
 

  

Abstract—This paper explores the impact of EMS discrepancies 

that a microgrid may experience due to different time horizon and 

implementation environment in higher-level energy managements 

systems as compared to lower level control frameworks. These 

include time-shifting, magnitude deviation, and averaging effect of 

the renewables and load demand profiles. We use the resilient 

microgrid concept as a case study considering that the reliability 

of such system is crucial, especially during islanding mode. We 

demonstrate through experiment that the non-ideal effects 

naturally take place in a microgrid system, resulting a discrepancy 

between the measured and expected ideal battery state-of-charge. 

Accordingly, the resiliency of the microgrid may be affected if 

unplanned load shedding took place in order to not violate the 

lower limit of the battery state-of-charge. Allowing the battery to 

discharge at a higher depth may temporarily solve the problem, 

however, this comes at the expense of a higher rate of battery 

degradation. Instead, we proposed a power sharing scheme and by 

interconnecting the microgrids, the resiliency may be improved.        

 
Index Terms— Battery, energy management system, 

microgrids, renewable energy, uncertainty.  

I. INTRODUCTION 

HE concept of a microgrid has emerged as the fundamental 

technology representing a group of localised dispatchable 

generators, non-dispatchable generators, energy storage 

systems and load demand. Microgrids may or may not be 

connected to the main power grid. Recently, networked or 

interconnected microgrids are gaining more attention as they 

are known as the building blocks to realise the smart grid 

concept. Coordinating connected microgrids is non-trivial, 

especially when there are many nodes. Local and global energy 

management systems (EMS) are essential for tackling the 

challenges associated with managing and optimising the 

performance of microgrids.  

 Typically, an EMS operates at a lower bandwidth in 

comparison with the voltage, current and other control loops 

within power electronics converters. The former, also known 

as tertiary control [1], attempts to optimally balance supply and 

demand over a longer time interval. As part of an advanced 

 
 

EMS algorithm, it is common to predict renewable resources, 

load demands, and time of use tariff profiles subjected to 

uncertainties [2]. The EMS may individually or collectively 

consider the economic, technical or environmental constraints, 

depending on the types of load and services provided by the 

particular microgrid.  

In the past, EMS research was notably focused on the 

formulation of constrained rule-based strategies [3, 4] whilst 

recent advances in machine learning techniques further 

motivate researchers in this field to work on predictive 

strategies coupled with optimisation [5-7], which is more 

realisable partly due to the presence of high computational 

power microprocessors. Nonetheless, the inherent 

characteristics and underlying assumptions made within an 

EMS may result in performance deviations between simulations 

of an idealised system, versus reality. For example, the battery 

state-of-charge (SoC) parameter which exists in both the EMS 

and the more localised battery management system (BMS) may 

not be computed consistently. There may include differences in 

sampling times, fidelity of the model used, and effects from real 

world phenomena such as resistive losses, communication 

latencies, sensor noise and measurement equipment calibration. 

Moreover, the uncertainties from a forecasting algorithm may 

lead to sub-optimal solution produced by the EMS. 

In [8], an online-based EMS was implemented and studied. 

The overall architecture involved forecasting, scheduling, data 

acquisition, and interfacing. One interesting phenomena shown 

in this work is that the measured battery voltage may reach the 

saturation level earlier than expected, leading to a constant-

voltage charging period, even before the battery SoC hits 100 

%. Hence, curtailment of renewable generation may take place 

at a local level, whereas the EMS might not be aware of this 

until the next update interval. In an islanded power system, it is 

recognised that SoC estimation errors may indeed cause power 

outages [9]. To mitigate this, the authors proposed a predictive 

pre-emptive non-critical load shedding approach whilst using 

empirically chosen uncertainty bounds in the SoC estimation.  

It is also widely acknowledged that the uncertainties 

associated with a predictive algorithm are an important aspect 

when assessing the robustness of an EMS. A common way to 

emulate uncertainties is by adding a fixed noise term [10], 

which may be regarded as oversimplified. On the other hand, 

inappropriate selection of a predictive model may effect the 

performance of an EMS. In this context, a predictive model may 

be used for forecasting the renewable power and load demand, 

which is then used for model predictive control [5]. The authors 
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in [11] have used a high fidelity model to validate the 

performance of an EMS and demonstrated that the battery SoC 

may deviate due to averaging effects and forecasting errors of 

the renewables and loads.   

Demand-side management (DSM) is known as one of the 

tools which could bring cost savings for electricity consumers 

on microgrids by optimising their energy usage, for instance 

shifting energy consumption from peak to non-peak hours [12]. 

Conversely, the unplanned time shifting of generation and/or 

load due to the reasons discussed in the previous paragraphs, 

may bring adverse impacts in terms of electricity cost, and 

worse still, brownout in an electrical power supply system. 

Although trivial in the short term, the accumulated impact may 

be considerable in the long term. 

