibility to system operation and improves
energy efficiency. The energy hub (EH) plays an important role
in energy production, conversion and storage in such coupled
infrastructures. This paper provides a new outlook and thorough
mathematical tool for studying the integrated energy system
from a deregulated market perspective. A mathematic program
with equilibrium constraints (MPEC) model is proposed to study
the strategic behaviors of a profit-driven energy hub in the
electricity market and heating market under the background of
energy system integration. In the upper level, the EH submits
bids of prices and quantities to a distribution power market
and a heating market; in the lower level, the two markets are
cleared and energy contracts between the EH and two energy
markets are determined. Network constraints of physical systems
are explicitly represented by an optimal power flow problem
and an optimal thermal flow problem. The proposed MPEC
formulation is approximated by a mixed-integer linear program
via performing integer disjunctions on the complementarity and
slackness conditions and binary expansion technique on the bilin-
ear production terms. Case studies demonstrate the effectiveness
of the proposed model and method.

Index Terms—Energy hub, district heating network, distribu-
tion power network, strategic bidding, MPEC

I. INTRODUCTION

As modern cities are facing environmental problems nowa-
days, water and space heating devices which originally burn
coals have been gradually replaced by electrical ones such as
electric boilers and heat pumps (HPs). Moreover, the district
heating system [1], in which thermal energy is produced cen-
trally and distributed through a pipeline network, is becoming
popular in countries and regions with long cold winters, owing
to its higher efficiency. Electrification of heating devices and
mushrooming of district heating networks (DHNs) have created
integrated energy distribution systems which harness multiple
energy resources in urban areas [2]–[4]. The key component
in such a coupled infrastructure is the energy hub (EH) [2],
[5], which plays the role of energy production, conversion and
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storage. The EH impacts the operation of different physical
systems with heterogenous energy carriers, and has the poten-
tial to participate in electricity, heat, and natural gas markets
at the same time.

In view of the interdependence across different physical
infrastructures, extensive efforts have been devoted to the study
of modelling, planning, and operation of integrated energy
systems with EHs and multi-carrier energy flows since the
pioneer work in [2], [5]. A systematic modelling approach
was presented in [6] to automatically building the coupling
matrix for EHs using the graphic theory. A mixed-integer
linear program (MILP) formulation was introduced by [7]
which considers more accurate plant performances, such as
startup/shutdown operations and variable efficiency curves. For
operation related studies, unleashing the flexibility from the
coordination of multi-carrier energy flows through EHs is
the core target. Except for the basic models in [2], [5], [6],
joint optimization of natural gas, heating, and electric power
flows was investigated in [8]. A decomposition framework was
proposed in [9] for optimization of system energy flows with
multiple EHs. The optimal operation strategies of residential
and industrial EHs were considered in [10], [11]. To explicitly
quantify the impact of uncertainties and risks, the robust
optimization approach was applied to EH operation in [12]. A
two-point estimate method was employed in [13] to model the
uncertainty of solar panel output. A resilient operation model
of multi-carrier microgrids was developed in [14] based on
mixed integer bi-level program. For planning oriented work,
optimal expansion planning of EH was discussed in [15]
which considers energy efficiency, emission, and reliability.
Reliability-aware optimal planning models were presented in
[16], [17] to design the multi-carrier energy systems and EHs.
The optimal planning of EH considering operation uncertainty
constraints was investigated in [18]. In [19], [20], distributed
renewable energy and emission reduction were taken into
account in the planning of EHs, respectively.

In aforementioned research, an implicit assumption is that a
central authority is in charge of the whole system. However,
in current practice, the power distribution network (PDN) and
DHN are managed by different sectors. The EH could also
be owned by a third-party entity and unwilling to accept
mandatory orders. With the development of smart grid tech-
nologies, the distribution power market shows its advantages
in dispatching available assets in the optimal way, and has
attracted major attentions in recent years [21]–[23]. Although
the heating market is not as competitive and mature as the
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electricity market, it is attracting increasing attention from
researchers, due to development of district heating systems [1].
Heating market organization is discussed in [24], which can be
categorized into regulated markets (such as China, Russia) and
deregulated markets (such as Denmark, Sweden). Heat pricing
scheme is a key issue and receives a lot of research efforts.
For regulated markets, a cost-plus method is presented in [25],
where the heat price is released and fixed by a government
agency. For deregulated markets, in a similar vein to the power
market, the marginal pricing scheme could reflect the real-time
value of resources, and has been studied in existing literature,
for example, the shadow price method [26], the locational
marginal price [27], [28], and the equivalent marginal cost [29].
A comprehensive survey can be found in [30]. Energy markets
at the distribution level will provide unique opportunities for
energy system integration and promoting energy transactions.
In a deregulated market, no one has full control authority on
all the resources in the network.

Strategic behavior in multi-resource energy markets has
been studied. A prototype integrated heat-power system was
built in Denmark [31] to study the interaction between heat
market and power market. A multi-layer trading framework
was investigated in [32], and was formulated as a bilevel
program. A bilevel programming model is proposed in [33]
for the optimal energy management of EH, which acts as
an intermediary agent between the power and natural gas
distribution systems. The competition among EHs in demand
side management was represented by a Nash game in [34],
[35]. Moreover, the optimal bidding strategy of an EH in the
electricity market is investigated in [36] to consider the un-
certain market prices with a stochastic approach. Nevertheless,
network models are neglected in above work, because they
focus on the residential-level energy hub. A single hub has
little impact on the distribution network. The distribution-level
EH considered in this paper provides energy to PDN and DHN,
and could influence their production schedules.

