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Abstract—Microgrids are power systems consisting of an
electrical network composed by distributed loads and generation
units that may include a communication network for improved
operation. The considered microgrid in islanded mode is driven
by voltage source inverters implementing decentralized droop
control for active power sharing together with a communication-
based consensus algorithm for frequency regulation. This paper
analyses the microgrid performance subject to network fail-
ures that provoke network partitions. It is considered that the
electrical partition leads to several sub-microgrids working in
parallel where the power demand can be always guaranteed by
the generation units, and the communication partition leads to
several consensus algorithms also working in parallel. The double
partitioning is analyzed through a closed-loop system model
derived using the power flow equations that includes the electrical
and communication connectivity. Analytical expressions for the
steady-state values for both frequency and active power depend-
ing on the partitioning are derived. Selected experimental results
on a low-scale laboratory microgrid illustrate the (undesirable)
impact that unexpected partitions have in system performance.

Index Terms—Microgrids, islanded mode, power sharing,
frequency regulation, droop control, consensus control, graph
theory, partitioning.

I. INTRODUCTION

Microgrids (MGs) are small-scale power systems containing

storage elements, loads and distributed generators (DG) that

are interfaced with the electric network via power electronic

inverters [1]. When a MG is in islanded mode, its dynamics

are no longer dominated by the main grid, and inverters acting

as voltage source inverters (VSI) must take coordinated actions

to ensure synchronization, voltage regulation, power balance

and load sharing [2], [3]. Diverse control strategies address-

ing these challenges have been proposed, often organized

according to a standardized three-level control architecture [4]

that operates supported by a communication network. The

scope of this paper is bounded to islanded MGs driven by

VSI implementing decentralized droop control [5] for active
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power sharing together with a communication-based consensus

algorithm for frequency regulation [6].

Apart from the known impact that natural disasters have in

power systems, e.g. [7], the use of communication networks

also impacts power systems, e.g. [8]. Hence, the interdepen-

dency between the electrical network and the communication

network makes the problems of reliability, operation, and

security more complex than in the traditional power grid.

Identifying, understanding, and analyzing such interdependen-

cies are significant challenges [9]. There are numerous studies

on interdependencies in combined power and communication

systems (see a recent state-of-the-art review in [10]). Many

of them have provided conceptual insights into critical in-

terdependencies, and/or statistical tools for risk assessment,

e.g. [11], [12]. In addition, these studies usually apply on

larger scale power systems than autonomous MGs, with dif-

ferent structural properties such as communication network

redundancy [13].

Interdependencies and reliability issues in MGs have not

been widely discussed in the literature and the study of both

electrical and communication partitions becomes relevant to

ensure their correct and safe operation. In addition it provides

insight into the trade-offs associated with this technology

where power and communications networks may be tightly

coupled like in the case treated in this paper. The analysis

discovers the impact of both network’s failures have in terms

of MG active power sharing and frequency regulation.

The analytical tools used in this paper that are based on

graph theory are not new. MGs control approaches where

the electrical and/or the communication network are modeled

as graphs can be found for example in [6], [14]–[27]. But

only a few of them modeled the MG in closed-loop form

in terms of both Laplacian matrices. The focus on the zero

eigenvalue analysis of the Laplacian matrices applied in this

paper has been also used for example in [27] (and references

therein) in the context of small-disturbance stability analysis of

power systems in terms of critical lines. However, the scenario

covered in this paper where each partitioned graph transforms

into several isolated sub-graphs and its relation to the zero

eigenvalues of the electrical and communication Laplacian

matrices has not been previously reported.

A. Motivating example

Figure 1 illustrates the case of a simulated MG composed

by 16 VSIs, grouped in four sub-MGs, sMG1,2,3,4 (labeled by
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Fig. 1: 16-VSI MG electrical and communication connectivity.
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(b) Detail of the simulation

Fig. 2: 16-VSI MG injected active power after two failures.

1, 2, 3, and 4), each one including four generators (connected

electronically and by communications) and a main load that

is different for each sMGi. Each sMG is similar to the

scheme shown in Figure 4 that will be further explained in

the results section. The 4 sMGs are electronically connected

through transmissions lines (in green), and also connected

using a communication infrastructure (in blue). Sub-figure 1(a)

corresponds to the connectivity in standard operation. Sub-

figure 1(b) describes the connectivity after two failures: an

electrical failure that disconnects sMG3 from the rest, and

after a communication outage that leads to a situation where

communications are only possible between sMG3 and sMG4.

Figure 2 shows the 16-VSI injected active power when the

electrical failure occurs at time t = 50s and the communication

outage occurs at time t = 100s, giving the complete 200s

simulation in Sub-figure 2(a), and a detailed zoom from

t = 100s to t = 105s in Sub-figure 2(b). The starting

point corresponds to the scenario where no failures occur

and all VSIs share the active load demand, delivering 350W

each. When the electrical failure occurs at time t = 50s,

the 4 VSIs belonging to sMG3 work isolated form the rest,

sharing their local load demand and lowering the injected

power to 320.5W each, while the rest of 12 VSIs belonging

to sMG1,2,4 are still electrically connected and share their

local loads demands by increasing the injected power up to

360W each. Then, when the communication outage occurs at

time t = 100s, two different dynamics can be observed. First,

the 4 VSIs belonging to sMG4, that were injecting 360W

each, reduce their injection to the same level of the 4 VSIs

belonging to sMG3, thus injecting 320.5W each, because the

communication link between sMG3 and sMG4 is still alive.

