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Demand Side Load Management for Big Industrial
Energy Users under Blockchain-Based Peer-to-Peer

Electricity Market
Can Dang1, Jiangfeng Zhang2∗, Chung-Ping Kwong3, and Li Li2

Abstract—Blockchain is the key technology of Bitcoin and oth-
er cryptocurrencies, and it is one of the most exciting technologies
changing the world in the 2010’s. Targeting at big industrial
energy users, this paper first presents a new market structure
(i.e., transaction rules) under existing blockchain-based electricity
transaction platforms to cover popular types of markets such as
contract, day-ahead, adjustment and balancing markets, and then
focuses on the optimal load management problem for a particular
industrial user. The proof-of-work cost from blockchain is also
modelled. A key feature of this load management problem is that
the user has direct control on its own load, and the obtained load
control model is much more accurate than existing approaches
in which system operators or demand aggregators cannot control
load directly and have to rely on inaccurate estimations. As a case
study, the pumping load of a water supply plant is investigated to
illustrate how the demand load is managed under this blockchain-
based market. From the case study, it is found that 18.9% of total
cost can be saved under this new market structure.

Index Terms—Blockchain, Demand side management, Peer-to-
peer energy market, Electricity market.

Nomenclature
subscript w index for uncertainty scenario
subscript t index for time
subscript b index for contract type
superscript B index indicating bilateral contract
superscript SM index indicating spot market
superscript DA index indicating day-ahead market
superscript A index indicating adjustment market
Pi(t) power consumption of the i-th appliance
λ, p(t) electricity price
∆+,∆− positive or negative amount of imbalance
EBb,t,w, E

DA
t,w , E

A
t,w energy in the relevant markets

r+t,w, r
−
t,w ratio between positive (or negative)

imbalance price and DA price
r proof-of-work unit price
α probability in CVaR
β weighting factor on risk and cost
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D ISTRIBUTED blockchain technology appeared in Octo-
ber 2008 in Ref. [1] under an alias of Satoshi Nakamoto

to support the first cryptocurrency Bitcoin, and the Bitcoin
network was started in January 2009. Since then, Bitcoin
gradually entered into the finance industry, and becomes the
most influential cryptocurrency. The blockchain technology
behind Bitcoin turns to be a game-changing innovation for
the whole world, and there are many industries that will
be disrupted by blockchain, such as legal industry, financial
services, life sciences, health care, cyber security, supply
chain management, private transport and ride sharing, cloud
storage, charity, voting, government, public benefits, energy
management, retail, and real estate amongst others [2], [3]. The
applications of blockchain in distributed energy generation [4],
renewable and carbon credits [5], and data security of power
systems against cyber-attacks [6] are also very promising.
Therefore, existing electricity market needs to be reformed to
take advantage of this new technology, and this paper intends
to study how a big industrial user can best manage its load
under such a new blockchain-based electricity market.

In practice, there are already many pilot projects applying
blockchain technology in electricity market at small regional
levels. For example, LO3 Energy has run a peer-to-peer
(P2P) energy market under their TransActive Grid private
blockchain protocol at the Brooklyn microgrid in New York
[7], and the Australian government has granted AU$8 million
in 2017 to apply Power Ledger’s blockchain technology for
distributed energy and water systems at the City of Fremantle,
where Ethereum blockchain, POWR tokens and Smart Bond
contracts are key tools in the Power Ledger Platform1. Co-
funded by the Australian Renewable Energy Agency, the LO3
Energy is also leading a blockchain-based virtual microgrid
project at Latrobe Valley in Victoria, Australia, in 20182. A
comprehensive review is provided in [8] on the basic principles
of blockchain, 140 blockchain-based energy trading projects,
and the relevant technical challenges and market barriers. It is
interesting to note that blockchain-based P2P energy market
is a special form of general P2P energy market, while a more
general concept is transactive energy [9] which can cover any
existing P2P energy trading mechanisms.

Blockchain-based P2P energy trading research has been
carried out along with these commercial pilot projects. Seven

1https://www.powerledger.io
2https://arena.gov.au/news/latrobe-valley-virtual-microgrid-allow-dairy-

farms-trade-energy-via-blockchain/
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components of a blockchain-based microgrid energy market
are proposed in [7], and a blockchain protocol based on smart
contracts is applied to build a high-performing information
system. Blockchain is also employed in [10] to establish a
machine-to-machine electricity market in the context of chemi-
cal industry, and energy transactions are recorded and validated
by a private blockchain-based software system MultiChain.
A two-layer energy trading system based on multi-agent and
blockchain is proposed in [11] to facilitate P2P market. For
electric vehicles, a consortium blockchain for local aggregators
is proposed in [12] to audit and validate electricity trading
among plug-in hybrid electric vehicles, and a new energy
blockchain is proposed in [13] to enable electric vehicles to
publicly audit and share transactions without reliance on any
trusted intermediary. The consortium blockchain approach in
[12] is also extended to general energy blockchain transactions
for the purpose of credit-based payment and transaction secu-
rity [14]. A token-based decentralised energy trading system
using blockchain, multi-signatures and anonymous encrypted
messaging streams is discussed in [15] to solve challenges
from the security and privacy of consumption and trading data.