In this paper, we investigate the limitations of an EMS 

including a simple power sharing scheme within an inter-

connected microgrid system, with each microgrid having a local 

battery system. Note that this study may be extended to other 

energy storage technologies. In this setup, any load shedding 

taking place will have a significant impact, especially the 

disconnection of critical loads during islanding mode. The 

objective of a resilient microgrid design is to mitigate the load 

shedding amount during major disruption events. This objective 

is achieved by preparing the microgrids via proactive 

scheduling before the occurrence of the event [13]. Similarly, 

survivability enhancement strategies are incorporated for 

improving the service reliability to loads, especially critical 

loads during the power outage events [14]. Generally, 

simplified battery models are utilised with a time step of 10 

minutes to 1 hour for a resilient microgrid EMS [13-15]. In 

addition, various uncertainties associated with these EMSs, as 

discussed in previous paragraphs, are neglected. However, 

these uncertainties and simplifications may negatively 

influence the resilience of microgrids due to differences 

between the expected and actual amounts of available energy. 

Unplanned load shedding, especially on critical loads can result 

in both social costs and monetary losses. Therefore, the impact 

of these uncertainties needs to be analysed to better prepare 

microgrids for potential future events. In this context, this paper 

makes multiple contributions, which are summarised below:  

⚫ The factors contributing to the discrepancies of an EMS are 

modelled and analysed explicitly. These are mainly time-

shifting, magnitude deviations and averaging inputs of 

renewable energy supplies and load demands  

⚫ The discrepancies of an EMS are demonstrated through 

experiments on laboratory scaled interconnected 

microgrids, which have realistic behaviour in terms of 

control, communication, measurements, and dynamics 

⚫ We demonstrated that the resiliency of an interconnected 

microgrid can be enhanced through a power sharing 

scheme which also considers the EMS uncertainties. The 

achieved resiliency improvement against non-connected 

microgrids is quantified 

II. MODELLING OF RESILIENT EMS 

Resiliency in power systems is defined as the ability of the 

power system to adopt and withstand low-probability high-

impact events [13]. Among various solutions, microgrids are 

considered as a practical solution to enhance the resiliency of 

power systems due to their ability of islanding and potential for 

sustaining the penetration of renewables [16]. In order to utilise 

microgrids as an asset with high reliability, they need to be 

prepared for such events. Therefore, similar to [15], the 

resilience enhancement procedure proposed here is divided into 

two steps. In the first step, a proactive scheduling model is 

proposed to ensure feasible islanding and survivability of 

critical loads for next n intervals after any major fault event. In 

the second step, the survivability of loads during an islanded 

period is considered by defining precedence between battery 

charging and feeding of non-critical loads. In addition, dynamic 

penalty costs are introduced for both critical and non-critical 

loads to potentially avoid unnecessary load shedding.  

A. Proactive Operation Model 

The proactive operation model is applied before the event 

occurs, i.e. during grid-connected mode. In this mode, a 

scheduling horizon, T of 24-hours is considered with a sampling 

time, t of 1 minute, except for the averaging and combined 

effects in Section III D and E. An event in this study refers to 

major outages which are caused by natural disasters. Various 

extreme weather conditions such as floods, tsunamis, 

hurricanes, earthquakes, and heavy rains, etc. have caused 

major outages in the recent years. The severity and frequency 

of these events are expected to increase in the near future due 

to climate change [17]. The resilience-oriented operation 

scheme considered in this study focuses on extreme weather 

events. Resilience-oriented operation schemes are conservative 

and they may result in increased operation cost. Therefore, such 

schemes are not recommended to be utilised throughout the 

year. In case of extreme-weather events, initial warnings about 

the events are issued by the local meteorological agencies [18]. 

The proposed proactive operation scheme can be activated once 

the initial warnings are issued.  

The base model of the proposed resilience-oriented operation 

scheme is similar to [15]; therefore, only a compact form of the 

base model is shown in this study. For detailed mathematical 

models of all the microgrid components, refer to [15]. Equation 

(1) shows that the objective of the base model is to minimise 

the operation cost of the microgrid during grid-connected mode 

while satisfying some equality and inequality constraints. In 

(1), c  represents the price of power traded between the 

microgrids and the utility grid and generation cost of 

dispatchable generators. x represents the amount of power 

traded between microgrids and the utility grid, amount of power 

transferred among the microgrids of the network, and power 

generated by dispatchable units. Time-of-use market price 

signals are utilised in this study for the proactive operation 

phase. In (2), Fx g  represents the constraints for trading 

power among the microgrids, trading power between 

microgrids and the utility grid, and generation limits of 

dispatchable generators. F is a matrix, which represents the 

efficiency of the power lines (lines connecting microgrids with 

the utility grid and lines interconnecting microgrids) and it 

contains a unity row vector for dispatchable generators. Matrix

g represents the capacity (power limit) of the power lines and 



 

generation bounds of dispatchable generators. Ry h  

represents the constraints to improve resiliency, where y

indicates the variables associated with energy storage elements, 

i.e. charging/ discharging constraints and SoC constraints. In 

case of charging/discharging constraints, y , R , and h  

respectively represent the charging/discharging power, 

efficiency, and charging/discharging rate of the energy storage 

elements. In case of additional resiliency constraints, y  and h  

respectively represent the left and right sides of equation (4) and 

R  is a unity vector. In contrast to [15], where only feasible 

islanding is considered, additional constraints for battery SoC 

are also incorporated in the operation model of this study, as 

shown in (2). The inequality sign can be reversed by 

multiplying both sides of the equation with -1. Equation (3) 