This paper proposes an MPEC model to study the strate-
gic behaviors of a profit-driven EH in the distribution-level
electricity market and heating market under the background of
energy system integration. The electricity and heating markets
are cleared according to an optimal power flow (OPF) problem
and an optimal thermal flow (OTF) problem, respectively,
which determine energy contracts with the EH. The EH submits
prices and quantities to the markets by anticipating the con-
sequence of clearing results. The MPEC formulation is then
approximated by an MILP. Integer disjunction is performed
on KKT optimality conditions associated with two market
clearing problems, and the binary expansion technique is used
to linearize the bilinear production terms. The contribution of
this paper is that it provides thorough mathematical model
and computational method for studying the integrated energy
system from a deregulated market point of view.

The rest of this paper is organized as follows. The electricity
and heating market clearing problems are presented in Section
II. The strategic bidding problem of the EH is formulated as
an MPEC and transformed into an MILP in Section III. Case
studies are conducted in Section IV, followed by conclusions
in Section V.

II. MARKET CLEARING MODELS

A. Market Settings and Assumptions

We focus on the strategic bidding of the EH by leveraging
the flexibility offered by electricity storage unit (ESU) and
thermal storage unit (TSU) as well as cross-arbitrage potentials
among electricity, heat, and gas markets. Following assump-
tions are made.

1) We center on the day-ahead electricity and heating
markets and use load forecast data. Uncertainty is neglected for
model conciseness but can be incorporated using the scenario
approach, in case of need. Real-time discrepancy between
generation and demand can be balanced in a real-time market,
which is not considered in this preliminary research. The two
markets are independently operated by an electricity market
operator (EMO) and a heat market operator (HMO). More
discussions on coping with uncertainties can be found at the
end of Section III.

2) The energy hub gets payment following a pay-as-bid
agreement. The PDN and the DHN are connected through an E-
H. Power flow status in the PDN is formulated by the linearized
branch flow model [37], which is suitable for distribution
network studies. Thermal status in the DHN is described by
the combined hydraulic and thermal formulation with constant
mass flow rates, which results in a linear thermal flow model.
The EH submits its electricity (heat) offering/bidding prices
and quantities to the EMO (HMO), who subsequently clears the
electricity (heating) market to minimize total production cost.
The EH then receives the energy contracts and get payment
according to the price bids. The bidding strategies in the two
markets are highly correlated owing to the energy conversion
capability.

3) The prices of electricity and heat are restricted by certain
agreements. In fact, bidding a high price is not always the
optimal strategy because it leads to a lower market share
(EMO and HMO will resort to local generation assets instead
of purchasing energy from the hub). From the power market
side, the energy hub is a prosumer: it can either consume
and offer electricity; From the heating market side, it is a
producer, and we don’t consider heat import for two reasons:
first, heating market is still under study and less mature than
the power market, and the heating system infrastructure is less
sophisticated than the smart grid, whether bidirectional thermal
energy deliver, measurement, and trading are easily supported
is unclear; second, the gap between peak and valley prices of
heat may not be as large as that of electricity, so arbitrage
opportunity in the heating market is not very significant.
Nonetheless, the proposed method has no difficulty in modeling
a heat prosumer from the mathematical perspective.

In the following, we envision a deregulated heat market
which is cleared once an hour based on an OTF problem.
Similar to the deregulated power market, the OTF based market
clearing can dispatch available resources in the optimal way
from an economic perspective, so we believe such a paradigm
is promising to be deployed in the future heating markets.
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Fig. 1. Illustration of a DHN.

B. OTF and Heating Market Clearing

A DHN usually consists of a supply pipeline network and
a return pipeline network with identical topology, which is
illustrated in Fig. 1. Water is heated by heat sources, and
injected into supply pipes; at a certain node, hot water flows
from the supply side to the return side, and thermal energy is
withdrawn by a heat exchanger and delivered to the consumer;
At the return side, the water with relative low temperature is
send back to heat sources.

The mathematical model of a DHN is comprehensively
developed in [38], which consists of a hydraulic part and
a thermal part. The hydraulic condition in a DHN should
be adjusted to guarantee a feasible solution of the thermal
part. Conceptually, the thermal part include three kinds of
constraints

1) Heat demand/supply

h = cpṁ(τS − τR) (1)

where cp is the specific heat capacity of water; ṁ is the water
mass flow rate in the pipeline connecting the supply and return
networks; τS and τR are temperatures at the supply side and
return side, respectively; τS > τR always holds. At heat load
(source) nodes, water traverses from the supply (return) side
to the return (supply) side. In the OTF model, (1) is applied
to every pipe across the supply and return networks.

The heating system has large thermal inertial. For building s-
pace heating, the customer sets a reference temperature profile,
which is translated into a heat demand curve by the smart home
appliance. Hence the thermal inertial effect will be considered
during the construction of heat demand curve, which can be
separated from the market clearing problem.

2) Pipeline model
When water traverses in the supply and return pipelines, its

temperature drops due to the inevitable heat loss. For any pipe
in either the the supply network or the return network, the
following relation holds

τout = (τ in − τam)e−λblb/cpṁ + τam (2)

where τ in and τout are the inlet and outlet temperatures of the
pipe; τam is the ambient temperature; λb is the heat transfer
coefficient of the pipe per unit length, and lb is the length of
the pipe. ṁ is the mass flow rate from the inlet to outlet. In
the OTF model, (2) is applied to every pipe in the supply and
the return networks.

The ambient temperature τam in (2) is treated as a con-
stant, because most heating systems consist of an underground
pipeline network, the change of ambient temperature is relative
small, and thus neglected. For the on-ground pipeline network,

we can incorporate time-varying ambient temperature τamt , and
the time interval is one hour. Such data can be retrieved from
weather forecast.

The time frame of thermal transients in pipelines depends on
the spatial scale of the DHN and the mass flow velocity. If the
network is small, the system can reach a thermal equilibrium
in a few minutes, whereas the market is cleared once a hour,
so temperature transients in pipelines can be neglected in such
circumstance. If the DHN scatters in a large area, the tran-
sient effect in pipelines could be prominent. Since modeling
transients in water pipelines involves a non-linear model [4],
the heating market clearing problem will become challenging
to solve. More tractable formulation or approximation model
remains an open problem. A simple remedy is to regulate the
mass flow velocity to shorten the transient process [39].

