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Abstract—This paper considers distribution systems with a
high penetration of distributed, renewable generation and ad-
dresses the problem of incorporating the associated uncertainty
into the optimal operation of these networks. Joint chance con-
straints, which satisfy multiple constraints simultaneously with
a prescribed probability, are one way to incorporate uncertainty
across sets of constraints, leading to a chance-constrained optimal
power flow problem. Departing from the computationally-heavy
scenario-based approaches or approximations that transform
the joint constraint into conservative deterministic constraints,
this paper develops a scalable, data-driven approach which
learns operational trends in a power network, eliminates zero-
probability events (e.g., inactive constraints), and accurately and
efficiently approximates bounds on the joint chance constraint
iteratively. In particular, the proposed framework improves upon
the classic methods based on the union bound (or Boole’s
inequality) by generating a much less conservative set of single
chance constraints that also guarantees the satisfaction of the
original joint constraint. The proposed framework is evaluated
numerically using the IEEE 37-node test feeder, focusing on the
problem of voltage regulation in distribution grids.

I. INTRODUCTION

The AC optimal power flow (OPF) problem is one of the
fundamental problems in power system operation and analysis;
see, e.g., [1] for an overview. Recently, the introduction of
dynamic pricing, renewable generation, energy storage, and
other distributed energy resources has increased the uncer-
tainty in achieving predictable and reliable grid operations
when using deterministic methods. Broadly, there are two
classes of approaches which incorporate uncertainties into
OPF problems: Robust methods and stochastic methods (and
combinations thereof) [2]–[5]. Amongst stochastic methods,
the chance-constrained AC OPF (CC-AC-OPF) is most valu-
able in situations where the uncertainty lies within constraints,
and constraint violations are allowed with a small probability.
In power and energy applications, this can include violations
in the thermal limit of transmission lines [6], relaxation of
voltage regulation requirements [7], [8], or loosening of indoor
thermal comfort limits [9].
A prototypical CC-AC-OPF is given by

min
x∈X

Ey f(x,y) (1a)

subject to : y = h(x, ξ) (1b)
P{y ∈ Y} ≥ 1− ε, (1c)

where x is a vector that collects all the controllable inputs
to the system, typically active and reactive power injections
of the controllable distributed energy resources (DERs); ξ is
a random vector representing the uncertainty in the system
(e.g., power injections of the uncontrollable assets and solar
irradiance); y is the vector of state variables, such as voltage

phasors across the buses of the network; (1b) are the power-
flow constraints; (1c) is an operational constraint formulated
as a chance constraint on the state vector y; and we use the
notation Ey to denote the expected value with respect to the
distribution of y. In particular, (1c) ensures that the state vector
lies in some prescribed operational set Y with probability at
least 1− ε for some (small) quantity ε > 0.

In many applications, the constraint y ∈ Y is composed of
several individual constraints y ∈ Yi, i = 1, . . . , n, that have
to be satisfied simultaneously; therefore chance constraint (1c)
is of the form

P (∩ni=1{y ∈ Yi}) ≥ 1− ε. (2)

Examples of individual constraints that have to be satisfied
simultaneously with high probability include joint constraints
over different buses in the network, constraints that link
timesteps (e.g., ensuring that power delivered to a sensitive
resource is satisfied with high probability across the timesteps
after a contingency), or even simply two-sided constraints
(e.g., constraining the upper and lower limits on uncertain line
flows or voltage magnitudes).

Many recent works regarding chance constraints in OPF
problems have focused on conservative convex upper bounds
of single chance constraints [10], [11] and distribution-free,
data-based single chance constraints [8], [12]–[14]. These
techniques provide tractable approaches to addressing single
chance constraints, and can be used in conjunction with the
technique to reduce the joint chance constraint presented in
this paper. In addition, robust optimization techniques can
be combined with chance-constrained approaches [15], [16],
which can also be used in conjunction with the formulation
in this paper. Due to the difficulty in handling joint chance
constraints, most of these works focus on single chance
constraints. Considering simultaneous probabilistic constraints
generally requires either computationally heavy sampling-
based approaches which are limited by problem size [17];
or assumptions about the random parameters [18]; or the use
of the union bound, or Boole’s inequality [19], to separate
the joint chance constraint into single constraints and create
conservative upper bounds on the single constraints [20], [21].
In [17], a Monte Carlo method is proposed to solve a sequence
of convex optimization problems, avoiding the use of Boole’s
inequality, with a guarantee that the algorithm converges to a
KKT point. However, it is limited by problem size to small or
medium size problems with less than 100 dimensions. Scenario
approaches can be used to simplify joint constraints into
deterministic single constraints; however, these approaches can
be overly conservative, and can actually perform worse as the
number of samples increases [22].
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Using the union bound (or, Boole’s inequality) is the most
popular way to relax (2) that boils down to replacing it with
n chance constraints

P{y ∈ Yi} ≥ 1− εi, i = 1, . . . , n. (3)

