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Analysis and Implementation of a Hourly Billing
Mechanism for Demand Response Management

Paulin Jacquot, Student Member, IEEE, Olivier Beaude, Stéphane Gaubert and Nadia Oudjane

Abstract—An important part of the Smart Grid literature
on residential Demand Response deals with game-theoretic con-
sumption models. Among those papers, the hourly billing model is
of special interest as an intuitive and fair mechanism. We focus
on this model and answer to several theoretical and practical
questions. First, we prove the uniqueness of the consumption
profile corresponding to the Nash equilibrium, and we analyze
its efficiency by providing a bound on the Price of Anarchy. Next,
we address the computational issue of the equilibrium profile by
providing two algorithms: the cycling best response dynamics
and a projected gradient descent method, and by giving an
upper bound on their convergence rate to the equilibrium. Last,
we simulate this demand response framework in a stochastic
environment where the parameters depend on forecasts. We
show numerically the relevance of an online demand response
procedure, which reduces the impact of inaccurate forecasts.

Index Terms—Smart grid, Demand Response, Demand Side
Management, Game Theory, Nash Equilibrium, Best Response.

I. INTRODUCTION

DEMAND Response (DR) is a technique to exploit elec-
tricity consumers flexibilities by giving them particular

incentives, in order to achieve some services to the grid e.g.
reducing production and distribution costs or increasing re-
newable energy insertion [1]. In DR programs, the aggregated
energy demand is a key metric and an aggregator interacts with
active consumers, willing to minimize their electricity bill or
maximize their utility, to optimize this demand profile. In such
a framework, energy can be viewed as an asset demanded
by customers, and which has a cost that depends on total
demand and the time of demand—some congestion effects
arise on the most demanded time periods and as producers
have a limited quantity to offer. Game-theory offers a well
adapted environment to model these congestion effects, and
different game-theoretic framework have been proposed in the
Smart Grid literature [2, 3, 4], following the seminal paper [5].
Among these, the hourly billing mechanism, introduced in
[6, 7] and also adopted in [3, 8] emerges as a natural
model—it has a structure of a routing congestion game [9]—
enjoying important fairness properties, although its theoretical
analysis is harder than the mechanism proposed in [5]. In
game-theoretic models, a major issue is to define an efficient
procedure to compute and reach the consumption equilibrium
associated with the game. Several papers [3, 8, 10] have
investigated the complexity and algorithmic aspects associated
to the notion of equilibrium. One can refer to [11] for a

P. Jacquot, O. Beaude and N. Oudjane are with OSIRIS department in EDF
Lab Saclay, France.

P. Jacquot and S. Gaubert are with Inria Saclay and CMAP, École
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survey of classical optimization methods and their applicability
depending on the DR framework. In [8], the authors consider a
distributed generation environment and use an algorithm based
on an iterative proximal best response. In [3], a hourly billing
mechanism is used and the authors propose a proximal-point
algorithm to compute the equilibrium.

In this paper, we investigate the theoretical properties and
computational aspects of the hourly billing mechanism and
discuss its practical implementation. The main contributions
are the following. First, we prove the uniqueness of the
equilibrium (Thm. 1) under a convexity assumption. The
uniqueness of the equilibrium profiles was proved for the
daily billing mechanism proposed in [5]. For the hourly billing
mechanism, [3, Prop. 1] gives the uniqueness for a particular
class of price functions. Our result applies to any convex and
increasing price functions, and extends [9, Thm. 1] to a more
general model where we consider bounds on the load at each
time period. Next, we give a bound on the resulting Price of
Anarchy (PoA), which shows the efficiency of the equilibrium
(Thm. 2). This result should be compared with [5] where the
model induces a PoA equal to one (optimality). Here, the PoA
is numerically close to one but not one. Then, we bound the
convergence rate of the best response algorithm in the case of
affine prices (Thm. 3). In that case, convergence is known but
to our knowledge, no bound on the rate has ever been given.
The convergence has been conjectured more generally for any
convex prices [12, 13]. We introduce a different algorithm
based on a simultaneous projected gradient descent (Algo 2),
and show its geometric convergence (Thm. 4) with a condition
on the price functions only. To our knowledge, those results are
also new. They can be compared with the algorithm 1 proposed
in [3]. In particular, we allow a fix step-size and we do not need
a proximal term. Last, we introduce an online DR procedure
with receding horizons, to take into account updated forecasts
in a stochastic environment. We show numerically, based
on real consumption data, that this procedure can achieve
significant savings compared to an offline procedure.

This paper reassembles and extends the main results on
the hourly billing model announced in our conference pa-
pers [14, 15]: in Thm. 2 here, we give the upper bound on the
Price of Anarchy [14, Thm. 2] and in Prop. 1 we use the same
property than [14, Thm. 1]. We also use the potential property
of the game noticed in [15, Thm. 2] and the Best Response
algorithm presented in [14, Def. 3]. However there are several
additional results in this paper: the theorem of uniqueness
of the equilibrium presented here (Thm. 1) is stronger than
[14, Thm. 1]. Also, the SIRD algorithm (Algo 2) and the
convergence theorems (Thms. 3 and 4) were not presented in
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[14, 15]. We complete the simulation framework in [14, 15]
by considering multiple forecasts on the nonflexible load and
by introducing an online demand response procedure (Algo 3).

This paper is organized as follows: Sec. II gives the
mathematical model of the DR framework and the associated
billing mechanism, under the form of a game. In Sec. III, we
introduce the notion of strong stability for general games and
define two decentralized algorithms that enable to compute the
equilibrium consumption profiles. We prove the convergence
of those algorithms and give guarantees on their convergence
rate. Finally, in Sec. IV, we define an online DR procedure
and simulate it with historical consumption data of consumers
with electric vehicles as flexible consumptions. We compare
the performance of this online DR scheme to the offline version
and other consumption scenarios.
NOTATION CONVENTION: through this paper, bold font ` is
used to denote a vector as opposed to a scalar `.

II. CONSUMPTION GAME WITH HOURLY BILLING

A. District of flexible consumers

We consider a network composed of a set N = {1, . . . , N}
of residential consumers linked to a local aggregator. Each
household is equipped with a smart meter enabling two-way
communication of information with the aggregator. We assume
that each household electricity consumption can be divided
into two parts: one which is nonflexible (lights, cooking
appliances, TVs) and one which is flexible (Electric Vehicle
charging, water heater, washing machine, etc). Moreover, each
smart meter is linked to an Electricity Consumption Scheduler
(ECS) that can automatically optimize and schedule the con-
sumption profile of the flexible appliances of the user, given
the constraints set by the consumer and physical constraints
of each appliance.

