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A Zeno-Free Event-Triggered
Secondary Control for AC Microgrids

Babak Abdolmaleki, Qobad Shafiee, Senior Member, IEEE, Ali Reza Seifi,
Mohammad Mehdi Arefi, Senior Member, IEEE, and Frede Blaabjerg, Fellow, IEEE

Abstract—This paper proposes a secondary voltage, frequency,
and active power sharing control for autonomous inverter-based
microgrids with event-triggered communications. A proportional-
integral consensus-based control scheme is introduced which
benefits from need-based (event-triggered) data exchange among
distributed generators. The employed event-triggering condition i)
ensures the system stability, ii) ensures that the system is Zeno-
free and there exists a controllable minimal inter-event time, iii)
removes the redundant communications during both transient
and steady-state stages, iv) accounts for directed communication
network architectures, and v) is fully distributed from both design
and implementation standpoints. Effectiveness of the proposed con-
troller for various case studies is verified via MATLAB/Simulink-
based simulations. Comparison between different cases and con-
ventional strategies are also included.

Index Terms—Consensus algorithm, event-triggered control,
frequency control, microgrid, power sharing, secondary control,
voltage control, Zeno behavior.

NOMENCLATURE

δi ith distributed generator’s (DG’s) phase angle.
Pi, Qi ith DG’s measured active & reactive powers.
P̂i, Q̂i ith DG’s actual active & reactive powers.
P ∗i , Q

∗
i ith DG’s rated active & reactive powers.

fi, Vi ith DG’s output frequency & voltage.
f∗, V ∗ Rated frequency & voltage.
fref , Vref Reference frequency & voltage.
fc Power measurement filter’s cutoff frequency.
mi, ni Droop coefficients.
Ωi,Γi Frequency & voltage correction terms.
Gij , Bij Conductance & susceptance among DGs i & j.
Gii, Bii ith DG’s shunt conductance & susceptance.
∆f,∆V Maximum frequency & voltage deviations.
Kf
i ,K

V
i Nonnegative proportional gains.

Ifi , I
V
i Nonnegative integral gains.

bfi , b
V
i , b

Ω
i Logical indicators.

aij Communication weighting from jth DG to ith DG.
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di, d
o
i ith DG’s in-degree & out-degree in the CN.

A,D,L CN’s matrices. Refer to Section II-A.
tiki kth

i triggering instant associated with ith DG.
ti, ti0 ith DG’s local clock and activation instant.
Ω̃i, Ṽi The latest sampled signals of Ωi, Vi at tiki .
τ Minimal inter-event (inter-communication) time.
σ Positive parameter governing the state-dependent

part of the triggering conditions in (8).
γΩ, γV Positive parameters governing the constant parts

of the triggering conditions in (8).
1n,0n Vectors of ones and zeros in Rn.
In Identity matrix in Rn×n.

I. INTRODUCTION

SECONDARY CONTROL of islanded microgrids (MGs)
compensates for voltage and frequency deviations caused

by droop control as well as provides proper power sharing
between distributed generators (DGs) [1]. This control level is
realized by using a communication network (CN). Therefore,
distributed control architectures using sparse CNs, are preferred
to the centralzied ones with complex CNs [2].

Most of the previous works in the context of secondary
control are conducted based on the continuous CNs (e.g. see
[3]–[14]), while the realistic data exchange infrastructures are
sample-based and have limited bandwidths [15], [16]. Thus,
from a system scaling standpoint, efficient usage of commu-
nication medium is mandatory. In networked control systems, a
solution to avoid probable network congestions and reduce the
communication burden is to use event-triggered (ET) control
strategies eliminating redundant communications [17], [18].
Generally, ET control is a strategy under which the desired state
is sampled and broadcasted, and the control rule is updated (i.e.,
an event is triggered), only if some condition(s) is(are) satisfied.
Any ET condition must satisfy two system requirements: Sta-
bility and Zeno-freeness. Zeno behavior is a phenomenon under
which excessive redundant events are triggered over a finite time
interval. Because of limited communication and computational
capabilities, no control system can be implemented on a digital
platform, if the behavior exists [17], [18].