It is easy to see that if
∑n
i=1 εi = ε, (3) implies (2);

particularly, if no additional information is used regarding the
individual constraints, the typical choice is εi ≡ ε

n . However,
this choice may result in highly conservative solution to (1).
To illustrate this fact, consider two constraints: y ∈ Y1 and
y ∈ Y2. Suppose that the events Ai := {y /∈ Yi} are
highly correlated, in the sense that with very high probability,
whenever A1 happens, A2 happens as well (and vice versa).
For example, Ai can represent a violation of voltage upper
bound at bus i equipped with a photovoltaic (PV) panel, and
both buses are geographically close to one another. In this
case,

P(A1∪A2) = P(A1)+P(A2)−P(A1∩A2) ≈ P(A1) ≈ P(A2)
(4)

because P(A1 ∩ A2) ≈ P(A1) ≈ P(A2). Therefore, the joint
chance constraint (2) would boil down to a single constraint

P({y ∈ Y1} ∩ {y ∈ Y2}) = 1− P(A1 ∪A2)

≈ 1− P(A1) ≥ 1− ε,

or equivalently, P(A1) ≤ ε. However, the union bound
approximation (3) will impose a pair of constraints P(Ai) ≤ ε

2 ,
i = 1, 2, therefore unnecessarily restricting the constraint set.

In this paper, we leverage statistical learning tools to address
the problem of computationally burdensome joint chance
constraints in AC OPF problems, with the following key
ingredients:
• We present a framework for reducing a joint chance

constraint into a series of single chance constraints in
a method that significantly reduces the conservativeness
compared to using Boole’s inequality [23]. To this end,
we leverage support vector classifiers to classify events
Ai := {y /∈ Yi} as having either zero or non-zero
probabilities. We term the events (and corresponding
constraints) that has non-zero probability as active; oth-
erwise, they are inactive. That is:

P({y /∈ Yi}) = 0 ⇐⇒ {y ∈ Yi} is inactive
P({y /∈ Yi}) > 0 ⇐⇒ {y ∈ Yi} is active

For example, voltage constraints are classified as active
or inactive.

• An estimation method is presented which iteratively pro-
vides a tighter upper bound on the joint chance constraint
and can be terminated before the estimation is finished
in computationally restrictive or high dimensional settings
where the entire joint constraint cannot be estimated.

Unlike classic Monte-Carlo-based approaches, the proposed
framework is scalable to high-dimensional constraints. More-
over, the reduction of the joint chance constraint into sin-
gle chance constraints allows for the use of many of the
distributionally-robust single chance constraint reformulations
in the literature [10], [11]. It is important to note here that

we are not developing a new technique for evaluating or
reformulating single chance constraints; we are developing
a technique for reducing a joint chance constraint into sin-
gle ones. Building upon our previous initial work [24], the
proposed method can also reduce computation time in non-
stochastic settings by removing non-binding constraints from
the deterministic optimization problem.

Simulation results are presented for the IEEE 37-node test
system with a high penetration of distributed solar in an
active distribution network. While the results presented here
are focused on voltage regulation in distribution networks, the
method proposed in this paper can be applied in general CC-
AC-OPF settings for any type of joint chance constraints.

The remainder of the paper is structured as follows. Sec-
tion II discusses the joint chance constraints formulation
and outlines our approach. Section III presents a method to
classify inactive constraints and to estimate the remaining
joint constraints. Section IV outlines the distribution system
model and related notation. Section V discusses the application
of the proposed method to voltage regulation problem in
active distribution networks. Section VI presents the numerical
results. Finally, Section VII concludes the paper.

II. OUTLINE OF THE APPROACH

To explain how we will use statistical learning to reduce
the complexity of the joint chance constraint in power net-
work optimization, consider (3) and let Ai := {y /∈ Yi}.
Then, P (∩ni=1{y ∈ Yi}) = 1 − P

(⋃n
i=1Ai

)
, and from the

probabilistic version of the inclusion-exclusion principle we
have the following:

P
( n⋃
i=1

Ai

)
=

n∑
i=1

P(Ai)−
∑
i<j

P(Ai ∩Aj) + · · ·

· · ·+ (−1)n−1P
( n⋂
i=1

Ai

)
:=

n∑
i=1

P(Ai)− Pc.

(5)

Truncation of the above to Boole’s inequality P(A1 ∪ A2 ∪
...∪An) ≤

∑n
i=1 P(Ai) allows for the separation of the joint

chance constraint (2) into individual constraints P(Ai) ≤ εi
where

∑n
i=1 εi = ε, and a common choice for εi = ε

n , where
n is the number of individual constraints. While useful and
a very popular technique for solving joint chance constrained
programs, Boole’s inequality tends to result in very conser-
vative solutions [23]. To address the deficiencies of using
conservative upper bounds, computationally heavy scenario-
based approaches, or making assumptions about the single
or joint probability distributions, we will present a general,
distribution-agnostic technique based on learning marginal
probabilities to eliminate zero-probability joint events in (5)
and leverage a Monte Carlo sampling-based approach to esti-
mate the remaining joint probabilities Pc. Then, we decompose
the joint constraint into single chance constraints that must be
satisfied with probability ≥ 1− ε

n −
Pc

n , where n in this case
is the number of nonzero-probability individual events. Thus,
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Fig. 1. An outline of the general procedure for solving the joint chance con-
strained problem. The details of each individual component in the flowchart
can be found in the following sections.

if Pc > 0 (i.e., events A1, ..., An are not disjoint), a tighter
upper bound for the single chance constraints is provided
compared to using Boole’s inequality. A general flow chart
of the overall procedure is shown in Fig. 1; the individual
blocks are discussed next.