Within the blockchain-based P2P electricity market, it is
very challenging to optimise the benefit of a particular elec-
tricity buyer under complicated market operations and demand
side management (DSM) strategies. There are many helpful
studies on optimal energy trading decision makings in P2P,
or more generally, transactive energy markets, although the
markets discussed are not blockchain-based. For example,
price competition among sellers is modelled as an evolutionary
game, and interactions between sellers and buyers is modelled
as a Stackelberg game in [16] to study the P2P trading
within a community. A residential DSM optimisation model is
proposed in [17] to minimise the total household energy costs
under P2P. Benefits of flexible load and energy storage are
also demonstrated in a 4-layer P2P trading system in [18].
Real-time and forward markets are introduced for bilateral
contracts in P2P energy trading in [19]. The role of energy
brokers is studied through reinforcement learning for indirect
customer-to-customer energy trading in [20]. A specific P2P
trading system for electric vehicles is proposed in [21] to
reduce the impact of charging process on power systems
during business hours. Various game- and auction-theoretic
approaches in P2P energy trading are discussed in [22], [23],
and in particular, Nash bargaining theory is applied to develop
a bilateral transactive energy trading framework in [24] for
multiple participants. Physical low-voltage network constraints
are considered using sensitivity analysis in [25] for P2P trad-
ing. Power losses are allocated for microgrid P2P blockchain
market participants in [26]. At the power distribution level,
reference [27] proposes a day-ahead transactive energy market
which helps the distribution system operators to optimally
decide the schedules of distributed energy resources, while
[28] introduces a new P2P energy market based on the concept
of multi-class energy management to coordinate trading among
prosumers with heterogenous preferences.

From the above literature study, it is noted that existing
studies have made significant contributions to establish the
P2P electricity transaction platform by blockchain technology;

however, the cost minimisation problem for any big industrial
user has not been investigated yet; market structure integrating
bilateral contract, day-ahead (DA), adjustment and balancing
markets is not studied; and market participants often do not
have the authority to control the load directly, and thus the
relevant load has to be approximated by inaccurate models,
such as an approximated range of flexible load [16]. A big
industrial energy user is a very special entity in the P2P
electricity market. It often has sufficient resources to organise
its own P2P energy market, and it can also participate in
any existing P2P market. No matter which kind of market
it will organise or participate, this big user has the authority
to directly control its own load, and therefore, it has a great
opportunity to reduce its electricity cost by exercising load
management techniques under any given P2P market. It is
worth noting that blockchain technology provides a general
transaction platform and we can build further new market
structures upon existing blockchain P2P market platforms to
reduce transaction cost and increase energy supply security.
Under the existing blockchain energy trading platforms (e.g.,
[7]) and technologies such as information collection, data
communication, and transaction ledgers, this paper further
proposes a new market structure (i.e., transaction rules) for
big industrial energy users to organise their own P2P market,
which is a combination of contract, DA, adjustment and
real-time balancing markets, and then the load management
strategies of such a big energy user are optimised under this
P2P market to save its electricity cost. Stochastic programming
approach for electricity market pool from [29] is adopted
here to model the overall operational cost and the risk of
higher cost under market uncertainties. That is, high cost risks
caused by market uncertainties are mitigated by minimising
the conditional value-at-risk (CVaR) calculated from possible
scenarios. A key feature of this paper is that load can be
directly controlled by the big user for cost minimisation
purpose, and the results will be much more accurate than
existing studies on demand aggregators who do not have the
authority for direct load control and the responded demand
has to be modelled by inaccurate approximations.

The remaining part of this paper is organised as follows.
The P2P market structure for a big industrial consumer is
designed in Section II. The corresponding DSM strategies for
the industrial user under this P2P market are modelled as a
stochastic programming problem in Section III. A case study
for the DSM of a water supply plant under P2P market is
presented in Section IV. Finally, conclusions are drawn in
Section V.