Secondly, the 4 VSIs belonging to sMG1 and the 4 VSIs

belonging to sMG2, that were injecting 360W each, start

injecting the same amount of active power but the dynamics

have different slope, leading to a dangerous unstable operation.

B. Paper contributions and structure

The contribution of this paper is to provide an analytical

framework for performance analysis that permits to predict

and analyze the effects that electrical and communication

failures have in terms of active power sharing and frequency

regulation. The analysis is based on a closed-loop model able

to capture the networks partitions, thus permitting to analyze

their impact in the MG performance. Numerical examples

and selected laboratory experiments are used to describe the

behavior of the MG under different partition scenarios, which

permits identifying serious risks. It must be noted that the

assessment of secondary voltage control of MG operation

under failures is not treated in this paper because the existing

variety of control objectives deserves a complete analysis that

does not fit in this paper.

The rest of the paper is structured as follows. Section II

introduces the closed-loop model. Section III provides the the-

oretical analysis and Section IV presents a numerical example

and selected experiments. Section V concludes the paper.

II. MODELING APPROACH

The MG electrical network is a generic connected grid

where loads are modeled by constant impedances. Although

future work will consider more rich configurations (e.g. non-

linear and time-varying loads), keeping a simplified model

helps gaining understanding and reaching results that will

permit dealing with more complex MGs. A Kron reduction

is performed which allows obtaining a lower dimensional

dynamically-equivalent model described by ordinary differ-

ential equations [28], [29]. The reduced network is modeled

as a connected undirected graph Ge = {Ne, Ee} where

the ne nodes Ne represent DGs interfaced with VSIs and

edges Ee ⊆ Ne × Ne represent the power lines. Nodes are

characterized by a phase angle θi and a voltage amplitude

vi. Edges represent line admittances between nodes i and

j as yij = gij + jbij ∈ C+, where gij ∈ R+ is the

conductance and bij ∈ R+ is the susceptance. The electrical

network is represented by the symmetric bus admittance

matrix Y ∈ Cne × Cne , where the off-diagonal elements are

Yij = Yji = −yij for each edge {i, j} ∈ Ee, and the diagonal

elements are given by Yii =
∑ne

i=1
yij . It is assumed that the

reduced MG is connected.

The active power injected by each ith node is described as

pi(t) = v2
n
∑

j=1

gij + v2
n
∑

j=1

bij(θi(t)− θj(t)) (1)

assuming that nodes phase angles and voltages are similar,

as usually assumed in power systems modeling, e.g. [30],

and also in MG modeling, e.g. [31]. Hence, the accuracy of

the paper analysis improves whenever this assumptions hold.

By considering the matrix G ∈ Rn×n formed by the line

conductances whose entries are given by Gij = gij , denoting

the set of phase angles by Θ(t) =
[

θ1(t) · · · θn(t)
]T

, and

the set of active powers by P (t) =
[

p1(t) · · · pn(t)
]T

, the

active power of the Kron-reduced network (1) becomes

P (t) = v2G1n×1 + v2BΘ(t) (2)
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where 1n×1 ∈ Rn×1 denotes a vector of ones, and B ∈ Rn×n

is the Laplacian matrix of the power system given by

B =

















∑n
j=1

j 6=1

b1j −b12 · · · −b1n

−b21
∑n

j=1

j 6=2

b2j · · · −b2n

...
... · · ·

...

−bn1 −bn2 · · ·
∑n

j=1

j 6=n

bnj

















(3)

formed by the line susceptances.

The goal of the considered control is to set the nodes phases

θi(t) to achieve power sharing while having the frequency at

the desired set-point. Each node i ∈ Ne is modeled as a control

algorithm implemented at each VSI driven by

θ̇i(t) =ωi(t) (4)

ωi(t) =ω0i −mipi(t) + δi(t) + ϕi(t) (5)

δi(t) =ki

∫ t

0

ω0i − ωi(t) +
ci

ne

ne
∑

j=1

aij [δj(t)− δi(t)] dt (6)

where each node phase (4) varies according to the droop con-

trol [5] (5) that includes a corrective term δi(t) for frequency

restoration (6) inspired in the consensus control included

in [6]. The droop control (5) includes a perturbation term ϕi(t)
modeling bounded uncertainties such as measurement errors

or disturbances. Although not explicitly formalized in (5),

the droop control used in the experimental set-up will be

enabled with output virtual impedance to avoid controllability

problems that otherwise may occur [32]. However, for the

sake of simplicity, it is omitted in the theoretical development

because its inclusion would not alter the obtained results. The

correction term δi(t) in (6) is computed in part using the

neighbors correction terms δj(t) that must be exchanged over

a communication network.

The communication network can also be represented by

a connected undirected graph Gc = {Nc, Ec} where the nc

nodes Nc represent DGs interfaced with VSIs that implement

(4)-(6), and edges Ec ⊆ Nc × Nc represent communication

links. Parameters aij in the consensus control (6) form the

adjacency matrix of Gc such that aij = aji = 1 if nodes i and

j can exchange their information and aij = 0 otherwise. It

is considered that nodes in the electrical and communication

graph are the same, i.e. Ne ≡ Nc, hence ne = nc = n, which

is the habitual situation in MGs, e.g. [6] or [21].