computes the net critical load and is incorporated in the right-

hand side of equation (4). Finally, = −Gy r Px represents the 

power balancing constraint containing both power trading and 

power generation ( x ) and battery ( y ) variables, where, G is 

the charging/ discharging efficiency of the energy storage 

elements of the microgrid, r  is the net  power of the microgrid 

and P is the efficiency of the power lines, i.e. lines for 

interconnecting the microgrids and lines for connecting 

microgrids with the utility grid. The values of vector P  are 

identical to the values of first row of matrix F . The additional 

constraints for battery SoC in each microgrid m are realised via 

Equations (3), (4).  
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   The net critical load amount at each interval t for microgrid m 

( ,
c
m tNL ) is determined using the information of critical load in 

watt-hour ( ,
cl

m tP ) and available renewable energy ( ,
r

m tP ) as given 

by (3). The net critical load is normalized with the battery 

capacity ( cap
mP ) and is transformed into percentage for unifying 

the units with SoC. The information of net critical load is used 

to update the lower SoC bounds of the battery in microgrid m (
min
mSoC ), as given by (4). A resilience-oriented lower bound (

, ,
res
n m tSoC ) is defined for battery units to assure the survivability 

of critical loads for next n intervals after the occurrence of an 

event.  

The n value for microgrid m depends on the amount of 

critical load, renewable power, and the battery capacity within 

the microgrid. The maximum n value for the entire scheduling 

horizon is selected considering the parameters mentioned-

above. In this study, the maximum feasible n is 120 intervals, 

i.e. 2-hours.   

B. Survivability-Oriented Operation Model 

The survivability-oriented operation scheme is applied after 

an event occurs, i.e. when the system is in islanded mode. 

During the emergency period, the operation horizon is from the 

event occurrence time, te until the end of the day, T. The event 

time can be estimated using the fragility curves information of 

the particular parameter(s) representing the event [19, 20]. 

However, in this study, the event time is assumed to be known 

due to the focus of this study on analysing the limitations of 

EMS.  

 The objective of the operation model is to maximise the 

survivability of power supply to the loads, especially the critical 

loads. The compact form of the survivability-oriented operation 

model is given by the Equations (5)-(10). In Equation (5), C

represents the penalty cost for shedding loads and generation 

cost of dispatchable units. s represents the amount of load shed, 

amount of power generated by dispatchable units, and amount 

of power transferred among the microgrids of the network. The 

dynamic penalty cost for critical and non-critical loads in 

Equation (5) can be computed using Equations (7) and (8). In 

(6), As b represents the constraints for critical and non-

critical load shedding and dispatchable generation limits. 

Matrix b represents the amount of critical and non-critical 

loads in the microgrids and generation bounds of dispatchable 

generators. A is a unity matrix. Gy d  represents the 

constraints related to battery units with G as the 

charging/discharging efficiency vector and d is the 

charging/discharging rates vector. = −Gy u Qs  represents the 

power balance in the islanded mode, where, u is the net 

renewable power of the microgrid in islanded mode and Q is the 

line efficiency of lines interconnecting microgrids for power 

transfer among microgrids and is a unity matrix for load 

shedding. In contrast to [15], where a flat penalty cost is used 

for critical and non-critical loads, a dynamic penalty cost is 

introduced in this paper. The dynamic penalty cost, as defined 

in (7)-(10), shifts the load shedding towards the end of the 

scheduling horizon. This can potentially avoid unnecessary 

load shedding if the event is cleared before the end of the 

scheduling horizon.   
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The dynamic penalty cost of critical loads for each time 

interval t ( ,c pen
tPC ) can be computed using the fixed penalty 

cost ( ,cf pen
PC ) and decrement factor ( c ), given by (7). 

Variable t is the time step of the optimisation model, which 

could be any uniform interval of time. Similarly, the dynamic 

penalty cost of non-critical loads can be computed using (8). In 

Equations (7) and (8), et represents the event occurrence time 

i.e. beginning of the islanded operation and T represents the end 

of the scheduling horizon i.e. end of the day for this study. The 



 

relation between the penalty costs of critical and non-critical 

loads is given by (9). Finally, the relation between fixed penalty 

cost and decrement factor is given by (10). The fixed penalty 

cost and the decrement factor introduced in this study are 

relative to each other. Therefore, any values satisfying the 

constraints defined in Equations (9) and (10) will give the same 

operation results. If the system consists of dispatchable 

generators, the fixed penalty cost of non-critical loads should 

be higher than the generation cost of the most expensive 

dispatchable unit. This ensures the precedence of service 

reliability over the operation cost during the emergency period, 

i.e. islanded mode. 