II. DEMAND SIDE P2P MARKET DESIGN FOR A BIG
INDUSTRIAL CONSUMER

A big industrial energy consumer can either participate in
any existing electricity market, or organise its own P2P market.
Now consider the case that this consumer will organise its own
blockchain-based P2P market using technologies from any
existing P2P energy trading platforms. The electricity suppliers
can be traditional power generation plants or small scale
renewable generations from prosumers. Current electricity
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purchase and electricity market structure [29] are followed for
this consumer, that is, the consumer can either buy electricity
through bilateral contracts, or through organising an electricity
pool market such as a DA market, an adjustment market
(i.e. intra-day market), and a real-time balancing market. A
combination of both bilateral contract and the self-organised
electricity pool market is also possible and thus considered
here in this paper. In the following, the basic structures of
these trading methods are briefed.

i) Bilateral contract: A big consumer can sign bilateral
contracts with suppliers for a fixed time period. For example,
a contract can be signed for each week/month/year, and the
contracted electricity price can be determined by the supplier’s
available tariff choices, or the average of a contracted reference
price and the main grid spot market price (see, for example,
Chapter 9 of [29]). The consumer can also sign DA contracts
with the suppliers for the amount of energy purchased in the
next day, since this DA contract will enable the consumer to
forecast more accurately its demand of the next day.

ii) Electricity pool market: The big consumer can organise
the following three types of electricity pool markets simulta-
neously, or keep only the DA and the balancing markets. It can
also organise only the DA market. Such decisions on market
organisation depend on the needs and available resources of
the consumer.
• DA market: In the DA market, the consumer estimates

its demand for the next 24 hours, offers its demand in the
form of 24 blocks of hourly energy consumption (P i) and
the corresponding price that the customer is willing to pay
(pi), i = 1, 2, · · · , 24. The suppliers bid the corresponding
generations and the corresponding prices for this 24-hour
period. The demand data and supplier offers must be submitted
before a fixed time, e.g. 10:00am, on the day before the day
of actual power delivery.
• Adjustment market: The adjustment market allows the

consumer and suppliers to modify their offers from the clear-
ing time of the DA market to a few hours before the actual
consumption, and it can be cleared every few hours.
• Balancing market: In the real-time balancing market, im-

balance between the supply and demand from the DA market is
compensated 15 minutes or any other fixed time interval before
each delivery hour. Similar to the dual price-balancing method
in [30], the market clearing prices for positive imbalance and
the negative imbalance may be different.

While the consumer is organising these markets, the actual
transactions need to satisfy the relevant security constraints as
required by the distribution system operator or transmission
system operator. This kind of security constraints along with
the relevant network congestion issues are solved by nodal
or zonal pricing mechanism in existing electricity markets.
In this P2P market, a similar security-constrained bid-based
generation dispatch can be determined following a similar
approach.

In the traditional market, the big consumer can buy electrici-
ty directly from the grid or electricity market pool at contracted
or spot market price. This consumer can also be a prosumer
which has self-power generation facilities, e.g., photovoltaic
(PV) or wind, to supply its own load or trade with other

consumers or generations; see, for example, the market sharing
model for a P2P PV prosumer in [31]. In this paper, we assume
that the self-generated power is much less than the load since
this is a big industrial user. Therefore, the self-generated power
will not be sold to other users through the P2P market.

With the above market structure, power transactions can
be realised through any existing blockchain energy market
platform. That is, existing blockchain electricity market tech-
nologies, such as the ledgers to record transactions, and the
information processing system to communicate and store data
[7], [8], will be adopted to implement the proposed structure
on contract, DA, adjustment and balancing markets. It is
worth noting that the target of introducing the blockchain-
based P2P market is to reduce unnecessary transaction cost,
however, the blockchain framework is not completely free to
use, and there is the proof-of-work or proof-of-state cost in
all the existing cryptocurrencies and other practical energy
blockchain projects [8], although such a cost could be very
little compared with existing charges of various brokers and
agents.

III. DSM UNDER BLOCKCHAIN P2P MARKET

Under the proposed market structure mentioned in Section
II, the objective of the demand side remains the same as be-
fore, i.e., it is still to minimise its equipment operational cost.
This operational cost mainly consists of its electricity cost,
and is determined by both the equipment power consumptions
and the corresponding electricity tariff. Consider a particular
P2P electricity trade over a fixed time period [t0, tf ]. This is
typically a 24-hour period similar to current DA electricity
market, and it can also be a trade for a shorter time duration.
For simplicity, assume this time duration [t0, tf ] is the 24-
hour period of a day starting from 0 o’clock. In mathematical
terms, the electrical cost over a fixed time period [t0, tf ] can
be written as the following function

fe(P, p) =

∫ tf

t0

N∑
i=1

Pi(t)p(t)dt, (1)

where P (t) = (P1(t), P2(t), · · · , PN (t)), Pi(t) is the power
consumption of the i-th electrical appliance at time t, p(t) is
the electricity price at t, and N is the total number of electrical
appliances. Assume that the consumer has a bilateral contract,
and also organises three types of markets; therefore, the energy
price p(t) will consist of prices coming from the bilateral
contract and the three types of markets, and the relevant P (t)
will be the corresponding power consumption under these
contracts or markets. In discrete form, the electricity cost can
be rewritten as follows when the sampling period is taken as
∆t, which equals 1 hour in most applications.