III. CONSTRAINT CLASSIFICATION AND ESTIMATION

In an optimization problem, inactive constraints are those
which, if removed from the problem, would not change the
optimal solution. Active constraints, on the other hand, are
essential in determining the optimal solution and would change
the optimal solution if removed. Machine learning approaches
to solve OPF problems have recently been realized as a
powerful tool [14], [25]; here, we leverage machine learning
for identifying active constraints in AC OPF problems with
joint chance constraints. This section discusses how we can
learn which constraints are likely to be inactive in power
system optimization given certain system conditions, reducing
the computational burden of calculating each term in (5).

A. A Simple Example - Two Sided Constraint

To illustrate the overall idea of the framework, consider the
two-sided joint chance constraint which constrains the state of
charge E(t+1) of an energy storage system (ESS) to be within
desired bounds E and E with probability at least 1− ε:

P(E ≤ E(t+1) ≤ E) ≥ 1− ε, (6)

While maintaining ESS state of charge within certain bounds
can extend the lifetime of the ESS, under certain situations
it may be more beneficial or unavoidable to violate these
limits. Intuitively, in certain situations it can be obvious if
E ≤ E(t+1) or E(t+1) ≤ E is an inactive constraint; for
example, if the ESS is currently at its maximum charge
(E(t) = E), and the maximum discharge rate makes it
impossible for the ESS to reach E in the next time step,
we know with certainty that E < E(t+1) and thus P(E >
E(t+1)) = 0. So, from the inclusion-exclusion principle,
P(E ≤ E(t+1) ≤ E) = 1 − P(E > E(t+1)) + P(E(t+1) >
E) + P({E > E(t+1)} ∩ {E(t+1) > E}) = P(E(t+1) ≤ E),

reducing the joint chance constraint to the single chance
constraint P(E(t+1) ≤ E) ≥ 1 − ε. However, when dealing
with multi-time step problems, assuming one of these events
has a zero probability may not be trivial; it may also not be
trivial depending on maximum charge/discharge rates, time in
between control decisions, the level of uncertainty, or distance
between E and E. In addition, while we may have physical
intuition as to when a constraint is likely to be relevant or
not, there can be many factors influencing the outcome of an
optimization problem, and we would like to have an automated
way of reducing the complexity of joint chance constraints.
Thus, it is desirable to develop a rule that may allow us to
exploit these patterns by learning them over time and having
the optimization problem automatically decompose the joint
chance constraints into single chance constraints depending
on the outcome of these rules.

In general, recall that if P(Ai) = 0, P(Ai ∩ Aj) = 0 for
all Aj ; if even a single constraint is classified as inactive,
a significant number of terms in the joint chance constraint
expansion are eliminated from the calculations and do not have
to be estimated further. As a larger example, consider a four-
event union P(A1 ∪A2 ∪A3 ∪A4) and its expansion via (5):

P(A1) + P(A2) + P(A3) + P(A4)

− P(A1 ∩A2)− P(A1 ∩A3)− P(A1 ∩A4)

− P(A2 ∩A3)− P(A2 ∩A4)− P(A3 ∩A4)

+ P(A1 ∩A2 ∩A3) + P(A1 ∩A2 ∩A4)

+ P(A1 ∩A3 ∩A4) + P(A2 ∩A3 ∩A4)

− P(A1 ∩A2 ∩A3 ∩A4)

(7)

If constraint A1 is classified as inactive, the above reduces to

P(A2) + P(A3) + P(A4)

− P(A2 ∩A3)− P(A2 ∩A4)− P(A3 ∩A4)

+ P(A2 ∩A3 ∩A4)

(8)

dramatically reducing the number of intersections we must
estimate. For sizable joint chance constraints, identifying
zero probability events can potentially make an otherwise
intractable problem possible to solve via sampling approaches.

B. Support Vector Classification (SVC)

Next, we will develop classifiers for classifying constraints
as active or inactive. This procedure is performed before the
final OPF problem is solved to reduce the dimensionality of
the joint chance constraint. We will use a popular machine
learning technique for classification called Support Vector
Classification (SVC). For each training sample i = 1, ...,m,
and two classes, namely active (`i = −1) and inactive
(`i = +1), we wish to create a decision rule which uses
selected inputs to determine whether or not we include that
constraint in the optimization problem. Here, we seek to
form an affine classifier of the form wTφ + b with weights
w ∈ R2 and bias b ∈ R that classifies constraints as
active (wTφ + b ≥ 0) or inactive (wTφ + b < 0) based
on input features φ ∈ R2 (e.g., load and available solar
at a node in the distribution network as considered in the
example in Section VI below). In our formulation, called
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Fig. 2. Visualizing the support vector classifier for classifying overvoltage events (V > V ) at a node in a distribution network. Intuitively, we know that
overvoltages occur when solar exceeds load by a particular amount, and the classifiers provide us with a selection rule for including or excluding voltage
constraints. Left: Resulting support vector classifiers from traditional SVC and a weighted version (wSVC) which heavily penalizes any misclassifications of
active constraints as inactive. Right: A magnified version. The support vectors are training data which lie closest to the separating hyperplane and, if removed,
would change the solution of (P0).