By denoting the set of VSI local frequencies by Ω(t) =
[

ω1(t) · · · ωn(t)
]T

, the set of desired frequencies by Ω0 =
[

ω01 · · · ω0n

]T
, the set of correction terms by ∆(t) =

[

δ1(t) · · · δn(t)
]T

, the set of perturbations by Φ(t) =
[

ϕ1(t) · · · ϕn(t)
]T

and the diagonal matrices M,K,C ∈
Rn×n of droop gains mi, consensus gains ki and ci, respec-

tively, the per-node control algorithm given in (4)-(6) can be

compactly written as

Θ̇(t) = Ω(t) (7)

Ω(t) = Ω0 −MP (t) + ∆(t) + Φ(t) (8)

∆(t) = K

∫ t

0

(

Ω0 − Ω(t)−
1

n
CL∆(t)

)

dt (9)

where L ∈ Rn×n in (9) is the Laplacian matrix of the

communication graph Gc given by

L =

















∑n
j=1

j 6=1

a1j −a12 · · · −a1n

−a21
∑n

j=1

j 6=2

a2j · · · −a2n

...
... · · ·

...

−an1 −an2 · · ·
∑n

j=1

j 6=n

anj

















(10)

where aij are the entries of the adjacency matrix of Gc.

The goal of the control (7)-(9) is shaping the active power

and frequency dynamics. The active power dynamics can be

obtained by computing the derivative of (2) that leads to

Ṗ (t) = v2BΘ̇(t). (11)

By using (7) and (8), the active power variation (11) can be

written as

Ṗ (t) = −v2BMP (t)+v2B∆(t)+v2BΩ0+v2BΦ(t). (12)

In addition, the frequency dynamics can be obtained by

computing the derivative of (8) that leads to

Ω̇(t) = −MṖ (t) + ∆̇(t) + Φ̇(t) (13)

Noting that ∆̇(t) is the derivative of (9), it follows that

∆̇(t) = K

(

Ω0 − Ω(t)−
1

n
CL∆(t)

)

(14)

which can be rewritten using (8) as

∆̇(t) = KMP (t)−K

(

1

n
CL+ In

)

∆(t)−KΦ(t) (15)

where In ∈ Rn×n is the identity matrix. The frequency

dynamics (13) can be rewritten using (12) and (14) as

Ω̇(t) =M2v2BP (t)−

(

Mv2B +K
1

n
CL

)

∆(t)−KΩ(t)

+
(

K −Mv2B
)

Ω0 −Mv2BΦ(t) + Φ̇(t)
(16)

Gathering the equations of the power dynamics (12) and

frequency dynamics (16), together with the correction term

dynamics (15), the multiple-input/multiple output closed-loop

dynamics are given by





Ṗ (t)

∆̇(t)

Ω̇(t)



 = S





P (t)
∆(t)
Ω(t)



+ U Ω0 +R

[

Φ(t)

Φ̇(t)

]

, (17)

where the closed-loop system matrix S ∈ R3n×3n, input

matrix U ∈ R3n×n and perturbation matrix R ∈ R3n×2n are

S =





−Mv2B v2B 0n×n

KM −K
(

1

n
CL+ In

)

0n×n

M2v2B −Mv2B − 1

n
KCL −K



 (18)

U =





v2B

0n×n

K −Mv2B



 , R =





v2B 0n×n

−K 0n×n

−Mv2B In



 (19)

being 0n×n ∈ Rn×n a matrix of zeros.
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For the zero eigenvalue analysis presented next, it is impor-

tant to note that for a given load the total power PT that is

injected by the MG nodes is always the same, then

∀t,
n
∑

i=1

pi(t) = PT →
n
∑

i=1

ṗi(t) = 0.

This means that one of the ṗi(t) is linearly dependent of the

others ṗj(t), j = 1, . . . , n, j 6= i, that is, 1 of the 3n equations

of (17) is linear dependent of the others. Looking at matrices

S (18) and U (19), this dependency implies that rank(S) =
rank(S|U) ≤ 3n − 1 and also implies that at least S has

one eigenvalue at zero that does not act as an integrator for

the closed-loop dynamics. In fact, the zero eigenvalue would

disappear with the minimal realization of (17). However, the

non-minimal realization is kept because it provides a better

intuitive description of the closed-loop dynamics in terms of

meaningful physical variables. Note also that rank(S|R) ≤
3n− 1, that is, the same structural property that exhibits the

input matrix U applies to the perturbation matrix R in (17).

III. PARTITION ANALYSIS

For the partition analysis it is assumed that the control gains

have been designed such that both control goals, active power

sharing and frequency regulation, can be always reached. This

holds for the scenario previous to a partition and for the new

scenario appearing after a partition. Details of the design are

out of the scope of this paper but suitable values for gains

M , C and K can be obtained by solving a Linear Matrix

Inequality (LMI) problem for all admissible (and possible)

partitions. In addition, it is assumed that after any electrical

partition, each sub-microgrid meets the local load demands

with the local generation units. Otherwise, a cascading failure

would occur leading to a collapse [33], [34]. Active power

sharing (i.e., the power of the inverters in steady-state must be

proportional to its power rating while guaranteeing the supply

of the load) can be formulated as

pi(∞) =
PT

∑n

j=1

(

mi

mj

) (20)

where pi(∞) is the active power provided by each inverter in

steady-state, PT is the MG total load power, and mi and mj

are the droop gains given in (5) related to the rated power of

the inverters. Frequency regulation in steady-state in the MG

can be formulated as

ωi(∞) = ω0 (21)

where ωi(∞) is the local frequency of each inverter in steady-

state.

From this scenario, it is analyzed how the eigenvalues of a

stable closed-loop system vary due to the partitioning. Then,

steady-state expressions for power and frequency are derived.

Henceforth, the contribution of the perturbation term in the

closed-loop dynamics (17) is explicitly omitted (i.e. Φ(t) =
0) to allow focusing on the effects that partitions have on

the ideal dynamics. The inclusion of the perturbation term

in the analysis is left for future work. However, whenever

appropriate, it will be discussed for the sake of completeness.

