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Abstract—The control schemes of distributed energy resources
(DERs) in active distribution networks (ADNs) are largely
influenced by uncertainties. The uncertainties of DERs are
complicated, containing spatial and temporal correlation, which
makes it challenging to design proper control schemes, especially
when there exist temporal-correlated units such as energy units
(EUs). This paper provides an Itô process model to describe
the characteristics of stochastic resources and EUs in a unified
way, which makes it easy to evaluate the impacts of stochastic
resources on temporal-correlated units. Based the moment form
of the Itô process model, a moment optimization (MO) approach
is provided to transform the stochastic control (SC) problem
into an optimization problem with respect to the first-order
and second-order moments of the system variables. The scale
of MO is comparable to that of the corresponding deterministic
control problem, which means that the computational efficiency
of MO is much smaller than that of traditional approaches.
Case studies also show that the proposed approach outperforms
existing approaches in both the performance and computational
efficiency, which means that the proposed approach has attractive
potential for use in large-scale applications.

Index Terms—Active distribution network, distributed energy
resources, optimal control, spatial correlation, temporal correla-
tion.

I. INTRODUCTION

D ISTRIBUTED energy resources (DERs), including re-

newable generations and energy units (EUs), have grown

rapidly in recent years [1]. The integration of DERs brings

significant challenges to active distribution networks (ADNs),

such as overvoltage and overloading problems [2]. To this

end, it is necessary to control DERs in order to mitigate their

negative impacts, and there are many studies in this area [3]–

[5]. However, renewable power generations are usually highly

stochastic, and the uncertainties caused by these renewables

will undoubtedly deteriorate the control performance.

It is challenging to consider DER uncertainties in the

optimal control problem, mainly because the modeling of

these uncertainties is complicated. The uncertainty of renew-

able generations is usually non-Gaussian [6]–[9] and contains

spatial and temporal correlations [10], [11]. Moreover, EU

characteristics are also temporal-correlated, and their temporal

correlations may be influenced by the spatial and temporal cor-

relation of the uncertainties [12]. However, based on existing

uncertainty models, such as the probability distribution model
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[6] and the Markov model [10], it is challenging to analyze

the impacts of uncertainties on the DERs and distribution

networks, and such impacts can only be evaluated by Monte

Carlo simulations [13], which are time-consuming.
Techniques to deal with uncertainties in optimal control

problems include robust control methods [14], model pre-

dictive control (MPC) methods [15]–[17], and stochastic-

programming-based-control (SPBC) methods [9], [13], [18].

Robust controllers use uncertainty sets to model uncertainties

and find the control schemes that perform well in the worst

case; hence, these schemes usually lead to conservative results.

MPC solves an open-loop optimal control problem in which

the uncertainties are not considered and adjusts the control

outputs in a receding-horizon manner. Although it provides

some robustness by the receding-horizon implementation,

MPC does not consider the uncertainties explicitly, which may

have negative performance impacts [19]. Moreover, receding-

horizon implementation is also time-consuming.
SPBC has been widely used in the recent studies [9], [13],

[18]; SPBC handles the stochastic control (SC) problem by

stochastic programming, which can be solved by scenario-

based approaches. Specifically, SPBC generates a certain num-

ber of scenarios under the probability distribution and correla-

tion of the uncertainties; furthermore, it transforms the SC into

deterministic optimization problems. SPBC is widely used in

power system operations considering uncertainties; however,

in order to achieve good accuracy, a large number of scenarios

are needed, which may lead to an unacceptable computational

burden. Although some studies exist for methods to accelerate

the computation of SPBC [20], [21], the computational burden

of SPBC is still too large compared to deterministic control.
In summary, it is challenging to efficiently solve the SC

problem under complicated uncertainties with spatial and

temporal correlation. Therefore, this paper provides a novel

moment optimization (MO) approach for the SC of DERs

in distribution networks. We use an Itô process model to

describe the probability distribution, the spatial and temporal

correlation of uncertainties, and transform the SC into a

deterministic optimization with respect to the first-order and

second-order moments of system variables. The proposed MO

approach solves the SC with a comparable computational bur-

den to deterministic control problems and hence is attractive

for online applications. Case studies also show that the MO

approach outperforms the existing approaches.
The contributions of this paper are twofold:

1) An Itô process model is provided to describe the stochas-

tic resources. On the one hand, the proposed model can
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be used to model the spatial and temporal correlation of

renewable generations; on the other hand, the temporal

correlation of EUs can be easily embedded into the Itô

process model; therefore, it is possible to consider the

impact of renewable generations and control policies on

the states of EUs in a unified framework. Moreover, the

statistics of Itô processes can be calculated analytically,

i.e., without time-consuming simulations.

2) An SC model of DERs is provided and then solved by

the MO approach. The MO approach transforms the SC

into a deterministic optimization problem with respect

to the first-order and second-order moments of the sys-

tem variables. The MO model accurately describes the

characteristics of the system, and its scale is comparable

to that of the corresponding deterministic control prob-

lems. Therefore, MO achieves a good tradeoff between

performance and computational efficiency.