Triggered control of MGs has been introduced in the literature
[19]–[28]. Reference [19], proposes a self-triggered coordinated
power control scheme for ac MGs where the next event time is
determined at any current event time. Thus, the controller cannot
respond quickly to the disturbances. A distributed ET load
sharing control is proposed in [20]. In this work, an average-
consensus algorithm is used to control the inter-DG active power
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sharing by controlling their output currents. A distributed ET
reactive power sharing control is proposed in [21]. Similarly,
a current sharing controller for dc MGs is proposed in [22].
In both of these works, consensus algorithms with nonlinear
state feedback are presented, providing proper reactive power
sharing and proper current sharing respectively. To address the
voltage regulation in converter-based dc MGs, the work in [22]
is extended in [23]. In [24], an event-based consensus control
is introduced to achieve proper active power sharing among a
cluster of ac and dc MGs. In this work, each interlinking con-
verter is considered as an agent which utilizes this event-based
controller to share the active powers properly between the MGs.
ET secondary control of dc MGs is investigated in [25]. In this
work, a full-state feedback ET controller is designed which also
uses full-state observation to detect the event times. None of the
above works accounts for ET secondary voltage and frequency
control of MGs. These problems have been addressed in [26]–
[28]. A distributed ET secondary voltage and frequency control
is proposed in [26]. The proposed ET conditions in this work,
however, do not reduce the communication burden significantly
and even may result in Zeno behavior, though the theoretical
Zeno exclusion analysis is provided (see [17, Sec. III-A] for
more info). In [27], [28], some secondary controllers with ET
communications are proposed where the working frequency
of the digital communication platform (infrastructure) is not
considered. In fact, therein it is assumed that the inter-event
time intervals can get any positive value and there is no specific
lower bound restriction on the intervals. Moreover, the work in
[26], similar to [3]–[11], is based on leader-following consensus
algorithm [29] of frequency, i.e., the frequency is treated as a
communication data. However, in power systems, frequency is a
global entity and hence a frequency-consensus control seems to
be redundant. Furthermore, the secondary compensation terms
are usually generated by using a pure integrator which leads to
a poor transient response, e.g., see [3]–[11], [26]–[28].

Motivated by the above statements and literature, this paper
deals with event-triggering of communications, in secondary
voltage and frequency control of MGs. Salient features of the
proposed control scheme are as follows.
C1: A proportional-integral-based (PI-based) secondary control
is proposed based on consensus algorithm. Unlike [19]–[25],
[27], the voltage, frequency, and active power sharing control
tasks are considered simultaneously. Moreover, different from
[3]–[11], [26] the only communication data in frequency-power
control are frequency correction terms.
C2: A triggering condition is proposed which i) ensures that
the system is Zeno-free with inter-event time intervals greater
than a desired time constant, ii) is fully distributed from both
design and implementation standpoints providing scalablity and
plug-and-play capability, iii) benefits from a constant threshold,
reducing the communications more effectively, especially in
steady state, and iv) accounts for directed CNs.
C3: A systematic stability analysis with ultimate uniform
boundedness approach is provided. The impacts of design
parameters on system’s performance and communication pattern
are studied as well. Moreover, the results are compared with
those under some other existing strategies.

The rest of this paper is structured as follows. Section II pro-

vides the MG’s modeling. The proposed controller is designed
in Section III. Simulation results for different cases are included
in Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODELING

A. Communication Network (CN) Layer

The CN of a MG can be regarded as a directed graph with the
DGs and the communication links playing the roles of its nodes
and edges, respectively. Consider the graph G ⊆ (N , E ,A),
where, N = {1, ..., n}, E ⊆ N × N , and A = [aij ] ∈ Rn×n
are its node set, edge set, and adjacency matrix, respectively. If
node i obtains data from node j, then node j is an in-neighbor
of node i, node i is an out-neighbor of node j, (j, i) ∈ E , and
aij = 1; otherwise, nodes j and i are not neighbors, (j, i) /∈ E ,
and aij = 0. Let Ni = {j | (j, i) ∈ E}, No

i = {j | (i, j) ∈ E},
di =

∑
j∈Ni aij , and doi =

∑
j∈Noi

aji be the in-neighbor
set, out-neighbor set, in-degree, and out-degree of node i,
respectively. Laplacian matrix of G is L = D − A, where,
D = diag{di} (proper diagonal matrix). A path from node
j to node i is a sequence of pairs, belong to E , expressed as
{(j, n1), ..., (nm, i)}. A graph has a spanning tree, if there exists
a node (called root node) from which there exists a path to any
other node within the graph [29], [30].