“weighted SVC (wSVC)”, we heavily penalize misclassifica-
tions of active constraints as inactive, while maximizing the
separation between classes [26]. Unlike typical applications for
support vector machines/classifiers where misclassifications
are equally weighted, highly weighting misclassifications of
active constraints as inactive pursues the preservation of an
upper bound on the original joint constraint. If some inactive
constraints were classified as active, the bound may get looser
but stay valid - the other way around, and the bound may not
be preserved. In the training stage, we build the classifier by
using m samples of labeled training data `, by solving the
following optimization problem:

(P0) min
w,z,b

1

2
wT b+ cT z (9a)

s.t. `i(w
Tφi + b) ≥ 1− zi (9b)

zi ≥ 0 (9c)

where c ∈ Rm is a penalty parameter and ci = 1 if `i = +1
and ci = a if `i = −1, a � 1. Using this objective
weighting for z in (9a), we deviate from the traditional SVC
formulation with the wSVC problem, which heavily penalizes
misclassifications of active constraints as inactive. Each slack
variable zi is nonzero if φi is classified incorrectly, and zero
otherwise. After solving (P0), a classifier wTφ + b for each
individual node is formed, which takes the form of an affine
function of the two features: the total load at a node and
available solar generation at a node.

C. Classifying Power System Constraints

We next describe how we classify constraints for a particular
power-system problem. For illustration purposes, we focus
on the example of distribution grid voltage regulation under
high PV production; the corresponding OPF problem (P1) is
formally defined in Section V below. At each node in the
considered distribution network, we construct an SVC/wSVC
with the training data set consisting of:
• Features: net solar production and load at that node.

• Labels: ` = 1 if the voltage magnitude at that node is
below the uppder limit; ` = −1 otherwise.

The features in the training data set are constructed from
historical data on solar and load, whereas the labels are com-
puted by solving the OPF (P1) without voltage constraints, and
verifying whether the corresponding voltage limits are violated
or not. As overvoltage conditions are primarily caused when
solar generation exceeds consumption (load), it is reasonable
to exploit this relationship to use the current and forecasted
levels of solar and load to determine which voltage constraints
will be relevant or binding. The classifiers are then constructed
by solving (P0) and obtaining corresponding affine decision
rules.

In Fig 2, we illustrate the differences between the classi-
fier chosen with the traditional SVC versus the conservative
weighted SVC (wSVC). Traditional SVC and wSVC may not
perfectly separate the two classes, but the conservative wSVC
aims to ensure that all training points labeled as active are
correctly classified.

Remark 1 In the voltage regulation application and particular
formulation used in this paper, the classes can be divided
by a separating hyperplane. In applications with a nonlinear
relationship between classes, additional methods to prepro-
cess/transform the data can be employed. For example, lifting
to a higher dimensional space whereby the data is linearly
separable can be achieved, e.g., using kernel-based methods
[26].

Remark 2 While in this paper we focus on using these
classifiers for probabilistic constraints, the approach would
also provide computational benefits for constraint removal
from deterministic programs as well. In particular with the
voltage regulation case - as seen in Section VI, including upper
bound constraints on the voltage is unnecessary throughout
most of the daily operating period.
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D. Iteratively Estimating Event Intersections

The number of intersections given in the joint chance
constraint expansion that must be estimated is given by

|M |∑
k=2

(
|M |
k

)
(10)

where M is the set of indices of active constraints, |M | is the
cardinality of M (i.e., the number of active constraints), and
n is the total number of constraints. For example, if the joint
chance constraint originally contained 8 constraints, 247 inter-
sections must be estimated to recover the original constraint. If
half of these were classified as inactive, only 11 intersections
must be estimated, which is much more reasonable for solving
optimization problems on fast timescales. The expansion of the
joint chance constraint can now be written as

P
( n⋃
i=1

Ai

)
=
∑
m∈M

P(Am)−
∑

m 6=j,m,j∈M

P(Am ∩Aj) + · · ·

· · ·+ (−1)|M |−1P
( ⋂
m∈M

Am

)
.

(11)

Our goal is to iteratively estimate event intersections in a
way that maintains an upper bound on the original joint chance
constraint, allowing for the termination of the algorithm before
the entire joint chance constraint is estimated. In fact, the order
in which these intersections are computed is very important;
if certain intersections are included in the expansion but not
others, an upper bound of the original union of events may
not be preserved. We therefore only estimate intersection
probabilities for pairs of terms in (11):

BK :=
∑
m∈M

P(Am)

−
K∑
k=1

[ ∑
I⊂{1,...,|M |}
|I|=2k

P
(
AI

)
−

∑
I⊂{1,...,|M |}
|I|=2k+1

P
(
AI

)]
(12)

for K = 1...b |M |+1
2 c, where I ⊂ {1, ..., |M |}, |I| = k denotes

all subsets I of indices 1, ..., |M | which contain exactly k
elements, and AI :=

⋂
i∈I Ai. A four-event example shown in

Fig. 3 to illustrate this: in the top subfigure, an improved upper
bound on P(A1∪A2∪A3∪A4) is sought by removing redun-
dant intersections (right) as time, data availability, and problem
size allow, maintaining an upper bound on the original con-
straint by performing pairwise intersection estimations (here,
only one iteration of the intersection estimation algorithm is
performed). In the bottom subfigure, the event intersection
probabilities are iteratively removed in the order of (11), no
longer maintaining an upper bound on the union of events.
In this example, the calculation in (12) only performs one
iteration at k = 1; the combinations of pairwise intersections
is calculated for the sum where |I| = 2k = 2, and the
combinations of three-way intersections is calculated for the

sum where |I| = 2k+ 1 = 3. These two terms are then added
to the marginal probabilities P(Am).

