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 Abstract-- This paper studies the parameter stability region of 

droop-controlled AC microgrid (MG) with static ZIP (constant 

impedance, constant current, constant power) load and dynamic 

induction motor (IM) load using bifurcation theory. First, the 

dynamic model of the MG with ZIP and IM loads is developed. 

Next, bifurcation analysis is used to predict the bifurcation 

boundaries where microgrid becomes unstable. Saddle node and 

hopf bifurcation are detected in the studied system when 

parameters change. The stability region in parameters space is 

bounded by bifurcation boundaries. To improve the computing 

efficiency for predicting the stable region of parameters, the 

reduced-order models of MGs are developed based on singular 

perturbation method. Finally, numerical simulations and 

experiment are used to verify the analysis result and the 

effectiveness of the proposed strategy. 

 

Index Terms-- Islanded microgrid, parameter stability region, 

bifurcation theory, reduced-order model, singular perturbation 

method. 

I.  INTRODUCTION 

he Microgrids (MGs) that serve as individual controllable 

systems can integrate distributed generators (DGs) and 

supply power to local loads with or without external power 

systems [1]. The low-inertia and limited capabilities of inverter 

make MG vulnerable to instability when subject to disturbances 

[2-4]. In practical case, multiple types of load are considered in 

MG system, such as resistance load, constant power load and 

induction motor (IM) load. To achieve stable operation, the 

parameter stability region of MG with multitype loads need to 

be predicted [5].  

Small-signal analysis has been widely used to investigate the 

stability of the linearized system under a set of specific 

parameter configuration [6-9]. However, when system 

parameters change, the equilibrium is accordingly changed and 

deviates from the predefined linearization point [10-14]. To plot 

the stability constraint of parameters, the linearization and 

eigenvalue calculation are performed iteratively, which is 

labor-consuming and inefficient.  

The bifurcation analysis has been proposed to predict the 

parameter stability boundary of nonlinear system. Bifurcation 

occurs when a small continuously change of parameter values 

causes a sudden change in system behavior [14]. Compared 

with the small-signal analysis that analyzes the perturbation of 
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a fixed equilibrium, the bifurcation analysis can perform 

parametric stability analysis that traces equilibrium solutions as 

the parameters change [15-16]. In [17-19], the bifurcation 

theory was used to predict the parameter stability region of MG. 

However, only RL load [17-18] and rectifier served as a 

constant-power load [19] are considered. ZIP (constant 

impedance, constant current, constant power) load is widely 

used to describe a practical static load, which is rarely 

considered in current MG models. In [20], the progressive 

increment of IM load was given by placing identical IMs in 

parallel. However, the MG model is changed with the increase 

of connected IMs, which prevents the continuous tracing of the 

equilibrium manifold. So far, the bifurcation analysis for MG 

with ZIP and IM load have not been discussed. 

Another problem of the stability-region analysis is the high 

dimension of MG model, which results in a huge computation 

burden. Singular perturbation method has been proposed to 

reduce the model order by eliminating the fast dynamics [21-

24]. However, the coupling of dynamics makes the reduced 

model inaccurate for predicting different boundary. In [25-27], 

the reduced model for predicting the stability region of active-

power droop gain are proposed. However, these model present 

errors for predicting the stability boundary of other parameters, 

such as reactive power droop gain.  

This paper extends the application of bifurcation theory to 

analyze the parameter stability region of the MG with static ZIP 

load and dynamic IM load. The main contributions of this paper 

can be summarized as follows: 

(1) The equivalent model of static ZIP loads and dynamic 

IM loads have been developed, respectively, for the continuous 

tracing of the load increasing in MG model.  

(2) The parameter stability region analysis based on 

bifurcation theory is performed for the MG with ZIP load and 

IM load. Bifurcation phenomena of MG with parameters 

change are observed. The stability boundaries of MG in terms 

of the key control parameters and load are investigated in detail.  

(3) The reduced models for predicting different bifurcation 

boundaries are developed. The reduced model for predicting a 

specific bifurcation phenomenon preserves the states variables 

that has major influence on the corresponding bifurcation.   

The rest of this paper is organized in the following way: 
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Section II describes the dynamic model of MGs with ZIP and 

IM loads. In Section III, bifurcation method is proposed to 

predict the parameter stability region of MG. In Section IV, the 

reduced models for stability region analysis are proposed. In 

Section V, simulation and experiment results are given to verify 

the bifurcation analysis results. Section VI concludes this paper. 

II.  MODELING OF THE MICROGRID WITH ZIP AND IM LOAD  

This section provides the microgrid model with ZIP and IM 

load. The MG model consists of the droop-controlled DG, 

dynamic IM load, static ZIP load, and network. The equivalent 

model of IM and ZIP load will be presented in detail. 

A.  Model of the Droop-Controlled DG 

The block diagram of a droop-controlled DG is depicted in 

Fig. 1 [6]. The control system is composed of droop controller 

for power sharing and inner control loops for voltage and 

current control. The droop controller mimics the active-power 

and reactive-power droop characteristics of synchronous 

generator. The droop controller compares the filtered active 

power P and reactive power Q to the command values, and 

outputs the frequency command ω and voltage reference uo
ref. 