B. Physical and Control Layers

From Fig. 1, each DG comprises a voltage sourced inverter,
a LC filter, inner current and voltage controllers, power mea-
surement filters, and a droop-control unit. Details on the design
of these parts are provided in [31], [32]. The inner controllers
are normally designed such that the subsystem comprising
them, the inverter, and LC filter has a high bandwidth but the
average power measurement filters are very slow. Therefore,
neglecting the dynamics of the mentioned subsystem, one can
consider each DG as a droop-controlled voltage source which
is connected to the rest of the MG through a connector. The
state model of ith DG can then be expressed as [33]

δ̇i = 2πfi, (1a)
Ṗi = 2πfc(P̂i − Pi), (1b)
Q̇i = 2πfc(Q̂i −Qi), (1c)
fi = fnom + Ωi −miPi, (1d)
Vi = Vnom + Γi − niQi. (1e)

In a Kron-reduced electric network model [33], P̂i & Q̂i are as

P̂i = GiV
2
i +

∑
j
ViVjGij cos(δi − δj)

+
∑

j
ViVjBij sin(δi − δj), (2a)

Q̂i = −BiV 2
i −

∑
j
ViVjBij cos(δi − δj)

+
∑

j
ViVjGij sin(δi − δj), (2b)

where, Gi = Gii +
∑
j Gij , Bi = Bii +

∑
j Bij .
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Fig. 1. Physical and control layers of ith distributed generation unit (DG).

III. SECONDARY CONTROL DESIGN

The aim is to shift the droop characteristics along the voltage
and frequency axes, so that in steady state one has

[Vi, fi,miPi]
T → [Vref , fref ,mjPj ]

T , ∀i, j. (3)

This aim ensures proportional active power sharing between the
DGs, if one selects mi = ∆f/P ∗i and ni = ∆V /Q∗i [32].

Remark 1: Because of line impedance effect, accurate volt-
age regulation leads to poor reactive power sharing and vice
versa [13]. Therefore, following the research line composed of
the works in [3]–[11], [26], this paper focuses on the voltage
regulation task, and reactive power responses are omitted for
brevity. In addition, the ET reactive power controller provided
in [21] can be modified slightly, to cover the directed CNs.

A. Event-Triggered PI-based Secondary Control

Once the DGs talk to each other via the CN described
in Section II-A, the aim in (3) can be achieved by using a
consensus-based secondary control [4]–[11], [29]. In this way,
the following proportional-integral-based (PI-based) correction
terms are proposed for ith DG.

Ωi = Kf
i (bfi ∆fi + bΩi z̃

Ω
i ) + Ifi

∫
(bfi ∆fi + bΩi z̃

Ω
i )dt, (4a)

Γi = ni

∫
Q̇idt+KV

i

(
bVi ∆Vi + (1− bVi )z̃Vi

)
+ IVi

∫ (
bVi ∆Vi + (1− bVi )z̃Vi

)
dt, (4b)

∆fi = fref − fi, z̃Ω
i =

(
1
di

∑
j
aijΩ̃j

)
− Ω̃i, (5a)

∆Vi = Vref − Vi, z̃Vi =
(

1
di

∑
j
aij Ṽj

)
− Ṽi, (5b)

where, if the DG has direct access to fref (resp. Vref ), then
bfi = 1 (resp. bVi = 1), otherwise bfi = 0 (resp. bVi = 0); if the
DG cooperates with its in-neighbors bΩi = 1, otherwise bΩi = 0.
The local parts in (4) employ the continuous local signals fi,
Vi, and Q̇i, while the neighborhood errors z̃fi , z̃

V
i use the latest

sampled communication data as follows.{
Ω̃i(t) = Ωi(t

i
ki

),

Ṽi(t) = Vi(t
i
ki

),
t ∈ [tiki , t

i
ki+1), ki = 0, 1, · · · . (6)

The triggering instant tiki is when the signals Vi and Ωi are
sampled and transmitted to the out-neighbors. Please, note that

over [tiki , t
i
ki+1) the signals Ω̃i and Ṽi remain constant, while

the neighbors’ latest received data, i.e., Ω̃j and Ṽj ,∀j may vary.
Remark 2: The data exchange among the DGs is normally

realized by using a wireless/wired CN with time-triggered
signal transmission strategy. In this strategy, a high frequency
periodic data sampling and communication should be adopted
to implement the controller in (4) such that the time interval
between any two consecutive triggering instants are equal to a
sampling time τs, i.e., tiki+1 − tiki = τs,∀i, k.

Although the periodic transmission strategy provides a good
performance, it leads to many redundant data exchanges, es-
pecially in steady state, when the control goal is achieved
and not so many communications are required. Thus, an ET
control under which every DG decides on its own to sample
and transmit data to CN only when it is needed seems effective.

Question: Now, the question is that, when are the right
triggering instants tiki , ki = 0, 1, · · · –the instants when, each
DG decides on its own to sample its local data Ωi and Vi, and
to broadcast these samples–?