B. From individual to aggregated consumption profiles

In the DR program, we determine a consumption profile
for each consumer on a finite time horizon T . In this study,
we take T as a discrete set of time periods T = {1, . . . T}.
In the simulations, T will correspond to one day, and each
time period t to one hour. We assume that each consumer
has a Nonflexible (NF) consumption profile; we denote by
LNF ∈ RT , indexed by T , the aggregated nonflexible load
profile on the set of consumers N . On top her nonflexible
consumption, each consumer n has a flexible consumption
profile that we denote by `n = (`n,1, · · · , `n,T ) ∈ RT . The
aggregated flexible load profile on the set of consumers is
obtained as:

L = (Lt)t∈T ∈ RT with ∀t ∈ T , Lt
∆
=
∑
n∈N

`n,t . (1)

C. Aggregator cost: a function of aggregated consumption

The aggregator is himself linked to electricity providers and
we consider that he faces a per-unit (of energy) price function1

1This price function can represent different objectives of the aggregator
as the minimization of the distance to a targeted aggregated consumption
profile L∗, the minimization of providing costs or the maximization of self-
consumption of (local) renewable production.

Lt 7→ ct(Lt) associated with each time period t ∈ T for the
flexible electricity demand Lt given in (1), so that the cost of
providing Lt at t is Lt×ct(Lt). Price functions can depend on
the nonflexible consumption profile LNF because they model
a global cost for the aggregator. In particular, we will assume
in our model that the aggregator faces for each time period
providing costs Ct(.) that depend on the total load LNF,t+Lt.
The price function ct(.) for the flexible part of consumption
at t can be rewritten as:

ct(Lt)
∆
=

1

Lt

[
Ct(LNF,t + Lt)− Ct(LNF,t)

]
. (2)

Remark 1. Following (2), the price function ct(.) depends
implicitly on the value of the nonflexible load LNF,t (even if
the dependancy is not explicit in the notations used hereafter).

In our framework, we will consider the following assump-
tions on the price functions (ct)t:

Assumption 1. For each t ∈ T , ct is twice differentiable,
strictly increasing and convex.

Assumption 2. For each t ∈ T , ct is twice differentiable,
convex and strictly increasing. Moreover, there exists a > 0
s.t. for any t and admissible `:

2c′t(Lt)

(
1−

(
c′′t (Lt)
2c′t(Lt)

)2

‖`t‖22

)
> a. (3)

Assumption 3. For each t ∈ T , ct is affine, positive and
increasing: ∀t ∈ T , ct(`) = αt + βt` with αt, βt ∈ (R∗+)2 .

Remark 2. The latter three assumptions are more and more
restrictive: Assumption 3 implies Assumption 2 with a =
2 mint βt, and Assumption 2 obviously implies Assumption 1.

Remark 3. For a = 0, inequality (3) in Assumption 2
simplifies to the condition: ‖`t‖−1

2 >
∣∣∣ c′′t (Lt)

2c′t(Lt)

∣∣∣ . For each t,
c′′t has to be small relatively to c′t.

Assumption 1 is standard in the congestion games liter-
ature and corresponds to ”type-B” functions in the seminal
paper [9]. This assumption is also made in most of the papers
dealing with game-theoretic DR models as [7]. Indeed, it is
justified by the fact that marginal costs of producing and
providing electricity are increasing. Assumption 3 is also a
standard assumption made in [16] because it enables fast
computation of NE (see Sec. III), but it is very restrictive. As-
sumption 2 is not very explicit but is an in-between condition
that comprises a larger set of functions than linear functions
and for which our main results hold.

Whatever the assumption retained, the aggregator can in-
fluence the flexible consumption by sending incentives to
consumers through a billing mechanism, that is, by defining
what each consumer n will pay relatively to her flexible
consumption profile `n, and in turn which quantity n’s ECS
will minimize.

D. Consumer’s Optimization Problems

In this paper, following our studies in [14, 15], we will
use an hourly proportional billing mechanism, where each
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consumer n ∈ N minimizes her bill:

bn(`n, `−n)
∆
=
∑
t∈T

`n,tct(Lt) , (4)

where `−n
∆
= (`m)m6=n denotes the consumption of all

consumers but n. This billing mechanism was shown to
have interesting fairness properties and is also adequate when
considering consumers’ utility functions (representing, e.g.,
temporal preferences for flexible consumption) [14, 15, 16]. It
corresponds to a routing “atomic splittable” congestion game
framework [9], well studied in the game theory literature,
where we add the bounding constraints (5c) below.

Through her ECS, each consumer will adjust her flexible
consumption profile `n ∈ RT to minimize her bill, which
corresponds to the following optimization problem:

min
`n∈RT

bn(`n, `−n) (5a)

s.t.
∑
t∈T `n,t = En , (5b)

`n,t 6 `n,t 6 `n,t,∀t ∈ T . (5c)

Constraint (5b) ensures that the total energy given to n
satisfies her daily flexible energy demand over T , denoted
by En, that we assume fixed and deterministic in our
work2. Constraint (5c) takes into account the physical
power constraints and the personal scheduling constraints
(supposed given by the user to her ECS). Note that taking
`n,t = `n,t = 0 forces `n,t = 0 so that constraint (5c)
includes in particular unavailability during some time periods.
We will denote by Ln the feasible set of user n, given by
constraints (5b-5c), and L ∆

= L1 × · · · × LN the Cartesian
product of the feasible sets. As bn depends both on `n and
`−n through Lt, we get a N -person minimization game
that we write in the standard form [17] as G ∆

= (N ,L, (bn)n) .

In game-theoretic models, a desirable stability property is
when each player n has no interest to deviate unilaterally from
her current profile `n. This corresponds to the notion of Nash
Equilibrium (NE), that is:

Def. 1 (Nash et al., 1950). Nash Equilibrium (NE).
(`NE
n ) is a NE of the minimization game: G = (N ,L, (bn)n)

iff for any player n ∈ N :

bn(`NE
n , `NE

−n) 6 bn(`n, `
NE
−n), ∀`n ∈ Ln

⇔ `NE
n ∈ argmin

`n∈Ln
bn(`n, `

NE
−n) .

It is known that an NE may not exist or may not be unique,
even in routing congestion games [9]. In our framework
however, both properties are ensured, as stated in Thm. 1
below. This result extends the uniqueness theorem in [9] in
presence of the constraint (5c) on power bounds.

Theorem 1. Under Assumption 1, G has a unique NE.

Proof: See Appendix A.

As said above, an NE is a very interesting situation in
practice because of its stability: each player will only increase

2En can be set by the consumer, induced by the physical parameters of her
appliances (battery capacity), or computed by learning the consumer’s habits.

her bill if she changes her profile. However, an NE does not
necessarily minimize the social cost:

SC(`)
∆
=
∑
n

bn(`) . (6)

Note that, with the billing equation (4), SC(`) is equal to the
total system cost3 ∑

t Ltct(Lt), so that this quantity should
be minimized from the aggregator point of view. In general
games, an NE can be sub-optimal in terms of SC. To measure
the inefficiency of Nash Equilibria, a standard quantity is the
Price of Anarchy:

Def. 2 (Koutsoupias et al, 1999). Price of Anarchy (PoA).
Given a N-player game G = (N ,L, (bn)n) and LNE its set of
Nash equilibria, the PoA is defined as the following ratio:

PoA(G) =
sup`∈LNE

SC(`)

inf`∈L SC(`)
.