The inner-control loop is designed under the dq synchronous 

reference frame for voltage tracking with zero steady-state error. 
The PI controller for voltage control compares the uo

ref and 0 to 

the capacitor voltage uod and uoq, respectively, and outputs the 

current reference ild
ref and ilq

ref. The obtained current references 

are sent to the current controller where the measured current ild 

and ilq are compared to ild
ref and ilq

ref , respectively. Command 

voltage uid, uiq are given via the current controller and 

transformed into abc reference frame for PWM generation.  

 
Fig. 1. Block diagram of droop-controlled inverter. 

The mathematical model of droop-controlled inverter in [6] 

is adopted in this paper. The droop-controlled DG incorporates 

12 states to describe its dynamic behavior, whose state variables 

are written as follows: 

xDG=[θ, P, Q, uod, uoq, ild, ilq, iod, ioq, φd, φq, γd, γq] 

where φd, φq, γd, γq are the dynamic states of PI controllers.  

B.  Model of the Induction Motor Load 

Squirrel cage IM is selected in this work as a kind of typical 

IM load. The electromagnetic transients of rotor and stator sides 

are both considered. The flux equations of IM can be written as: 

,sD s sD m rD sQ s sQ m rQL i L i L i L i = + = + ,                   (1) 

,rQ r rD m sD rQ r rQ m sQL i L i L i L i = + = + ,                   (2) 

where Lm is the linkage inductance, Ls and Lr are the stator 

inductance and rotor inductance, respectively. The voltage 

equations of IM are written as: 

,sD s sD sD com sQu R i   = + −                           (3) 

Q ,sQ s s sQ com sDu R i   = + +                           (4) 

0 ( )r rD rD com r rQR i    = + − − ,                       (5) 

0 ( )r rQ rQ com r rDR i    = + + − ,                       (6) 

where Rs and Rr are the stator resistance and rotor resistance, 

respectively. Substituting (1-2) into (3-6) and the cooperating 

rotor motion equation, the dynamic model of the IM can be 

written as:  
2

r ( )
p m p

sQ rD sD rQ l

r

n L n
i i T

JL J
  = − − ,                       (7) 

1
( ) m

rD rD com rQ sD

r r

L
i

T T
    = − + − + ,                   (8) 

1
( ) m

rQ rQ com rD sQ

r r

L
i

T T
    = − − − + ,                   (9) 

 

2 2

2

m m s r r m bD

sD rD com rQ sD com sQ

s r r s r ss r

L L R L R L u
i i i

L L T L L LL L
   

  

+
= + − + +

(10) 
2 2

2

bQm m s r r m

sQ rQ com rD sQ com sD

s r r s r ss r

uL L R L R L
i i i

L L T L L LL L
   

  

+
= − − − +

(11) 

where J is the rotor inertia coefficient. 
2

1 m

s r

L

L L
 = −  denotes the 

leakage factor and /r r rT = L R represents the rotor 

electromagnetic time constant. The load torque can be 

described by the following nominal as: 

.                         (12) 

The incremental IM load at a given bus can be obtained by 

placing identical IMs in parallel. However, to track the 

increment of IM loads, the number of integrated IMs increases 

at the given bus, which will change the structure and increase 

the size of MG model. On the other hand, the paralleled IMs 

can be presented as a single-unit equivalent IM based on the 

dynamic equivalent method. By doing so, the continuous load 

increment can be presented as the parameters change of the 

equivalent IM.  

 
Fig.2. Bock diagram of paralleled IM loads and their equivalent model. 

Fig.2 presents the signal flow of an IM model, the input 

signals of IM loads are bus voltage ub and load torque TL, stator 

current is is the output signal. To provide the same dynamic 

behavior with the original paralleled IMs, the dynamic 

equivalent model of IMs must meet the following requirements: 

1) The voltage and current on the connected bus do not 

change.  

2) The active and reactive power assumption of equivalent 

IMs must be equal to the sum of all the power assumption at the 

connected bus of paralleled IMs. 

3) The electromagnetic time constant of the equivalent IM 

equal to that of the paralleled IMs.  

According to the first condition, the stator current and bus 

voltage of the equivalent IM should satisfy 

,
sDe sD sD sQe sQ sQ

i i Ki i i Ki= = = =  .                (13)  
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As the stator voltage keeps unchanged, the stator and rotor flux 

of the equivalent IM are obtained as: 

, , ,rDe rD rQe rQ sDe sD sQe sQ       = = = = .         (14) 

According to the second condition, the load torque and rotor 

angular velocity are: 

re r
= , =

Le L L
T T KT  =  .                           (15) 

From the third condition, the electrical parameters of the 

equivalent IM should meet the relationship below: 

se s s s re r r r
T =T = L / R ,T =T = L / R .                 (16) 

Substituting (13-16) into the flux and voltage equations (7-11), 

the parameters of the equivalent motor load rated at PIM=KPnW 

can be described by an IM load factor K: 

/ , / , / , / ,
/ , ,

me m se s se s re r

re r e Le L

L L K L L K R R K L L K
R R K J KJ T KT

= = = =
= = =

     (17) 

Therefore, based on a typical motor load rated at PnW, the 

parameters of the equivalent motor load rated at PIM=KPnW can 

be described by (17). Thus, the continuous increment of IM load 

is described by increasing load coefficient K. 