A. Characterization of the system eigenvalues

Since the starting point for the analysis is that both the

electrical and communication graphs are connected, it holds

that their Laplacian matrices, B (3) and L (10), have a single

0 eigenvalue [35]. Whenever partition occurs, the original

graphs are split into disconnected components that form elec-

trical and/or communication sub-graphs that represent several

sub-microgrids and/or several control algorithms. Then, the

multiplicity of the 0 eigenvalue of the Laplacian matrices in-

dicate the number of resulting disconnected components [35].

The closed-loop dynamics (17) characterized by the system

matrix S (18) and the input matrix U (19) depend on the

communication and electrical Laplacian matrices L and B.

In particular, S depends on both L and B while U depends

only on B. And Theorems 1 and 2 (see Appendix A) permit

concluding that any additional 0 eigenvalue in the Laplacian

matrices L or B caused by a partition leads to a new 0
eigenvalue in S. Therefore, the dynamics the closed-loop

system may be altered depending on the role of the additional

0 eigenvalue in the system matrix S.

When looking at the additional 0 eigenvalue in the system

matrix S caused by communication partition, it is worth noting

that the input matrix U does not depend on the communica-

tion Laplacian matrix L. Hence, this additional 0 eigenvalue

becomes an integrator for the closed-loop dynamics (17)

because matrix S loses rank while matrix S|U does not,

thus maintaining the original set of 3n− 1 linear independent

equations. However, this is not the case for the additional 0
eigenvalue in the system matrix S caused by an electrical

partition because the input matrix U does depend on the

electrical Laplacian matrix B. In this case, the additional 0
eigenvalue does not become an integrator for the closed-loop

dynamics (17) because both matrices S and S|U lose rank

whenever B loses rank, thus decrementing the set of linear

independent equations.

In operational terms, whenever a communication partition

occurs, the MG control algorithm transforms into two isolated

control algorithms working in parallel on the same plant. And

in terms of closed-loop dynamics, reminding that the closed

loop system is multiple-input/multiple output, the additional 0
eigenvalue becomes an integrator of each input/output relation

(from input ω0i to any of the outputs) in such a way that

the system operation corresponds to n integrators working in

parallel. And this puts the overall MG into risk due to the

destabilizing effects of integrators working in parallel [36],

probably leading to large steady-state errors or even to unstable

dynamics. Complementary, whenever an electrical partition

occurs, the MG splits into several isolated MGs working in

parallel and controlled by a single control algorithm. And in

terms of closed-loop dynamics, the additional 0 eigenvalue

does not have destabilizing effects identified for the case of the

communication partition. However, power flows are strongly

affected. Hence, after the occurrence of an electrical partition,

since active power can not be physically transferred between

the isolated MGs, cascading failures could occur if each sub-

microgrid supply-demand would not be able to reach the

equilibrium. However, as outlined earlier, the adopted model
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assumes that the MG capacity has been dimensioned and

control gains have been designed such that this equilibrium

can be always reached. Hence, in terms of the metrics of

interest, after the electrical partition, each MG will probably

reach different steady-state equilibrium points.

B. Steady-state analysis

When partitions occur, the characterization of the MG

steady-state values for active power, correction term and

frequency, P (∞), ∆(∞) and Ω(∞) respectively, is obtained

from the solution of the equation describing the closed-loop

dynamics (17) (when the perturbation is omitted) as t → ∞.

The focus is first put on P (∞) and ∆(∞), thus using the

first two vector-rows of the closed-loop dynamics (17), namely

reduced closed-loop dynamics, written as
[

Ṗ (t)

∆̇(t)

]

= S′

[

P (t)
∆(t)

]

+ U ′ Ω0, (22)

where S′ ∈ R2n×2n and U ′ ∈ R2n×n are

S′ =

[

−Mv2B v2B

KM −K
(

1

n
CL+ In

)

]

, U ′ =

[

v2B

0n×n

]

. (23)

By assuming that all set-point frequencies are the same,

ω0i = ω0j , the contribution of the input is in the reduced

dynamics (22) satisfies that U ′Ω0 = v2BΩ0 = 0 (remind that

B (3) is a Laplacian matrix which implies that BΩ0 = 0).

Hence, the reduced dynamics (22) simplify to the contribution

of the reduced closed-loop system matrix S′ given in (23)

whose solution in known [37]. In fact, being λi and Vλi
the

2n eigenvalues and eigenvectors of S′ respectively, and by

using the eigen-decomposition of S′ as S′ = VλS
′
λV

−1

λ where

S′
λ is the diagonal matrix of eigenvalues, the solution of the

reduced closed-loop dynamics (22) with U ′Ω0 = 0 reduces to
[

P (t)
∆(t)

]

= Vλe
S′

λtV−1

λ

[

P (0)
∆(0)

]

(24)

Noting that limt→∞ eS
′

λt is a diagonal matrix with 1s in the

first k diagonal entries (corresponding to the k zero eigenval-

ues generated by the electrical and communication Laplacian

matrices B (3) and L (10)) and 0s in the remaining 2n − k

diagonal entries (corresponding to the 2n−k eigenvalues with

negative real part), it follows that limt→∞ Vλe
S′

λt = Vλ=0

Hence, the solution (24) as t → ∞ leads to
[

P (∞)
∆(∞)

]

= Vλ=0V
−1

λ

[

P (0)
∆(0)

]

. (25)

It is important to note that the computation of P (∞) and

∆(∞) requires specifying P (0) in (25) in such a way that

must be consistent with the MG structure given by (2).