Note that, from the definition, the PoA is always greater
than 1. Furthermore, finding an upper bound on the PoA
ensures that the social cost at any NE will be relatively close
to the minimal social cost. In general, bounding the PoA
is a hard theoretical question in general congestion games
[20, 21]. In [22], the authors give an upper bound if the price
functions are polynomial with bounded degree and positive
coefficients. With degree one (affine prices, Assumption 3) the
bound is PoA 6 1.5, that is, the NE profile can induce costs
as much as 50% higher than the optimal costs: implementing
such a framework would not be worthwhile for the aggregator,
as uncoordinated consumers will probably perform better (in
our simulations, the uncoordinated profiles induce costs 16%
higher than the optimal costs, see Tab. I). However, the results
in [22] are worst-case bounds and these bounds are only
approached asymptotically4: in our simulations with affine
prices, the PoA was always much lower than 1.5. One of the
reasons is that in [22] the model does not consider the power
constraints (5c), and a PoA of 1.5 might be reached in our
case only if the constraints (5c) are coarse enough. To further
explain the low PoA in our instances, we found the following
theorem by precising the results of [22]:

Theorem 2. Under Assumption 3, define for any t ∈ T , ϕt =

(1 + αt
βtLt

)2, where Lt =
∑
n `n,t and t0

∆
= arg mint

αt
βtLt

.
Assuming that, for all t ∈ T :

ϕt 6 ϕt0 + 2 +
√

1 + ϕt0 , (7)

the following inequality holds:

PoA(G) 6
1

2
(1 +

√
1 + ϕ−1

t0 +
1

2
ϕ
− 1

2
t0 ) . (8)

Proof: See Appendix B.

Remark 4. Using the inequality ∀x > 0,
√

1 + x2 6 1 + x,
(8) implies the following simplified—but coarser—bound:

PoA(G) 6 1 + 3
4 supt∈T

(
1 + αt

βtLt

)−1

. (9)
3In practice, the system costs can differ from the social cost of consumers,

for instance if we consider that the aggregator makes a positive profit, or if
we consider consumers utility functions as done in [15].

4Meaning that there exists a sequence of games (Gν)ν>0, with parameters
depending on ν, and affine price functions ct such that PoA(Gν) −→

ν→∞
1.5.
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The assumption (7) in Thm. 2 ensures that price functions
(ct) cannot differ too much from one time period to another.
This would be the case if, for instance, the price functions are
uniform over T . One can see that, according to Thm. 2, the
PoA converges to one when αt/(βtLt) converges to infinity:
the PoA can be arbitrarily close to one if we choose the
coefficients αt large enough. This result is indeed intuitive:
when the prices are constant (βt = 0), they do not depend on
the aggregates L and there is no congestion effect; the optimal
profile is obtained by each consumer choosing the time periods
with lowest prices, independently of `−n. Another interesting
result is that the PoA also converges to one when the total load
is low (Lt → 0). Note that the left-hand-side of inequality (8)
is decreasing with ϕ0 and is equal to ( 1+

√
2

2 )2 ≈ 1.457 for
ϕ0 = 1 so our result is always tighter than the bound given in
[22]. However, in our simulations with linear prices, the PoA
was still lower than the bound (8), even when assumption (7)
does not hold: the inequality (8) gives PoA 6 1.271 (average
on the simulated days), while the PoA on mean values from
Tab. I is 1.017. In this regards, getting a tighter bound or
generalizing our proof to more general price functions could
be the subject of future work.

III. FAST COMPUTATION OF THE NASH EQUILIBRIUM

The computation of NE is a central problem in game theory
[23]. For a practical implementation of a DR program, we need
to be able to compute the NE consumption profile in small
time. In this section, we provide two algorithms for computing
the NE and analyze their convergence in our specific setting.

A. Two Decentralized Algorithms

Given a profile `−n of the others, consumer n is expected
to choose the profile `n corresponding to a minimizer of (5),
which is called its Best Response5. It is denoted by

BRn : sn 7→ argmin
`n∈Ln

∑
t

`n,tct(sn,t + `n,t) , (10)

which only depends on the sum of the load of the others sn
∆
=∑

m 6=n `m ∈ RT because of the “aggregated” structure 6: from
(4), we see that bn only depends on `n and Ln = sn + `n.
A natural algorithm for computing an NE is to iterate best
responses and update the strategies, cycling over the set of
users until convergence. This procedure, described as Cycling
Best-Response Dynamics (CBRD) [24] is described by Algo 1.

Algo. 1 Cycling Best Response Dynamics (CBRD)

Require: `(0), kmax, εstop

1: k ← 0, ε(0) ← εstop

2: while ε(k) > εstop & k 6 kmax do
3: for n = 1 to N do
4: s

(k)
n =

∑
m<n `

(k+1)
m +

∑
m>n `

(k)
m

5: `
(k+1)
n ← BRn(s

(k)
n ) (using (10))

6: end for
7: ε(k) =

∥∥`(k+1) − `(k)
∥∥

8: k ← k + 1
9: end while
5As player n gives its best response to the other players strategies.
6In a general setting, BRn would be a function of `−n.

Remark 5. In a general setting, BRn(sn) can be multivalued.
In that case, we can still use Algo 1 by arbitrarily choosing
any element of BRn(sn) at Line 5.

Notice that the for loop in Algo 1 (Line 3) implements
sequential updates and cycles over the set of players in the
arbitrary order7 1, 2, . . . , N . One could think of a simultaneous
version of Algo 1 (without Line 4 and where Line 5 is executed
by all players in parallel). However, we observed that doing
so can prevent the convergence of Algo 1.

Another natural algorithm to compute the equilibrium is
to emulate the projected gradient descent, well-known in
convex optimization [25], by considering the gradient of each
objective function of the players, as described in Algo 2.

Algo. 2 Simultaneous Improving Response Dynamics (SIRD)

Require: `(0), kmax, εstop, γ
1: k ← 0, ε(0) ← εstop

2: while ε(k) > εstop & k 6 kmax do
3: for n = 1 to N do
4: `

(k+1)
n ← ΠLn

(
`

(k)
n − γ∇nbn(`

(k)
n , `

(k)
−n)
)

5: end for
6: ε(k) =

∥∥`(k+1) − `(k)
∥∥

7: k ← k + 1
8: end while

At Line 4 of Algo 2, ΠLn denotes the projection on the
feasibility set of consumer n Ln. The chosen denomination
improving response recall that, at each iteration of Algo 2,
player n improves her profile `n by performing a projected
gradient step (Line 4), but in general does not choose the
best improvement as in Algo 1. Note that from Algo 1 to
Algo 2, only the instructions within the for loop are changed:
the update of sn and computation of BRn (Lines 4 and 5 of
Algo 1) are replaced with the gradient step (Line 4 of Algo 2).

Remark 6. Both Algo 1 and Algo 2 can be implemented in
a “decentralized” procedure: the instructions within the for
loop (Line 4-5 for Algo 1 and Line 4 for Algo 2) can be
performed locally by each consumer’s ECS. In this way, the
privacy of consumers is respected as they do not have to send
information about their constraints (5b-5c) to the aggregator.
On the other hand, they only need to receive information on
the aggregated load s(k)

n and can hardly deduce the individual
consumption of the other consumers.