Following this introduction, Section II provides the model

of the stochastic resources and the SC problem. The MO

approach is discussed in detail in Section III. Section IV

provides numerical results, and Section V concludes the paper.

II. MODELING

This section describes the SC model of distribution net-

works. Typical units as well as the uncertainties in distribu-

tion networks are considered. After discussing the structure

of ADN, we provide the Itô process model of stochastic

resources and then establish the SC model. Although we use a

continuous-time formulation for convenience, all models can

be easily transformed into a discrete-time formulation.

A. Brief Structure of ADN

Fig. 1 shows the brief structure of a radial ADN. The tree

topology of ADN is described by a set of buses, denoted

by V = {0, 1, · · · , N}, and a set of branches, denoted by

E = {(i, j)}. Moreover, a set of time is denoted by T . In

general, we regard i, j, k as the bus indices and t as the time

index. Moreover, we set Bus 0 as the root bus connected to

the external grid.
For Bus i, denoted by vi,t the square voltage amplitude,

and pi,t and qi,t are the active and reactive power injection,

respectively. For Branch (i, j), Pij,t and Qij,t denote the active

and reactive power flow, respectively, from Bus i to Bus j, and

lij,t denotes the square current amplitude.

There are three types of power injections:

1) Fixed load, of which the active and reactive power are

denoted by pLi,t and qLi,t, respectively. pLi,t and qLi,t are

considered uncontrollable and are assumed not to have

uncertainties. The traditional load at each bus is regarded

as this type.

2) Stochastic resources such as renewable generations. The

active power of the stochastic resources, denoted by

pSi,t, contains uncertainty. However, the reactive power,

denoted by qSi,t, is considered controllable in ADN due

to the fact that the grid-connected converter is able to

adjust the reactive power output.

3) EUs including battery storage and thermostatically con-

trolled loads. The active power of the i-th EU is denoted

Fig. 1. Brief structure of a radial ADN.

by pEi,t. An important constraint of EUs is the state-of-

charge (SOC), denoted by SOCi,t.

The following subsections will provide the model of the

ADN and the control problem in detail.

B. Itô Process Model of Stochastic Resources

Here we consider the model of stochastic resource pSi,t. The

active power of stochastic resources can be separated into the

prediction and deviation parts, denoted by ppredi,t and pdevi,t ,

respectively. We regard the prediction part as fixed values in

the SC problem. For convenience, let ξt =
(

pdevi,t

)

i∈V
.

Different from existing studies [6], [10], an Itô process

model is used in this work to describe the characteristics of

ξt. On the one hand, the model can describe the spatial and

temporal correlation, as well as the probability distribution

of renewables; on the other hand, the Itô process, described

by an SDE, is compatible with the description of EUs (see

(8)), which makes it possible to embed the stochastic charac-

teristics into the optimization problem without Monte Carlo

simulations. In contrast, existing models need to be broken

into a number of scenarios to be used in SC problems, which

leads to unbearable computational burden.

The Itô process model is defined as

dξt = µ(ξt)dt+ σ(ξt)dWt (1)

where µ (·) and σ (·) are the drift function and the diffusion

function, respectively. Note that (1) is a stochastic differential

equation (SDE); hence, we also need the initial condition

describing the distribution of ξ0 in order to fully describe the

Itô process. Here, we omit it for convenience.

By properly setting µ(·) and σ(·), the Itô process model

describes a large class of stochastic processes [22] with dif-

ferent probability distribution and spatial/temporal correlation,

which is also supported by the authors’ previous work [23].

Here we provide some examples.

Example 1. Consider the following Itô process:

dξt = − 1

τ
ξtdt+

1√
τ
σdWt (2)

i.e., µ (ξt) = −ξt/τ,σ (ξt) = σ/
√
τ . Assume τ > 0, ξ0 = 0.

For this linear SDE, its second-order moment matrix is:

Eξtξ
⊤
s =

exp
(

− t−s
τ

)

− exp
(

− t+s
τ

)

2
σσ⊤, ∀s ≤ t (3)

It is easy to conclude from (3) the spatial and temporal

correlations of ξt:

- Spatial correlation: In practice, we usually use Eξtξ
⊤
t

to describe the spatial correlation [10], which is
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[1− exp (−2t/τ)]σσ⊤/2. When t is large, the covari-

ance matrix is approximately σσ⊤/2.

- Temporal correlation: the temporal correlation is propor-

tional to the term exp (−(t− s)/τ)− exp (−(t+ s)/τ).
Specifically, when t, s are sufficiently large,

exp (−(t+ s)/τ) can be ignored, and the covariance

is only determined by t − s, which means that ξt is a

stationary process [12]. It is clear that the larger τ is,

the larger the temporal correlation is.

In summary, in this simple example, τ describes the tem-

poral correlation, and σ describes the spatial correlation.