C.  Model of ZIP Load  

ZIP loads are often used in static analyses and are packaged 

in many commercial software tools (such as PSCAD and 

Matlab/SimPowerSystems.). The load consumption of ZIP load 

can be represented by the polynomials as: 
2 2

0 1 2 3 0 1 2 32 2

0 0 0 0

( ), ( )b b b b

ZIP ZIP

U U U U
P P a a a Q Q b b b

U U U U
= + + = + + , (18) 

where P0 and Q0 are the nominal active-power and reactive-

power, respectively under the nominal voltage U0. a1 and b1, a2 

and b2, and a3 and b3 are the percentages of the constant-

impedance load, constant-current load, and constant-power 

load, respectively, and Ub denotes the magnitude of bus voltage.  

Instead of active and reactive power flows, the line currents 

are used as the signal flows in the network of microgrid model 

for describing the line dynamics. Thus, the equation (18) cannot 

be integrated in MG model directly. Therefore, the parallel 

combination of conductance GZIP and susceptance BZIP are used 

to present ZIP load model depicted in Fig. 3. The GZIP and BZIP 

can be described as: 

3 31 2 1 2

0 02 2 2 2

0 00 0

( ), ( )ZIP ZIP

b bb b

a ba a b b
G P B Q

U U U UU U U U
= + + = − + + .(19) 

From (18), the values of GZIP and BZIP depend on the magnitude 

of bus voltage Ub. The state equations of the ZIP load current 

can be written on the common reference frame as: 

,Pd ZIP bd Pd Pq ZIP bq Pqi G u i i G u i = − = − .             (20) 

The state equations of the load current of BZIP can be presented 

on the common reference frame as: 

,Qd ZIP bq Qd Qq ZIP bd Qqi B u i i B u i = − − = − .           (21) 

where τ is defined as the time constant of ZIP load.  

 
Fig. 3. Equivalent circuit of a ZIP load. 

D.  Model of Microgrid System 

To extract all the dynamics in the proposed system, the 

dynamics of the connecting line between the bus i and bus j can 

be described as: 

( ) /lineD biD bjD line lineD com line lQ linei u u R i L i L= − − +       (22) 

( ) /lineQ biQ bjQ line lineQ com line lineD linei u u R i L i L= − − −      (23) 

To define the bus voltage well, a small virtual capacitor Cvir 

is added between the bus and ground. The voltage of bus i can 

be written as:  

( ) /bDi oD loadD lineD com vir bQi viru i i i C u C= − + +   (24) 

( ) /bQi oQ loadQ lineQ com vir bDi viru i i i C u C= − + −   (25) 

The dynamic model of MG is organized as differential-

algebraic equations. The islanded MG with m DGs, n lines, k 

IM loads, l ZIP loads, and i buses has 13m + 2n + 5k + 4l +2i- 

1 state variables to describe its dynamics.  

III.  PARAMETER STABILITY-REGION ANALYSIS BASED ON 

BIFURCATION THEORY 

A.  System Description 

In this section, the numerical bifurcation method is applied 

to analyze the parameter stability region of a microgrid system. 

The microgrid system is as shown in Fig. 4, which consists of 

two droop-controlled DGs, a dynamic IM load, and a static ZIP 

load. DGs and loads are connected through a tie-line with 

inductance Lline and resistance Rline. 

 
Fig. 4. The microgrid with 2 DGs. 

In this MG, the parameters of the two droop-controlled DGs 

are given in Table I, and the load parameters under the rated 

operation condition are given in Table II. The inductance and 

resistance of connection lines are 0.26mH/km and 0.164Ω/km 

respectively. The length of connection line Lline=0.5 km. 

TABLE I. DROOP-CONTROLLED DG PARAMETERS 

Parameter Value Parameter Value 

Pn1, Pn2 40 kW, 20 kW Lf1, Lf2 1.2 mH, 1.2 mH 

Un1, Un2 330 V, 330 V Rf1, Rf2 0.1 Ω, 0.1 Ω 

mp1, mp2 
0.75e-4rad/W,  

1.5e-4 rad/W 
Cf1, Cf2 0.55 mF, 0.45 mF 

mq1, mq2 5e-4V/Var, 7e-4V/Var Lg1, Lg2 0.6 mH, 0.4 mH 

ωc 31.4 rads/s Rg1, Rg2 0.3 Ω, 0.2 Ω 

Kvp1, Kvp2 1.2, 1 Kcp1, Kcp2 4, 3.2 

Kvi1, Kvi2 380, 275  Kci1, Kci2 550, 480   

TABLE II. LOAD PARAMETERS  

ZIP load 

parameter 
Value 

IM load 

parameter 

(22.5kW) 

Value 

b1, b2, b3 0.2,0.3,0.5 Lm 0.043927 mH 

c1, c2, c3 0.2.0.3.0.5 Lr, Rr 0.0449 mH, 0.228 Ω 
P0 10kW Ls, Rs 0.0449 mH, 0.087 Ω 

Q0 5kVar J 1.662 kgm2 

U0 311V T0, T1, T2 65, 0.5, 0 

Bifurcation analysis is a powerful tool to analyze the 

parameter stability of nonlinear system. The occurrence of local 

 iP
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bifurcation leads the nonlinear system to become unstable. In 

general, bifurcations are caused by continuous variations of one 

or more parameters. Using the bifurcation analysis package 

software MATONT [28], the bifurcation boundaries and 

solution manifolds of different parameters are plotted. For 

electrical power system, Hopf bifurcation (HB) and saddle-

node bifurcation (SNB) are the major local stability boundaries 

[18-19]. When SNB occurs, a real eigenvalue is located on the 

imaginary axis. If the parameters continue to change, the stable 

equilibrium disappears and the system collapses. When HB 

occurs, a pair of complex conjugate eigenvalues are on the 

imaginary axis. After that, the limit circle will emerge, and then 

the system becomes oscillatory.  