The computational complexity of one iteration (within the
for loop) of Algo 2 is equivalent to the complexity of the
projection ΠLn , which can be computed with the Quadratic
Program (QP) ΠLn(`′n) = argmin`n∈Ln ‖`′n − `n‖

2
2 so it

would be of the same order of complexity (see [26, Lecture 4])
as one iteration (within the for loop) of algorithm CBRD with
affine prices (Assumption 3). With the specific structure of the
feasible set Ln ⊂ RT , a QP can be solved very efficiently in
O(T ) [27], so that one iteration of Algo 2—as well as one
BR with linear prices in Algo 1—will be very fast. Moreover,

7Choosing a ”good” order of the BR in the for loop might accelerate the
convergence of the algorithm. This could be the subject of future work.
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as we do not update sequentially the load of the others `−n
in Algo 2, the projected gradient step within the for loop can
be computed simultaneously and can be parallelized.

B. Game Stability and Convergence of Algos 1 and 2

To study the convergence to the unique NE of the two algo-
rithms proposed in Sec. III-A, we use the notion of stability,
and prove that the energy consumption game G defined above
is strongly stable under Assumption 2. The notion of stability
was introduced in [28] in order to study different game
dynamics in continuous time and their convergence to NE.
We extend this property to a “strong” version (symmetrically
to the concept of strong monotonicity for operators):

Def. 3 (Hofbauer and Sandholm, 2009). Stable Game.
A minimization game G = (N ,L, (bn)n) is stable iff

∀`, `′ ∈ L, (`′ − `)T. (F (`′)− F (`)) > 0 , (11)

with F (`)
∆
= (∇nbn(`))n∈N .

Moreover, G is a-strongly stable, with a constant a > 0, iff:

∀`, `′ ∈ L, (`′ − `)T. (F (`′)− F (`)) > a ‖`− `′‖2 . (12)

Remark 7. The condition of stability in (11) is equivalent
to the condition of strict diagonal convexity in [29], which
implies uniqueness of NE [29, Thm.2].

Def. 3 gives an abstract condition on an operator that
depends on the objective functions of the players. In our case,
players objectives (bn) depend linearly on price functions (ct)t
through (4), so it is interesting to translate the condition of
Def. 3 directly on the price functions, as stated in Prop. 1.

Proposition 1. Let a > 0 such that Assumption 2 holds. Then,
the game G is a-strongly stable.

Proof: See Appendix Sec. C.

On the basis of this stability property, we first consider
the question of the convergence of Algo 1. In general games,
CBRD might not converge [30] or might take an exponential
time to converge [31]. In atomic splittable congestion games
on a parallel network, as in our case, the convergence and
the speed of Algo 1 has been studied previously in [12] and
[13], where the authors show by different methods that there
is a geometric convergence in the case of N = 2 players and
convex and strictly increasing price functions (Assumption 1).
However, to the best of our knowledge, the convergence in this
setting and for more players N > 2 is still an open question.

In our case, simulations show a geometric convergence rate
for any instance of G satisfying Assumption 3 and for any N ∈
N, as illustrated in Fig. 1. In [13], it is conjectured that this
geometric convergence may also holds under Assumption 1.
Restricting ourselves to affine price functions, we notice that
game G is a potential game [15, 32] and we get the following
guarantee on the rate of convergence of Algo 1:

Theorem 3. Under Assumption 3, the sequence of iterates of
Algorithm CBRD

(
`(k)

)
k>0

converges to the unique NE `NE

of G. Moreover, the convergence rate satisfies:

∥∥∥`(k) − `NE
∥∥∥

2
6 C

√
MN√
a
× 1√

k
,

where C depends on `(0) and the billing functions,
M = 2 maxt βt and a = 2 mint βt.

Proof: See Appendix D. The result is implied by convergence
of alternating block coordinate minimization method [33].

The proof of Thm. 3 uses the fact that M = maxnMn

where Mn is a Lipschitz constant of ∇nbn, and a is a strong
convexity (and a-strong stability) constant. To the best of our
knowledge, the question to know if Thm. 3 holds for general
price functions is open; it can be an avenue for future research.

It is easier to get a strong guarantee on the convergence rate
of Algo 2 for general price functions, as stated in Thm. 4:

Theorem 4. Denote by Mn a Lipschitz constant of ∇nbn and
M

∆
= maxnMn. Under Assumption 2 (a- strong stability), for

γ
∆
= a/(NM2), SIRD converges. Moreover, we have:∥∥∥`NE − `(k)

∥∥∥
2
< ηk

∥∥∥`NE − `(0)
∥∥∥

2
,

where η = 1− a2

NM2 .

Proof: See Appendix Sec. E.
Note that, under Assumption 3, as stated in Thm. 3 we have

M = 2 maxt βt and a = 2 mint βt, which gives the explicit
contraction ratio η = 1− maxt βt

N mint βt
.

In practice, in spite of the weaker convergence result for
CBRD, the convergence seems to also happen at a geometric
rate, with a better ratio than the one found for Algorithm SIRD
when the number of players N is small, as illustrated in Fig. 1.
The convergence speed of both algorithm decreases with the
number of users, as illustrated by the geometric coefficient η
in Thm. 4. However, SIRD becomes faster than CBRD when
the number of players is large enough (N > 20).

Fig. 1. Convergence of SIRD and CBRD with uniform affine price functions
and T = 10. When the number of players N increases, the convergence rate
of both algorithms decreases, but SIRD becomes faster than CBRD.
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IV. SIMULATION OF ONLINE DEMAND RESPONSE

In this section, we simulate consumption under the DR
framework described above. We propose a practical procedure
to implement the DR framework: at each hour, the equilibrium
profiles for the flexible consumption is re-computed for the
hours ahead to the end of the optimization horizon T , using
Algo 1 or Algo 2. Next, we detail this simulation framework.

A. Online Demand Response Procedure

The initial time horizon T that we consider for the planning
via DR starts each day at noon (t = 1) and stops at noon
the day after (t = T ). We describe an “online” procedure,
computing the DR equilibrium flexible consumption profiles
on time horizon {1, . . . T} for each day. As the price functions
ct depend on the nonflexible load through (2), and as the
accuracy of forecast of this load improves when approaching
from real-time, we re-compute the equilibrium using updated
forecasts at each time period.

Algo. 3 Online Demand Response Procedure
1: Start at t = 1
2: while t 6 T do
3: Set new horizon T (t) = {t, t+ 1, . . . , T}
4: Get LNF forecast on T (t): L̂(t)

NF
∆
=
(
L̂

(t)
NF,s

)
t6s6T

5: Re-compute prices ct(.) for t ∈ T (t) from (2)
6: Run Algo. SIRD or BRD to compute NE `(t) on T (t)

7: for each user n ∈ N do
8: Realize computed profile on time t, `(t)n,t
9: Update energy demand En ← En − `(t)n,t

10: end for
11: Wait for t+ 1
12: end while

Remark 8. In practice, the NE profile `(t) has to be computed
before period t to begin consumption at time t (Line 8). If τ
is an upper bound on the computation time of the NE profile
(Line 6), then, as we want to use the latest available forecast,
Lines 3-5 would be run just before t− τ , Line 6 is run in the
interval [t− τ, t] and Line 8 is executed through [t, t+ 1].

Observe that in Algo 3, considering updated forecast at
Line 4 leads to updated price functions (ct)t (Line 5), ac-
cording to equation (2). In turn, the updated price functions
modify the objective function of user n, bn, used in Line 6.