Answer: The appropriate triggering instants should be de-
signed such that, i) performance of the system undergoes a little
degradation while using Ω̃i & Ṽi instead of Ωi & Vi in (5), and
ii) the intervals between consecutive triggering instants have a
lower bound τ which is the digital communication platform’s
(infrastructure’s) capability (working frequency).

One way is to control the deviations of the continuous
signals Ωi, Vi from their latest sampled quantities Ω̃i, Ṽi, i.e.,
eΩ
i = Ω̃i−Ωi and eVi = Ṽi−Vi. To this end, one should compare
|eΩ
i | and |eVi | with some thresholds, every τ seconds. The

employed thresholds should comprise a state-dependent part
and a constant part [17]. The state-dependent part governs the
triggering pattern over transients and usually converges to zero
in steady state. Hence, to avoid trigger chattering in steady state,
the constant part is included [17]. Accordingly, the following
triggering instant is proposed for ith DG.

tiki+1 = inf{ti > tiki + τ : (8a) or (8b)}, (7)

where, |eΩ
i | > σbΩi |z̃Ω

i |+ γΩ, (8a)
|eVi | > σ(1− bVi )|z̃Vi |+ γV , (8b)

where, z̃Ω
i = 1

di

∑
aij(Ω̃j − Ω̃i), z̃Vi = 1

di

∑
aij(Ṽj − Ṽi) are

the local neighborhood errors; inf denotes the infimum sign.
The proposed ET controller is explained in Algorithm 1.

Remark 3: In (7), the triggering conditions in (8) are checked
every τ seconds (not continuously); therefore, in addition to the
communication burden, the computational burden is accordingly
reduced. Moreover, if τ be selected greater than or equal to
the communication medium’s working sampling time, one can
ensure that Zeno phenomenon (sampling chattering) is canceled
out. Note that bΩi and bVi indicate whether ith DG cooperates
with its in-neighbors or not. Therefore, they are included to
make (8a) and (8b) adaptive to this issue.

B. Design Guidelines and Requirements

In what follows, based on the upcoming theoretical analyses
in Appendix A, the readers are provided with some design hints.
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Algorithm 1 The proposed event-triggering algorithm.
initialization: . The first triggering instant

1: Sample Ω̃i ← Ωi, Ṽi ← Vi, and t̃i ← ti
2: Store the samples in the Data Store Unit (DSU)
3: Send Ω̃i and Ṽi to out-neighbors
4: Compute Ωi and Γi in (4a) and (4b)
5: while secondary control is active do
6: Compute eΩ

i = Ω̃i − Ωi, eVi = Ṽi − Vi, and ti − t̃i
7: Alert the data receiver
8: if {ti − t̃i > τ}&{(8a) or (8b) holds} then . Trigger
9: Do lines 1 to 3 of the algorithm

10: end if
11: for all j ∈ Ni do
12: if new data received then . Data receive
13: Update and store Ω̃i and Ṽi
14: end if
15: end for
16: Compute Ωi and Γi in (4a) and (4b)
17: end while
** ti (resp. t̃i) is local clock (resp. latest triggering instant) of ith DG.

Stability: For stable operation, i) the matrix A in (11) must
be Hurwitz; ii) each DG must have more in-neighbors than out-
neighbors, i.e., di > doi ,∀i (cf. Section II-A); iii) σ < 0.5, and
τ < min(τΩ

0 , τ
V
0 ) (cf. (22)).

Desired equilibrium: To achieve the aim in (3) the inter-DG
CN must has a spanning tree rooted at a DG with bfi , b

V
i 6= 0.

Control gains: One should choose the non-negative gains
such that the stability requirements are satisfied.

Event-triggering parameters: The triggering conditions
contain the 4 parameters τ , γΩ, γV , and σΩ. According to (22),
τ can get a wide range of values for stable operation of system.
However, the stability may not be enough solely; hence, one
should choose τ according to the first part of Appendix A-E.
From (26) and (27) one can see that γΩ and γV determine
steady-state frequency and voltage errors, respectively. There-
fore, considering 2γΩ and 2γV as the maximum neighborhood
errors one should choose proper gammas. Finally, looking at
second part of Appendix A-E one should select σ as large as
possible, for instance σ = 0.49.