Example 2. Consider the following Itô process:

dξt = − 1

τ
(ξt − 0.5)dt+

1√
τ

√

ξt (1− ξt)
⊤
σdWt (4)

This nonlinear SDE is similar to (2), but it can be proved

that each element of ξt follows a Beta distribution rather than

a Gaussian distribution [23]. Actually, proper formulations

of µ(·) and σ (·) can describe a large class of probability

distributions, such as Gaussian distribution, Beta distribution,

Laplace distribution, and Weibull distribution [23].

Example 3. Here we consider a general form

dξt = µ(ξt;Θ)dt+ σ(ξt;Θ)dWt (5)

where µ(ξt;Θ) and σ(ξt;Θ) are the parametrized drift

function and diffusion function, respectively, and Θ is the

parameter to be determined. µ and σ can, of course, be

nonlinear, hence (5) can be used to describe general stochastic

resources. Moreover, there are a number of studies on statis-

tically determining Θ based on historical data via maximum

likelihood estimation [24]–[27]. The computation of the spatial

and temporal correlations of (5) is provided in [23], which is

further discussed in Section III-B.

In the remainder of this paper, we regard µ(·) and σ (·) as

a priori knowledge obtained by historical data.

C. Stochastic Control Problem

The SC problem aims at decreasing both the cost of

electricity and the voltage profile under the constraints of state

variables and controllable units. Specifically, the SC problem

can be formulated as (6)∼(10):

min
ut:t∈T

J =Eξt

{

∫

t∈T

λtP01,tdt+RV
∑

i

∫

t∈T

(vi,t − 1)2dt

}

+ Eξt

{

∫

t∈T

u⊤
t R

Uutdt+RE
∑

i

SOC2
i,T

}

(6)

Stochastic Resources and Control Variables:

pSi,t = ppredi,t + pdevi,t , ∀i ∈ V , t ∈ T (7a)

ξt =
(

pdevi,t

)

i∈V
, ∀t ∈ T (7b)

ut =
(

pEi,t, q
S
i,t

)

i∈V
, ∀t ∈ T (7c)

EUs:

d

dt
SOCi,t = −αE

i SOCE
i,t + βE

i pEi,t, ∀i ∈ V , t ∈ T (8)

Power and Network Constraints:

pi,t = pSi,t − pLi,t + pEi,t, ∀i ∈ V , t ∈ T (9a)

qi,t = qSi,t − qLi,t, ∀i ∈ V , t ∈ T (9b)

pi,t =
∑

j:i→j

Pij,t −
∑

k:k→i

(Pki,t − rkilki,t) + givi,t, ∀i ∈ V

(9c)

qi,t =
∑

j:i→j

Qij,t −
∑

k:k→i

(Qki,t − xkilki,t) + bivi,t, ∀i ∈ V

(9d)

vj,t = vi,t − 2 (rijPij,t + xijQij,t)

+
(

r2ij + x2
ij

)

lij,t, ∀(i, j) ∈ E (9e)

lij,tvi,t = P 2
ij,t +Q2

ij,t, ∀(i, j) ∈ E (9f)

Inequality Constraints (with the confidence level γ):
(

pSi,t
)2

+
(

qSi,t
)2 ≤

(

s̄Si,t
)2

, ∀i ∈ V , t ∈ T (10a)

SOCi ≤ SOCi,t ≤ SOCi∀i ∈ V , t ∈ T (10b)

pE
i
≤ pEi,t ≤ p̄Ei ∀i ∈ V , t ∈ T (10c)

vi ≤ vi,t ≤ v̄i, ∀i ∈ V , t ∈ T (10d)

0 ≤ lij,t ≤ l̄ij , ∀(i, j) ∈ E , t ∈ T (10e)

In this paper, T is regarded as a finite interval; hence, the

abovementioned model is a finite-horizon stochastic control

model. The decision variable is ut, including the reactive

power of stochastic resources and the active power of EUs.

The objective is in the sense of expectation, and the constraints

are classified into the following two groups: the equality

constraints, including (8)(9), are regarded as almost sure

constraints; while the inequality constraints in (10a)∼(10e) are

regarded as chance constraints, i.e., each inequality is satisfied

with the confidence level γ.
These equations are explained in detail below.
1) Objective: The objective (6) of the SC problem is to

minimize the expected cost function, which contains 4 parts:

- The price of electricity bought from the market, i.e.,
∫

t∈T
λtP01,tdt, where λt is the electricity price.

- The penalty of the voltage profile
∑

i

∫

t∈T
(vi,t − 1)2dt.

- The cost of control
∫

t∈T
u⊤
t Rutdt.

- The penalty of SOC RE
∑

i SOC2
i,T . This term drives the

EUs to the default state in order to maximize the ability

of operation in the future.

2) Energy Units: EUs are units with energy constraints,

including battery storage systems, demand response, etc. (8)

describes the dynamics of EUs, where αE
i is the dissipation

factor, and βE
i is the charging efficiency.