A resilience index ( ,m tRI ) is formulated to quantify the 

impact of interconnecting the microgrids on the resilience of the 

microgrid network. The recovered load ( , , n

rl
m tP  ) and actual load 

( , , n

al
m tP  ) parameters are used to compute the resilience index 

for each microgrid m, as shown in (11). Where,
n

  is the priority 

index for nth level load and N is the total number of load levels 

in the network. The value of n
 for critical loads is higher that 

of non-critical loads. The maximum ( m,maxRI ) and normalized 

( m,tRI ) values of the resilience index are computed using (12). 

Finally, the acceptable bounds of the resilience index for 

microgrid m are computed using (13).  

The objective of this resilience index is to evaluate the 

microgrid’s performance under different scenarios. These 

include individual microgrid operation, interconnected 

microgrid operation, and the hardware test of the interconnected 

microgrid case. The index indicates the amount of load shed 

(both critical and non-critical) in the microgrid network. 

Shedding of higher priority loads results in lower index values 

compared to the lower priority loads, as shown in (11). The 

index is normalised as shown in (12). The acceptable bound in 

Equation (13) indicates the minimal acceptable resilience index 

for the survival of all the critical loads. 

 
, ,

,

, ,

.                       ,e n

e

e n

rl
m t

m t n eal
n N m t

P
RI N n N t T

P








 
 =   
 
 

   (11)  

m,max m, m, m,max, ,
e en t t e

n N

RI N RI RI RI n N t T


= =     (12) 

( )m,acc m,max1 . ,1                            , eRI N RI n N t T    
 

  (13)  

 In general, methods to solve optimisation problems are based 

on the type of search space and objective function. The simplest 

method is the Linear Programming that solves only a linear 

objective function subject to linear equality or inequality 

constraints [21]. On the contrary, Nonlinear Programming is 

aimed for solving nonlinear objective functions and constraints. 

Where problems involve uncertainty, Stochastic Programming 

is a suitable framework that take advantage of probability 

distributions of various variables. Computational-intelligence 

techniques such as Genetic Algorithm [22] and Particle Swarm 

Optimisation [23] have been proposed to determine global 

optimum solutions, however, at the expense of high 

computational effort [24]. The choice between the above-

mentioned options is associated with the trade-off between 

accuracy (more optimal solutions) and computational time.  

Given the fact that components in a microgrid such as wind 

turbines, solar PV, batteries, diesel generators, power electronic 

systems etc, are non-linear in nature, coupling with the non-

linearity of a power system, non-linear optimsers seem to be the 

ideal candidates for solving real interconnected microgrid 

problems. The considerations and literature review of the 

applications of optimisation techniques for microgrids can be 

referred in [25]. Whilst non-linear models provide better 

representation, linearised model are often being adopted to 

reduce computational effort. Generally, piecewise linearisation 

of dispatchable generators, lossless or linear transmission line’s 

power losses, constant charging/discharging efficiency of 

energy storage elements, and linear losses of converters are 

considered whilst formulating an EMS. Since the objective of 

this research is to demonstrate and quantify the impact of low 

fidelity models (implemented in EMS) on the resiliency of real 

microgrids, linearised EMS model is considered in our work. A 

mixed integer linear programme (MILP) is selected and we 

adopted the commercial CPLEX solver from IBM. The 

limitations are thus uncovered through experimental 

measurements where nonlinearities of the real microgrid 

components are inherited.   

III. CAUSES OF EMS UNCERTAINTIES AND THEIR IMPACT 

ON BATTERY SOC 

This section investigates several factors which can lead to 

discrepancies in the variables used within an EMS, compared 

to reality. In particular, we examine time shifting, magnitude 

deviations, averaging effects, and a combination of these for 

photovoltaic (PV) and load profiles respectively. A network of 

three microgrids is considered in this paper. However, for the 

sake of visualisation, the EMS discrepancies on a single 

microgrid is analysed in this section. In Section IV, a whole 

network is analysed and corrective measures are suggested.  

A. Simulation Methodology 

The simulation methodology is shown in Fig. 1. Feeding the 

predicted PV and load profiles into the optimisation model 

which was described in Section II, the optimised battery 

charging/discharging sequence and its corresponding SoC 

profile are determined. Hereafter, we refer to this as the ideal 

EMS case.  

At every instance (in seconds), the power imbalance ( ,
error

m tP

) within the system is calculated using equation (14). The power 
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Fig. 1.  Simulation methodology  



 

charged/discharged to/from the batteries ( ,
bat

m tP ), power traded 

with the utility grid ( ,
grid

m tP ), and power transferred between 

microgrid m ( ,
trans

m tP ) and other microgrids of the network along 

with modified profiles of PV ( '
,

pv
m tP ) and load ( '

,
load

m tP ) are used 

to compute the power imbalance.  

' '
, , , , , ,

error pv bat grid trans load
m t m t m t m t m t m tP P P P P P= + + + −                            (14) 

   For the ideal EMS case, power imbalance is null because the 

power balance constraint in (2) must be met at all time steps 

during optimisation process. However, when either the PV or 

load profile is altered (to mimic uncertainties), and whilst using 

the original battery charge/discharge profile, power surplus or 

deficit situations may occur. Assuming that the battery is 

supplying/absorbing the difference, the SoC profile may 

therefore deviate from the ideal case. The power imbalance 

information is then used to reconstruct the deviated SoC profile. 