For the steady-state value of the frequency, the expression

of Ω̇(t) given in (17) when t → ∞ under the assumption

that all set-point frequencies are the same, ω0i = ω0j (and

reminding that B (3) is a Laplacian matrix) becomes

0 =
[

M2v2B −Mv2B − 1

n
KCL −K

]





P (∞)
∆(∞)
Ω(∞)



+KΩ0

(26)

(a) 4-VSI structure. (b) VSI and control hardware.

Fig. 3: Laboratory microgrid.

TABLE I: Nominal values of the laboratory MG components

Symbol Description nominal value

v Grid voltage (rms line-to-line)
√
3 110 V

ω0 Grid frequency at no load 2π60 rad/s
Z1 Line impedance 1 0.75Ω@90◦

Z2 Line impedance 2 0.30Ω@90◦

Z3 Line impedance 3 0.30Ω@90◦

T1 Transformer impedance 0.62Ω@37.01◦

T2 Transformer impedance 0.62Ω@37.01◦

T3 Transformer impedance 1.31Ω@9.87◦

T4 Transformer impedance 1.31Ω@9.87◦

Zv Virtual impedance 3.76Ω@90◦

ZG Global load impedance 22Ω@0◦

PG Global load power 1.5 kW
ZL1,L2 Local load impedances 88Ω@0◦

PL1,L2 Local load powers 0.5 kW
mi Gain of the frequency droop 1 mrad/(Ws)
ni Gain of the voltage droop 0.5 mV/(VAr)
ci Proportional gain of consensus 5

ki Integral gain of consensus 4 rad/s

By isolating Ω(∞) from (26), the steady-state value of the

MG frequency is

Ω(∞) = K−1
[

M2v2B −Mv2B − 1

n
KCL K

]





P (∞)
∆(∞)
Ω0





(27)

where the equilibrium points for active power P (∞) and

correction term ∆(∞) are given in (25).

IV. RESULTS

A. Laboratory MG

The laboratory MG shown in Figure 3 follows the scheme

given in Figure 4. It is composed by four generators G1,2,3,4

interfaced by VSI organized in four shelfs, see Sub-figure 3(a),

each one containing a full-bridge IGBT inverter and the control

and sensing boards, see Sub-figure 3(b). The MG feeds a

global load with impedance ZG and two local loads with

impedance ZL1 and ZL2. Each power converter is driven

by a dual core digital signal processor (32-bit Concerto-

F28M36P63C DSP) to program the control strategy (4)-(6)

with virtual impedance Zv plus voltage droop control [5] char-

acterized by the proportional control gain, named ni. The latter
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Fig. 4: Microgrid scheme

ensures that voltages amplitudes and the values of the injected

reactive power at each VSI will lie within admissible ranges.

Future work should assess the effect that partitions have in

voltage amplitudes and injected reactive power whenever a

reactive power sharing policy [38] is implemented. Hence, the

results discussed next omit showing voltage amplitudes and

reactive power dynamics because they do not contribute in

the analysis presented in this paper.

The MG uses the User Datagram Protocol over a switched

Ethernet to allow communication among the four inverters.

The diagram also includes both line impedances Z1,2,3 mod-

eling the parasitic elements of the cables and isolation trans-

formers T1,2,3,4 connected at the output of each inverter. The

nominal values of the MG components and control parameters

are listed in Table I. The scheme includes two interruptors a

and b in the form of electronic relays governed by a digital

card. The first one is used to connect or disconnect the local

load ZL1 while b allows the electrical partitioning of the MG

. The communication partitioning is performed at the Ethernet

switch by disabling specific communication ports (drawn as a

circle in the bottom part of the figure).

Figure 5 provides a complementary view of the laboratory

MG in terms of graph connectivity after the Kron reduction.

For each Sub-figure, the top graph corresponds to the electrical

connectivity between the four generators which is character-

ized by the Laplacian matrix B (3). And the bottom graph

corresponds to the communication connectivity involving also

the four generators, which is characterized by the Laplacian

matrix L (10). Thick solid lines between pairs of generators

in both graphs represent the existence of connectivity. Thin

dashed lines exists only for the clarity of the drawing. Each

Laplacian matrix depends on two states x|y with the following

meaning: 1|1 codifies that no partitions occur (all generators

are electrically connected or communicate between them), 1|0
codifies a partition isolating G1 −G2 from G3 −G4, and 0|1
codifies a partition isolating G1−G3 from G2−G4 (code 0|0
is not used). The particular scenario shown in Sub-figure 5(a)

represents the starting operational case where no partitions

exists. Sub-figure 5(b) illustrates the case where a partition

in the communication graph occurs, Sub-figure 5(c) is the

case where a partition in the electrical graph occurs, and Sub-

figure 5(d) is the case where a partition in both graph occurs.

L1|13 4

1 2

B1|1

3 4

1 2

(a) Without partitions

L1|03 4

1 2

B1|1

3 4

1 2

(b) Communication partition

L1|13 4

1 2

B1|0

3 4

1 2

(c) Electrical partition

L0|13 4

1 2

B1|0

3 4

1 2

(d) Both with partitions

Fig. 5: MG graph connectivity scenarios.

B. Numerical example

A numerical example using the laboratory MG (Figure 4)

and the control parameters listed in Table I is developed to

illustrate the main results given in Section III.

In order to observe the effect of partitions on the closed-

loop dynamics (17) in terms of the number and role of the 0
eigenvalues of the system matrix S (18), S as well as the

input matrix U (19) must be computed. Their values will

depend on electrical B (3) and the communication L (10)

Laplacian matrices, that also vary according to a particular

partition scenario.