3) Power and Network Constraints: (9a) and (9b) are the

power balance equations at each bus. Here we adopt the

distFlow model [28] of network constraints, as shown in (9c)

∼ (9f), where rij and xij are the resistance and reactance of

the branch from Bus i to Bus j, respectively; gi and bi are the

shunt conductance and susceptance at Bus i, respectively.
4) Inequality Constraints: (10a) is the capacity limit of

the renewable generations. According to [16], this convex

constraint can be approximately described by polygons, i.e.,

CS
i

[

pSi,t, q
S
i,t

]⊤ ≤ DS
i , ∀i ∈ V , t ∈ T (11)
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(10b) and (10c) are the energy and power constraints of the

EUs, respectively; (10d) and (10e) are the voltage and current

constraints, respectively.

D. Compact Reformulation

For convenience, we use a group of vectors to represent the

abovementioned variables and transform the equations into a

compact form.
1) Groups of Variables: We have defined ξt and ut in (7b)

and (7c). Now we define the following vectors, all of which

are formulated as column vectors:

et =
(

SOCE
i,t

)

i∈V

xt =
(

Pij,t|(i,j)∈E
, Qij,t|(i,j)∈E

, vi,t|i∈V

)

yt = (lij,t)(i,j)∈E

dt =
(

ppredi,t , pLi,t, q
C
i,t

)

i∈V

(12)

where et is the vector of the energy of EUs; xt is the

vector of network states except the branch currents, and yt

is the vector of branch currents; and dt is the vector of fixed

values, including prediction of renewables, load profile, and

the reactive power supply of each bus.
2) Affine Feedback Control Policy: There are two kinds

of control policies: state-feedback control policies and distur-

bance feedback control policies. Under certain circumstances,

they are equivalent [29]. Here, we adopt the affine disturbance

feedback control policy, i.e., ut = u0
t +Kξt, where u0

t and

K are the decision variables.
3) Compact Form of SC: By the abovementioned vectors,

it is possible to reformulate the SC model as

min
u0

t ,K
J =Eξt

{
∫

t∈T

(

Hxt + x⊤
t R

Xxt

)

dt

}

+ Eξt

{
∫

t∈T

u⊤
t R

Uutdt+ e⊤TR
EeT

} (13a)

s.t. dξt = µ(ξt)dt+ σ(ξt)dWt (13b)

ut = u0
t +Kξt (13c)

ėt = −αet + βut (13d)

xt = Ayyt +Aξξt +Addt +Aeet +Auut (13e)

lij,tvi,t = P 2
ij,t +Q2

ij,t, ∀(i, j) ∈ E (13f)

x ≤ xt ≤ x̄ (13g)

y ≤ yt ≤ ȳ (13h)

e ≤ et ≤ ē (13i)

Cuut +Cξξt ≤ D (13j)

where (13a) is corresponding to (6); (13c) is the disturbance

feedback control policy; (13d) corresponds to (8); (13e) cor-

responds to (9); and (13g)∼(13j) correspond to (10).
Here we provide more explanations to (13e) and (13f). Note

that (13f) is the same as (9f), which is not in a vector form. It is

because (9f) is the only nonlinear constraint, which we address

separately in Section III. To obtain (13e), by substituting

(7a)(9a)(9b) into (9c)(9d)(9e), using the vector notations, we

have

A0
xxt +A0

yyt +A0
ξξt +A0

ddt +A0
eet +A0

uut = 0 (14)

TABLE I
OBJECTIVE AND CONSTRAINTS OF MO

Original SC (13) MO

Decision Variables u
0

t ,K u
0

t ,K

Objective (13a) (18)

Stochastic Resources (13b) (21)

EUs (13d) (26)(28)

Control Policy (13c) (22)(25)

Network Constraints (13e)(13f) (29)(32)(33)

Inequality Constraints (13g)(13h)(13i)(13j) (35)

where it is easy to find that A0
x is invertible. Therefore, when

multiplied by
(

A0
x

)−1
in (14), we obtain (13e), where A0

y =

−
(

A0
x

)−1
A0

y , and Aξ,Ad,Ae,Au are similarly obtained.

(13) is the control model used for analysis in this paper.

Similar models are also studied in [15]–[17], except for

the model of stochastic resources (13b). Existing approaches

usually use SPBC to solve the optimal control problem with

stochastic resources. However, when considering spatial and

temporal correlations, it is necessary to use a large number

of scenarios to guarantee the accuracy, which makes the opti-

mization undoubtedly time-consuming. Based on this, Section

III provides the MO approach to efficiently solve (13).

III. SOLUTION BASED ON MOMENT OPTIMIZATION

This section provides the MO approach to solving the

SC problem. The basic idea of MO is based on the fact

that the objective in (13a) only contains quadratic forms.

Therefore, the objective can be equivalently transformed into

the function of the first-order and second-order moments of

these variables. Furthermore, we can regard these first-order

and second-order moments as decision variables, and all we

have to do is find the the constraints of these moments. In other

words, higher-order moments will not influence the solution

of SC. By transforming the SC problem (13) into a determin-

istic optimization problem with respect to the first-order and

second-order moments, the MO approach largely reduces the

computational burden of SC compared to traditional scenario-

based approaches, without sacrificing performance.