fe(P, p, b) =
∑NW

w=1

∑NT

t=1 πw(λBbtwE
B
btw + λDAt,wE

DA
t,w

+λAt,wE
A
t + λDAt,w r

+
t,w∆+

t,w − λDAt,w r−t,w∆−t,w),
(2)

where NW scenarios of possible market price are considered,
πw is the occurrence probability of each scenario, λBbtw is the
electricity price of type b contract at time t under scenario
w (in most of the situations only one type of contract is
signed, and thus here only the type b contract is considered),
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EBbtw is the corresponding amount of energy purchased; λDAt,w
and λAt,w are the electricity price of the DA and adjustment
markets at time t under scenario w, respectively; EDAt,w and
EAt,w are the amount of electricity purchased in the DA and
adjustment markets at time t in scenario w, respectively;
∆+
t,w and ∆−t,w are the amount of positive and negative

imbalance, respectively. Notation r+t,w (or r−t,w) represents the
ratio between the positive (or negative) imbalance market price
and the corresponding DA market price. These market prices
and the relevant models are standard approach widely accepted
in literature (see, e.g., [29], [30], [32], [33]). The contract price
λBbtw is determined by a similar approach as [29]:

λBbtw =
λBb + λSMtw

2
,∀t, w,

where λBb is the reference contract price, λSMtw is the spot
market price. The average with the spot market price will help
the consumer to hedge the risk of higher spot market price.

As mentioned earlier in the end of the previous section,
there will be the ‘proof-of-work’ or ‘proof-of-state’ cost in
this market similar to the Bitcoin or Ethereum system which
awards participants to solve crypto-problems and add new
blocks to the existing blockchain. This kind of cost is usually
a fixed cost for each new block added. For the electricity
P2P transactions, the amount of energy transacted can be
exactly measured, and therefore, it is proposed to charge a
very small rate for the amount of energy traded and transfer
this charge to successful participants adding new blocks to the
main blockchain. This proof-of-work cost can also be shared
between the customer who buys energy and the suppliers who
sell energy. Anyway, the customer will bear either part or
full of the proof-of-work cost which is represented by the
following function.

fpw(P ) = r

NW∑
w=1

NT∑
t=1

πw(EDAt,w + EAt + ∆+
t,w −∆−t,w), (3)

where r is a fixed small rate in $/kWh for proof-of-work
cost paid by the customer, and the consumer’s proof-of-work
payment is proportional to the total amount of energy traded.

To prevent the consumer from intentionally ordering more
or less electricity than needed, it is assumed that a constant
penalty price λB (in $/kWh) needs to be paid by the consumer
to suppliers for the total volume of imbalance (∆+

t,w + ∆−t,w)
for each scenario w (see also [33]). Then the risk cost of the
volume imbalance is

fpenalty = λB

NW∑
w=1

NT∑
t=1

πw(∆+
t,w + ∆−t,w). (4)

The above volume imbalance risk is a penalty charge that
the customer must pay in case of imbalance. Now consider the
high cost risk measure, which is characterised as the concept
of CVaR [34]. CVaR measures the average risk of high cost,
and is calculated by the following formula for any given small
probability α ∈ (0, 1):

CV aRα(Z) = inf
t∈R

(t+ α−1E{[Z − t]+}),

where Z = fe(P, p) + fpw(P ) + fpenalty is the random
variable representing the total cost of the customer, E{·} is the
mathematical expectation, and the function [·]+ is defined as
[a]+ = max{a, 0} for any real number a ∈ R ([35]). Similar
to [29], [34], the above CV aR is equivalent to the minimum
value of the following linear programming problem:

CV aRα = min(ζ + 1
α

∑NW

w=1 πwηw), (5)
s.t. fe(P, p) + fpw(P ) + fpenalty − ζ ≤ ηw,∀w, (6)

ηw ≥ 0,∀w. (7)

Therefore, the objective of the consumer is to minimise its
following total cost.

min [(1− β) ∗ (fe(P, p) + fpw(P ) + fpenalty)

+β ∗ (ζ + 1
α

∑NW

w=1 πwηw)]
(8)

which is subject to the following constraints:

fe(P, p) + fpw(P ) + fpenalty − ζ ≤ ηw,∀w, (9)
ηw ≥ 0,∀w, (10)
g(P ) = 0, (11)
h(P ) ≥ 0, (12)

where β ∈ [0, 1] is a weighting factor representing the
preference on cost and risk, g(P ) = 0 and h(P ) ≥ 0 represent
the general load management and system constraints which
can be identified whenever particular customer information is
given. Note that in most of the existing studies on the offering
strategies of generators (e.g. [33], [32]), the controllable load
is often assumed to be freely changeable within an interval
[16] due to the lack of sufficient load information and also the
lack of authority to control loads. For the P2P big consumer
scenario discussed here, the consumer has direct control on
its load; therefore, the load management constraints (11)-(12)
are available to flexibly minimise its operational cost. Detailed
formulation of these constraints will be introduced by the case
study in the next section.