Fig. 2 illustrates an example when advancing the PV profile 

with a time step of δ [k], which is referred as the time-leading 

case. To represent magnitude deviation, the PV or load profile 

is shifted in the y-axis. Due to computational constraints and 

the availability of electricity price updates, many EMS systems 

re-run their optimisation relatively infrequently (for example 

half-hourly). This requires averaging of the measured inputs 

(e.g. PV power and load demand in this case) according to the 

required sampling time. Hypothetically, this may contribute to 

EMS discrepancies, especially during sub-hourly intervals. In 

this work, we considered 1-minute as the highest resolution for 

both PV and load profiles. However, their fluctuations are most 

likely to occur at higher rates in reality, potentially bringing 

more uncertainties to the EMS than we may find here.  

Fig. 3 shows the PV power and load profiles for the following 

case studies in this section. The solar irradiance time series data 

obtained from National Renewable Energy Laboratory (1-

minute resolution historical data) was used in this work, 

although ideally, the availability of extreme weather data may 

reflect a more accurate scenario. As measured load data were 

not freely available, this work adopted an open-source bottom-

up domestic load model [26] which has been qualitatively 

validated [27]. The load model synthesised the load profile used 

in this work. In the following studies, the profiles in Fig.3 

represents the true values. They are altered according to the 

considered factors, i.e., time shifts, magnitude deviation or 

averaging. It is also worth mentioning that we have down-

scaled the power rating to match our experimental test-rig 

(described in section IV-A). 

B. Time Leading and Lagging  

Fig. 4 demonstrates the results when the PV and load profiles 

are advanced or delayed for 5 minutes, with the top figure 

showing the accumulated power imbalance whilst the bottom 

figure illustrates the deviated SoC profiles. For the ideal case, 

the power imbalance error is zero and the SoC stays between 

the 30% and 80% limits.  

Several trends can be noticed from the plots. First, the 

characteristics of power imbalance for shifting the PV and load 

demands are dissimilar. Shifting the former will only deviate 

the battery SoC when the PV system starts generating power. 

Hence, the SoC is deviated only during the daytime. On the 

contrary, the load demand causes SoC deviation throughout the 

day and night. Secondly, if the PV profile has a constant delay 

(lagging case) of 5 minutes, the battery needs to supply the 

deficit and hence, the battery SoC overshoots the 80% upper 

 
Fig. 3.  PV and load demand profile input for optimisation model   

 
Fig. 5.  (a) Power imbalance error profile (b) SoC profile for PV and load 
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Fig. 2.  An illustration of time advancing the PV profile   

Fig. 4.  (a) Power imbalance error profile (b) SoC profile for PV and load 

demand time advancing (leading) and delay (lagging) of 5 minutes 



 

limit around the mid-day. But when the solar irradiance comes 

earlier than the predicted profile (leading case), the battery 

would be slightly under-used especially around mid-day.  

Finally, since the battery SoC deviation is a function of the 

power imbalance magnitude, the highest discrepancy occurring 

at mid-day. In other words, the EMS discrepancy may be highly 

influenced by inaccurate timing estimation of the PV power 

compared to the load demand, mainly due to the higher peak 

value of the former.       

C. Magnitude Deviation  

Here, we study the extent to which the battery SoC may be 

affected when renewable resources or load demands are over- 

or under-predicted for an extended period. We randomised the 

PV and load profiles with a vector of uniformly distributed 

random numbers. The upper limit of the random numbers is 

assigned with a value of 10% above the mean value (zero in this 

case) to represent over-prediction of PV or load, and vice versa.  

Fig. 5 shows the simulation results. It is observed that the 

power imbalance occurs continuously when adding magnitude 

uncertainty to the load demand, whereas the PV system only 

starts to generate power at about 8 a.m. and hence, the power 

imbalance begins at that moment. In general, the battery SoC 

may deviate significantly from its expected profile (ideal case). 

In addition, the magnitude deviation may have a stronger 

influence on the battery SoC deviation compared to the timing 

uncertainties (Fig. 4). However, this is still largely dependent 

on the scale of the magnitude deviation.  

D. Averaging   

Fig. 6 shows the comparison between 1-minute (ideal case), 

10-minutes, 30-minutes and 1-hour averaging on PV power, 

load demand, battery charge/discharge power and power 

trading with the utility grid. In this study, the power imbalance 

for 10-minutes, 30-minutes and 1-hour averaging is computed 

against the 1-minute sampling time. As expected, the power 

imbalance occurred within the sub-hourly intervals and lower 

update rates for the EMS indeed induce more volatility in the 

battery SoC (see Fig. 7a). Interestingly, the ideal case’s battery 

SoC is the averaged profile of the more fluctuating hourly 

averaged SoC profile. This study implies that the averaging 

approaches adopted when optimising a power flow operation to 

predict the battery SoC, seem to be reasonable for long-term 

case studies, although the instantaneous actual SOCs may 

become out-of-bounds if the EMS updates are infrequent.  