This provides a benefit over the convenient but extremely
conservative Boole’s inequality as well as a more reliable and
robust alternative to scenario-based approaches, which may
require more time than available in between control actions
in large networks. In the worst case (no computation time is
allowed to estimate intersections), the algorithm is equivalent
to using Boole’s inequality to create tractable single chance
constraints.

Observation 1 We have that

P
( n⋃
i=1

Ai

)
≤ BK ≤

∑
m∈M

P(Am)

for all K ∈ {1, . . . , b |M |+1
2 c}.

Proof. The proof follows by the inclusion-exclusion principle,
the monotonicity of BK in K, and the fact that for K =

b |M |+1
2 c, P

(⋃n
i=1Ai

)
= BK .

�
Note that Observation 1 allows us to terminate the estima-

tion process of the joint probabilities before K = b |M |+1
2 c.

This process is particularly useful when the number of non-
zero terms in the joint chance constraint is large, as we can
ensure that an upper bound is preserved which is still tighter
than that provided by Boole’s inequality.

In this paper, we estimate the remaining joint probabilities
(i.e., the second term in (12)) using a sampling approach, and
represent these probabilities with their relative frequencies. For
that purpose, a deterministic optimization problem (e.g., (P1)
in Section V) is solved in a similar way as described in Section
III-C using historical inputs (solar, load), and the relative
frequency of the event intersections are computed from that
data. For example, if an event A1 ∩A2 occurred 3,000 times
out of 10,000, we would assign P(A1 ∩ A2) = 3,000

10,000 = 0.3.
This process is discussed in more detail in Section V-B.

IV. DISTRIBUTION NETWORK AND SYSTEM MODELS

Consider a distribution feeder comprising N PQ nodes
and a single slack node. Let Vn ∈ R denote the line-to-
ground voltage magnitude at node n, and define the N -
dimensional vector v := [V1, . . . , VN ]T ∈ RN . Constants P`,n
and Q`,n denote the real and reactive demands at node n,
and we can define the vectors p` := [P`,1, . . . , P`,N ]T and
q` := [Q`,1, . . . , Q`,N ]T; if no load is present at node n, then
P`,n = Q`,n = 0.

Here, we use a linearization of the AC power-flow equations
[27], [28] which linearly relates the voltage magnitudes v to
the injected real and reactive powers p ∈ RN and q ∈ RN in
the form

v ≈ Rp + Bq + a, (13)

where R, B, and a are parameters that are dependent on the
system model [27], [28] and are usually dependent on system
line parameters, topology, and substation voltage, but can also
be computed from data-driven techniques such as regression-
based methods [29]. While the proposed methodology does not
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Fig. 3. A four-event example where the numbers overlaid on the events
and intersections represent the number of times that intersection is accounted
for. The union bound (left) tends to overestimate the intersection of events,
resulting in overly conservative control actions. Top: An improved upper
bound on P(A1∪A2∪A3∪A4) is sought by removing redundant intersections
(right) as time, data availability, and problem size allow, maintaining an
upper bound on the original constraint by performing pairwise intersection
estimations (here, only one iteration of the intersection estimation algorithm
is performed). Bottom: If the intersections are simply accounted for in the
order that (11) provides, an upper bound may not be preserved.

require problem convexity, we leverage a linearization in order
to provide a clear exposition of the joint chance constraint
reformulation in Section V.

Photovoltaic (PV) Systems

Random quantity Pav,n denotes the maximum renewable-
based generation at node n – hereafter referred to as the
available solar power. Particularly, Pav,n coincide with the
maximum power point at the AC side of the inverter. When
RESs operate at unity power factor and inject the available
solar power Pav,n, issues related to power quality and reliabil-
ity in distribution systems may be encountered. For example,
voltages exceeding prescribed limits at a particular node may
be experienced when RES generation exceeds the load of
that consumer [30]. Efforts to ensure reliable operation of
existing distribution systems with increased behind-the-meter
renewable generation are focus on the possibility of inverters
providing reactive power compensation and/or curtailing real
power. To account for the ability of the RES inverters to adjust
the output of real power, let αn ∈ [0, 1] denote the fraction
of available solar power curtailed by RES-inverter n. If no
PV system/inverter is at a particular node i, Pav,i = αi = 0.
For convenience, define the vectors α := [α1, . . . , αN ]T and
pav := [Pav,1, . . . , Pav,N ]T.