IV. CASE STUDIES

To verify the effectiveness of the proposed controller, an
islanded 220-V, 50-Hz three-phase 5-bus MG with four DGs is
simulated in MATLAB/Simulink environment. Each DG has the
dynamics in (1) which feeds its local bus through the connector
ZC. Each feeder line is modeled with a lumped series RL
impedance ZL. The loads are modeled by constant impedance
loads. Single-line diagram of the test MG is depicted in Fig. 2
where the electrical and control requirements of different parts
are also given. Note that ∆f = 0.25-Hz and ∆V = 11-V.

A. Performance Assessment: Activation and Load Changes

In this case, the directed CN depicted in Fig. 2, is used
for inter-DG communications. The parameters in (8)-(12) are
as follows: τ−1 = 25-Hz, KV

i = Kf
i = 5, IVi = Ifi = 10,

0.2 0.3j+ W

Load1 (60kW,30kVAr)=

0.19 0.19j+ W

Load2 (40kW,20kVAr)=

0.17 0.25j+ W

Load3 (25kW,15kVAr)=

0.15 0.26j+ W

Load4 (35kW,15kVAr)=
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.03 .06j+ W
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Fig. 2. Test microgrid system; specifications of different parts are also given.

bf = bV = [1, 0, 0, 0]T , bΩ = [0, 1, 1, 1]T , σ = 0.49,
γΩ = 0.001/2, and γV = 0.05/2. Fig. 3 indicates the
performance of the controller over different stages. Prior to the
proposed controller’s activation at t = 4s, the MG is controlled
by droop control. At t = 8s, load 5 increases by 33% of total
load. Load 5 decreases to its initial value, at t = 12s. Fig. 3(a)-
(c) indicate that for t < 3s the DGs’ voltages and frequencies
are deviated from the nominal values, and the active powers
are shared properly. Activation of the secondary controller at
t = 4s restores the voltages and frequencies to the reference
values of 220-V and 50-Hz while guarantees proportional active
power sharing between the DGs. It is shown that after load
changes at t = 8s and t = 12s, the voltages and frequencies
are restored back to the reference values, and proportional active
power sharing still remains. Fig. 3(d) depicts the triggering
(communication) instants for all the DGs. It is indicated that
i) the communication burden is highly reduced, ii most of the
communications are triggered during the transient stages, and
iii) the inter-event time intervals are always greater than τ , i.e.,
Zeno behavior does not appear.

B. Impacts of Communication Delay and Feedback Gains

Fig. 4 shows the controller performance for the case in
Section IV-A, but with KV

i = Kf
i = 10, IVi = Ifi = 20 and

communication delays of 0 and 160 milliseconds. Comparing
Fig. 3(a)-(c) and Fig. 4(a)-(c), it is obvious that, the more
feedback gain, the more synchronization speed, and the better
transient response. Comparing Fig. 4(a)-(c) and Fig. 4(d)-(f),
one can see that the communication delay slows down the
synchronization speed and results in some transient oscillations.
However, the desired control aim can be reached properly, for a
practical range of delays (in the order of tens of milliseconds).

C. Plug-and-Play Capability and Link Failure Investigation

In this case, all the parameters defined in the preamble of
Section IV-A are employed again. To preserve connectivity of
the CN in Fig. 2, a link is established from DG 1 to DG 4.
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Fig. 3. Performance of the proposed controller; (a) voltages, (b) frequencies, (c) miPis, and (d) communication (triggering) instants.
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Fig. 5. Link 3-4 failure and plug-and-play capability with 4th DG; (a) voltages, (b) frequencies, and (c) miPis.



1949-3053 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2019.2945250, IEEE
Transactions on Smart Grid

IEEE TRANSACTIONS ON SMART GRID, VOL. X, NO. X, MONTH YYYY

2 4 6 8 10 12 14 16

 Time (s)

50

F
re

q
u
en

cy
 (

H
z)

(a)

2 4 6 8 10 12 14 16

 Time (s)

50

F
re

q
u
en

cy
 (

H
z)

(b)

2 4 6 8 10 12 14 16

 Time (s)

50

F
re

q
u
en

cy
 (

H
z)

(c)

2 4 6 8 10 12 14 16

 Time (s)

50

F
re

q
u
en

cy
 (

H
z)

(d)

2 4 6 8 10 12 14 16

 Time (s)

50

F
re

q
u
en

cy
 (

H
z)

(e)

2 4 6 8 10 12 14 16

 Time (s)

50

F
re

q
u
en

cy
 (

H
z)

(f)

Fig. 6. Impact of different parameters on the frequency responses. (a) σ = 0,
τ = 1/25, γV , γΩ = 0, (b) σ = 0.49, τ = 1/25, γV , γΩ = 0, (c) σ = 0,
τ = 1/25, γV , γΩ 6= 0, (d) σ = 0.49, τ = 0, γV , γΩ 6= 0, (e) σ = 0.49,
τ = 1/25, γV , γΩ 6= 0, and (f) σ = 0.49, τ = 1/8, γV , γΩ 6= 0.