When no partitions occur, which is the case of Sub-

figure 5(a), the Laplacian matrices B1|1 and L1|1 that apply

are








0.155 −0.056 −0.051 −0.047
−0.056 0.173 −0.060 −0.056
−0.051 −0.060 0.178 −0.066
−0.047 −0.056 −0.066 0.170









,









3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3









.

which leads to an input matrix U and to a system matrix

Snp (where subscript np stands for non-partition), detailed

in Appendix B, in (36) and (37). It is easy to verify that

within the eigenvalues of Snp, λ(Snp) = {−4, −4, −4, −4,
−25.6, −25.9, −26.03, −4, −5.79, −6.44, −6.75, 0}, the 0
eigenvalue appears only once. It addition, it can be verified that

rank(Snp) = rank(Snp|U) = 11, due to the taken non-minimal

realization of closed-loop dynamics (17), thus illustrating the

discussion given at the end of Section II.

For example, when a communication partition (Sub-

figure 5(b)) occurs, the corresponding Laplacian matrix L1|0

is








1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1









.

which leads to a MG characterized by the same input matrix U

than before (36) because it does not depend on the communi-

cation Laplacian matrix L, but with a different system matrix

Scp (where subscript cp stand for communication-partition)

given also in Appendix B, in (38). It is easy to verify that

within the eigenvalues of Scp, λ(Scp) = {−4, −4, −4, −4,
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TABLE II: P (∞) kW / ∆(∞) / Ω(∞) Hz without perturbation

Initial No partitions Comm. partition Electrical partition
condition B1|1 & L1|1 B1|1 & L1|0 B1|0 & L1|1

597.25 / 0 / 60 597.25 / 0.5972 / 60 597.25 / 0.5972 / 60 449.01 / 0.5722 / 60.12
597.25 / 0 / 60 597.25 / 0.5972 / 60 597.25 / 0.5972 / 60 449.01 / 0.5722 / 60.12
597.25 / 0 / 60 597.25 / 0.5972 / 60 597.25 / 0.5972 / 60 744.55 / 0.6214 / 59.87
597.25 / 0 / 60 597.25 / 0.5972 / 60 597.25 / 0.5972 / 60 744.55 / 0.6214 / 59.87

555.88 / 0 / 60 597.25 / 0.5972 / 60 589.16 / 0.5892 / 60 449.01 / 0.5722 / 60.12
593.54 / 0 / 60 597.25 / 0.5972 / 60 589.16 / 0.5892 / 60 449.01 / 0.5722 / 60.12
588.05 / 0 / 60 597.25 / 0.5972 / 60 605.34 / 0.6053 / 60 744.55 / 0.6214 / 59.87
651.53 / 0 / 60 597.25 / 0.5972 / 60 605.34 / 0.6053 / 60 744.55 / 0.6214 / 59.87

TABLE III: P (∞) kW / ∆(∞) / Ω(∞) Hz with perturbation

Initial No partitions Comm. partition Electrical partition
condition B1|1 & L1|1 B1|1 & L1|0 B1|0 & L1|1

597.25 / 0 / 60 594.06 / 0.5843 / 59.990 +∞ / +∞ / 59.992 447.94 / 0.5595 / 60.11
597.25 / 0 / 60 596.18 / 0.5827 / 59.996 +∞ / +∞ / 59.998 450.08 / 0.5580 / 60.12
597.25 / 0 / 60 598.31 / 0.5812 / 60.003 -∞ / -∞ / 60.001 743.47 / 0.6050 / 59.88
597.25 / 0 / 60 600.45 / 0.5796 / 60.009 -∞ / -∞ / 60.007 745.62 / 0.6035 / 59.89

−17.43, −17.83, −11.80, −4.88, −4.59, −4, 0, 0}, the 0
eigenvalue appears twice, hence corroborating Theorem 1 in

Appendix A that states that a communication partition adds

an additional 0 eigenvalue to the system matrix. In addition, it

can be verified that rank(Scp) = 10 6= rank(Scp|U) = 11,

hence the additional 0 eigenvalue acts as an integrator of

each input/output map of the closed-loop dynamics (17),

thus corroborating the theoretical predictions given in Sub-

section III-A.

In order to corroborate the theoretical results presented

in Sub-section III-B, Table II summarizes the steady-state

active power, correction term and frequency values given

in (25) and (27) for two different set of initial conditions

when the effect of perturbations is not considered (Φ(t) = 0
in the closed-loop dynamics (17)) and the input set-point

frequencies are the same, ω0i = ω0j = 60 Hz. Each row

corresponds to an inverter with a given initial condition P (0)
kW / ∆(0) / Ω(0) Hz for the scenarios with no partition

(Sub-figure 5(a)), communication partition (Sub-figure 5(b))

and electrical partition (Sub-figure 5(c)). The first four rows

illustrate the case of equal initial conditions corresponding

to a closed-loop equilibrium state. In this case, the power

and frequency values only change when an electrical par-

tition occurs (last column) because two electrically isolated

sub-microgrids that can not exchange power between them

are created, and generators G1 − G2 feed equally only the

local loads while generators G3 − G4 feed also equally the

global load. In addition, generators run in pairs at different

frequencies because they reach different steady-state active

power values (determined by (5)). When a communication

partition occurs nothing is altered and the system remains

at the same equilibrium point. The last four rows illustrate

the case of different initial conditions corresponding to an

open-loop equilibrium state. Under this situation, when no

partitions occur, power sharing and frequency regulation is

achieved as expected by the control. When a communication

partition occurs, two control algorithms run in parallel (one for

G1 −G2 and the other for G3 −G4). By reminding that the

communication partition implies adding an integrator to the

closed-loop system matrix S that in terms of dynamics affects

each input/output relation, the active power and frequency are

driven to specific equilibrium points depending on the initial

conditions. When an electrical partition occurs (last column),

the same scenario illustrated in the first four rows is repeated.