IV. CASE STUDY FOR A WATER SUPPLY PLANT

In this section, a water supply plant is investigated to show
how the electricity cost is minimised under this P2P market.
The water supply system is illustrated in Fig. 1 [36], and it
has 21 pumps supplying 4 reservoirs.

The 21 pumps are divided into four groups (denoted by
N1, · · · , N4) depending on the destination reservoir that the
pumps supply. That is, the pumps No.19, 20, 21, 14, 1, 2,
3, and 4 from group N1 pump water to the first destination
reservoir; the pumps No. 5, 6, and 7 from group N2 pump
water to the second reservoir; the pumps No. 8, 9, 10, 11,
12 from group N3 pump water to the third reservoir; and the
pumps No. 13, 15, 16, 17, and 18 from group N4 pump water
to the fourth reservoir. The water demand of the reservoirs
are independent to each other. The 21 pumps are limited to
the total electricity consumption Pmax and the total volume of
incoming water per hour.
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Fig. 1. Water Supply System [36]

A 24-hour control period is considered in this case study.
The hydraulics of the water distribution system is modeled
using the mass balance equation as formulated below ([36])

Rkt,w = Ṽ ktw −Dk
t +Rkt−1,w, (13)

where Rkt,w is the volume of water in the k-th reservoir at time
t (i.e., the t-th hour), Dk

t is the water demand requirement of
the end user of the k-th reservoir at time t, and Ṽ ktw is the total
volume of water pumped by the pumps to the k-th reservoir
at time t. Without loss of generality, we can assume that the
water demand Dk

t does not rely on electricity price due to the
lack of any time-of-use water tariff and a direct link between
the water supplier’s electricity cost and the water end users’
water cost. Therefore, it will not change under different price
scenario w and there is no need to introduce any notation like
Dk
tw.
The scheduling of pumps can be formulated as a linear

programming problem when the pumps are controlled by vari-
able speed drives. For this purpose, assume that the switching
status of the i-th pump at the t-th hour under scenario w is
represented by uitw which belongs to the interval [0, 1]. The
value 1 denotes switching on, 0 denotes switching off, while
any intermediate value between 0 and 1 denotes how much
percentage of the maximum power is actually being extracted.
Therefore, {uitw : i = 1, · · · , N ; t = 1, · · · , 24; w = 1, · · · ,
Nw} will be the variables of the minimisation problem for the
cost function (8). The following constraints must be met.

1) Total amount of water pumped to each reservoir: For
k = 1, 2, 3, 4, the sum of the volumes of water pumped
by the operating pumps at the k-th group equals to the
previously defined notation Ṽ ktw:∑

i∈Nk
Viuitw = Ṽ ktw, t = 1, 2, · · · , 24;

k = 1, 2, 3, 4;w = 1, · · · , Nw;
(14)

where Vi denotes the volume of water that the i-th pump
can pump within one hour when the pump works at its
maximum power Pi.

2) Reservoir Constraints: The volume of water in the k-th
reservoir should be between the maximum and minimum
specified levels, which are denoted by Rkmax and Rkmin

respectively. For simplicity and also to include the worst
case, we suppose the initial volumes of water inside
the reservoirs equal to the minimal possible level Rkmin.
Then we have

Rkmin ≤ Rkt ≤ Rkmax,
Rk1 = Rkmin, t = 2, 3, · · · , 24; k = 1, 2, 3, 4.

(15)

3) Switching Constraints: The switching function uitw
must satisfy

0 ≤ uitw ≤ 1, ∀i, t, w. (16)

4) Peak Demand and Security Constraints: The energy
utilised by the 21 operating pumps must be less than
or equal to the specified maximum electricity demand
Pmax.

21∑
i=1

Piuitw ≤ Pmax, 1 ≤ t ≤ 24; 1 ≤ w ≤ Nw. (17)

When the power distribution network is experiencing or
will experience security problems such as thermal limit
violations, significant voltage or frequency drops, then
the system operator will take the relevant measures to
maintain secure operations, for example, to require the
big end user’s total power consumption to be restricted to
certain values (denoted by Psecurity) at certain peak hours.
This can be simply written as the following inequality
for specific time period t which is often within peak
hours.