From t = 6s to t = 10s the link between DGs 3 and 4 is
interrupted. The circuit breaker CB is intentionally opened at
t = 11s, and 4th DG becomes disconnected (its communication
links are also interrupted) until t = 15s when the DG joins the
secondary controlled MG again. Note that prior to t = 15s
a synchronization process is started, CB is closed, and the
communication links associated with 4th DG are all recovered.
Fig. 5 depicts the performance of the proposed controller for
this scenario. Fig. 5(a)-(c) indicate that i) the controller is
resilient to the link failure, ii) once 4th DG leaves the MG,
other DGs increase their supplied active powers proportional to
their ratings and regulate their voltages and frequencies, and
iii) as soon as 4th DG connects back to the MG, immediately
participates in proportional active power sharing, as well as,
voltage and frequency regulation.

D. Impacts of Different Parameters

In order to illustrate how different parameters affect the
controller performance and the communication burden, the
frequency responses and the number of communications for the
scenario in Section IV-A (t ∈ [4s, 16s]) are recorded and the
results for different cases are given in Fig. 6 and Fig. 7. Note
that the cases are defined in the caption of Fig. 6. Comparing
the cases (a), (b), (c), and (e) one can see that σ and γΩ, γV
dramatically reduces the communication burden, while some
similar satisfactory performances and frequency responses can
be achieved; however, γΩ and γV are more effective than
σ. Comparing the cases (d), (e), and (f) one can see that τ
reduces the number of communications more effectively while
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Fig. 8. Parametric graph for total number of communications versus different
parameters where σ∗ = 0.49, τ∗ = 0.04, γ∗Ω = 0.001/2, and γ∗V = 0.05/2.

it ensures that the inter-event times are controllable lower-
bounded. In addition, from Fig. 6, i) the system performance and
frequency response under different parameters is reasonable,
and ii) τ affects the system response similar to a communication
delay, inducing transient overshoot and oscillations. To further
investigate the parameters’ impacts on the communications, the
scenario in Section IV-A is re-simulated 600 times for different
parameters, and the DGs’ total number of communications
is figured in Fig. 8. Note that i) the parameters are varied
with steps of 0.1 of the star-signed values in Fig. 8’s caption,
and ii) the parameters γΩ, γV are changed together and are
simply represented by γ. Generally speaking, all the parameters
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Fig. 9. Freuency responses under (a) the integrator-based frequency-consnesus
controller, and (b) the PI-based frequency-consensus-less controller in this paper.

contribute to communication reduction, however, there are some
interesting impacts that should be pointed out. According to
Fig. 8(a)-(b), increase of γΩ and γV alleviates the impact of σ
on the communication frequency which validates the analyses
in the second part of Appendix A-E. Similarly, the increase of
τ alleviates the impact of σ. Because, according to the first part
of Appendix A-E, in the presence of larger τ the measurement
errors grow more, such that after τ seconds they violate the
thresholds in (8) more likely; hence, for small values of σ
and large values of τ the communications are governed by τ ,
predominantly. Under periodic time-triggered communications,
the number of communications is proportional to the frequency
1
τ . However, by incorporating γΩ and γV into the triggering
condition, the communications become aperiodic and behave
different from the function 1

τ . This issue is shown in Fig. 8(e)-
(f), where the 1

τ behavior is alleviated as γ
γ∗ increases.

E. Comparison with the Existing Methods

In Table I, the proposed methodology in this paper is com-
pared with the ET controllers in [26]–[28] in terms of triggering
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Fig. 10. Comparison between different ET conditions in terms of communica-
tion burden across the communication network over t ∈ [8s, 16s].

conditions and control settings. The controller in this paper
compared to those in [26]–[28] is PI-based; in addition, it does
not employ frequency leader-following consensus which seems
to be redundant in power systems where the frequency reaches
agreement per se. Therefore, different from [26] (and also the
works in [3]–[11]) and similar to [27], [28], only one data does
flow between the DGs in frequency-active power control task.
Moreover, the employed thresholds in ET condition (7) have
state-dependent, constant, and time-dependent parts at the same
time, resulting in i) less communications in both transient and
steady-state stages, and ii) controllable desired lower bound for
inter-event times.