3)Fluid mix at confluence node
When water flows with different temperatures come across

at a confluence node, the temperature of the mixed fluid is
determined by the energy conservation law, which gives

τmix =

∑
b∈LE(i)(τ

out
b ṁb)∑

b∈LE(i) ṁb
(3)

where LE(i) is the set of pipes whose outlet connects to node
i; τoutb is the water temperature at the outlet of pipe b ∈ LE(i);
ṁb is the mass flow rate in pipe b ∈ LE(i). The mixed fluid
leaves the confluence node with the same temperature,

τ inb = τmix, ∀b ∈ LB(i) (4)

where LB(i) is the set of pipes whose inlet connects to node i.
In the OTF model, (3)-(4) should be applied to the supply side
of every source node and the return side of every load node.

At the return side of every source node and the supply side,
water flow diverges and the temperature remains the same,

τoutb = τ inb′ , ∀b ∈ LE(i), ∀b′ ∈ LB(i) (5)

The thermal operating status of a DHN can be described
by the inlet and outlet temperatures of pipelines in the supply
and return networks, as well as the supply side and return
side temperatures of pipelines crossing the two networks. All
temperature variables are encapsulated in vector τ . Vector h
denotes the output of heat sources. The thermal flow of a DHN
can be written in a compact form as,

AHh +BH(ṁ)τ = bH (6a)
CHh +DH(ṁ)τ ≤ dH (6b)

where AH , bH , CH and dH are constant coefficient matrixes;
BH(ṁ) and DH(ṁ) are coefficient matrixes depending on the
mass flow rates ṁ. Thermal flow (1) through (5) are considered
in (6a). Lower and upper bounds of τ and h have been taken
into account in (6b). Clearly, (6) is nonlinear and con-convex.
In practical, the DHN is usually operated in simpler ways, in
which either the mass flow rates or the nodal temperatures are
fixed. In this work, we adopt the former one, i.e., mass flow
rates ṁ are fixed and constraint set (6) becomes linear with
nodal temperatures and heating source output being decision
variables.

In the envisioned heating market, the operator seeks the most
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Fig. 2. Typical Topology of a PDN.

economic dispatch of heat sources. From the energy balance
perspective, the operation cost largely depends on the total
output of heat sources, which is equal to the heat load plus
pipeline losses. In what follows, we will show that mass flow
rates ṁ have little impact on pipeline losses.

Heat loss in a pipeline can be calculated as,

∆E = cpṁ(τ in − τout) (7)

Substituting (2) into (7) results in,

∆E = cpṁ

[
(τ in − τam)

(
1− e

−λblbcpṁ

)]
where 0 < λblb/cpṁ� 1. Consider the relation e−x ≈ 1− x,
we obtain,

∆E ≈ cpṁ(τ in − τam)
λblb
cpṁ

= λblb(τ
in − τam)

From the above equation, we can see that the pipeline loss ∆E
does not depend on the mass flow rate ṁ. This means that as
long as (6) is feasible, the hydraulic condition has little impact
on the cost. Therefore, ṁ can be set in prior, corresponding
to the constant flow and variable supply temperature operating
mode in [40].

We assume traditional heat sources in the DHN are coal-
fired and gas-fired boilers, whose production costs are convex
quadratic functions of their output. The EH bids an offering
price ζb and a maximum quantity hbm it is willing to provide.
They are treated as constants in the heating market. Finally,
the heating market clearing problem is given by,

min
h,τ

1

2
hTQHh + cTh (ζb)h (8a)

s.t. AHh +BH(ṁ)τ = bH (8b)

CHh +DH(ṁ)τ ≤ dH(hbm) (8c)

where objective (8a) is to minimize the total cost, including
production costs of traditional boilers and payment to the EH;
(8b) and (8c) are the thermal flow status of the DHN. Since
(8) is a convex quadratic program, it can be readily solved.

C. OPF and Power Market Clearing

The PDN has a radial topology. The typical connection is
shown in Fig 2. Power flow in a PDN can be described by the

linearized branch flow model [37], [41]

Pij + pgj =
∑
k∈π(j)

Pjk + pdj (9)

Qij + qgj =
∑
k∈π(j)

Qjk + qdj (10)

Uj = Ui −
rijPij + xijQij

U0
(11)

where Pij and Qij are active power and reactive power in
distribution lines; pgj/p

d
j and qgj /q

d
j are active and reactive

power generation/demand at bus j; Uj/U0 is voltage magnitude
at bus j/slack bus; rij and xij are line resistance and reactance.

In the distribution system study, the linearized branch flow
model is more appropriate than the widely used DC power flow
model for transmission networks which neglects reactive power
and assumes constant bus voltage magnitudes. These factors
are important considerations in distribution system operation,
and taken into account in (9)-(11). The linearized branch flow
model is broadly employed in voltage control and renewable
generation dispatch related work, such as [42], [43]. Because
the model is lossless, it may not be accurate enough for
calculating LMPs [44]. Nevertheless, the energy hub receives
a pay-as-bid revenue, and LMP is not needed.

The EH bids an offering price ξb and purchases electricity
from the power market at a price χb. Then the PDN operator
clears the market by minimizing the total cost,

CPDN =
∑
j

[
aj(p

g
j )

2 + bjp
g
j

]
+ ξbpgb − χbpdb (12)

where the first term represents generation cost; (aj , bj) are co-
efficients of the quadratic function. Define pg0 =

∑
j∈π(0) P0j

the total power delivered from the transmission network, fur-
thermore, a0 = 0, b0 is the electricity price at the transmission
network. The second (third) term is paid to (by) the EH for
purchasing (consuming) energy at a rate of pgb (pdb).