We define the first two notations. Assume that a is a certain

component of xt,yt, zt,ut, et and denote by ã the expectation

of a and â the standard deviation of a, i.e.,

ã = E {a}

â =
√

var(a) =

√

E {a2} − (E {a})2
(15)

With these notations, we can define the first-order mo-

ments x̃t, ỹt, z̃t, ũt, ẽt, and the second-order central moments

x̂t, ŷt, ẑt, ût, êt. Moreover, we will need the notation

∆a = a− ã (16)

which means that var(a) = E

{

(∆a)
2
}

.

Based on these notations, we now provide the MO approach

for solving (13). The objectives and constraints of MO are

listed in Table I, in which we also show the relationship

between the original equations in (13) and the corresponding

equations in MO. The remainder of this section explains the

MO method.
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A. Reformulating Objective in (13a)

According to the fact that RU is diagonal, we have

E
{

u⊤
t R

Uut

}

= ũ⊤
t R

U ũt + û⊤
t R

U ût (17)

and the same discussion can be applied to E
{

e⊤TR
EeT

}

and

E
{

x⊤
t R

Xxt

}

. Therefore, we have

J =

∫

t∈T

(

Hx̃t + x̃⊤
t R

X x̃t + x̂⊤
t R

X x̂t

)

dt

+

∫

t∈T

(

ũ⊤
t R

U ũt + û⊤
t R

U ût

)

dt

+ ẽ⊤TR
E ẽT + ê⊤TR

E êT

(18)

B. Reformulating Stochastic Resources in (13b)

Here, we must consider the spatial correlation and the

temporal correlation, the former of which is described by

the covariance matrix, while the latter of which must be

considered together with the temporal correlation of EUs

in (13d). To address the temporal correlation, we define an

auxiliary vector as follows:

η̇t = −αηt + βξt (19)

We assume that η0 = 0. Note that (19) is different from (13d)

because it is independent of the decision variable u0
t and K;

however, the next subsection shows that the statistics of et are

determined by the statistics of ηt.

We can rewrite (1) and (19) as

d

[

ξt
ηt

]

=

[

µ (ξt)
−αηt + βξt

]

dt+

[

σ (ξt)
0

]

dWt (20)

which is also an Itô process. The statistics needed here include

the expectation, defined by ξ̃t = Eξt (note that Eηt = 0), and

the covariance matrix, defined by

Mt = E

{

[

ξt − ξ̃t
ηt − η̃t

] [

ξt − ξ̃t
ηt − η̃t

]⊤
}

=

[

Mξξ
t Mξη

t

Mηξ
t Mηη

t

]

(21)

where Mηξ
t =

(

Mξη
t

)⊤

. In (21), Mξξ
t describes the spatial

correlation of ξt, while the other parts describe the temporal

correlation that are necessary in MO.

A simple approach to obtaining ξ̃t and Mt is the simulation

approach, which is time-consuming. However, it is shown

in [23] that the statistics of Itô processes can be efficiently

computed by series expansion. Note that ξ̃t and Mt are

independent of decision variables u0
t and K; hence, we

assume they are given in the following subsections.

C. Reformulating Control Policy (13c) and EUs (13d)

By taking the first-order moment in (13c), we have

ũt = u0
t +Kξ̃t (22)

∆ut = K∆ξt (23)

Therefore, we have

E∆ut∆u⊤
t = KMξξ

t K⊤ (24)

Moreover, ût is the square root of the diagonal of E∆ut∆u⊤
t :

ût =

√

diag
{

KMξξ
t K⊤

}

(25)

Now, we discuss the moment-form of et. It is easy to show

that ẽt and ∆et satisfy

˙̃et = −αẽt + βũt (26)

∆ėt = −α∆et + βK∆ξt (27)

Then, it is clear that ∆et = Kηt,
1; therefore, we have

êt =
√

diag {KMηη
t K⊤} (28)

D. Reformulating Network Constraints

The network constraints include the linear constraints (13e)

and the quadratic constraints (13f), the first-order moments of

which are

x̃t = Ayỹt +Az z̃t +Addt +Aeẽt +Auũt (29)

l̃ij,tṽi,t+cov(lij,t, vi,t) = P̃ 2
ij,t+Q̃2

ij,t+P̂ 2
ij,t+Q̂2

ij,t, ∀(i, j) ∈ E
(30)

To obtain a convex version of (30), we claim that

cov(lij,t, vi,t) can be ignored. Actually, we have

cov(lij,t, vi,t) ≪ P̂ 2
ij,t + Q̂2

ij,t (31)

of which the explanation is provided in Appendix A. Thus,

(30) can be replaced by

l̃ij,tṽi,t = P̃ 2
ij,t + Q̃2

ij,t + P̂ 2
ij,t + Q̂2

ij,t, ∀(i, j) ∈ E (32)

The second-order moment of xt satisfies

x̂t =
√

diag {LMtL⊤} (33)

where L =
[

Aξ +AuK AeK
]

. The derivation of (33) is

provided in Appendix B.

E. Reformulating Inequality Constraints

It is shown in [30] that a chance constraint can be approx-

imately described by a second-order cone constraint. In this

approach, the constraints in (13g)∼(13j) need to be handled

row by row. For simplicity, we assume that a is a variable and

take a ≤ ā as an example.