The difference of Algo 3 with an “offline” version is that
we recompute the equilibrium consumption (Line 6) at each
time for all the time periods ahead. In an offline DR, we would
compute the equilibrium consumption for all the horizon T =
{1, . . . , T} only once, just before t = 1.

Proceeding with this “online” version has two main advan-
tages. First, it enables to rely on updated forecast with new
information acquired on the nonflexible load LNF (Line 4) up
to time t−τ . Second, it also enables to cope with local issues
as disconnection of an user or a communication bug: in that
case, we do not follow lines 8 and 9 for the involved user,
and this user will have the same energy demand for the next
round at t+ 1.

Theorem 5. The online demand response procedure of Algo 3
is consistent: that is, if forecasts are perfect (i.e. ∀t ∈ T ,∀t′ ∈
T (t), L̂

(t)
NF,t′ = LNF,t′ ), then for any t2 > t1, the NE profile

`(t1) computed at t1 with forecast L̂(t1)
NF is equal on {t2, . . . T}

to the NE profile `(t2) computed at t2 with forecast L̂(t2)
NF .

Proof: See Appendix F.
Thm. 5 states a dynamic programming principle adapted

to our game-theoretic framework. It ensures that, following
Algo 3, the final realized profile ` will correspond to the NE
under perfect forecasts. To quantify the value of this online
procedure in the more realistic case of imperfect forecasts, we
simulate it on the set of consumers and parameters taken from
real data, defined below.

B. Consumers

We consider a set of N = 30 users owning an electric
vehicle (EV) from the database of Texan residential consumers
PecanStreet Inc. [34]. We consider that the charging of the
EV is the only flexible appliance of the consumers managed
through the DR program, while the remaining of the user’s
consumption is nonflexible and is taken as in the data. We
denote by D ∆

= {16/01/01, . . . , 16/01/31} the set of the 31
days of January 2016 for which we simulate the DR program
and we index a parameter by d ∈ D when it is specific to
day d. For constraints (5b-5c), we take, for each day d ∈ D,
the total flexible demand of user n, En,d as the total observed
consumption for the EV of n on the time set T = {1, . . . , T}
(twenty-four hours of d from 12PM to 11AM on d + 1). The
power lower bound is always taken to zero `n,d,t = 0. For
the power upper bound `n,d,t, we consider two cases: if a
positive power was given at d, t in the data, we take `n,d,t as
the maximum power given to n’s EV in the data in the set D.
If the power given to the EV is 0 at d, t in the data, we take
`n,d,t = 0 (i.e. we consider that the EV of n was not available
to charge on period d, t).

C. Price Functions

Following [15], we consider that the aggregator has a pro-
viding cost for the global demand at time t, Dt

∆
= (LNF,t+Lt),

that does not depend on the time, and given (in $) by C(Dt)
∆
=

0.711− 0.0417Dt + 0.00295D2
t where the coefficients repli-

cate the cost function of a real residential electricity provider.
For this, we computed the average, minimum and maximum
values of LNF,t over all the hours of the 31 days of January
2016 on our set of 30 consumers and interpolate the three
values (avg LNF,t, minLNF,t, maxLNF,t) to three respective
prices proposed by the Texan distributor Coserv [35] so that
c̃(avgLNF,t) = 0.080$/kWh (price for “base” contracts),
c̃(minLNF,t) = 0.055$/kWh (price for Off-Peak hours in
Time-of-Use contracts) and c̃(maxLNF,t) = 0.14$/kWh (price
for Peak hours). Following (2), the price for the flexible load
is given by: ct(Lt) = (−4.17+0.590LNF,t)+0.295Lt, so that
Assumption 3 holds.
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D. Forecast of the Nonflexible Load

Here, as we assume that the prices depend on the non-
flexible load, at each time t the aggregator has to compute
a forecast L̂(t)

NF
∆
=
(
L̂

(t)
NF,t, . . . L̂

(t)
NF,T

)
to be able to compute

the equilibrium consumption for time periods {t, . . . , T}. To
simulate the forecasts, we assume that the forecast made
at time t for period t′ > t, L̂(t)

NF,t′ has no bias, that is
E[L̂

(t)
NF,t′ |σ(Ft)] = LNF,t′ (where Ft is the natural filtration

over (LNF,t)t), and that we have perfect information at time t,
that is: L̂(t)

NF,t = LNF,t . Considering that LNF,t = Pte
Xt where

Xt follows an Ornstein-Uhlenbeck [36] process with mean
reversing coefficient m and volatility σ, and Pt a seasonality
factor that depends on the hour of the week (1st hour to 168th

hour), we get for any t 6 t′:

L̂
(t)
NF,t′ =Pt′

(
LNF,t

Pt

)e−m(t′−t)

exp
(
σ2

4m
(1− e−2m(t′−t))

)
.

Using a least-squares regression on the observed data from
years 2014 and 2015, we compute m ' 0.198 h−1 and σ '
0.117 h−1/2. An example of the simulated forecasts made at
four different time periods is given in Fig. 2.

Fig. 2. Forecasts of the nonflexible load L̂
(t)
NF evolving in time.

We assume a perfect forecast at time t for t. Forecasting performance
increases when approaching real time.

E. Gains with the Online DR Procedure

We run the DR Procedure as described in Sec. IV-A on each
day of January 2016 to get the computed flexible consumption
profile of each user `n, and compute the associated social cost
on the DR horizon {1, . . . , T} for each day in D. We compare
the total social costs on all simulated days D, obtained via the
DR online procedure and the associated social costs with the
four other consumption scenarios below:

1) uncoordinated case: no DR is implemented to control or
incentivize consumers flexibility; the consumption profiles are
taken as the observed value in the data;

2) offline DR: the equilibrium is computed only once at
t = 1 and for the whole time horizon {1, . . . T} considering
the first forecast L̂(1)

NF available at t = 1,
3) perfect forecast DR: offline DR, where we take L̂(1)

NF =
LNF. With Thm. 5, it is useless to recompute the profiles at
each time period,

4) optimal scenario: a centralized entity (with perfect
forecasts) computes the flexible consumption profile ` that
minimizes the system costs

∑
t Ltct(Lt).

The NE is computed by implementing Algo 1 under Python
3.5, where each quadratic program (QP) minimization (cor-
responding to one Best Response, Line 5) is solved with
the solver Cplex 12.6 through Pyomo API, run on a single
thread on an Intel i7@2.6GHz. As for the stopping criterion
of Algo 1, we take εstop = 10−3. Under this configuration
it takes on average around 80 seconds to compute each NE
(`NE
n ∈ R24, n ∈ {1 . . . 30}). The optimization problem to

compute the optimal consumption profile satisfying all users
constraints (5b-5c), for each simulated day (from 12PM to
11AM) in D, is also a convex QP that is solved easily with
the solver Cplex 12.6 in 0.31seconds on average.