B.  Case1: Bifurcation Analysis on mp-mq Plane 

The power controller of droop-controlled DG dominates the 

dynamic behavior of the microgrid. The scheduling of the 

power droop gains determines the power regulation of 

microgrids. In this part, the parameters of power controllers 

including active power gain mp and reactive power gain mq, are 

selected to do bifurcation analysis. The influences of cut-off 

frequency, coupling inductor, and load on the stability region of 

microgrid are investigated. The starting point of the bifurcation 

analyses is the equilibrium of MG with the parameters in Table 

I and Table II. To ensure the power sharing of the two DGs, the 

ratio between the active power gains of two DGs is maintained 

at 1:2, and the ratio between the reactive power gains is 

maintained at 5:7.  

Fig. 5 plots the bifurcation diagram of mp and mq, where the 

red curves denote the HB boundaries of test system, 

respectively. Two HB boundaries bound the parameter stability 

region on mp-mq plane. The proposed MG tends to lose its 

stability with the increase of mp or mq. The Lyapunov 

coefficients on the two HB curves are smaller than 0. Thus, 

increasing mp or mq will lead to the subcritical HB1 and HB2, 

respectively. Besides, increasing reactive-power droop gain mq 

extends the upper limit value of active power gains mp. While 

mp has little effect on the upper limit of mq and raise the lower 

limit of mq. The feasible region of mq narrows when mp increases. 

Thus, when a large mp is designed to improve transient response, 

a large mq should be selected to make sure the stability of MG.  

     
Fig. 5. The parameter stability region on mp-mq plane. 

In [21], the stable region of MG with resistance load is 

plotted on mp-mq using the small-signal analysis. The unstable 

phenomena are also founded in this test MG model, which are 

identified as HB phenomena. The phase plane of active power 

P1 and reactive power Q1 before and after subcritical HB1 are 

plotted in Fig. 6. The red curve denotes the trajectory of 

operation point before the subcritical HB1 when mp1 = 4.5e-4, 

mq1 = 5e-4 (mp2 = 9e-4, mq2 = 7e-4). The blue curve denotes the 

trajectory after the subcritical HB when mp1 = 7.5e-4, mq1 = 5e-4 

(mp2 =15e-4, mq2 =7e-4). The subcritical HB1 gives rise to an 

unstable limit circle around the stable equilibrium. As 

illustrated, the trajectory after the HB diverges from the start 

point, and the system becomes oscillatory. 

Then, the impacts of the cut-off frequency ωc on the stability 

region of mp-mq plane are studied. The cut-off frequency of two 

DGs are both changed. It can be seen from Fig. 7, decreasing 

the inverter cut-off frequency ωc broadens the stability region. 

Besides, the extension part of the stability region is the area with 

a larger reactive power gain mq. The extended range of the 

active power droop gain is only valid when the reactive droop 

gain increases correspondingly. 

Fig. 8 plots the stability region on mp-mq plane when different 

coupling inductors are selected. As presented in Fig 8, the 

increase of coupling inductance tends to increase the overall 

stability region on mp-mq plane, especially in terms of active 

power gain. That means a weaker coupling between inverters 

will improve the system stability. It can be noticed that not only 

a greater inductor but also a substantial virtual impedance can 

be utilized to broaden the parameter stability region.  

 
Fig. 6. Phase plane of the microgrid before and after subcritical Hopf bifurcation. 

Red curve: stable operation; Blue curve: subcritical Hopf bifurcation. 

 
Fig. 7. Hopf bifurcation boundaries for MG with different cut-off frequency. 

 
Fig. 8. Hopf bifurcation boundaries for MG with different coupling inductance. 
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Fig. 9. Hopf bifurcation boundaries for MG with different ZIP load. 

Fig. 9 plots the parameter stability region on mp-mq plane 

when the active power of ZIP load increases from 10kW to 

30kW. The stable region of MG shrinks with the increase of ZIP 

load. The increasing active power load has minor effect on mq 

but narrows the stability region of mp. 

C.  Case 2: Bifurcation Analysis on P-V plane 

For the MG in islanded mode, the power assumption of a 

local load can only be provided by the inverter-based DGs. 

Power unbalance is the major physical mechanism of instability, 

the maximum power supply of MG should be calculated to 

make sure its stability. In this part, the bifurcation analyses are 

performed on P-V plane. The influences of connection line, 

virtual inductance, reactive power controller on the parameter 

stability region  are investigated.  

As presented previously that the parameter stability region on 

mp-mq plane is highly related to the coupling inductor of 

inverters. Thus, a large inductor is recommended for improving 

the stability of microgrid with parallel inverters. However, the 

installation of bulk inductor is costly. Thus, virtual impedance 

control has been proposed in the literatures [29] for stability 

improvement, harmonic mitigation and also for fault ride 

through. In general, the voltage droop from the virtual inductor 

that reacts to output current is added on the voltage reference. 