Table III complements the previous example with simulated

values for the steady-state active power, correction term, and

frequency for the case of equal initial conditions and equal

input set-point frequencies, ω0i = ω0j = 60 Hz (like the

case of the first four rows of Table II) but considering also

a constant perturbation Φ(t) =
[

0 0.0001 0.0002 0.0003
]T

in the closed-loop dynamics (17). When no partitions oc-

cur, power sharing and frequency regulation looses accuracy

and diverse particular steady-state values that depend on the

perturbation values are reached. The same happens with the

electrical partition noting that the limitation in power exchange

between the two isolated sub-microgrids affects the final

values, that are still different but grouped in pairs. When a

communication partition occurs, no consensus is reached and

the MG crashes. That is, the two isolated consensus algorithms

are not able to reach the control goals because they suffer from

the announced problem of parallel integrators working on the

same plant. Intuitively, looking at the control algorithm (4)-(6),

each perturbation term ϕi(t) determines a different ωi(t) in

(5), that will provoke a permanent error in the integral term of

(6) that does not vanishes and leads the system to instability.

C. Experimental results

Figure 6 shows the experimental results obtained in the

laboratory MG. In the start-up of the system, every 10s,

each one of the four inverters enabled with the control (4)-

(6) connects to the MG to feed both the global and local

loads. As it can be observed, after each connection, active

power sharing is achieved while the frequency remains at the

desired set-point. At t = 62s different partitions occur. And

at t = 100s, the local load ZL1 is disconnected, producing

a step change in power demand. Sub-figures 6(a), 6(b), 6(c)

and 6(d) correspond to the scenarios schematically illustrated

in Sub-figures 5(a), 5(b), 5(c) and 5(d). The plotted scenarios

in Figure 6 also coincide with the case illustrated in Table III
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(a) No partitions.
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(b) Communication partition.
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(c) Electrical partition.
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(d) Both partitions.

Fig. 6: Active power and frequency for the 4-nodes MG under the different partition scenarios given in Figure 5

in the sense that initial conditions (that are equilibrium points

for the system with no partitions) are the same for all inverters

before any partition takes place. In addition, inverters set-point

frequencies are the same, ω0i = ω0j = 60 Hz. Note also that

although perturbations are not quantified, they will exist due to

e.g. measurement errors when measuring each inverter active

power [39], and/or DSPs clock inaccuracies that will affect

the operation of the control algorithm [40].

If no partitions occurs (Sub-figure 6(a)), power sharing and

frequency regulation is achieved by the control algorithm as

expected, coinciding with the numbers shown in Table III.

When the local load is disconnected at t = 100s, the active

power abruptly changes but control objectives are satisfied.

Note that the effect of the inherent perturbations existing in

the physical system can not be observed and do not affect the

expected operation, thus being considered here as negligible.

When a communication partition occurs at t = 62s leading

to the scenario illustrated in Sub-figure 5(b), two control algo-

rithms start acting in parallel as observed in Sub-figure 6(b),

one involving G1−G2, and the other involving G3−G4. And

the upper graph corresponding to the active powers shows

a slow but unstable dynamics where active powers do not

settle. In particular, P1−P2 decrease and P3 and P4 increase,

which also coincides with the numbers shown in Table III.

The difference between frequencies ω1 − ω2 and ω3 − ω4

can not be appreciated. Hence, the inherent (and distinct)

perturbations entering in the system (17), that previously were

considered negligible, in this scenario become relevant up to

the point that make the dynamics unstable, that is, the MG

crashes. When an electrical partition occurs at t = 62s leading

to the scenario illustrated in Sub-figure 5(c), two separate

MGs start working in parallel as observed in Sub-figure 6(c),

one involving G1 − G2, and the other involving G3 − G4,

but governed by a single control algorithm. In this case, the

equilibrium points change in pairs, following the tendency

announced by the theoretical results but slightly altered by the

perturbations, thus coinciding also with the numbers shown in

Table III. In this case, the difference between pairs of active

powers P1 − P2 and P3 − P4 (or frequencies ω1 − ω2 and

ω3−ω4) can not be appreciated and the effect of perturbations

can be also considered as negligible.

Finally, Sub-figure 6(d) shows the case where both partitions

occur leading to the scenario illustrated in Sub-figure 5(d)).

The communication disconnection occurs at t = 62s and

the electrical one at t = 82s. As it can be observed, the

first one provokes the undesired unstable dynamics, while the

second one changes the equilibrium points, thus exhibiting

a combination of the previous two dynamics shown in Sub-

figures 6(b) and 6(c).

D. Discussion

In modern MGs, electrical and communication networks are

becoming the key infrastructures that support the MG power

management. This paper has analyzed the impact that failures

in these infrastructures has in MG performance, focusing in

active power sharing and frequency regulation. The analysis

has concentrated on network failures that lead to a situation

where islanded sub-networks (called partitions) work in paral-

lel, both in the electrical and communication domain. Figure 6

shows the main results of the analysis. Electrical partitions

constraint the energy flows, and electrical subnetworks reach

active power sharing and frequency regulation with steady-

state values that depend on the load in each partition and the

communication scheme, and that differ among partitions. If

the newly reached active power values are beyond VSIs rated

power, they will trip due to the over-current situation that

will occur. Communication partitions constraint the exchange

of information required by the frequency regulation task

performed by the secondary control, that is, by the consensus

control strategy. This impairment leads to unstable dynamics

that may imply a cascaded failure of VSI because of the over-

current situation.