Denote by p the generation dispatch pgj and energy trans-
actions pgb, pdb with the EH, pgbm and pdbm are respectively the
maximal electricity quantities the EH is willing to provide or
purchase, x the remaining variables. The power market clearing
problem is given in a compact form,

min
p,x

1

2
pTQPp + cTp (ξb, χb)p (13a)

s.t. APp +BPx = bP (13b)

CPp +DPx ≤ dP (pgbm , p
db
m) (13c)

where (13b) collects equality constraints (9)-(11); (13c) stands
for lower and upper bounds for decision variables.

III. STRATEGIC BIDDING OF THE ENERGY HUB

A. EH model

Conceptually, an energy hub is a black box component with
multiple energy inputs and outputs. It can be implemented by
integrating some mainstream energy conversion and storage
facilities together, say, combined heat and power (CHP) plants,
electrical-powered or gas-fired boilers, air-source and ground-
source heat pumps, as well as electricity and heat storage units
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[31]. Future energy hubs may be built based on compressed-
air energy storage systems [45], [46] and concentrating solar
power plants [47], [48]. We consider an EH sketched in Fig.
3, which links a PDN and a DHN. The electricity input is
supplied by the PDN, and the natural gas input is supplied
by a gas company. Different from a residential one, the EH
considered here can sell electricity and heat to the PDN and
DHN, respectively, at its output side. In the EH, electricity
can be used to charge an electricity storage unit (ESU), or
consumed by a HP which produces heat. Natural gas is burnt by
a CHP unit to produce electricity and heat. Heat can be stored
in a thermal storage unit (TSU) if necessary. The operating
constraints include the following:

pin1t + pgast ηchpe + pdist − pcht = pgbt , ∀t (14a)

pin2t ηhp + pgast ηchph + hdist − hcht = hbt , ∀t (14b)

pdbt = pin1t + pin2t , ∀t (14c)

Et+1 = Et + pcht η
esu
+ − pdist /ηesu− , ∀t (14d)

Ht+1 = Ht + hcht η
tsu
+ − hdist /ηtsu− , ∀t (14e)

pgbmin ≤ p
gb
t,m ≤ pgbmax, ∀t (14f)

pdbmin ≤ pdbt,m ≤ pdbmax, ∀t (14g)

hbmin ≤ hbt,m ≤ hbmax, ∀t (14h)

Upper and lower bounds of other variables (14i)

where pgast is the inflow of consumed gas fuel, pgbt and hbt are
the cleared amount of electric power and thermal energies in
the respective markets, and pdbt is the delivered power from the
electricity market. These variables are not directly controlled
by the EH, instead, they are determined from the market
clearing problems. Et and Ht are the stored electricity and heat
in the ESU and TSU, respectively. pcht and pdist are the charging
and discharging power of the ESU, respectively. hcht and hdist
are the charging and discharging power of the TSU. Physical
meaning of other variables are depicted in Fig.3. pgbt,m and pdbt,m
are the electricity quantity offer and bid, respectively. hbt,m is
the heat quantity offer. (14a) and (14b) define the electric and
thermal balance inside the hub; (14c) determines the required
electric power demand; the state-of-charges (SoCs) of ESU
and TSU are described in (14d) and (14e), respectively. We
assume that the final SoC is identical to the initial one, i.e.,
ET = E0, HT = H0; the bounds of pgbt,m, pdbt,m, and hbt,m are

Electricity 

Market

 Multi-carrier Energy Hub 

 Maximize the profit

Heat 

Market
EMO HMO

Minimize generation cost Minimize generation cost

power price-

quantity 

offer and 

bid

heat price-

quantity offercleared

power

  quantity

cleared 

heat 

quantity

purchased gas

gas price

Fig. 4. Framework of the integrated electricity and heat market.

limited in (14f), (14g), and (14h), respectively; the bounds of
other variables are collected in (14i). Simultaneous charging
and discharging are prevented by introducing binary variables
in the charging/discharging rate constraints in (14i).

B. MPEC formulation of the Optimal Bidding Model

The connection of the EH with the PDN and DHN is shown
in Fig. 4. It submits quantities and prices of thermal and electric
energies in the respective market, and gets paid in accordance
with the offering prices. Different energy prices in peak and
valley hours precipitate arbitrage opportunities. The EH seeks
maximum profit through the following optimization problem:

max (ζb)Thb + (ξb)Tpgb − (χb)
T
pdb − (γ)Tpgas (15a)

s.t. EH operating constraints(14) (15b)
heating market clearing (8) (15c)
power market clearing (13) (15d)

where price vectors ζb,ξb,χb,γ represent heat offering prices,
electricity offering prices, electricity purchasing prices, and
gas prices in the day-ahead market, respectively; energy con-
tract vectors hb, pgb, pdb, pgas stand for the cleared heat
quantities, electricity generations, electricity demands, and gas
demands, respectively. (15b) encapsulates the EH operating
constraints. As energy contracts are determined from the
heating market clearing problem in (15c) and power market
clearing problem in (15d), the EH bidding model (15) is an
MPEC. From the game theoretical point of view, MPEC (15)
can be regarded as a single-leader multi-follower Stackelberg
game, in which the EH and two markets make sequential
decisions. The optimal strategy of EH and corresponding
market clearing results interpret a market equilibrium under
Stackelberg competition.