The modified voltage references can be presented by  

0

0

ref

odi n qi i vi oqi vi odi

ref

oqi vi odi vi oqi

u U m Q L i R i

u L i R i





= − + −

= − −
             (26) 

This section discusses the parameter stability region of MG 

when virtual inductor control is implemented. The physical 

coupling impedance of inverter 1 and 2 are designed as 

0.3+j0.24πΩ and 0.2+j0.16πΩ, respectively. The virtual 

inductor of inverters Lvir is initially set to 4mH.  

Fig. 10 plots the equilibrium solution manifold for different 

types of load on the active-power versus bus voltages (P-V) 

plane. The nominal reactive-power Q0 is set to zero. The 

constant-impedance load, constant-current load, and constant-

power load are obtained by setting percentages of ZIP load as 

a1, b1 = 100%; a2, b2 = 100%, and a3, b3 = 100%, respectively. It 

can be seen from Fig. 10 that the voltage at bus 2 decreases 

when the load increases. Then, an SNB point is found in the 

equilibrium solution manifold of the constant-power load when 

P0 = 58.17 kW. An SNB point can also be found in the curve 

for IM load when the IM load PIM = 42.54 kW. The PCC voltage 

decreases sharply when the load close to the SNB boundary and 

their bifurcation point of PCC voltage are around 200V, which 

indicates the voltage instability phenomenon. The stable 

equilibrium will disappear after the SNB, and the nonlinear 

system loses its stability when the SNB occurs. For the 

bifurcation curves of constant-impedance and constant-current 

loads, the bifurcation phenomena do not exist. Therefore, in a 

ZIP load model, the constant-power component has a 

significant effect on the stability of MG. In addition, the 

stability margin of IM load is smaller than that of ZIP load.  

 
Fig. 10. Equilibrium solution manifold on the P0-Ubus2 plane for load increasing. 

SNB is saddle-node bifurcation detected in the curve of IM load and constant-

power load. 

Fig. 11 presents the influence of the connection line with 

fixed X/R ratio. The increasing the length of connection line 

tends to shrink the stability region. Besides, the parameter 

stability region of IM loads is smaller than that of constant 

power load. As shown in Fig. 12, the increase of virtual 

coupling inductor moves the SNB boundary to a lower level. 

Thus, the application of virtual inductance control tends to 

broaden the parameter stability region on mp-mq plane, but 

shrinks the stability region on P-V plane. That means, both SNB 

and Hopf boundaries should be considered for virtual 

inductance design to keep the safe operation of the microgrid.  

Since, the power assumption is related to the voltage 

regulation. The influence of reactive-power droop control on 

the SNB is investigated. The Fig. 13 plots stability region of mq 

when virtual inductor is added. In this case, the SNB occurs 

before the HB for a relatively large load consumption. 

Moreover, the mq limit decrease sharply with load increase. A 

small value of reactive power gain should be designed for 

improving the stability when system under heavy load 

condition. For the mq design, there is a trade-off between the 

accurate reactive-power sharing and maximum power 

transmission. Fig. 14 plots the SNB when nominal voltage 

change. It can be seen that decreasing nominal voltage shrink 

the stable range of load assumption. Since, the nominal voltage 

may be scheduled on secondary control level, its stable range 

should be fully evaluated.  

 

Fig. 11. SNB boundaries for MG with different lengths of connection line. 
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Fig. 12. SNB boundaries for MG when different virtual inductances are selected. 

    
Fig. 13. SNB boundaries of P0 for MG when different reactive-power droop 

gain mq are selected. 

 
Fig. 14. SNB boundaries of P0 for MG when different nominal voltage of droop 

controller Un are selected. 

From the bifurcation analysis above, several conclusions are 

obtained as follows: 

1) For the MG with ZIP loads and induction motor loads, 

increasing the active power gain mp or reactive power gain mq 

leads to the subcritical HB phenomena. MG becomes 

oscillating after the subcritical HB whose boundaries constitute 

the parameter stability region on the mp-mq plane. Decreasing 

the value of cut-off frequency ωc or increasing the value of 

coupling inductance broadens the parameter stability region on 

mp-mq plane. The connected loads have minor effect on the HB 

boundaries. 

2) The increase of an IM load or constant power component 

of a ZIP load results in the SNB phenomena. The bus voltages 

of the microgrid collapse after the SNBs. SNB boundaries 

constitute the parameter stability region for load increasing. 

Decreasing the value of reactive power gain mq or impedance 

of connection line will broaden the stability region of loads. 

Increasing the value of nominal voltage Un or virtual inductance 

shrink the stability region of load. 

IV.  REDUCED ORDER MODEL FOR THE BIFURCATION 

ANALYSIS 

In section III, the parameter stability region analysis of the 

proposed microgrid is carried out using the full-order model, 

which is complex and brings huge computation burdens for 

plotting the bifurcation boundaries. For a microgrid in operation, 

the plotted stability region can be used to predict the stability 

margin according to its current state, which is useful for the on-

line scheduling of control parameters. Thus, reducing the 

computation time is the key to make sure the timely response of 

DG. In this section, reduced-order models of the MG are 

developed to improve the computation efficiency for 

bifurcation analysis.  