21∑
i=1

Piuitw ≤ Psecurity, 1 ≤ w ≤ Nw. (18)

5) Volume Constraints: The volume pumped by the pumps
within one hour must be less than or equal to the
incoming water supply rate Vsupply (Ml/hour), where
Ml denotes Megalitre, and Vsupply is a constant. Then

21∑
i=1

Viuitw ≤ Vsupply, 1 ≤ t ≤ 24; 1 ≤ w ≤ Nw. (19)

6) Energy Balance:

EBbtw+EDAtw +EAtw+∆+
tw−∆−tw =

N∑
i=1

Piuitw∆t (20)

The overall optimisation problem is to solve the operational
cost minimisation problem of the water supply plant in the
P2P market, restrained by the P2P market structure, blockchain
technique implementation, and the inherent constraints of the
water supply plant. Mathematically, the optimisation problem
is to solve (8) subject to constraints (9), (10), (13)-(20). The
optimisation variables are {EBbtw, EDAtw , EAtw, ∆+

tw, ∆−tw, uitw,
ζ, ηw: t = 1, · · · , 24; w = 1, · · · , Nw; i = 1, · · · ,
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Fig. 2. Solution process

N}, which are all real variables. The costs fe(P, p), fpw(P )
and fpenalty in the objective function (8) take the form of
linear weighted cost of each scenario, and the calculation
of CVaR is transformed into a linear programming problem.
The constraints (9), (10), (13)-(20) are all linear constraints.
Therefore, the optimisation problem is a linear programming
problem, and the computational burden mainly lies in the
size of data. In this paper, we adopt the linear optimisation
software CPLEX to solve the problem. The mathematical
model is built on the platform of MATLAB, with the help
of YALMIP toolbox to translate the mathematical models into
programming codes. The flow chart of the solving process is
illustrated in Fig 2.

Uncertainties in electricity market prices are modelled by
scenarios generation results from [37], where historical data
of market prices from the Iberian Peninsula electricity market
are taken as example, and the uncertainties of the problem
are modeled through a scenario tree with 300 scenarios (10×
5 × 6) including 10, 5, and 6 scenarios for DA, adjustment
and balancing market prices, respectively. The water supply
plant data are from [36]. After studying historical electricity
consumption data of the plant, only minor changes are found
within any single month’s period when different 24-hour load
profiles are compared with each other, and therefore, monthly
average 24-hour load profile is used to represent the electrical
load.

A. Base Case

A base case illustrating the application of blockchain tech-
nology in P2P based electricity market is discussed in this
subsection, and it is denoted as Case A for comparison
purpose. The raw data of Case A are shown as follows.

The prices of the contract, DA market, adjustment market
and balancing market are illustrated in Figs. 3-6.

We set the parameters α = 0.07, r=0.01, λB=0.05 and
β=0.07. Considering that the volume of water pumped into the
reservoirs will roughly equal the amount of water consumed

Fig. 3. Contract price

Fig. 4. DA market price

Fig. 5. Adjustment market price

over a long term period, e.g., one year, therefore, here it is
assumed that the amount of water pumped into the reservoir
will be greater than or equal to the amount of water users
requested. Security constraint (18) is not considered in Case A
since it will be discussed in Case C. The obtained optimisation
result is shown in Table I. The electricity bought from the
contract, DA market, adjustment market and balancing market
accounts for 44.6%, 36.0%, 19.4% and 0.03% of the total
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Fig. 6. Balancing market price

TABLE I
OPTIMISATION RESULTS OF THE BASE CASE

Electricity bought from (kWh): Contract 306775
DA market 247706
Adjustment market 133210
Balancing market 234

Electricity sold to (kWh): Balancing market 329
Cost of buying electricity from (e): Contract 31067

DA market 13303
Adjustment market 6259
Balancing market 17

Cost of selling electricity to (e): Balancing market 36
Cost of proof-of-work (e) 35
Penalty of unbalance (e) 0.26
Electricity buying & selling cost(e) 50645
Cost of risk (e) 2491
Final total cost (e) 53136

amount, respectively. The amount of electricity bought from
the balancing market is very small, and is 234 kWh only.
As a result, the costs on buying electricity from the contract,
DA market, adjustment market and balancing market make
up 58.5%, 25.0%, 11.8% and 0.07% of the total cost, adding
up to 95.4% of the total cost, with the remaining 4.6%
accounting for the cost of risk, proof-of-work, and the penalty
of unbalance. In fact, the amount of electricity bought from
the balancing market almost equals that of electricity sold
to the balancing market, both of which are at a relatively
low level. Therefore, the cost of buying electricity from the
balancing market almost counteracts with the income of selling
electricity to the balancing market. Within the 4.6% of total
cost on risk, proof-of-work and penalty of unbalance, the cost
of proof-of-work is 35 euros (e), making up only 0.07% of the
total cost. The penalty of unbalance also accounts for a small
proportion of 0.0005% of the total cost. As we set the factor
of risk preference β at 0.07, the cost of risk is relatively low,
accounting for 4.6% of the total cost. A series of sensitivity
analysis regarding the coefficients r, λB , β and α are carried
out to explore their influence on the optimisation result.