 

E. Combined Effects 

Whilst the fundamental understanding of EMS uncertainties 

is developed through the individual factors previously 

described, combining them to mimic a more realistic scenario 

is presented in this section. Besides the averaging effect, we 

consider delay and net positive magnitude deviation in PV 

power, in addition to time-leading and positive magnitude shifts 

for load demand. The parameters are shown in Table I. 

 
Fig. 8.  (a) Power imbalance error profile (b) SoC profile for integrated effects 

TABLE I 
PARAMETERS FOR COMBINED EFFECTS 

Parameters Values 

PV power profile time delay 5 minutes 

Load demand profile time advance 5 minutes 

PV power magnitude deviation  Positive 

Load demand magnitude deviation Positive 

Averaging time 10 minutes 

 

 
Fig. 7.  (a) Power imbalance error profile (b) SoC profile for different averaged 

sampling time 

 

 
Fig. 6. 10-min, 30-min and 60-min averaging of (a) PV (b) load demand (c) 
battery power (d) grid power profiles 



 

Fig. 8 demonstrates the results with the top plot showing the 

power imbalance whilst the bottom plot corresponds to the 

comparison of battery SoC between the ideal case vs. the 

combined approach. The overall trend is that the battery SoC is 

less predictable compared to the previous cases. In this case, the 

battery SoC rose above the expected level until about 2 a.m., 

however, always in shortage beyond that. The highest 

discrepancy occurred just before 8 a.m., which accounted to 

about 3 % battery SoC.   

IV. EVALUATION OF UNCERTAINTIES IN INTERCONNECTED 

MICROGRIDS 

In this section, we aim to understand the resiliency aspect of 

a microgrid system by interconnecting several smaller 

neighbouring microgrids. First, a brief description of our 

laboratory-scaled interconnected microgrids is given. A case 

study is performed to compare and contrast the ideal EMS 

against the experimental results. In particular, we used the 

battery SoC and power transfer between the microgrids and the 

utility grid as the performance indicators for evaluation. 

Finally, we present a simple power sharing scheme which is 

suitable for use with interconnected microgrids.  

A. Laboratory-scaled interconnected microgrids 

In this work, we used three interconnected microgrid 

emulators to demonstrate some of the uncertainties discussed in 

the previous sections. The microgrid system block diagram is 

shown in Fig. 9. The microgrid emulators can communicate 

with each other via TCP/IP, enabling development and 

demonstrations of distributed forecasting, control, and 

optimisation. Although the system is a scaled-down microgrid 

system, it nonetheless is realistic in terms of control interfaces, 

measurements, and dynamics, and therefore provides a valuable 

insight into EMS implementation which cannot be obtained 

through simulations alone. For simplicity, we adopted a 

centralised EMS approach. In this configuration, the utility grid 

is connected to microgrid 2 whilst the rest are power linked with 

each other with a ring topology. 

The adopted microgrid configuration is a dc system, which 

has the advantages of not requiring synchronisation, frequency 

and phase control devices. The PV emulator and lead-acid 

battery are connected to the common dc bus via bespoke bi-

directional half bridge dc-dc converters. For simplicity, a power 

supply and an electronic load are used to emulate the utility 

grid. The power supply is programmed to control the voltage of 

the common dc bus and it supplies the power deficit within the 

microgrid system. In terms of software structure, a low-level 

algorithm which is implemented in the ARM-based 

microcontroller (STM32F401RET6) executes the control logic 

and instantiates communication links between the EMS 

algorithm and hardware. The low-level logic mainly controls 

the dc-dc converters, provides a current reference for the 

electronic load, implements the battery management system 

and protects the microgrid. The next layer is equipped with 

Matlab software which provides a platform for EMS 

deployment. More details on the hardware and software 

implementation of the microgrid can be found in [28].          

B. Experimental Demonstration of EMS Discrepancies 

A case study is formulated to evaluate the EMS 

discrepancies. The PV and load profiles (1-minute resolution) 

were averaged over 10-minute intervals and were fed as inputs 

to the optimisation algorithm. The 1-minute resolution profiles 

were used as control inputs for the PV emulator and electronic 

load. In addition, the battery charge/discharge profiles which 

were computed by the EMS were used as set-points for the 
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Fig. 9.  Block diagram of the laboratory-scaled networked microgrids 

 
Fig. 10.  Interconnected microgrid emulators in the lab 

 
Fig. 11.  Time-of-use market price signal for test network 

TABLE II 
EXPERIMENTAL SPECIFICATIONS 

Parameters Values 

Sampling time 1 minute 

Battery SoC boundary 30 ≤ SoC ≤ 80 

Battery capacity 120 Wh 

Battery charging efficiency 95 % 

Battery discharging efficiency 96 % 

Maximum and minimum battery power ± 45 W 

Maximum and minimum grid power ± 131.25 W 

Transmission line resistance 0.01 Ω 

Critical and non-critical load ratio 1:3 

Survivability intervals, n 120 (2 hours) 
Fixed penalty cost (Critical, non-critical) £/kWh (5, 2)  

Decrement factor (Critical, non-critical) (0.001, 0.0007) 

 



 

battery power converter. Note that in this case, to investigate 

resiliency, we set a disruption event at 6:20 p.m. From this 

moment onwards, the microgrids were disconnected from the 

utility grid and operated in isolation. The experimental 

specifications of the test system are tabulated in Table II and 

the time-of-use market price signal is shown in Fig. 11. 