In order to highlight the superior performance of the PI-
based frequency-consensus-free controller, the frequency re-
sponse associated with the scenario in Section IV-A (activa-
tion and first load change) under the proposed controller is
compared with that under the integrator-based leader-following-
based controllers. Fig. 9, indicates that the proposed controller
demonstrates better transient response.

On the other hand, to compare the mentioned works in terms
of communication burden and ET conditions efficiency, the case
study in Section IV-A is re-simulated for each one, and the
total number of all the DGs’ communications over t ∈ [8s, 16s]
is figured in Fig. 10. It should be noted that to make a fair
comparison it is assumed that i) all the DGs can access the
frequency reference directly, i.e., bfi = 1, ∀i, ii) since some
references do not consider voltage control, the DGs voltages
are engaged with the V −Q droop control, i.e., Γi = 0,∀i, and
iii) an undirected ring-structured version of the CN in Fig. 2
is established among the DGs, i.e., bΩi = 1, aij = aji,∀i, j.
From Fig. 10, one can see how the proposed ET condition with
all the state-dpendent, constant, and time-dependent parts, i.e.,
case A, needs effectively lower data exchange than those needed
by the other methods and cases. Moreover, according to the
results of the cases A and B, one can see that the success of
the proposed triggering instant in reducing the communication
burden, owes to the use of τ and γ. It is also shown that
even without the constant part, i.e., case D, the proposed
condition is more effective than the one in [26]. The reason
is that unlike the proposed condition in (7)-(8), the condition
in [26] is checked continuously, resulting in a huge number
of communications. Under the case C, the ET condition is
also checked continuously; however, similar to [27], [28] the
condition has a constant part threshold and hence the results in
this case are settled in between the results of [27], [28].

V. CONCLUSION

In this paper, the amount of inter-DG communications in
secondary control of ac MGs, is highly reduced. Herein, some
proportional-integral-based correction terms are introduced wich
utilizes an ET data exchange strategy. In this method, some
triggering conditions, reducing the communications in both
transient and steady-state stages, are employed for directed CNs
which ensures that the inter-event time intervals are control-
lable, lower bounded. Stability and mathematical analyses are
also provided. PnP capability of the DGs and the effects of
design parameters are clarified, by mathematical analysis and
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simulation results. In addition, the results are compared with
those of the conventional methods.

APPENDIX A
MATHEMATICAL ANALYSES

Lemma: Let L be a graph’s Laplacian matrix di ≥ doi , one
then has L1n = 0n and xTLx ≥ 1

2

∑
i

∑
j∈Ni aij(xi − xj)

2,
where x = [x1, · · · , xn]T ∈ Rn.

Proof of lemma: According to the definition of Laplacian
matrix (i.e., di =

∑
j∈Ni aij), L has a zero eigenvalue, with 1n

being its corresponding right eigenvector; hence, L1n = 0n.
Moreover, one can expand xTLx and its transpose xTLTx as

xTLx =
∑

i
(dix

2
i −

∑
j∈Ni

aijxixj),

xTLTx =
∑

i
(dix

2
i −

∑
j∈Ni

ajixixj).

Now, considering ri = di − doi , di =
∑
j∈Ni aij , and doi =∑

j∈Ni aji, one can rewrite the above equations as

xTLx =
∑

i

∑
j∈Ni

(aijx
2
i − aijxixj),

xTLTx =
∑

i

∑
j∈Ni

(aijx
2
j − aijxixj) +

∑
i
rix

2
i .

Therefore, since xTLx = 1
2 (xTLx + xTLTx), one can write

xTLx =
1

2

∑
i

∑
j∈Ni

aij(xi − xj)2 +
1

2

∑
i
rix

2
i .

Hence, if ri ≥ 0, then xTLx ≥ 1
2

∑
i

∑
j∈Ni aij(xi − xj)

2. �

A. Secondary Controlled Microgrid System Model

Let V = col{Vi}, Ṽ = col{Ṽi}, δ = col{δi}, Ω = col{Ωi},
Ω̃ = col{Ω̃i}, P̂ = col{P̂i}, and P = col{Pi} be the state
column vectors. One can then write (1), (4), and (5) as

V = KV

(
bV (Vref1n −V)− (In − bV )D−1LṼ

)
+ IV

∫ (
bV (Vref1n −V)− (In − bV )D−1LṼ

)
dt,

+ n

∫
Q̇dt− nQ + Vnom1n, (9a)

Ω = Kf

(
bf (∆f∗1n + mP−Ω)− bΩD−1LΩ̃

)
+ If

∫ (
bf (∆f∗1n + mP−Ω)− bΩD−1LΩ̃

)
dt, (9b)