The singular perturbation method can reduce the order of 

dynamic model by eliminating the dynamics from part of state 

variables. As bifurcation phenomenon is activated by changing 

a specific parameter, in this section, the reduced models are 

developed to analyze the stability region in terms of control 

parameters and loads. The reduced model for a bifurcation 

phenomenon preserves the state variables that are highly related 

to this bifurcation.  

The procedure of the model order reduction is as shown in 

Fig. 15. The MG can be divided into several subsystems whose 

dynamic behavior are described by a set of state variables. The 

state variables from the bus voltage are not included due to their 

negligible influence on the system dynamics. Table III presents 

the classified subsystem and their corresponding state variables. 

The subsystems are classified into fast and slow subsystems 

according to the participation analysis results. The dynamics 

from the slow subsystem will be preserved in the final reduced 

model.  

 
Fig. 15. The procedure of model order reduction. 

The major participants of dominant modes are preserved in 

all reduced models to define the equilibrium of the MG model. 

HB as a dynamic bifurcation can be detected when a pair of 

eigenvalues pass through the imaginary axis. Therefore, the 

state variables related to these eigenvalues need to be preserved 

in the reduced model for HB calculation. Participation analysis 

is applied to identify the state variables associated with 

bifurcation phenomenon. The participation factor is a measure 

of the relative participation of the kth state variable in the ith 

mode, and vice versa. The participation factor of the ith mode 

and jth state is given by: 

1

T

ij ij

ij N T

kj jkk

u v
p

u v
=

=


                            (27) 

where uij and vij denotes the left eigenvectors and right 

eigenvectors, respectively. The participation of a subsystem on 

the mode i is defined by summing up all participation factors of 
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dynamic states describing this subsystem, which can be written 

as:  

,s _

, _

i et k ij

i j set k

p p


=                              (28) 

where the subscript set_k denotes the subsystem described by 

the state variables in set_k.  

The effects of the subsystem on the dominant eigenvalues are 

presented in Table IV. It can be observed that the major 

participants of dominant eigenvalues are the dynamics from the 

power controllers and IM loads. The boundary of HB1 shown 

in Fig. 5 is dominated by a pair of eigenvalues λ2-3. In addition 

to the dynamics from power controllers, the network dynamic 

has considerable effect on λ2-3. The boundary of HB2 is 

dominated by the pair of eigenvalues λ7-8. The dynamics from 

the inner controller loop, network and power controller have 

considerable effect on λ7-8. The reduced models for predicting 

different bifurcation boundaries are organized in Table V. 

Because the slow states in the two DGs are the same, these 

states will not be presented in twice. 

TABLE III. DYNAMICS OF MG 

Subsystem of MG Dynamics states sets 

Power Controller of DGs 2 , P, Q 

Inner control loop of DGs φd, φq, uod, uoq, γd, γq, ild, ilq  

Network dynamics iod, ioq, ilined, ilinq 

IM load ΨrD,ΨrQ, ω, isd,isq 

ZIP load ipd,ipq,iqd,iqq 

 TABLE IV. PARTICIPATION ANALYSIS RESULT 

Index Eigenvalues Participant dynamics (participation factor) 

λ1 -9.8 Rotor side dynamics of IM (0.93) 

λ2-3 -11.9  j53.2 (HB1) 
Power controller (0.86), Network dynamics 

(0.11) 

λ4 -29.8 Power controller (0.92) 

λ5 -37.3 
Power controller (0.85), Rotor side 
dynamics of IM (0.13) 

λ6 -42.3  j50.1 Rotor side dynamics of IM (0.83) 

λ7-8 -56.1  j253. 1(HB2) 
Inner Control Loop (0.45), Network 

Dynamics (0.44), Power controller (0.1) 

TABLE V. REDUCED MODEL FOR BIFURCATION ANALYSIS 

Bifurcation 
boundaries 

Dynamics 

preserved in the 

reduced model 

Slow states in  
the reduced model 

Order of the 
reduced model 

SNB with 

increasing 
load 

Power controller, 

IM load 
2 , P, Q, ΨrD, ΨrQ,  

ω, isd, isq, ubD, ubQ 
14 

HB1 with 

increasing 
mp 

Power controller, 

IM load 
Line dynamics 

2 , P, Q, ΨrD, ΨrQ, ω, isd, isq 

iod, ioq, ilined, ilinq, ubD, ubQ 
20 

HB2 with 

increasing 

mq 

Power controller, 

IM load， 

Line dynamics, 

Inner control loop 

2 , P, Q, ΨrD,ΨrQ, ω, isd,isq 

iod, ioq, ilined, ilinq, uod, uoq, ild, 
ilq, φd, φq, γd, γq, ubD, ubQ 

36 

Then, the dynamic model of the MG can be rewritten in a 

singular perturbation form as: 

t,εx = f(x,z, )                                (29) 

t,ε z = g(x,z, )                                (30) 

where ε = diag{ε1, ε2, …., εm} denotes a diagonal matrix whose 

elements are the ratios of physical parameters that reflect the 

“true smallness” [23]. Subsequently, the state equations of the 

fast state variables (30) are transformed into the boundary layer 

system by setting ε to be 0, and the quasi-steady-state solution 

of fast states are presented by x as: 

z=h(x, t)                                    (31) 

Finally, the reduced dynamic model can be obtained by 

substituting (31) into (29) as:  

      ( ( ) 0)t t,x = f x,h x, ,                            (32)  

Thus, the slow dynamics of the original system are preserved 

in (32), and the original fast states can be described by the 

algebraic equation (31). The boundary layer system for the SNB 

is presented in the Appendix.  