Fig. 12 shows the experimental measurements along with 

EMS estimates. More fluctuations can be observed in the 

measured PV power and load demand profiles compared to 

their corresponding 10-minute averaged EMS expected 

profiles, as shown in Fig. 12a, b and c. Moreover, substantial 

discrepancies between the ideal and measured profiles are 

noticed, as pointed out in Fig. 12a. These relate to the 

magnitude deviation effects which were discussed in Section III 

C. In this setup, the deviations may be attributed to the 

maximum power point tracking algorithm of the PV converter 

performing poorly at that particular interval whilst the 

electronic load is less sensitive to control signals at low load 

level.  

Fig. 12d, e and f show the power flow among the microgrids, 

with microgrid 2 being the point of common coupling to the 

main grid. Electricity import mostly occurs earlier in the day, 

when the electricity price is relatively cheaper than in the 

evening. More power transfer can be observed between 

microgrids 2 and 3, and between microgrids 2 and 1, due to 

connection of microgrid 2 with the utility grid. However, 

minimal power flow takes place between microgrids 1 and 3 

due to their similar load and PV profiles.  

Fig 12g, h and i display the battery charge/discharge profiles 

and their corresponding SoC curves, in both experimental 

measurement and EMS simulation results. At every second, the 

battery SoC is updated using the local microcontroller whilst 

the EMS calculates the SoC only every 10-minutes. The 

batteries began to charge when there was generation surplus 

from the PV system, but between 12 p.m. and 4 p.m., any excess 

amongst the microgrids was exported to the main grid.  

The measured battery SoC deviated from its ideal profile, 

visibly clearer in the case of microgrid 1 and 3 compared to 

microgrid 2. Towards the end of the day, the battery SoC in 

microgrids 1 and 3 dropped beyond the lower limit and this is 

more detrimental in terms of battery lifetime for the lead-acid 

cells used here [29]. If the SoC were to be maintained at 30 % 

(lower limit), additional load shedding would be required and 

hence, the resiliency of the microgrid would be compromised. 

One of the contributors to this discrepancy, besides the 

uncertainties described above, is the presence of losses in the 

experimental setup. Since microgrid 2 is directly connected to 

the main grid which controls the bus voltage, the voltage drop 

within that microgrid is minimal compared to the downstream 

microgrids 1 and 3. Due to the higher voltage drops experienced 

by the latter, the batteries must provide more current to achieve 

the same power output. For a day’s operation, the battery SoC 

may be 5% to 7% lower than expected, depending on the 

distance of the particular microgrid from the slack bus. This is 

significant over a longer timescale and should be considered by 

an EMS in the field.  

Finally, the time delay effects from the hardware were also 

successfully captured, as highlighted in Fig. 12h. The hardware 

took about 1 minute to respond to the EMS request and although 

Fig. 12.  PV power and load demand profiles for (a) microgrid 1, (b) microgrid 2 and (c) microgrid 3. Figure (d), (e) and (f) show the power flow between the 

microgrids. The battery charge/discharge and its corresponding SoC profiles for (g) microgrid 1, (h) microgrid 2 and (i) microgrid 3  



 

it is beyond the scope of this work, the possible stability 

implications of this are worth investigating. 

C. Power Sharing Control for Interconnected Microgrids for 

mitigating EMS Discrepancies 

The question whether to physically link neighbouring 

microgrids may be answered by considering the additional 

value gained by this enabling, in theory, a more reliable system. 

This may be quantified by calculating the reduced amount of 

load shedding during islanded mode.  

Here, we propose a simple power sharing scheme where the 

microgrids aim to reduce their discrepancies between the actual 

batteries SoC and the ideal EMS pre-computed SoC. At every 

time step, the power imbalance is assessed among all the 

microgrids. If there is power surplus in at least one of the 

microgrids and the remaining is/are experiencing power deficit, 

the power sharing control is enabled. Then, the net difference 

between the total power surplus and deficit is evaluated. If the 

net value is positive, it means that the excess can fully 

compensate for the deficit. Otherwise, the excess power from 

the particular microgrid(s) is shared in proportion with the 

remaining microgrid(s). For example, consider the case for 

three microgrids which are interconnected, where microgrid 1 

has an excess of 100 W but microgrids 2 and 3 have a power 

deficit of 120 W and 80 W, respectively. In this case, the power 

deficit from microgrid 2 is 60% of the total deficit and hence it 

will receive 60 W from microgrid 1 whilst the remaining 40 W 

will be given to microgrid 3. 