According to [30], the second-order-cone formulation of the

constraint is

ã+ κγ â ≤ ā (34)

Therefore, the inequality constraints can be transformed into

x+ κγx̂t ≤ x̃t ≤ x̄− κγx̂t

y + κγ ŷt ≤ ỹt ≤ ȳ − κγ ŷt

e+ κγ êt ≤ ẽt ≤ ē− κγ êt

Cuũt +Cξξ̃t + κγ

(

|Cu| ût + |Cξ| ξ̂t
)

≤ D

(35)

1Such statement needs the assumption that αK = Kα and βK = Kβ.
However, this requirement is easy to meet if we convert α,β,K to (larger-
order) block-diagonal matrices.
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F. Summary

The MO approach can be summarized as

Objective: (18)

Constraints: (21)(22)(25)(26)(28)(29)(32)(33)(35)
(36)

Various nonconvex constraints exist, i.e., (25)(28)(32)(33).

However, it is easy to obtain their exact convex relaxations

(see Appendix C). Therefore, (36) is a convex optimization

problem.
Now, we discuss the computational burden of MO. It is

clear that for a certain variable, say a, in (13), there are two

corresponding variables in MO, i.e., ã and â respectively.

Therefore, the number of variables of MO is approximately

twice that of the original SC problem. Moreover, each con-

straint in (13) corresponds with one or two constraints in MO,

regarding the first-order and second-order moments. Therefore,

the number of constraints of MO is less than twice that of

the original SC problem. In contrast, the scale of traditional

SPBC algorithms is proportional to the number of scenarios,

which is usually large for an accurate estimation of the SC

problem with spatial and temporal correlation. In summary,

the MO approach reduces the computational burden of SC to

be comparable with the corresponding deterministic control

problem.

IV. CASE STUDY

This section provides a test case in an IEEE 123-bus

distribution network [31]. We evaluate the optimal control

scheme provided by the MO approach and then discuss the

impacts of spatial and temporal correlation. Moreover, the

comparison between the proposed MO approach and several

existing approaches shows the effectiveness and efficiency of

the MO approach.

A. Case Settings

We consider the IEEE 123-bus system, as shown in Fig. 2.

The parameters of the IEEE 123-bus system can be found in

[31]. The nominal capacity of the system is 10 MVA, and the

nominal voltage is 10 kV. We assume that the voltage limit of

each bus is 10± 0.5 kV. The stochastic resources are 3 wind

generators on Buses 11, 62, and 66, the capacity of each of

which is 20 MVA, and 3 PV generators on Buses 72, 75, and

114, the capacity of each of which is 10 MVA. We use (5) to

describe the stochastic resources, where µ is an affine function,

and σ is constant. We assume that the predicted values are

obtained by persistent prediction in 1 h [6], and the parameters

are obtained via the parameter estimation method provided in

[24]. We assume that there exists a correlation between Buses

62 and 66 and a correlation between Buses 72 and 75, of which

the correlation coefficients are both 0.5. The parameters are

provided in Appendix D. Moreover, there is an EU at Bus 62

(5 MW × 4 h).
The objective of MO is as shown in (6), where the price is

$1/kWh from 08:00∼20:00, and $0.5/kWh during the rest of

the day. R is a diagonal matrix whose diagonal elements are

all 1, and RV = 1, RE = 0.1. The time step is 15 minutes;

the control horizon is 1 day; and the u0
t and K are updated

every 4 hours in order to maintain a good performance.

Fig. 2. IEEE 123-bus system.

B. Simulation Results

To evaluate the control scheme obtained by the MO ap-

proach, we use a Monte Carlo simulation with 1000 scenarios

to calculate the objective function under the control scheme.

The objective value under the optimal control scheme is

J = 249 k$. In contrast, if we let K = 0 and only

consider u0
t , the result is J ′ = 272 k$. In fact, J ′ is the

objective under deterministic control schemes, which means

that the controlled units do not respond to any disturbances of

stochastic resources. The results show that stochastic control

scheme performs better than deterministic control schemes.

The value of K shows the relationship between ut and ξt.

In this case, we have

K =















−0.068 −0.087 −0.096 −0.001 −0.002 −0.001

−0.087 −0.184 −0.195 −0.003 −0.002 −0.003

−0.096 −0.916 −0.421 −0.003 −0.004 −0.002

−0.001 −0.003 −0.002 −0.085 −0.069 −0.024

−0.002 −0.002 −0.004 −0.069 −0.096 −0.025

−0.001 −0.003 −0.002 −0.024 −0.025 −0.043

−0.102 −0.203 −0.184 −0.014 −0.017 −0.006















where the order of the columns is the output of stochastic

resources at Buses 11, 62, 66, 72, 75, and 114, and the order

of the rows is the reactive power of stochastic resources and

the output of the EU. It is clear that the control scheme is

a negative feedback control scheme. Moreover, the values of

K show the correlation between these variables, and units at

closer buses share larger coefficients. For example, the Row

7, Column 2 of K describing the sensitivity of the EU output

with respect to the DG at Bus 62, is relatively larger.