The bifurcation analysis is performed to compare the 

calculation times of the reduced-order models with those of the 

full-order model. The start point is the equilibrium of the MG 

with the parameters in Table I and Table II. The reduced model 

for SNB is used to predict the SNB point with load increasing 

as shown in Fig. 10. The calculation times of bifurcation 

boundary based on the reduced models are much smaller than 

those based on the full-order models. 

TABLE VI. COMPARISON OF TIME FOR BIFURCATION ANALYSIS 

Case 
Calculation time for the 

proposed reduced model 

Calculation time for 

the full-order model 

SNB  

(Increase of IM loads) 
14.6s 37.8s 

SNB (Increase of 

constant power loads) 
17.5s 55.4s 

HB1 (Increase of 

active power gain mp) 
2.2s 13.3s 

To validate the accuracy of the reduced model, the 

calculation error of the proposed model is compared with that 

of the reduced models in [21] and [23], as presented in Table 

VII. The error of the reduced model is measured as: 

100%
re full

full

 



−
error =                       (33) 

where λfull and λre denotes the bifurcation parameter of full-order 

model and reduced model at the bifurcation point, respectively. 

In [21, 23], the general reduced model for different cases is 

designed. In [21], the dynamics from the power controller and 

connection line are preserved in the reduced model. [23] 

preserves the dynamics from the power controller and inner 

control loop. The proposed models are more accurate than the 

general reduced model which indicates that for a specific 

bifurcation phenomenon, the corresponding reduced model 

should be designed for an accurate result.  

TABLE VII. COMPARISON OF ERRORS FOR BIFURCATION ANALYSIS 

Case 
Proposed 

Models 

Reduced 

model in [21] 

Reduced 

model in [23] 

SNB  

(Increase of ZIP loads) 
0 0 0 

HB1 (Increase of 

active power gain mp) 
9.6% 9.6% 17.1% 

HB2 (Increase of 

active power gain mq) 
2.3% 29.8% 12.1% 

V.  VERIFICATION 

A.  Simulation Results 

In this section, the bifurcation phenomena and the parameter 

stability region analysis are validated using the switching 

testbed of the proposed MG built in the 

MATLAB/SymPowerSystem environment. The parameters 



1949-3053 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2019.2907600, IEEE
Transactions on Smart Grid

 8 

from Tables I and II are used. To validate the parameter stability 

region composed of HB boundaries, the simulation results when 

active power gains mp1 and mp2 switch from mp1 = 1.5e-4 and mp2 

= 3e-4 to mp1 = 7.5e-4 and mp2 = 15e-4 coordinately at 3 s are 

shown in Fig. 16. The waveform starts to oscillate at 3 s, after 

which the magnitude of the oscillation gradually become larger. 

This kind of nonlinear phenomenon belongs to the subcritical 

HB, and coincides with the analysis in Section III.  

 
Fig. 16. Simulation results of DG1 when the active gains are switched from mp1 

= 1.5e-4 and mp2 = 3e-4 to mp1 = 7.5e-4 and mp2 = 15e-4 at 3 s 
The parameter stability region of the ZIP load shown in Fig. 

10 is validated by the simulation results, as shown in Fig. 17. 

The active power in the ZIP load continuously increases by 

connecting the input reference value port of the load module in 

MATLAB/SymPowerSystem to a ramp signal source. When 

the ZIP load is composed of a 100% constant-power load 

component, the voltage decreases and collapses at 3.2 s. Fig. 19 

shows the voltage at bus 2 with a 37.5-kW IM load in large time 

scale. The parameters of this IM load are designed according to 

Table II. At 2 s, a 15-kW IM load with an IM load factor K = 

15/22.5 is connected to bus 2. The bus voltage decreases 

continuously after the step change of IM load, and the angular 

velocity will eventually decrease to 0 rads/s. 

 
Fig. 17. The phase voltage at bus 2 with the increase of the rated active power 
at a ZIP load that consists of 100% constant active power load. The SNB 

appears and then system collapses. 

 
Fig. 18. The phase voltage at bus 2 with the increase of the IM load. The system 

collapses and SNB appears after the connection of the 15 kW IM load.  

  Fig. 19 is plotted to validate the influence of virtual 

inductance control and droop control on the SNB boundaries. 

The constant power load with 50kW nominal active power is 

connected to bus 2. In Fig. 19(a) the virtual inductance is 

switched from 4mH to 6mH at 2s, the voltage collapse after 2s. 

In Fig. 19(b), the nominal voltage in power controller is 

switched from 330V to 300V at 2s, the bus voltage continuously 

decrease, and eventually collapse after 3.3s.   

 
Fig. 19. The phase voltage at bus 2 with 50kW ZIP load. (a) The virtual 

inductance of is switched from 4mH to 6mH at 2s. (b) The nominal voltage of 

droop controller is switched from 330V to 300V at 2s.  