To solve this bilevel model, notice the fact that both of the
market clearing problems (8) and (13) render convex quadratic
programs. Hence, they can be replaced by their respective KKT
optimality conditions, then problem (15) is transformed into
a single-level optimization problem. To this end, the KKT
optimality conditions are presented as follows,

Heating market clearing

AHh +BH(ṁ)τ = bH (16a)
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CHh +DH(ṁ)τ ≤ dH(hbm) (16b)

QHh + ch(ζb) +ATHλh + CTHµh = 0 (16c)

BH(ṁ)λh +DT
H(ṁ)µh = 0, µh ≥ 0 (16d)

µTh (CHh +DH(ṁ)τ − dH(hbm)) = 0 (16e)

where λh and µh are the vectors of dual variables associated
with the equality and inequality constraints of the heating
market clearing problem (8). Vectors dH and ch are linear
in hbm and ζb submitted by the EH, which are treated as
constants in the heat market clearing problem. (16a) and (16b)
are feasibility constraints of primal variables; (16c) and (16d)
are feasibility constraints of dual variables; (16e) represent the
complementary slackness conditions.

Power market clearing

APp +BPx = bP (17a)

CPp +DPx ≤ dP (pgbm , p
db
m) (17b)

QPp + cp(ξ
b, χb) +ATPλp + CTP µp = 0 (17c)

BTPλp +DT
Pµp = 0, µp ≥ 0 (17d)

µTp (CPp +DPx− dP (pgbm , p
db
m)) = 0 (17e)

where λp and µp are the vectors of dual variables associated
with the equality and inequality constraints of the power market
clearing problem (13). Vectors cp and dp are linear in ξb,
χb, pgbm , and pdbm submitted by the EH, which are treated
as constants in the electricity market clearing problem. (17a)
and (17b) are feasibility constraints of primal variables; (17c)
and (17d) are feasibility constraints of dual variables; (17e)
represent the complementary slackness conditions.

Because the EMO and HMO could dispatch local generators
(heat sources) in the PDN (DHN), bidding a high price is
not always a good choice for the EH because it may lead to
the loss of market share. When congestion and other security
constraints are considered, the energy hub might possess strong
market power in certain cases. We assume that the EH and
two markets would reach certain agreements on the lower and
upper bounds of offering prices to guarantee market fairness.
If there are multiple EHs, we can set up an EPEC model [49]
to describe competitions among these EHs, while MPEC (15)
serves as the essential unit of the EPEC, in which strategies
of rivals are regarded constants. The fixed point of bidding
strategies from all energy hubs constitutes the equilibrium
in the market. Therefore, model (15) provides a reference
formulation for studying more complicated problems.

C. An MILP approximation

The KKT conditions described in (16) and (17) are still
nonlinear and non-convex. The difficulty arises from the com-
plementarity and slackness constraints which have the form
of 0 ≤ x⊥y ≥ 0, as well as production terms (ζb)

T
hb,

(ξb)
T
pgb, and (χb)

T
pdb in the objective function (15a).

For the complementarity condition 0 ≤ x⊥y ≥ 0, we adopt
the linearization method in [50] to express it as,

0 ≤ x ≤Mz, 0 ≤ y ≤M(1− z) (18)

where M is a large enough constant; z is a vector of binary
variables with same dimension as x and y; 1 is the all-one
vector with the same dimension as z. As long as the big-M
parameter is large enough, this transformation is exact and no
accuracy is lost.

For the bilinear production terms in the form of xy where
x and y are two continuous variables, we employ the binary
expansion method in [51], [52] to linearize them. Particularly,
we use 2K discrete points to approximate possible values of y
in its feasible interval [yl, ym], which gives rise to,

y = yl + ∆y

K∑
k=1

2k−1zk (19)

where zk, k = 1, · · · ,K are binary variables, and the step size
∆y is given by,

∆y =
ym − yl

2K
(20)

As such, xy = xyl + ∆y
∑K
k=1 2k−1xzk. Let vk = xzk, k =

1, · · · ,K, the bilinear term xy can be formulated by,

xy = xyl + ∆y

K∑
k=1

2k−1vk (21)

0 ≤ x− vk ≤ xm(1− zk),∀k (22)
0 ≤ vk ≤ xmzk,∀k (23)

If zk = 0, vk = 0 is forced by (23), and the feasible interval
of x is retained in (22). If zk = 1, vk = x is forced by
(22), and the feasible interval of x is given in (23). In either
case, we have the relation vk = xzk, k = 1, · · · ,K, so the
right-hand side of (21) provides a linear expression of xy. The
approximation accuracy of binary expansion can be controlled
by the number of expansion segments. According to (20), the
number of binary variables needed in this approach grows
moderately [O(log2K), where K is the number of expansion
segments]. For example, if a continuous variable in the interval
[0,1] is approximated by 32 discrete points, then we need 5
binary variables to express the expansion.

In our problem, because the energy contracts interpret opti-
mal solutions of market clearing problems, discrete approxima-
tion could miss the exact one, which may cause infeasibility of
the KKT condition. Therefore, we expand the bidding strategies
(ζb, ξb, χb) through binary variables. Applying (21)-(23) to all
production terms in (15a), we obtain the linearized objective
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function (Obj-Lin for short)

Obj-Lin =
∑
t

[
ξlp

gb
t + ∆ξ

K∑
k=1

2k−1zgbtk

]
−
∑
t

γtp
gas
t

+
∑
t

[
χlh

b
t + ∆χ

K∑
k=1

2k−1zhbtk

]

−
∑
t

[
ζlp

db
t + ∆ζ

K∑
k=1

2k−1zdbtk

]
(24)

In summary, the MILP form of the EH bidding MPEC can
be expressed as,

max Obj-Lin (24)

s.t. EH operation constraints (14)
Cons-BE
KKT-Lin-Heat
KKT-Lin-Power

(25)

where Cons-BE collects all additional constraints in the form
of (22)-(23) introduced by binary expansion; KKT-Lin-Heat
and KKT-Lin-Power represent linearized KKT conditions of
market clearing problems (8) and (13) after performing the
linear disjunctive formulation in (18).