Fig. 3 shows the curves at Bus 62 in a certain scenario. The

negative feedback control scheme is shown by Fig. 3(a)(b)(c),

where lower wind power leads to larger control output.

Fig. 3(d) shows the effect of the feedback control, where the

black curve is the voltage profile under perfect prediction; the

red curve is the voltage profile under uncertainty, but with

feedback coefficient K = 0; and the blue curve is the voltage

profile under the optimal feedback control. It is clear that

feedback control improves the voltage profile at Bus 62.
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Fig. 3. Simulation results at Bus 62. (a) power of wind generations; (b)
reactive power of wind generations; (c) power of EU; (d) voltage of Bus 62.
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Fig. 4. Impacts of correlation.

C. Impacts of Correlation

Here, we discuss the relationship between the correlation

and the control performance. For the spatial correlation, we

consider σ′ = diag {2.98, 7.52, 4.51, 1.42, 3.75, 2.76}. It is

clear that the diffusion coefficients σ and σ′ result in the

same variance of ξt, but the stochastic resources under σ′

are spatially independent. For temporal correlation, Example

1 shows that it will not change anything except the temporal

correlation if we multiply µ by 1/τ and σ by 1/
√
τ simultane-

ously; therefore, τ can be regarded as a measure of temporal

correlation (τ = 1 for default situation). Fig. 4 shows the

objective under different spatial and temporal correlation. It

is shown that larger (spatial or temporal) correlation leads to

worse control performance, and we now explain this result.

Some of the variables, such as et, are related to the integration

or sum of elements in ξt. However, the uncertainty of the sum

of stochastic variables is influenced not only by the variance

of each variable but also by the correlation. Moreover, the

correlation in this case is positive and hence will lead to larger

uncertainty and a larger objective value.

Fig. 5 shows the u0
t (taking the EU as an example) under

different spatial and temporal correlations. It is also clearly
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Fig. 5. Control schemes under different correlation.

shown that larger spatial and temporal correlation results in

smaller controller output, since the controller must reserve

more capacity for uncertainty. The impacts of spatial and tem-

poral correlation can be considered in the proposed approach.

D. Comparisons with Existing Approaches

This section compares MO with other existing approaches.

Here, we use the deterministic control (DC), MPC, and SPBC

as benchmarks. In the DC approach, the control scheme is

obtained based on the predicted values of stochastic resources,

and the uncertainties are ignored. MPC performs DC in a

receding-horizon manner, and update the prediction value at

each time step. The prediction horizon of MPC is 4 hours.

We perform the SPBC approach with 100 scenarios and 1000

scenarios, denoted by SPBC(20) and SPBC(100). These sce-

narios are obtained by the scenario-reduction method provided

in [32]. We compare the performance and the computational

burden of these control methods.
1) Performance of Different Methods: Table II shows the

performance of different methods, demonstrating that MO and

SPBC(100) perform best and that DC performs the worst. DC

does not consider the uncertainty of the stochastic resources

and hence achieves the worst performance, which is also sup-

ported by Fig. 3. MO and SPBC both consider the uncertainty

explicitly and perform well. Moreover, SPBC(20) does not

perform as well as MO because 20 scenarios are too few to

describe the correlation of the stochastic resources. Although

MPC does not explicitly consider the uncertainty, the receding-

horizon manner improves its performance. Nevertheless, MPC

does not perform as well as MO.
2) Computational Burden: Table II shows the computa-

tional burden of these methods. Since MPC is a receding-

horizon control method, while the others are not, we use

the per-step computational time for a fair comparison. It is

clear that DC is the fastest because it does not consider

the uncertainty. The computational time of MO is about

twice that of DC, significantly smaller than MPC, SPBC(20)

and SPBC(100), which shows the advantage of the proposed

method over existing methods. Specifically, since MO and

SPBC(100) achieve similar performance, it can be concluded

that MO reduces the computational time by 99.5% without

sacrificing performance.
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TABLE II
BENCHMARKS

Approach
Computation Objective (k$)

Time (min per step) Value

MO 0.5 249.5

DC 0.2 276.3

MPC 12 257.6

SPBC(20) 25 262.4

SPBC(100) 107 250.8

In summary, the proposed MO approach achieves a good

trade-off between the control performance and the computa-

tional burden. In contrast, DC is computationally efficient but

performs worse, while MPC/SPBC performs well but incurs an

extremely large computational burden. Therefore, the proposed

MO significantly outperforms the existing methods and has

attractive potential in the control of DERs under uncertainty.

V. CONCLUSION

This paper presents an MO approach for the efficient control

of DERs in distribution networks. We first model the stochastic

resources by Itô processes, which describe the spatial and tem-

poral correlation of the stochastic resources. The Itô process

model is also in the same form as the characteristics of EUs;

hence, the temporal correlation of the stochastic resources and

EUs can be considered in a unified way. Based on the covari-

ance matrix obtained by the Itô process model, we transform

the SC problem into a deterministic optimization problem with

respect to the first-order and second-order moments of the

system variables, whose scale is approximately twice that of

the corresponding deterministic control problem. The proposed

MO approach solves the SC problem in a computationally

efficient way and outperforms existing approaches such as DC,

MPC, and SPBC.