The available active power generation from solar is modeled
as pav = pav + δav , where pav ∈ RN is a vector of
the forecasted values and δav ∈ Rav ⊆ RN is a ran-
dom vector whose distribution captures spatial dependencies
among forecasting errors. We assume that the distribution
system operator has a certain amount of information about
the probability distributions of the forecasting errors δav . This
information can come in the form of either knowledge of
the probability density functions, or a model of δav from
which one can draw samples. In this paper, we make the
assumption that these errors are normally distributed with zero
mean; i.e., δav ∼ N (0, σ), and thus the remaining single
chance constraints can be exactly reformulated as analytical
expressions and included in the optimization problem directly
[31]. However, distributionally robust formulations of single
chance constraints [10], [11] can easily be incorporated into
the framework here, and thus the Gaussian assumption for the
random quantities is not necessary for our framework.

V. JOINT CHANCE CONSTRAINED FORMULATION

A. Optimization problem reformulation

The joint chance constraint optimization for voltage regula-
tion in distribution systems is shown below:

(P1) min
v,α

E(f(v,α,p`,q`)) (14a)

subject to

v = R((I− diag{α})pav − p`)

−Bq` + a (14b)
P{V1 ≤ Vmax, ..., VN ≤ Vmax} ≥ 1− ε (14c)
0 ≤ αi ≤ 1, i = 1, . . . , N ; (14d)

Constraint (14b) represents a surrogate for the power balance
equation; constraint (14c) is the joint chance constraint that
requires voltage magnitudes to be within Vmax with at least
1 − ε probability; and constraint (14d) limits the curtailment
percentage from 0− 100%. The cost function f(v,α,p`,q`)
is convex and can consider a sum of penalties on curtailment,
penalties on power drawn from the substation, penalties on
voltage violations, etc.

By reformulating the joint constraint (14c) as a series of
single chance constraints, we can write

P(Vi ≤ Vmax) ≥ 1− εi (15)

for all i ∈ 1, . . . , N , and each εi is chosen such that
∑N
i=1 εi =

ε. In the case of Boole’s inequality, we choose εi = ε
N ; in the

case of what we call the improved Boole’s inequality, using
the method proposed in this paper, we choose εi = ε

N + Pc

N ,
where Pc is our estimation of the non-zero probabilities in (5).
If Pc > 0 (all events are not mutually exclusive), it is clear that
the improved Boole’s inequality provides a less conservative
upper bound on the chance constraints.
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B. Estimating Event Intersections

We use a conservative relative frequency sampling approach
to estimate the event intersections that have not been classified
as zero. If event Ai represents an overvoltage at node i, and
I is a subset of nodes, we can estimate the probability of the
intersection of overvoltages at the nodes included in I as

P

(⋂
i∈I

Ai

)
≈
∑Ns

s=1 1 {vI(δs) > Vmax}
Ns

, (16)

for Ns random draws of the uncertainty distribution, where
draw s is denoted δs. Vector vI contains the voltage magni-
tudes at each of the nodes in I , and 1 {vI(δs) > Vmax} is
one if all of the elements in vI(δs) are greater than Vmax
and zero otherwise. To represent the most conservative case,
for each sample δs, the voltage vector v(δs) = R(I(pav +
δs − p`)) − Bq` + a; i.e., the curtailment variables α are
chosen to be zero to represent no curtailment and thus the
most conservative case for the control policy. Note that, using
the objective function defined in Section VI below, this is
equivalent to solving a deterministic version of problem (P1)
without voltage constraints. The impact of different sample
sizes Ns and computational burden of the estimation process
is discussed in further detail in the next section.

C. Analytical Reformulation of Single Chance Constraints

The single chance constraints can be reformulated as exact,
tractable constraints [32], assuming ε ≤ 0.5. Assuming the
joint distribution of the random variables is a multivariate
Gaussian with mean µ and covariance matrix Σ, define µi
as the i-th value in µ and σi as the (i, i)-th entry in Σ. Then,
define the following function at each node i:

h(pav,i) =
∑
j

(Rij [(1− αj)pav,j − p`,j ])

−
∑
j

(Bijql,j) + ai − Vmax

where Rij is the (i, j)-th entry of R, Bij is the (i, j)-th entry
of B, and ai is the ith element of a. Then h(pav,i) is also
normally distributed with the following mean µ′i and variance
σ′i:

µ′i =
∑
j

(Rij [(1− αj)µj − p`,j ])−
∑
j

(Bijql,j) + ai − Vmax

σ′i =
∑
j

Rij(1− αj)σj

Thus, the constraints (15) can be reformulated using the
Gaussian cumulative distribution function (CDF) Φ:

P{h(pav,i) ≤ 0} = Φ
(0− µ′i

σ′i

)
≥ 1− εi

With the final analytical constraint written using the quantile
function (the inverse of the Gaussian CDF):

Ri[(1− αi)µi − p`,i]−Biq`,i + ai − Vmax
≤ −RiαiσiΦ−1(1− εi) (17)

Which can be explicitly included into problem (P1) for each
i in place of the joint constraint (14c).