Remark: Incorporating Uncertainties.
In a decision-making problem in PDN, uncertainty usually

originates from the market prices and renewable output. In this
work, energy prices between the EH and two markets depend
on the bidding strategies or bilateral agreements, which are
decision variables or constants. The natural gas is supplied by
a gas retailer. In view of the current organization of the gas
market, the gas fuel price remains constant intraday, which is
apparent to the EH and thus deterministic. However, nodal elec-
tricity price at the root bus of PDN is determined by the upper
level transmission network which may be uncertain. Moreover,
the output of renewable-driven distributed generators could be
volatile.

In our current model, uncertain factors are not considered,
because we have storage units which can mitigate the nega-
tive impact of renewable fluctuations. In other words, system
security is not a main concern due to the advent of the
EH. Nonetheless, if the economic impact of these uncertain
factors are under investigation, we can use the scenario based
stochastic programming approach, which minimizes the ex-
pected payoff of the EH. More precisely, problem (25) is solved
for every scenario with probability ps, s = 1, 2, · · · , n, the
corresponding optimal value is vs, then the expected cost is∑
s psvs, because the problem is totally decoupled with respect

to scenario.
If the real-time market is considered and a two-stage stochas-

tic model is used to tackle uncertainty factors, the situation
would be more complicated, because the day-ahead decision
cannot change in the real-time stage. It is very difficult to
incorporate uncertainty in the bi-level optimization framework
using the scenario stochastic approach. One remedy would be
restricting the number of bidding strategies of the energy hub
so as to reduce the dimension of decision variables in the day-
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Fig. 5. Topology of the test system.

TABLE I
PARAMETERS OF GENERATORS AND HEAT SOURCES

GT No. pg(MW) qg(MVar) a($/MW2) b($/MW)

GT 1 [0, 1.5] [0, 0.5] 0.12 20.0
GT 2 [0, 2.0] [0, 1.0] 0.09 15.0

Heat No. hg(MW) location α($/MW2) β($/MW)

GB 1 [0, 1.0] Node 1 0.15 20.0
GB 2 [0, 1.0] Node 32 0.16 18.0

ahead stage. Another is using the proposed deterministic model
in the day-ahead market, and adopt a look-ahead bidding (with
a few number of periods) in a rolling-horizon fashion for the
real-time market, as such uncertainty will be tackled in the
real-time stage.

IV. CASE STUDIES

A. Basic Configurations

In this section, numeric experiments are carried out on a test
system to validate the effectiveness of the proposed model and
method. The system is comprised of a modified IEEE 33-bus
PDN and a 32-node DHN. The EH connects to the PDN at Bus
2 and the DHN at Node 31. System topology is shown in Fig.
5. 2 gas boilers (GB) and 2 gas turbines (GT) produce thermal
and electrical energy in the DHN and PDN, respectively. Static
var generators with the capacity of 1.0 MVar are placed at Bus
3 and Bus 12 for compensating reactive power and maintaining
the voltage profile. Parameters of GTs, GBs, and the EH are
listed in Tables I-II. Detailed system data can be found in [53].

In our tests, 128 discrete points (K = 7) are used in
the binary expansion scheme. For security considerations, the
maximum delivered power (pg0) from the slack bus is 3 MW
(also called the feeder capacity) in the PDN, and the maximum
gas inflow rates (pgas) delivered to the EH is 1.5 MW. The
lower bound, upper bound, and average of heat offering prices
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TABLE II
VARIABLE BOUNDS OF THE STUDIED MULTI-CARRIER EH.

Variable Interval Variable Interval

pch [0, 3.0] MW E [0, 10] MWh
pdis [0, 2.0] MW H [0, 10] MWh
hch [0, 2.0] MW pgbm [0, 2.0] MW
hdis [0, 1.5] MW pdbm [0, 1.5] MW
pgas [0, 1.5] MW hbm [0, 1.5] MW
pg0 [0, 3.0] MW
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Fig. 6. Heat and electricity load profiles.

(ζb) are 12$/MWh, 30$/MWh, and 25 $/MWh, respectively.
The import electricity price bid (χb) should be no less than
the retail price at Bus 2 in period t, and the offering price
of electricity (ξb) should be no greater than the highest daily
price multiply 1.25. The charging and discharging efficiencies
of ESU (ηesu+ /η−esu) are equal to 98%, the charging and
discharging efficiencies of TSU (ηtsu+ /η−tsu) are set as 98%
too. The efficiency of HP (ηhp) is 3, and the electricity and
heating conversion rates (ηchpe /ηchph ) of CHP are 0.35 and
0.65, respectively. All the simulations are programmed with
YALMIP [54] by calling CPLEX on a laptop with Intel i5-
4210M CPU and 16GB RAM.

1) Different load profiles: We consider heat and electricity
demand curves in different seasons by assuming identical peak
load as shown in Fig. 6, in which heat demands exhibit signif-
icant difference, while the electricity demand in the summer is
the highest during daytime due to the use of air-conditioners.

2) Different market prices: The electricity retail price at Bus
2 (where the energy hub is connected to) is time-varying. This
retail price curve is offered by the EMO, and is independent
of the dispatch of the energy hub and local generators. We
investigate four price curves, the real-time (El-RT) price, the
time-of-use (El-TOU) price, the peak-valley (El-PV) price,
and an extreme case (El-Ex) price to simulate the different
electricity price sequences at Bus 2, as shown in Fig.7.

3) Different gas fuel price: We assume that the gas price
is determined by the contract between the EH and an external
gas system, nevertheless, the values can be either constant or
time-varying. We investigate three difference scenarios on gas
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Fig. 7. Retail electricity price profiles at Bus 2.

prices γ: In the benchmark (Gas-BEN) case, γ = 26$/MWh
and remains unchanged; In the gas extreme (Gas-Ex) case,
γ = 40$/MWh and keeps constant throughout the day; In the
peal-valley scenario (Gas-PV), γ = 30$/MWh in periods 7-18
and γ = 20$/MWh in the remaining periods.