APPENDIX A

EXPLANATION OF INEQUALITY (31)

Consider the first-order deviation of (13f), and ignore

higher-order deviations:

l̃ij,t∆vi,t + ṽi,t∆lij,t = 2P̃ij,t∆Pij,t + 2Q̃ij,t∆Qij,t (37)

Therefore,

ṽi,t∆lij,t∆vi,t = 2P̃ij,t∆Pij,t∆vi,t

+ 2Q̃ij,t∆Qij,t∆vi,t − l̃ij,t (∆vi,t)
2 (38)

By taking expectations in both sides, we have

cov (lij,t, vi,t) = 2
P̃ij,t

ṽi,t
cov (Pij,t, vi,t)

+ 2
Q̃ij,t

ṽi,t
cov (Qij,t, vi,t)−

l̃ij,t
ṽi,t

v̂2i,t

(39)

By applying Cauchy inequality and using the fact that

l̃ij,t/ṽi,t > 0, we have

cov(lij,t, vi,t) ≤ 2
v̂i,t/ṽi,t

P̂ij,t/
∣

∣

∣
P̃ij,t

∣

∣

∣

P̂ 2
ij,t + 2

v̂i,t/ṽi,t

Q̂ij,t/
∣

∣

∣
Q̃ij,t

∣

∣

∣

Q̂2
ij,t

(40)

The term
v̂i,t/ṽi,t

P̂ij,t/|P̃ij,t| can be interpreted as the sensitivity

of the voltage deviation vi,t under the power deviation Pij,t,

which, in practice, is very small since the relative deviation

of the bus voltage is far less than that of the branch power.

Therefore, we have cov(lij,t, vi,t) ≪ P̂ 2
ij,t + Q̂2

ij,t.

APPENDIX B

SECOND-ORDER MOMENT OF NETWORK CONSTRAINTS

A major challenge to obtain the second-order-moment form

of network constraints is how to avoid higher-order moments.

To achieve this, we consider a typical approximation form of

the distFlow model [33]:

pj,t = Pjk,t +
∑

i:i→j (Pij,t) + gjvj,t, ∀j
qj,t = Qjk,t −

∑

i:i→j (Qij,t) + bjvj,t, ∀j
vj,t = vj,t − 2 (rijPij,t + xijQij,t) , ∀(i, j) ∈ E

(41)

This model assumes negligible line losses and almost flat

voltage, and its accuracy has been verified by several recent

work [4], [34].

It must be emphasized that the approximated model (41) is

only used to estimate the second-order moments, while the

first-order moments in (29) and (32) are computed by the

exact model shown in (13e) and (13f). In other words, we

use an accurate model to estimate the expectations and an

approximate model to estimate the errors. Since expectations

are usually more important in the objective of stochastic

optimization problems, the use of the approximation will have

acceptable impacts on the accuracy of the model.

It is clear that the vector form of (41) is

xt = Aξξt +Addt +Aeet +Auut (42)

By replacing et and ut by ξt and ηt, we have

∆xt = (Aξ +AuK)∆ξt +AeKηt (43)

then (33) clearly follows.

APPENDIX C

EXACT CONVEX RELAXATION OF MO

The exact convex relaxations of (25)(28)(33) are

ût ≥
√

diag
{

KMξξ
t K⊤

}

êt ≥
√

diag {KMηη
t K⊤}

x̂t ≥
√

diag {LMtL⊤}

(44)

Here we only explain the first equation as an example. Since

Mξξ
t is symmetric, we assume Mξξ

t = NtN⊤
t . Considering

the i-th coordinate of ut, denoted by ut,i, we have

ut,i =

√

{

KiMξξ
t K⊤

i

}

= ‖KiNt‖2 (45)

where Ki is the i-th row of K . Clearly, this equation can be

exactly relaxed as

ut,i ≥
√

{

KiMξξ
t K⊤

i

}

= ‖KiNt‖2 (46)
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which is a second-order-cone constraint. And (44) can be

obtained in a similar way.

Moreover, the exact convex relaxation of (32) is

l̃ij,t + ṽi,t ≥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2P̃ij,t

2Q̃ij,t

2P̂ij,t

2Q̂ij,t

l̃ij,t − ṽi,t

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

, ∀(i, j) ∈ E (47)

where ‖·‖2 is the operator of 2-norm. This relaxation technique

is widely used in the convex relaxation of distFlow [28].

APPENDIX D

PARAMETERS OF STOCHASTIC RESOURCES

Here we provide the σ, which will influence the correlation

of ξt, and will be discussed in Section IV-C. Other parameters

are omitted due to space constraints.

σ =

















2.98 0 0 0 0 0
0 7.52 0 0 0 0
0 2.25 3.91 0 0 0
0 0 0 1.42 0 0
0 0 0 0 3.75 0
0 0 0 0 1.46 2.35

















(48)
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