Remark 3 In these results, the individual solar forecasting
errors are modeled as Gaussian. Because of this, the single
chance constraints can be exactly analytically reformulated.
Without loss of generality, other distributionally robust meth-
ods for single chance constraints can also be used here
[11], [13], but as the contribution of this paper is in the
decomposition of the joint chance constraint, not in addressing
the tractability of single chance constraints, we have kept the
marginal distributions Gaussian for simplicity of exposition.
The method proposed in this paper is not distribution-specific.

Remark 4 Note that the original use of Boole’s inequality
ensures the satisfaction of the original constraint by choosing
εi such that

∑n
i=1 εi = ε; however, without optimizing this

parameter, suboptimal performance of this reformulation is
possible [33]. We leave the optimal choice of εi as a direction
for future work.

VI. NUMERICAL RESULTS

The IEEE-37 node test feeder [34] was used for the follow-
ing simulations. Five-minute load and solar irradiance data
from weekdays in August 2012 was obtained from [35] for
the simulations, and in order to emulate a situation with high-
PV penetration and risks of overvoltage, 8 200-kW rated PV
systems were placed at nodes 29-36. The considered cost
function seeks to minimize renewable curtailment; specifically,

f(v,α,p`,q`) =
∑
i∈N

diα
2
i , (18)

where the cost of curtailing power at each node is set to be
di = $0.10. The number of samples used to calculate each
intersection was Ns = 10, 000. The considered joint chance
constraint considers maintaining voltages at nodes 29 − 36.
Each µi, i = 1...N was chosen to be the power generated
from the forecasted PV at that node, based on the shape of
the aggregate solar irradiance from [35] and shifted using
samples from a uniform distribution from +/- 1 kW across
each node. The covariance matrix Σ was formed by setting
each entry (i, j) to Σij = E[(Pav,i−µi)(Pav,j−µj)T ]. Three
cases were considered in the following numerical results. First,
a deterministic case was considered, which uses a certainty
equivalence formulation and uses the mean of each of the
uncertain parameters in place of each random variable in the
optimization problem. Second, Boole’s inequality was used to
separate the joint chance constraint into a series of conserva-
tive single constraints, each with

∑N
i=1 εi = ε and εi = ε

n .
Third, an Improved Boole’s inequality is considered, where the
proposed methodology is implemented to approximate each of
the intersections in (11), and εi = ε

N + Pc

N .
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Fig. 4. The number of active constraints (out of 8 total) is indicated with red
dots for each time instance. The total computation time (s) required for cal-
culating the corresponding intersections is shown in black (for Ns = 1, 000
samples) and purple (for Ns = 10, 000 samples).

A. Training, Testing, and Choosing the Number of Samples

Each of the classifiers (one per constraint; 8 classifiers
total) were trained using 1152 samples (4 training days), and
tested using 864 samples (3 testing days), using ci = 1 when
`i = +1 and ci = 10 when `i = −1. The overall classification
error was 0.19% for false classification of binding events and
4.73% for false classification of non-binding events. A larger
classification error for the `i = +1 is to be expected from our
formulation in (P0); it is more detrimental to the performance
of the algorithm if we exclude constraints by mistake rather
than include non-binding constraints unnecessarily. If desired,
although it has the potential of increasing the conservativeness
of the solution, the classifier bias b can also be increased to
ensure that the classification error of active constraints as inac-
tive occurs even less frequently. Despite the misclassification
of 0.19% of data points in this direction, as the results in the
next section demonstrate, the original joint chance constraint
is still satisfied within the prescribed probability 1− ε.

In Fig. 4, the number of active constraints (out of 8 total) is
indicated with red dots for each time instance and referenced
against the right-hand y-axis. The total computation time
(s) required for calculating the corresponding intersections
is shown in black (for Ns = 1, 000 samples) and purple
(for Ns = 10, 000 samples). Computational time can be
reduced by potentially sacrificing accuracy of estimating event
intersections; in Fig. 5, the value of increasing the number of
samples wanes around Ns = 1, 000. Thus, in the following
simulations, the conservative choice of Ns = 10, 000 was
made to estimate each event intersection; however, in a general
setting this number is dependent on the underlying distribution.

B. Voltage Regulation Results

In the following results, the maximum joint constraint
violation probability was set to ε = 0.02 for the Boole’s and
Improved Boole’s cases, and all of the terms in (11) were
estimated. In Fig. 6, the maximum voltage magnitudes from
the resulting control policies are shown for each of the three
cases. The deterministic case does not take forecast uncertainty
into account, and as a result, the voltages are pushed to the
maximum voltage of 1.05 pu. The Boole’s case curtails enough
solar generation to ensure that overvoltages will not occur with

Fig. 5. A sensitivity analysis showing the estimated probabilities for each
of the event intersections in a single test day as a function of the number of
samples Ns used to estimate that intersection. The change between estimated
intersections with Ns = 5, 000 and Ns = 10, 000 is sufficiently small; any
additional increase in the number of samples will not provide much additional
information.
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Fig. 6. The predicted maximum voltages using the control policies determined
for voltage regulation in each of the three cases. In the non-deterministic
cases, the control policies are more conservative in order to account for the
uncertainty in the solar irradiance.

a high probability; the Improved Boole’s case reduces this
probability and results in less curtailment.