Fig. 13 shows simulation results in this scenario, before and 

after the power sharing control is activated among the three 

microgrids which are linked with each other with a ring 

topology. It can be noticed that after enabling the power sharing 

scheme, the gap between the expected SoC (ideal case) and the 

real SoC becomes smaller. In order to quantify the impact, the 

resilience index was evaluated for three cases. In the first case, 

all the microgrids are interconnected i.e. power sharing among 

microgrids is possible. In the second case, microgrids are not 

interconnected i.e. each microgrid can only utilise its local 

resources. Finally, the resilience index was computed using the 

measurements and estimates of the real hardware.  

Due to the implementation of the proposed dynamic penalty 

cost, load shedding is shifted towards the end of the scheduling 

horizon in all the cases. Therefore, resilience index values of 

only the last 12 intervals (10 minutes resolution) are shown in 

Table III, with the remaining intervals sharing the same values 

for all cases. Resilience index of each interval is computed for 

all the three cases using equations (11)-(13), which indicates the 

ability of the microgrid to survive loads during emergency 

operation.  

    According to (17), the acceptable resilience bound for all the 

microgrids of the network is [0.63, 1]. This implies that all the 

critical loads need to survive during the emergency operation to 

ensure that the proposed resilience index is within the 

acceptable bounds. It can be observed from Table III that for 

the interconnected case, the acceptable bound is never violated 

throughout the islanded period due to ability of the microgrids 

to share the power. However, in the unconnected case, 

microgrid 1 and 3 are feeding all their loads (maximum 

resilience index value) while microgrid 2 is shedding even some 

of its critical loads in the last four intervals. Finally, in the 

hardware test case, the resilience index values of microgrid 1 

and 3 are below the acceptable range due to deviation of the real 

SoC from the expected SoC of EMS. The resilience index of 

microgrid 2 is also below the acceptable range in the last 

interval. The SoC deviation in the experimental results was 

explained in the previous sections. As quantified in Table III, 

the SoC deviation resulted disconnection of critical loads.  

V. CONCLUSION 

This paper explores through simulation and experiment the 

limitations associated with energy management systems in 

microgrids. The objective was to study and demonstrate the 

fundamental discrepancies between real and estimated system 

states of an EMS which may compromise the resiliency of an 

interconnected microgrid system. First, time shifting, 

magnitude deviation and averaging effects were explored 

individually by calculating the power imbalance at each time 

step. Then, to mimic a more practical scenario, the elements 

were combined and as a result, a less predictable uncertainty 

profile was demonstrated. Using our laboratory-scaled 

microgrid system, an experimental test was conducted to 

demonstrate these issues in reality. The discrepancy between 

the measured battery SoC and the estimated SoC in the EMS 

was non-negligible and the difference becomes more 

pronounced for downstream microgrids due to the voltage 

 
Fig. 13.  SoC profiles for (a) microgrid 1 (b) microgrid 2 and (c) microgrid 3 

before and after enhanced power sharing scheme enabled  

TABLE III 
RESILIENCE INDEX VALUES FOR DIFFERENT TEST CASES 

Interconnected case Unconnected case Hardware test case 

MG1 MG2 MG3 MG1 MG2 MG3 MG1 MG2 MG3 

1.00 0.63 1.00 1.00 0.63 1.00 0.00 0.63 1.00 

1.00 0.63 1.00 1.00 0.63 1.00 0.00 0.63 0.56 

1.00 0.63 1.00 1.00 0.63 1.00 0.00 0.63 0.00 

0.63 0.63 0.63 1.00 0.63 1.00 0.00 0.63 0.00 

0.63 0.63 0.63 1.00 0.63 1.00 0.00 0.63 0.00 

0.63 0.63 0.63 1.00 0.63 1.00 0.00 0.63 0.00 

0.63 0.63 0.63 1.00 0.63 1.00 0.00 0.63 0.00 

0.63 0.63 0.63 1.00 0.63 1.00 0.00 0.63 0.00 

0.63 0.63 0.63 1.00 0.11 1.00 0.00 0.63 0.00 

0.63 0.63 0.63 1.00 0.00 1.00 0.00 0.63 0.00 

0.63 0.63 0.63 1.00 0.00 1.00 0.00 0.63 0.00 

0.63 0.63 0.63 1.00 0.00 1.00 0.00 0.44 0.00 

 



 

drops in the interconnecting buses, which incurred higher 

losses. We quantified the impact of EMS uncertainties by using 

the proposed resiliency index parameter. The resiliency of the 

microgrid may be maintained, however, this may come at the 

expense of battery lifetime due to the higher DoD. Essentially, 

the trade-off is between additional cost incurred by shedding 

critical load and replacing batteries more often or installing 

higher battery capacity holds. This may require a long-term 

economic study to validate the hypothesis. Finally, the 

proposed power sharing scheme, demonstrated through 

simulation that it can mitigate the EMS uncertainties among the 

microgrids. Future work might consider more realistic extreme 

weather conditions, forecasting algorithms, and development of 

other control strategies that explicitly incorporate the issues 

discussed here. 
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