Cons. Scenario Social Cost Avg. Price Gain
Uncoordinated $ 1257.2 0.200 $/kWh —

Offline DR $ 1231.6 0.195 $/kWh 2.036%
Online DR $ 1131.1 0.180 $/kWh 10.03%

Perfect forecast DR $ 1075.2 0.171 $/kWh 14.47%
Optimal scenario $ 1056.8 0.169 $/kWh 15.94%

TABLE I
SOCIAL COSTS, AVERAGE PRICES AND RELATIVE GAIN TO THE

UNCOORDINATED CONSUMPTION SCENARIO ON JANUARY 2016 .

Fig. 3. Consumption Profiles on a typical day, with the different scenarios
listed in Sec. IV-E. The optimal profile flattens the consumption. The online
DR procedure of Algo 3 gets closer to the Perfect forecast (offline) DR profile.

Tab. I summarizes numerical results, it gives the total costs
on the 31 days of January 2016 and compares the gains of
the different flexible consumption scenarios relatively to the
uncoordinated one. We can see on this table that the online
DR procedure achieves significant savings compared to the
offline version for which the results are really low in average:
using our offline DR decreases the system costs by 2%
relatively to the uncoordinated profile, that is, when consumers
behave without any incentives. Implementing this offline DR
program might not be worthy as it still involves a sophisticated
communication and automation structure and it adds more
constraints for consumers. This low performance is directly
linked to our simple and naive model for the nonflexible load
forecasts, which results in inaccurate forecasts for the last
hours, as seen in Fig. 2. If more advanced forecasting methods
(see [37]) can improve this accuracy, we cannot get rid of
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the high variance due to the low scale of the small set of
consumers (30 in our example, and several hundreds for an
aggregator for a typical low-voltage station). The online DR
procedure seems to bring a solution to this issue: even with our
simple forecast model, we achieve more than 10% of savings,
with a gap of only 5% from the scenario with perfect forecasts.
Therefore, our results show that implementing the given online
DR procedure, even without very accurate forecasts, will be
worthwhile for the aggregator.

V. CONCLUSION

In this paper, we developed a game-theoretic model for a
residential demand response program, and we have addressed
several issues about its implementation. We gave several new
theoretical results about the uniqueness and existence of a
Nash equilibrium consumption profile, and we have shown that
the two algorithms CBRD and SIRD provide approximations
of the NE at an arbitrary accuracy in finite time. We have
introduced and simulated an online procedure that recomputes
the NE profiles at each time period to take into account new
information. We have shown numerically that this online pro-
cedure achieves a small price of anarchy when the parameters
are fixed but also when the demand is uncertain. The online
procedure reduces the impact of inaccurate forecasts and will
be interesting to implement for an aggregator.

Several extensions of this work can be undertaken. First
of all, our online procedure can be directly applied in the
presence of other sources of stochasticity such as interactions
with market prices or local renewable production sources.
The aggregator objective can also be generalized to take into
account the distance to a reference load profile or to maximize
consumption during renewable production peaks or could also
reflect market prices. Also, two main theoretical questions
are still open. First, the result on the PoA bound could be
improved to be tighter to the numerical results, and generalized
to a larger set of functions. Second, the convergence theorem
for the Best Response Dynamics (CBRD) could also be
improved, as the observed convergence rate is faster than the
given bound, and the convergence is numerically observed for
a larger set of prices than affine functions.
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APPENDIX A
PROOF OF THM. 1: UNIQUENESS OF NE IN G

The proof follows the one of [9], extending it to the
constrained case with constraints of the form (5c).

We denote by λn the Lagrange multiplier associated to (5b),
along with µ

n,t
> 0 the multiplier associated to `n,t 6 `n,t

and µn,t > 0 the multiplier associated to `n,t 6 `n,t.
Note that the KKT conditions give that, at optimality:

γn,t(`n,t, Lt) = λn + µ
n,t
− µn,t , (13)

where γn,t(`n,t, Lt)
∆
= ct(Lt)+`n,tc

′
t(Lt) is the marginal cost

of n. Let’s consider ` and ˆ̀ two NE’s. From (13), we get:

`n,t < `n,t ⇒ µn,t = 0⇒ γn,t(`n,t, Lt) > λn

and `n,t > `n,t ⇒ µ
n,t

= 0⇒ γn,t(`n,t, Lt) 6 λn

and the same inequalities hold for ˆ̀.
We start by showing the following implications:(

λ̂n 6 λn and L̂t > Lt

)
⇒ ˆ̀

n,t 6 `n,t , (14)(
λ̂n > λn and L̂t 6 Lt

)
⇒ ˆ̀

n,t > `n,t . (15)

We show (14) as (15) is symmetric. If ˆ̀
n,t=`n,t or `n,t=`n,t,

then ˆ̀
n,t 6 `n,t is clear. Else, ˆ̀

n,t > `n,t and `n,t < `n,t so:

γn,t(ˆ̀
n,t, L̂t) 6 λ̂n6λn6γn,t(`n,t, Lt) 6γn,t(`n,t, L̂t) (16)

where the last inequality holds as γn,t is increasing in Lt. As
c′t(L̂t) > 0 from Assumption 1, we deduce that `n,t > ˆ̀

n,t.
Now, let’s consider T1 =

{
t : L̂t > Lt

}
along with T2 =

T \T1 =
{
t ; L̂t 6 Lt

}
and Na =

{
n ; λ̂n > λn

}
. Suppose

T1 6= ∅. From constraint (5b) and from (15), we have:

∀n∈ Na,
∑
t∈T1

ˆ̀
n,t = En −

∑
t∈T2

ˆ̀
n,t 6 En −

∑
t∈T2

`n,t =
∑
t∈T1

`n,t .

On the other hand, considering for t ∈ T1 and n /∈ Na, we
have from (14) that ˆ̀

n,t 6 `n,t, and thus:∑
t∈T1

L̂t =
∑
t∈T1

∑
n∈Na

ˆ̀
n,t +

∑
t∈T1

∑
n/∈Na

ˆ̀
n,t 6

∑
t∈T1

Lt , (17)

which is a contradiction. Thus T1 = ∅ and ∀t, L̂t = Lt.
With this equality, we can precise (14) with:[
λ̂n<λn and L̂t=Lt

]
=⇒[

ˆ̀
n,t<`n,t or ˆ̀

n,t=̀ n,t=`n,t or ˆ̀
n,t=`n,t=`n,t

] (18)

and similarly for (15). Indeed, if ˆ̀
n,t = `n,t or if `n,t = `n,t

then the implication holds because `n,t > `n,t and `n,t 6 `n,t.
Else, ˆ̀

n,t > `n,t and `n,t < `n,t, and the same sequence of
inequalities as in (16) gives γn,t(ˆ̀

n,t, Lt) < γn,t(xn,t, Lt),
implying that ˆ̀

n,t < `n,t.
Suppose that there exists n s.t. λ̂n < λn. If only the two

latter cases in (18) happen, then we have `n,t = ˆ̀
n,t, ∀t. Else,

there is at least one t for which ˆ̀
n,t < `n,t, so En =

∑
t

ˆ̀
n,t <∑

t `n,t = En which can not happen. Thus, λ̂n = λn for all
n and (14) and (15) imply that `n,t = ˆ̀

n,t for all n and t.