From an engineering point of view, this paper has provided

analytical means for understanding the active power and fre-
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quency dynamics whenever failures occur. It also presented the

tools for predicting the active power and frequency steady-state

values of a failed MG. Moreover, it should permit identifying

which management actions should be taken in order to keep

the MG in a safe operation scenario whenever failures occur.

For example, to avoid the undesirable dynamics given by

the experimental case illustrated in Sub-figure 6(b) (or the

simulation example given in Figure 2), it seems intuitive that

a sub-microgrid that has no communication with another sub-

microgrid due to a communication failure should be discon-

nected also at the electrical level to allow both sub-microgrids

to work in isolation. Or alternatively, a different approach

could be to disable the secondary control until communications

are restored. Complementary, in the event of an electrical

failure, if the power balance between supply and demand

cannot be reached, load shedding policies could be adopted to

reduce the risk of collapse. And the trigger for these corrective

actions could be based on monitoring the dynamics of the

metrics of interest such as VSIs injected active power. All

these control strategies should be carefully analyzed and they

are left for future work.

V. CONCLUSIONS

This paper has analyzed the effect that communication and

electrical partitions have in the performance of islanded MGs

governed by a consensus algorithm. A MG closed-loop model

has been obtained in terms of the electrical and communication

Laplacian matrices that permits characterizing the diverse par-

tition scenarios. The characterization of the MG closed-loop

eigenvalues together with the analytical expressions for the

steady-state active power and frequency permit identifying the

following behaviors. An electrical partition generates isolated

sub-MGs, and each one achieves power sharing and frequency

regulation with acceptable accuracy under the assumption that

the new local supply-demand equilibrium can be reached.

A communication partition results in several consensus al-

gorithms working in parallel on the same MG leading to a

scenario where power sharing is lost. Care must be taken

in this scenario in order to avoid the instability problem.

The analysis presented in this paper permits identifying and

understanding the performance problems that electrical and

communication failures generate in MGs operation. This opens

the possibility of designing novel control strategies for miti-

gating the undesirable behaviors that will otherwise occur.

APPENDIX A

Next theorems show that for any eigenvector associated to

a 0 eigenvalue of the Laplacian matrices L (10) or B (3),

it exists a given eigenvector associated to a 0 eigenvalue of

the system matrix S (18). This permits concluding that any

additional 0 eigenvalue in L or B due to a partition leads to

a new 0 eigenvalue in S.

Theorem 1. Consider the MG closed-loop dynamics (17)

characterized by the system matrix S (18) that depends on

the communication Laplacian matrix L (10). Let N (S) and

N (L) be the null space of S and L, respectively. Then

∀x ∈ N (L) → ∃VL(x) ∈ N (S) (28)

where the vector VL(x) is

VL(x) =
[

M−1x x 0
]T

(29)

Proof. By computing SVL(x) we obtain

SVL(x) =





−Mv2BM−1x+ v2Bx

KMM−1x−K
(

1

n
CL+ In

)

x

M2v2BM−1x− (Mv2B + 1

n
KCL)x





(30)

Looking at the first row of (30), and recalling that M is

diagonal, it follows that −v2Bx + v2Bx = 0. Looking

at the second row of (30), and noting that if x ∈ N (L)
then Lx = 0, it holds that Kx − K 1

n
CLx − Kx = 0.

And looking at the third row of (30), by using the fact

that M is diagonal and that x ∈ N (L), it follows that

Mv2Bx − Mv2Bx − 1

n
KCLx = 0. Hence, it hods that

SVL(x) = 0 which implies that VL(x) ∈ N (S).

Theorem 2. Consider the MG closed-loop dynamics (17)

characterized by the system matrix S (18) that depends on

the electrical Laplacian matrix B (3). Let N (S) and N (B)
be the null space of S and B, respectively. Then

∀x ∈ N (B) → ∃VB(x) ∈ N (S) (31)

where the vector VB(x) is

VB(x) =
[

x x (In −M)x
]T

(32)

Proof. By computing SVB(x) we obtain

SVB(x) =





−Mv2Bx+ v2Bx

KMx− 1

n
KCLx−Kx

M2v2Bx−Mv2Bx− 1

n
KCLx−Kx+KMx





(33)

Looking at the first row of (33), and noting that if x ∈ N (B)
then Bx = 0, it holds that −Mv2Bx+v2Bx = 0. By applying

the same property to the first two terms of the third row of (33),

and imposing that it should be zero, the following equality

− 1

n
KCLx−Kx+KMx = 0 should be satisfied, from where

it is obtained that

Kx = −
1

n
KCLx+KMx (34)

And substituting (34) in the second row of (33) it holds that

KMx−
1

n
KCLx+

1

n
KCLx−KMx = 0 (35)

which implies that SVB(x) = 0. As a consequence, it holds

that VB(x) ∈ N (S).
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APPENDIX B

Next, the matrices for the numerical example are presented.

U =









































5635.0 −2052.0 −1858.0 −1726.0
−2052.0 6288.0 −2196.0 −2040.0
−1858.0 −2196.0 6457.0 −2403.0
−1726.0 −2040.0 −2403.0 6169.0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−1.635 2.052 1.858 1.726
2.052 −2.288 2.196 2.04
1.858 2.196 −2.457 2.403
1.726 2.04 2.403 −2.169









































(36)
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