A Monte Carlo validation procedure was implemented to
demonstrate the behavior of the control policies for Nm =
10, 000 random draws of the uncertainty distributions at each
timestep. In Fig. 7, these resulting probabilities are shown.
The deterministic case, which only considers the mean of
the random variables, violates the desired chance constraint
bound of 0.02 when compared with the chance constrained
methods, because that method offers no guarantee that the
voltages will be within limits. Boole’s method is generally
more conservative than the Improved Boole’s method and
results in lower violation probabilities, with both methods
resulting in satisfaction of the original joint chance constraint.

Table I shows the total objective function value and voltage
violation probability across the three-day test period for the
deterministic, Boole’s, and Improved Boole’s cases. As ex-
pected, the deterministic case results in the lowest cost (but
highest probability of voltage violations); the Boole’s case is
overly conservative, resulting in a higher level of curtailment
and thus cost, but lowest probability of voltage violations. The
Improved Boole’s case strikes a balance between the two,
resulting in a slightly higher violation probability than the
original Boole’s case but with a lowered objective value.



9

12 AM 12 PM 12 AM 12 PM 12 AM 12 PM 12 AM
0

0.005

0.01

0.015

0.02

0.025

0.03
Vi

ol
at

io
n 

Pr
ob

ab
ilit

y

Boole's
Improved Boole's
Deterministic
ϵ

August AugustAugust

Fig. 7. The violation probability of the joint chance constraint calculated
through a Monte Carlo validation procedure with Nm = 10, 000. During
times of high solar irradiance, the deterministic control policy does not
guarantee satisfaction of the joint chance constraint, while the stochastic
solutions ensure that the constraint is satisfied with probability ≥ 98%.

TABLE I
TOTAL OBJECTIVE FUNCTION VALUE AND MAXIMUM OBSERVED VOLTAGE

VIOLATION PROBABILITY.

Deterministic Boole’s Improved Boole’s
Total Objective
Function Value 148.40 162.63 156.93

Maximum Violation
Probability 2.66% 1.85% 1.98%

C. Computational Time and Multi-Phase Systems

To demonstrate the computational burden of the proposed
framework as the joint chance constraint increases in number
of terms, we have performed additional simulations on an
unbalanced, three-phase version of the aforementioned 37-
node feeder and using the multi-phase linearization procedure
from [28]. Three-phase, wye-connected PV systems were
connected to the same nodes as in the previous test case, thus
increasing the number of single constraints within the joint
constraint by threefold (24 total terms) by constraining the
voltage magnitude at each of the three phases. As Fig. 8 and
equation (10) illustrates, estimating the number of intersections
for |M | = 24 would require more computational time than
typically given between OPF control actions. Thus, we can
show the benefit of the iterative method proposed in Section
III-D; for very large joint chance constraints, the algorithm
can be terminated prematurely while still providing a tighter
or equal upper bound to that of Boole’s inequality. This allows
the system operator to tune the time required for the constraint
estimation procedure to a desired level.

For example, here we can terminate the procedure at 12
active constraints, which can be computed in approximately
one minute. In this case, over one test day and using ε = 0.05
and Monte Carlo simulations with 1, 000 samples per time
step, the maximum observed violation probability with Boole’s
inequality was 3.04% and with the Improved Boole’s method
was 3.55%. While they both provided conservative solutions
that were under the prescribed limit of 5%, the Improved
Boole’s method was less conservative. Fig. 9 demonstrates
this relationship at the inverter at node 28 by showing lower
curtailment levels for the solution that used the Improved
Boole’s method. This tradeoff can also be compared with the
computational burden tradeoff - it is likely that if more than 12
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Fig. 8. The time required to estimate the nonzero terms in the joint
chance constraint expansion quickly becomes computationally intractable as
K grows. This shows the benefit of the iterative technique proposed in Section
III-D which allows the algorithm to be terminated prematurely.
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Fig. 9. The PV curtailment on phase 1 of node 28. As expected, the
Improved Boole’s method produces a slightly less conservative solution (i.e.,
less curtailment) than the solution obtained with Boole’s inequality.

active constraints were considered in the constraint estimation
procedure, the method would have produced a greater violation
probability.

VII. CONCLUSION

In this paper, we demonstrated how identifying zero-
probability events with support vector classifiers can increase
the computational efficiency of computing joint chance con-
straints via sampling methods. In addition, we provided an
iterative approach appropriate for fast timescale optimization,
ensuring that if the entire constraint cannot be computed, that
the resulting approximation of the constraint always provides
an upper bound of the original constraint at every iteration
which is tighter than that provided by Boole’s inequality. Sim-
ulation results were shown which addressed voltage regulation
in distribution networks with high PV penetration, and the pro-
posed method was demonstrated to result in a lower cost than
Boole’s inequality and lower constraint violation probability
than a deterministic certainty equivalence formulation.

Future work will address the question of how to optimally
allocate the estimated intersection probabilities Pc to the indi-
vidual chance constraints (rather than allocating them equally
across single constraints as in this paper), determining how
many samples are adequate for estimating event intersections,
and identifying which statistical learning techniques are best
suited for identifying active constraints in power systems
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optimization problems. In addition, an important question
for future work is how to incorporate sampling error and
uncertainty when identifying and estimating the underlying
probability distributions.
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