4) Storage efficiency: Efficiencies of storage units signifi-
cantly impact the operation of EH. For the ESU, the round-trip
efficiency differs a lot depending on the specific technology.
For instance, compressed-air energy storage is around 40%-
60% [55], pumped storage is approximately 75%-85% [56],
and battery storage can reach above 96%. For the TSU, the
round-trip efficiency parameter are usually above 98% [57]. In
our tests, we decrease the charging and discharging efficiencies
(ηesu+ /ηesu− ) of ESU from 98% to 60% (corresponding to
decrease the round-trip efficiency from 96% to 36%), and keep
the TSU efficiency (ηtsu+ /ηtsu− ) as a constant of 98%.

5) Market power: The EH possesses market power and its
bidding strategies could influence the clearance of the electric-
ity and heat markets. In normal condition, if the offering price
is low, the markets would buy more energies from the hub;
otherwise, the hub would gradually loss market share because
the system operator could dispatch more local generators or
heat sources. Sometimes, due to congestion or other security
considerations, the system operator has no choice but to buy
energy from the EH. To limit its market power, we consider
case MP-RtCap, in which the capacity of the feeder in PDN
is changed from 3MW to 6MW; case MP-TBPos, in which
GT1 and GT2 are moved to Bus 6 and Bus 13, respectively,
and their capacities are increased from 1MW to 2MW; case
MP-GasLim, in which the maximal gas input of EH decreases
from 1.5MW to 1MW.

TABLE III
CORRESPONDENCE BETWEEN SCENARIO AND LOAD/PRICE CURVES

scenario
load profile price curve

electricity Heat electricity natural gas

BEN Winter Winter El-RT Gas-BEN
El-TOU Winter Winter El-TOU Gas-BEN
El-PV Winter Winter El-PV Gas-BEN
El-Ex Winter Winter El-Ex Gas-BEN
Spring Spring Spring El-RT Gas-BEN

Summer Summer Summer El-RT Gas-BEN
Gas-Ex Winter Winter El-RT Gas-Ex
Gas-PV Winter Winter El-RT Gas-PV

The load and price curves used in each scenario are sum-
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TABLE IV
PROFIT AND COMPUTATIONAL TIME FOR EACH CASE

Scenario
Cost ($) Revenue ($)

Profit ($) Time (s)
PDN Gas PDN DHN

BEN 278.28 598.57 951.66 394.68 469.48 231.2
EI-TOU 331.07 489.72 993.02 397.77 569.99 62.03
El-PV 303.23 774.96 1365.0 396.08 682.88 88.97
El-Ex 152.30 519.09 1178.4 396.36 903.39 85.61
Spring 324.41 680.61 1106.4 378.50 479.91 197.5

Summer 301.03 538.06 947.67 309.94 418.53 28.83
Gas-Ex 381.41 134.54 426.12 393.79 303.95 42.77
Gas-PV 309.14 360.00 831.99 393.79 556.64 103.9
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Fig. 8. Price and quantity bid/offer in case BEN.

marized in Table III. Other cases are specified following their
first appearance.

B. Results

The average run time of each test case over 50 randomly
generated parameter sets is about several minutes, which is
quite inspiring and acceptable for day-ahead market applica-
tions. Results in each scenario are summarized in Table IV.

1) The benchmark case: the offering/bidding price and
quantity curves are plotted in Fig. 8. Scheduling of storage
units and their SoC dynamics are drawn in Fig. 9. The EH
purchases electricity with a lower price from the PDN in
periods 1-6. A fraction of the purchased electricity is stored in
the ESU for potential arbitrage during peak hours, e.g., periods
7-8, 19-23. The peak demand of the DHN is about 2 MW,
the GBs cannot meet the demands in peak hours of the day.
The EH constantly maintains a certain level of thermal energy
output. In periods 1-5, as the electricity is cheap, no gas fuel is
purchased, and the thermal energy is produced by HP equipped
in the EH. In periods 3 and 5, more heat is converted from the
HP and used to charge the TSU for future usage.

From period 6, the real-time price begins to rise, and the EH
switches to consuming gas and producing heat and electricity
using the CHP unit. Since the HP has a higher efficiency than
the CHP unit, the heat offering price ζb in periods 1-5 are
smaller than the remaining time of the day during which the
heat is produced by the CHP unit. Electricity quantity bids and
offers (pgbm , p

db
m ), and heat quantity offers (hbm) are equal to the
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cleared values. Through the cross-arbitrage among electricity
market, gas market, and heat market, the EH gains a profit of
$469.48.

2) Impact of electricity and gas prices: prices of electricity
and gas have pivotal influences on the actions of EH. Electricity
price bids (χb) and offers (ξb), and heat price bids (ζb) in El-
TOU, El-PV, and El-Ex scenarios are shown in Fig.10 and
Fig.11, respectively. With the given price curve in scenario El-
Ex, the EH bids the lowest electricity offering price (ξb) during
periods 1-6 and highest heat offering price (χb) during periods
8-24, and gains the highest arbitrage revenue of $1178.4 and
the highest profit of $903.39. The electricity price mechanisms
have little impacts on heat price offers as indicated in Fig.11.
This is because during periods 7-21, the heat demand is high,
so the EH possesses strong market power, and the heat offering
price quickly reaches the upper bound.

The amounts of purchased gas fuel in the BEN scenario,
the Gas-PV scenario, and the Gas-Ex scenario are compared
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Fig. 13. Heat price and quantity offers for BEN and Summer.

in Fig.12. Once the gas price is increased from 26$/MWh
to 40$/MWh in case Gas-EX, we can see that the EH alters
its strategy to purchasing electricity from the PDN instead of
purchasing gas in peak-hours as in case BEN. This strategy
uses HP to produce adequate thermal energy which is reserved
in TSU so as to meet heat demands without using expensive
natural gas. Consequently, the PDN revenue and the profit of
EH in the Gas-Ex scenario are the lowest in Table IV. With the
deepened integration of energy systems, real-time gas market
may appear in the future, from which the EH can benefit by
making full use of the cheap gas during off-peak hours. It is
also observed in Fig.12 that the EH purchases more natural gas
in Gas-PV case than it does in Gas-Ex case as the gas price is
lower, and receives more revenue from the electricity market
since the production cost of the CHP unit declines. Compared
with the BEN case, the gas purchasing cost is lower in Gas-PV
case because gas is bought during off-peak hours. As a result,
the total revenue in Gas-PV case is the highest. Certainly, this
conclusion is not universal and depends on actual price data.