APPENDIX B
PROOF OF THM. 2: POA UPPER BOUND

The proof relies on the notion of local smoothness introduced
in [22]. The idea is to get a tighter bound than [22] by
specifying the parameters of the affine price functions (ct)t
and by using the upper bound on Lt instead of looking at the
worst possible cases as done in [22].

Let κt
∆
= αt/βt so ct(x) = βt(x+κ). From [22], we know

that if there exist λ, µ > 0 and a profile y ∈ L satisfying for
each t ∈ T :

∀x ∈ L, yt(xt+κt)+
y2
t

4
6 λyt(yt+κt)+µxt(xt+κt), (19)

where yt =
∑
n yn,t and xt =

∑
n xn,t then G is locally

λ, µ-smooth for y, i.e. for any admissible profile x ∈ L:

N∑
n=1

bn(x) +∇nbn(x)T (yn − xn) 6 λSC(y) + µSC(x).

In that case, it follows from [22] that the PoA is bounded by
λ/(1− µ). For the remaining of the proof, we fix t and omit
subscript t in the notations. As done in [22], we introduce:

φxy(µ)
∆
=
y(x+ κ) + y2

4 − µx(x+ κ)

y(y + κ)

and λ∗(µ)
∆
= sup
x,y>0

φxy(µ) .

λ∗(µ) is the minimum value of λ > 0 such that (19) holds with
values (λ, µ). Let us compute an explicit expression of λ∗(µ).

If x = 0, φ0,y(µ) = y+4b
4(y+κ) and

∂φ0,y

∂y
< 0 so supx,y φx,y

would be attained with y = 0 and is φ0,0 = 1. Otherwise:

0 =
∂φ

∂x
⇔ 1

y(y + κ)
(y − 2µx− µκ)⇒ x =

y − κµ
2µ

https://dataport.pecanstreet.org/data
https://dataport.pecanstreet.org/data
http://www.coserv.com/Customer-Service/Electric-Rates-And-Tariff
http://www.coserv.com/Customer-Service/Electric-Rates-And-Tariff
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but as x > 0, this supposes that y > µκ. We compute:

φ y−κµ
2µ ,y =

1

y(y + κ)4µ

(
(y + κµ)2 + µy2

) ∆
= h(y) .

We can see that h′ vanishes on R+ at y+
∆
=

κµ2+κµ
√
µ2+1−µ

1−µ
that gives a min of h so h is decreasing then increasing. At
the lower bound y = κµ, we get φ = κµ+4b

4(κµ+κ) = µ+4
4(µ+1) =

1
4 + 3

4(µ+1) < 1 which is not max as φ0,0 = 1. At the upper

bound y = L, we have h(L) = (L+κµ)2+µL
2

L(L+κ)4µ
= λ∗(µ). Last,

to compute the best bound infµ λ
∗(µ)/(1−µ), let us consider:

g(µ)
∆
= 4L(L+ κ)

λ∗(µ)

1− µ
=

(L+ κµ)2 + µL
2

µ(1− µ)
.

If we denote ϕ ∆
= (1 + r)2 and r ∆

= κ/L, g(µ) is minimal at
µ∗

∆
= (−1 +

√
1 + ϕ)/ϕ. We finally get our PoA bound as:

λ∗(µ∗)

1− µ∗
=

(3 + 2r)+2
√

1 + ϕ

4(1 + r)
=

1

2

(
1 +

√
1 +

1

ϕ
+

1

2
√
ϕ

)
= 1

2

(
1 +

√
1 + (1 + r)−2 + (2(1 + r))−1

)
6 1 + 3

4(1+r) .

The last inequality gives a more explicit bound and is obtained
from

√
a2 + b2 6 a+ b valid for any a, b > 0.

Next, following [22], for `, `′ ∈ L (admissible solutions):∑
n

bn(`) +∇nbn(`)T (`′ − `)

=
∑
n

∑
t∈T

`n,t · ct(Lt) + (`′n,t − `n,t) (ct(Lt) + `n,tc
′
t(Lt))

=
∑
t

L′t · ct(Lt) + c′t(Lt)
∑
n

(
`′n,t`n,t − `n,t

2
)

6
∑
t

L′t · ct(Lt)+c′t(Lt) ·
Lt

2

4
=
∑
t

bt

[
L′t(Lt + κt)+

Lt
2

4

]
6
∑
t

bt [λL′t(L
′
t + κt) + µLt(Lt + κt)] (20)

= λSC(`′) + µSC(`)

where (20) is valid if (λ, µ) is chosen such that:

∀t ∈ T , λ >
(Lt + κtµ)2 + µL

2

t

Lt(Lt + κt)4µ

∆
= λ∗κt(µ) .

Let us denote t0
∆
= argmin

t
κt and choose µ∗ ∆

= µ∗t0 , λ∗ ∆
=

λ∗κt0 (µ∗) (the optimal (λ, µ) for t0), then we have to check
that for all t ∈ T , λ∗ > λ∗κt(µ

∗). For that, it is sufficient to
show that r 7→ λ∗r(µ

∗) is decreasing on [rt0 , rt], which is true
if rt < −1 +

√
1 + 1−µ∗

µ∗2 ⇐⇒ ϕrt < ϕrt0 + 2 +
√

1 + ϕrt0
with ϕr = (1+r)2, which gives condition (7) stated in Thm. 2.

APPENDIX C
PROOF OF PROP. 1: STRONG STABILITY OF G

We denote by G(`)
∆
= JF (`) the Jacobian of operator F .

Since functions bn are twice differentiable, condition (11) is
equivalent to having the matrix G(`)+GT (`) positive definite
for all ` ∈ L, that is, G(`) +G(`)T � 0.

As bn =
∑
t bn,t, with bn,t(`t)

∆
= `n,tct(Lt), is separable

in t, we can re-index the matrix G(`) to have a diagonal

block hourly matrix G(`) = diag(G1, ...GH) , with Gt(`t)
∆
=(

∂2bn,t
∂`n,t∂`m,t

(`t)

)
n,m∈N 2

and we get for all t:

Gt(`t) +Gt(`t)
T =

(
∂2bn,t(`t)

∂`m,t∂`n,t
+
∂2bm,t(`t)

∂`n,t∂`m,t

)
n,m

.

Let t ∈ T and x ∈ RN \ {0}. Furthermore, let σ(x, `)
∆
=

xT
(
Gt(`t) +GTt (`t)

)
x. For notation simplicity, let us forget

the index t and the argument (L) in functions ct. We have:

σ(x, `)=

N∑
n=1

2x2
n(`nc

′′+2c′)+2
∑
n<m

xnxm ((`n+`m)c′′+2c′) =

N∑
n=1

2x2
n (rnγ+(1−rn)a)+2

∑
n<m

`nxm ((rn+rm)γ+(1−rn−rm)a)

with rn
∆
= `n/L, a = 2c′ and γ ∆

= 2c′ + Lc′′. Then we have:

σ=a
∑
n

x2
n+a

(∑
n

(
1−rn

(
1−γa

))
`n

)2

−(a−γ)2

a

∑
n,m

rnrmxnxm

which is the sum of three quadratic form: q1(x) = 2a
∑
x2
n

which has one eigenvalue 2a of multiplicity N , q2(x) =

2a
(
xT vT vx

)
with vn

∆
=
∑
n 1 − `n

L

(
1− γ

2a

)
of rank

one which has eigenvalues 0 of multiplicity N − 1 and
2a||v||22 of multiplicity 1, and a negative form of rank one
q3(x) = − 1

2a (2a− γ)
2
(∑

n,m
`n
L
`m
L `nxm

)
which nonzero

eigenvalue is − 1
2a (2a− γ)

2∑
n

(
`n
L

)2
.