B.  Experimental Results 

The hardware in-the-loop (HIL) method is proposed for the 

experiment verification in this section. All the electrical 

components including power electronic inverters, network, ZIP 

load and IM load are simulated at real time in RT-LAB [30]. 

The two droop-controlled inverters are controlled via two real 

DSP controllers, respectively. The parameters of droop 

controllers and electrical circuit are the same as shown in Table 

I and Table II. 

Fig. 20 shows the waveforms of the DG1 after the subcritical 

HB. The active power gains of two DG mp1 and mp2 are switched 

from mp1 = 1.5e-4, mp2 = 3e-4 to mp1 = 7.5e-4, mp2 = 15e-4 

coordinately. Since the output ranges of the analog out ports are 
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limited, the maximum permissible magnitude of output current 

signals is 100 A. The output voltages and currents of the DGs 

fluctuate after the subcritical bifurcation, which coincides with 

the bifurcation analysis and the simulation results.  

 
Fig. 20. Experiment results of the subcritical HB. (a) Output currents. (b). 

Output voltages.  

Fig. 21 shows the experiment result of the SNB as load 

increases. The voltage of Bus 2 decreases with the continuous 

increment of the constant power load, and eventually, the 

voltage collapses. This result is in accordance with the 

simulated result given in Fig. 18 and Fig. 19. The SNB 

phenomenon caused by the increment of the IM load is verified. 

A 37.5 kW IM load is connected to the Bus 2 at first. Then, a 

15 kW IM load is integrated. The voltage of Bus 2 droops 

irreversibly, which coincides with the simulation result as 

shown in Fig. 19.  

 
Fig. 21. Experiment results of the SNBs. (a) The IM load steps from 37.5 kW 
to 52.5kW. (b)  Constant active-power load increases.  

VI.  CONCLUSION 

This paper studies the modeling and parameter stability 

region analysis of a droop-controlled MG with dynamic IM 

load and static ZIP load. Reduced-order models for parameter 

stability region analysis are presented based on the singular 

perturbation method. Several conclusions are obtained. 

1) The equivalent model of ZIP load and IM load are 

developed to combine a complete model of MG, which can 

describe the load increasing for bifurcation analyses. 

2) The SNB and HB boundaries constitute the parameter 

stability region of MG with ZIP and IM load. The HB of power 

droop gain are related to dynamics from the power controller 

and network of DGs. The SNB of load are related to the 

coupling inductance, connection line and voltage control.  

3) The reduced-order models for numerical bifurcation 

analysis predicts the bifurcation phenomena with low 

computation burden. The dynamics of power controllers and IM 

loads have major influence on the SNB with load increasing and 

should be preserved in the reduced model for predicting SNB. 

The reduced model for predicting the HB with the change of 

active-power droop gain should preserve the dynamics of 

power controllers, IM loads and network dynamics. The 

reduced model for predicting the HB with the change of 

reactive-power droop gain can only eliminate the dynamics of 

ZIP loads.  

APPENDIX 

The boundary layer system of the reduced model is presented 

in this section. According to the description on section IV, the 

differential equations of fast states are degraded to the algebraic 

equations. The algebraic part of the reduced model for 

predicting the SNB that eliminates most dynamics of 

subsystems is presented in detail. After classifying the dynamic 

states into the slow-state vector x and fast-state vector z, the 

state equations of inner control loop, line dynamics and ZIP 

load are normalized as the singular perturbation form zoo 

as:{ 
1

d

viK
 ,

1
q

viK
 , f odiC u , f oqiC u ,

1
d

ciK
 ,

1
q

ciK
 ,

f

ldi

f

L
i

R
,

f

lqi

f

L
i

R
, GDi , GQi , BDi , BQi ,

g

g

od

L
i

R
,

g

g

oq

L
i

R
 ,

line

lined

line

L
i

R
,

line

lineq

line

L
i

R
}. By setting ε = 0, the dynamic equations of the fast 

states degenerate into the boundary layer system. Then, 

Gaussian elimination is applied to obtain the quasi-steady-state 

solution of fast states. 

The inner control loop can be presented in algebraic form as: 

U , 0od n q oqu n Q u= − = ,                          (A1) 

 ld odi i= , (U )lq oq f n qi i C n Q= + − .             (A2) 

The output current can be written in algebraic form by 

2 2 2

( ) ( )g oD bD com g oQ bQ

oD

g com g

R u u L u u
i

R L





− + −
=

+
,          (A3) 

2 2 2

( ) ( )g oQ bQ com g oD bD

oQ

g com g

R u u L u u
i

R L





− − −
=

+
.          (A4) 

The line current between bus1 and bus2 can be written as: 

1 2 1 2

2 2 2

( ) ( )line b D b D com line b Q b Q

lineD

line com line

R u u L u u
i

R L





− + −
=

+
,     (A5) 

 100A/div

200ms/div

200V/div

200ms/div

(a)

(b)

 

(a)

(b)

100V/div

500ms/div

500ms/div

250V/div
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1 2 1 2

2 2 2

( ) ( )line b Q b Q com line b D b D

lineQ

line com line

R u u L u u
i

R L





− − −
=

+
.       (A6) 

The ZIP load is presented in algebraic form as:  

PD ZIP bDi G u= ,  PQ ZIP bQi G u= ,                  (A7) 

QD ZIP bQi B u= − , QQ ZIP bQi B u= .                 (A8) 
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