The coefficient r stands for the charge rate of proof-of-
work in e/kWh, an important and representative by-product
of the blockchain technology. In the base case above we
set r = 0.01e/kWh, which, obviously, indicates a relatively
low level of the charge rate. Fig. 7 shows the trend of the

total cost when r varies from 0.01e/kWh to 100e/kWh. As
the cost of proof-of-work directly relates to the amount of
electricity bought from the DA, adjustment and balancing
markets, but has no relation with the contract, the ratio of
electricity bought from contract increases with r to avoid the
high cost of proof-of-work. When r = 100, almost 100% of
the electricity are bought from the contract. The blue dotted
line shows the total cost when 100% electricity is bought
from the contract. Apparently, with r increasing, the total cost
gradually approaches the cost under 100% contract.

Fig. 7. Impact of proof-of-work charge rate r on the total cost

The coefficient λB refers to the penalty price for imbalance.
Fig. 8 shows the relation between the value of λB , the total
cost and the ratio of imbalance, i.e., the ratio of electricity
bought from plus sold to the balancing market, in which λB
ranges from 0 to 50 e/kWh. Apparently, when λB is high, the
amount of electricity bought from plus sold to the balancing
market decreases to nearly 0. When the value of λB is between
0 and 10 e/kWh, the total cost roughly increases linearly
with respect to λB with a slope of 2. In reality, electricity
cost can never be higher than 10e/kWh; therefore, the total
cost can be approximated by this linear segment with respect
to λB ∈ (0, 10). Fig. 9 shows the relation between the risk

Fig. 8. Impact of imbalance penalty price λB on the total cost

preference β and the total cost. In simple words, the coefficient
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β refers to the acceptability of risk, i.e., a higher β means a
risk is more likely to be accepted. As shown in Fig. 9, the total
cost decreases when β increases, as a higher beta renders less
money to be spent to face the possible risk.

Fig. 9. Impact of risk preference β on the total cost

Fig. 10 shows the variation of the total cost when the risk
probability α ranges from 0 to 1. The five different curves
show how the total cost changes against α for five different
combinations of r, λB and β. The red line in the middle of the
figure corresponds to the base case of r = 0.01, λB = 0.05
and β = 0.07, and it shows that the total cost changes very
little for different α’s. From the definition of CVaR in [34],
the value of CV aRα in (5) decreases with the increase of α.
Therefore, the total cost, i.e., the value of objective function
in (8) decreases when α increases, which is also illustrated in
Fig. 10. Although the five curves varies significantly regarding
the total cost, they show the same decreasing trend with the
increasing α.

Fig. 10. Impact of risk probability α on the total cost

B. Comparison with the spot market

To compare the efficiency of the proposed P2P market
structure, we compare the optimisation results with the same
energy consumption scenario in the spot market, where the

TABLE II
COMPARISON BETWEEN CASE A AND CASE B

Case A Case B
Amount of electricity(kWh): 687596 687596
Cost of buying electricity from (e):
Contract 31067 64807
DA market 13303 0
Adjustment market 6259 0
Balancing market 17 0
Income of selling electricity to Balancing market (e) 36 0
Cost of proof-of-work (e) 35 0
Penalty of unbalance (e) 0.26 0
Cost of buying & selling electricity (e) 50645 64839
Cost of risk (e) 2491 723
Total cost (e) 53136 65530

latter is denoted as Case B. Noting that for most of the
industrial users, the relevant spot market price is indeed a
contracted time-of-use tariff, therefore, we use the contract
price of Case A as the spot market price of Case B, which
will also enable a fair cost comparison between Cases A and
B.

The amount of electricity bought in Case B is 687596 kWh,
which equals that of Case A. The cost of buying electricity in
Case B is e64807, and the cost of risk is 723. The total cost
of Case B is e65530, 23.3% higher than Case A, or in other
words, the optimal solution under P2P in Case A saves 18.9%
of the total cost compared with Case B. Detailed comparison
between Case A and Case B is also provided in Table II. This
difference shows that the load management model significantly
saves the cost of buying electricity for big consumers under
the proposed P2P market.