We deduce that the quadratic form q1 + q2 is positive
definite, and that its eigenvalues are 2a with multiplicity
N − 1 and 2a(1 + ||v||22) with multiplicity 1. Next we use
the following result from perturbation theory:

Theorem 6 (Horn and Johnson, 2012, [38, p367] ). If A,E ∈
Mn are two Hermitian matrices and if λ1 6 ... 6 λn are
the ordered eigenvalues of A and λ̂1 6 .. 6 λ̂n are the
ordered values of A+E, and λE1 6 ... 6 λEn are the ordered
eigenvalues of E, then :

∀k = 1..n, λE1 6 λ̂k − λk 6 λEn

and
∣∣∣λ̂k − λk∣∣∣ 6 ρ(E) = |||E|||2 .

Applying this theorem with A = q1 + q2 and perturbation
E = q3 we get that the smallest eigenvalue λ̂1 of σ verifies:

λ̂1 > min {Sp(q1+q2)}−(a−γ)2

a

∑
n

r2
n

= a
(

1−
(
1−γa

)2∑
n

r2
n

)
.

Replacing a and γ, we can get the condition of Assumption 2.

APPENDIX D
PROOF OF THM. 3: CONVERGENCE OF CBRD

The key of the proof is that, under Assumption 3, the game
is an exact potential game [32] with convex potential:

Φ(`) =
∑
t∈T

αtLt +
βt
2

(L2
t +

∑
n

`2n,t) ,
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that is, for any ` ∈ L and any n, ∇nΦ(`) = ∇nbn(`). Thus,
the NE corresponds to the minimum of Φ and we have, for any
` ∈ L, argmin

`n∈Ln
bn(`n, `−n) = argmin

`n∈Ln
Φ(`n, `−n). Therefore,

running Algo 1 is equivalent to performing an alternating block
coordinate minimization on Φ. According to [33, Thm. 6.1],
we get that:

Φ(`(k))− Φ(`NE) 6
2MN2R2c5

k
(21)

with M = maxnMn = 2 maxt βt (max of Lipschitz constants
of ∇nbn = ∇nΦ), R = max`{

∥∥`− `NE
∥∥ ; Φ(x) 6 Φ(`(0))}

and c5 = max{ 2
MN2R2 − 2, Φ(`(1))−Φ(`NE), 2}. But Φ is

also strongly convex, that is, for any `, `′ ∈ L:

Φ(`)− Φ(`′) > 〈∇Φ(`′), `− `′〉+
a

2
‖`− `′‖2 (22)

with a = 2 mint βt. Also, the minimality of `NE on the convex
set L implies that for any ` ∈ L:

〈∇Φ(`NE), `− `NE〉 > 0 . (23)

Then from (22) and (23), we get for any k > 0:

a

2

∥∥∥`(k)−`NE
∥∥∥2

6 Φ(`(k))−Φ(`NE) + 〈∇Φ(`NE), `NE−`(k)〉

6 Φ(`(k))− Φ(`NE) ,

and from (21) we get the convergence result of Thm. 3.

APPENDIX E
PROOF OF THM. 4: CONVERGENCE OF SIRD

We analyze the convergence of the sequence (Tkγ(x))k

where [Tγ(`)]n
∆
= ΠLn (`− γ∇nfn(`n, `−n)). First notice

that the unique NE of the game `NEis the unique fixed point
of Tγ i.e. xNE = Tγ(xNE). The idea is then to prove that Tγ
is a η-contraction, for a given norm ‖ · ‖ which will imply the
convergence rate

‖T k
(
x(0)

)
− xNE‖ 6 ηk‖x(0) − xNE‖ ,

for any initial condition x(0) ∈ Rm. Let ‖ · ‖ denote the
Euclidean norm on Rd for any positive integer d. As the
projection on a convex set is nonexpansive [39, Corollary
12.20], we get for `, `′ ∈ L:

‖Tγ(`)− Tγ(`′)‖2 =

N∑
n=1

‖Tγ,n(`)− Tγ,n(`′)‖2

=

N∑
n=1

‖ΠLn(`n − γ∇nfn(`))−ΠLn(`′n − γ∇nfn(`′))‖2

6
N∑
n=1

‖`n−`′n+γ(∇nfn(`′)−∇nfn(`))‖2

=

N∑
n=1

‖`n−`′n‖2 + γ2‖∇nfn(`)−∇nfhn (`′)‖2

− 2γ 〈∇nfn(`)−∇nfn(`′), `n−`′n)〉 .

As we assume that for any n, ∇nfn is Mn-Lipschitz
and let M ∆

= maxnMn, then we have
∑N
n=1 |∇nfn(`) −

∇nfn(`′)|2 6 NM2‖`−`′‖2. Besides, from a-strong stability
Def. 3, we get :

‖Tγ(`)− Tγ(`′)‖2 6 η‖`− `′‖2 ,

with η
∆
= 1 + NM2γ2 − 2γα. Minimizing on γ > 0 gives

γ = α
NM2 and η = 1− α2

NM2 < 1 and Tγ is a contraction.

APPENDIX F
PROOF OF THM. 5: CONSISTENCY OF DR PROCEDURE

Let t0 ∈ {1, . . . , T − 1} and let us denote by G(t0)

the DR-game on hours {t0, . . . , T} (considered at t0 in the
procedure) and G(t0+1) the DR-game on hours {t0 +1, . . . T}.
Let (x,λ,µ,µ) be the unique NE of G(t0) associated with its
dual variables (as defined in Sec. A) and y the NE of G(t0+1).
As we assumed perfect forecasts of the nonflexible load, the
price functions (ct)t considered in the BR of the players do
not depend on the forecasts and are the same for the games
G(t0) and G(t0+1) . We want to show that xt = yt for any
t ∈ {t0 + 1, . . . , T}. As there is a unique NE of G(t0+1) , it is
sufficient to show that (x,λ,µ,µ) verifies the KKT conditions
of each subproblem (5) of G(t0+1) . As x is a feasible solution
of G(t0) , it verifies the power bounds constraints (5c) as well
as the total energy constraint (5b):

xt0n +
∑
t>t0

xn,t = En ⇔
∑
t>t0

xn,t = (En − xt0n ) , (24)

where this last equality is exactly the total energy constraint
(5b) for n in the game G(t0+1). Also, x,λ,µ,µ verify the
complementarity constraints associated to constraint (5c) at
each time t ∈ {t0 + 1, . . . , T}. Finally, the stationarity
condition gives for any t ∈ {t0 + 1, . . . , T}, γn,t(xn,t, Lt) =
λn + µ

n,t
− µn,t with γn,t the marginal cost of n for time t.

As each problem is convex, KKT conditions characterize the
solution of each user’s optimization problem (5), and thus x
is an NE of G(t0+1), and is therefore equal to y.
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