3) Impact of load shape: The offering prices and quantities
of heat in the BEN case (the Winter scenario) and the Summer
scenario are compared in Fig. 13. Since the total heat demand
in Summer is lower than that in Winter, the revenue of selling
heat to DHN, as well as the total profit, is smaller than that in
the BEN case.

4) Impact of storage efficiency: In this set of tests, TOU
electricity price curve in Fig. 7 is used; the efficiency of TSU
is equal to 98%. The efficiency parameter of ESU varies,
and results are listed in Table V. It is observed that when
ηesu+ > 75%, the efficiency significantly impacts the total
revenue; further decrease in ηesu+ /ηesu− does not have much
influence on the total profit, because the EH scarcely arbitrages

TABLE V
PROFIT OF ENERGY HUB UNDER DIFFERENT ESU EFFICIENCY

PARAMETERS ($)

ηesu+ /ηesu−
Cost Revenue

Profit
PDN Gas PDN DHN

98% 331.07 489.72 993.02 397.77 569.99
95% 330.55 528.97 993.02 397.77 531.27
90% 310.78 594.93 993.02 395.98 483.29
85% 313.13 605.99 946.48 394.68 425.72
80% 315.78 493.53 787.64 397.66 375.98
75% 318.78 493.53 749.08 398.38 335.15
70% 63.41 493.53 474.94 398.39 316.39
65% 67.18 493.53 474.94 398.39 312.62
60% 72.98 493.53 474.94 398.39 306.82

TABLE VI
TEST ON MARKET POWER OF THE ENERGY HUB($)

Scenario
Cost Revenue

Profit
PDN Gas PDN DHN

MP-GasLim 314.96 564.95 951.66 394.68 466.44
MP-TBPos 401.61 416.41 872.68 396.37 451.02
MP-RtCap 863.39 9.77 916.74 393.79 439.94

electricity, and the revenue from the PDN mainly comes from
selling electricity generated by the CHP unit which burns gas.
Purchased electricity from the PDN is stored in ESU or con-
verted to heat for supplying demands. From the last three rows
of Table V, it is observed that more electricity charging cost is
necessitated to support the total arbitrage since the electricity
charging efficiency is lower. Nevertheless, the minimum profit
can be guaranteed by consuming natural gas, demonstrating
the advantage of multi-carrier energy integration.

5) Market power mitigation: Results in the three cases
defined in subsection A are illustrated in Figs. 14-16. Through
limiting the maximal gas delivery rate in case MP-GasLim, the
EH consumes less gas during day-time than it does in case BEN
and imports more electricity in period 24 as shown in Fig.15.
Since the electricity offering price is high, which can be seen
from Fig. 16, the change in the total revenue is tiny ($469.48
v.s. $466.44). The revenue in the heating market remains the
same.
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Fig. 14. Gas fuel input for market power test.

In case MP-TBPos, GT1 has more capacity to support peak
electricity load, the electricity quantity offer (pgbt,m) during
periods 9-17 is lower than that in case BEN, as shown in
Fig.15. Since the sold electricity decreases compared to case
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Fig. 15. Electricity quantity bid and offer for market power test.

MP-GasLim, the gas fuel import reduces during peak hours,
which can be seen in Fig.14. Meanwhile, more electricity is
purchased during off-peak hours (1-6), as indicated in Fig.15,
to compensate the decrease of gas contract. Furthermore, since
GTs offer more electricity in case MP-TBPos, the offering
price (ξb) in period 18 is lower than case BEN.
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Another way to limit the market power of EH is to increase
the capacity of the feeder (distribution line connecting to the
slack bus). In case MP-RtCap, because more cheaper electricity
can be delivered to consumers, the EH losses certain market
share and purchases very little gas as indicated in Fig.14. Since
more electricity is supplied to the PDN from the upper grid, to
maintain total revenue, the EH sells the electricity with a lower
price than other cases in periods 9, 10, 16, and 17, as indicated
in Fig. 16. Since less gas is purchased in case MP-RtCap
(as in Fig.14) and heat can only be generated through HP
by consuming electricity, more electricity is purchased during
periods 1-7 and 11-16 to supply heat demand. Electricity
arbitrage is the main source of profit in this case, which can
be observed from the price and quantity curves in Figs. 15-16.

V. CONCLUSIONS

The paper proposes systematic modelling and computational
methods for profit-driven energy hubs participating in distri-

bution electricity and heating markets. The strategic bidding
problem of the energy hub accounting for the market clearing
problems is formulated through an MPEC. In order to solve
this problem in a systematic way, we develop an MILP approx-
imation model based on optimality condition transformation
and integer programming techniques. Case studies show that
the profit of energy hub is mainly affected by the natural gas
prices and storage efficiencies in a certain range, and a minimal
profit can be maintain under extreme price scenario of either
gas fuel or electricity retail price by switching to the alternative
energy resource.

The proposed model and method can provide useful informa-
tion in various applications. An energy hub owner can use the
proposed method to determine the optimal bidding strategies
in the electricity and heating market; An investor can use the
model to examine the profit of energy hub under a given system
design, which helps him to select better plans; The government
agency can use the model to investigate the market power of the
energy hub and the equilibrium state in the integrated energy
system, so as to decide on critical market parameter (such as
the maximum offering price) and maintain market fairness.
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