As discussed above, Case A has the optimised proportion
of electricity bought from the contract, DA, adjustment and
balancing markets, while Case B is equivalent to the case
when 100% of the electricity comes from the contract. To
further explore the relationship between the total cost and
the proportion of the electricity bought from contract, we
carry out a series of sensitivity analysis regarding different
proportions of the amount of electricity bought from contract.
In each case, we set an additional constraint on the amount
of electricity bought from contract, then run the optimisation
programme. The results are shown in Fig. 11. It can be seen
that the lowest cost lies in Case A, i.e., the case without any
additional constraints on the amount of electricity bought from
contract. Case B has the highest cost, indicating an unitary
market structure could be costly.

C. Special cases under network constraint or self generation

Now consider the proposed model under two special cases.
The first case, named Case C, is to consider the power security
constraint (18) for network security reasons, while the second
case, named Case D, is to assume that the water supply plant
has self PV generations. In Case C, the total power supplied
to the water supply plant is constrained by the network. As
a result, this water supply plant has to adjust its load profile
while satisfying the water demand. According to Case A, the
load profile has a peak of 45.0 MW between 15 o’clock and
17 o’clock that coincides with the peak load of the power
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Fig. 11. Cost under different contract proportion

system. Therefore, in Case C, we consider a 80% restriction
on the amount of power between 15 o’clock and 17 o’clock,
i.e., a 20% power curtailment between 15 o’clock and 17
o’clock compared with the original load of Case A. The
optimisation results are listed in Table III. Under the network
constraint between 15 o’clock and 17 o’clock, 20% of the
energy consumption of this period has to be shifted to other
periods. Since Case A has the optimised energy transaction
scheme, this shift of energy consumption in Case C implies
certain amount of the energy transactions are shifted from
lower price markets to higher price markets. As a result, the
total cost of Case C is 0.28% higher than Case A. Table IV
shows the increasing trend of total cost when the proportion
of power curtailment increases. For example, when the power
curtailment between 15 o’clock and 17 o’clock is 10% of
the original power purchased under Case A, the total cost is
e53210, which is 0.14% higher than Case A. When this power
curtailment is as high as 50%, then the total cost is e53624,
which is only 0.92% higher than Case A and is still 18.2%
lower than Case B when Case B is not subject to any network
constraint. This shows that network constraint has only a very
minor impact on the cost of the water supply plant. The main
reason is that the network constraint is applied only during
the peak hours 15-17 o’clock, and thus the water supply plant
can take advantage of the reservoirs to store water and shift
part of the load to other periods.

Since there are more and more renewable generations at the
energy end user side, it is interesting to investigate the impact
of renewable generation on the overall cost of the end users.
In Case D, we assume that this water supply plant owns a 4
MW PV generation facility which supplies part of the power
demand during the daytime. Comparison between Case A and
Case D is also provided in Table III. It is observed that the
amount of energy bought in Case D is 652903 kWh, while
the PV system supplies 34693 kWh. The total cost of Case
D is 4.4% lower than that of Case A, that is, the PV system
can save 4.4% of the optimal cost in Case A or 22.5% of the
unoptimised cost in Case B.

TABLE III
COMPARISON BETWEEN CASE A, CASE C AND CASE D

Case A Case C Case D
Electricity bought from:
Contract (kWh) 306775 341967 305555
DA market (kWh) 247706 200822 192681
Adjustment market (kWh) 133210 144842 154700
Balancing market (kWh) 234 275 251
Electricity sold to
Balancing market (kWh) 329 310 284
Total amount of transaction (kWh): 687596 687596 652903
Cost of buying electricity from:
Contract (e) 31067 33577 32680
DA market (e) 13303 8642 7171
Adjustment market (e) 6259 7800 9062
Balancing market (e) 17 21 20
Income of selling electricity to:
Balancing market (e) 36 26 34
Cost of proof-of-work (e) 35 29 26
Penalty of unbalance (e) 0.26 0.28 0.25
Cost of buying & selling electricity (e) 50645 50043 48925
Cost of risk (e) 2491 3244 1873
Total cost (e) 53136 53287 50798

TABLE IV
SENSITIVITY ANALYSIS ABOUT THE NETWORK CONSTRAINT

Network constraint (proportion of power
curtailment to the original load) Total Cost (e)
0 53136
10% 53210
20% 53287
30% 53362
40% 53505
50% 53624

V. CONCLUSION

This paper proposes a new market structure, which can be
implemented by any existing blockchain-based peer-to-peer
electricity market platforms, and then investigates the optimal
demand load management problem for a big industrial user.
Case studies on a water supply plant show that the optimised
load management under this new market structure significantly
saves the electricity cost compared with the spot market, and
network constraints at peak hours have only minor impact, i.e.,
less than 1%, on the total electricity cost. The proposed peer-
to-peer market structure and load management models can
also be applied in energy trading within a power distribution
system, where the big consumer can be understood as a broker
or an aggregator which integrates small loads. Since this paper
studies only the situation of one big consumers, scenarios for
multiple consumers will be studied in the future work.
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