Ṗ = −2πfcP + 2πfcP̂, (9c)
δ̇ = 2πfnom1n + 2πΩ− 2πmP, (9d)

where, KV = diag{KV
i }, Kf = diag{Kf

i }, IV = diag{IVi },
If = diag{Ifi }, bV = diag{bVi }, bf = diag{bfi }, bΩ =
diag{bΩi } are diagonal matrices; ∆f∗ = fref − fnom. From
(2a), P̂ = P̂(V, δ) is a function of V, δ with a Taylor expansion
around xb = (Vref1n,0n) as

P̂ = GV + Lδ − P̂(xb) + P̂h.o.t, (10)

where, P̂h.o.t stands for high-order terms; L denotes an elec-
trical Laplacian matrix with the adjacency matrix [V 2

refBij ]; G
is a conductance matrix with Vref (2Gi+

∑
j Gij) and VrefGij

being its diagonal and off-diagonal entries, respectively. �

Remark 4: According to the proposed triggering instant (7)
described in Algorithm 1, after every triggering instant each
DG postpones checking (8a) and (8b) for τ seconds which can
be regarded as a sampling-induced time delay. Therefore, in
addition to the impacts of the conditions in (8) over the interval
[tiki + τ, tiki+1), the effects of this sampling delay should be
investigated. Next, each case is discussed separately.

B. Event-Triggering Conditions Analysis

Considering eV = Ṽ−V and eΩ = Ω̃−Ω and substituting
(10) into (9), one can write the system state model as

ẋ = Ax + u, where, u = Ce + w, (11)

and, e =

[
eV
eΩ

]
,

{
x = [VT δT ΩT PT ]T ,

w = [wT
V wT

δ wT
Ω wT

P ]T ,

A =


AV 0n 0n 0n
0n 0n AδΩ AδP

AΩV AΩδ AΩ AΩP

APV APδ 0n AP

 ,C =


CV 0n
0n 0n
0n CΩ

0n 0n

 ;

MV = In + KV bV + KV (In − bV )D−1L
MΩ = In + Kfbf + KfbΩD−1L
AV = −M−1

V IV (bV + (In − bV )D−1L),

AΩ = −M−1
Ω If (bf + bΩD−1L), AP = −2πfcIn,

AΩδ = 2πfcM
−1
Ω KfbfmL, APδ = 2πfcL, AδΩ = 2πIn,

AΩV = 2πfcM
−1
Ω KfbfmG, APV = 2πfcG,

AΩP = −M−1
Ω (2πfcKfbf − Ifbf )m, AδP = −2πm,

CV = M−1
V IV (bV − In)D−1L, CΩ = −M−1

Ω IfbΩD−1L,
wV = M−1

V (VrefIV bV 1n −KV (In − bV )D−1LėV ),

wΩ = M−1
Ω (∆f∗Ifbf1n + KfbfmwP −KfbΩD−1LėΩ),

wP = 2πfc(P̂h.o.t − P̂(xb)), wδ = 2πfnom1n, (12)

Note that A, x, and w respectively are the state matrix, state
vector, and disturbance vector with the components in (12).

Under the conditions in (8) one always has |eVi | < σ|z̃Vi |+γV
and |eΩ

i | < σ|z̃Ω
i |+ γΩ; therefore

|eV | ≤ σ|D−1L(V + eV )|+ γV 1n, (13a)
|eΩ| ≤ σ|D−1L(Ω + eΩ)|+ γΩ1n, (13b)

where, | · | denotes the entry-wise absolute value matrix/vector
i.e., |M| = [|mij |],∀M = [mij ]. By using the widely-known
triangle inequality one can bound (13) as

|eV | ≤ σ|D−1L||V|+ σ|D−1L||eV |+ γV 1n. (14a)
|eΩ| ≤ σ|D−1L||Ω|+ σ|D−1L||eΩ|+ γΩ1n, (14b)

Consider the matrix M = In − σ|D−1L|. Since L = D − A,
one has |D−1L| = In+D−1A; thusM = (1−σ)In−σD−1A.
From the Geršgorian discs theorem [34], if σ < 0.5, all of the
eigenvalues ofM have positive real parts. Therefore, according
to [35, Th. 5.1.4], M is invertible and (14) can be written as

|e| ≤ C1|x|+ C2, where, C2 =

[
γVM−11n
γΩM−11n

]
,

C1 =

[
σM−1|D−1L| 0n 0n 0n

0n 0n σM−1|D−1L|0n

]
(15)
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From (11), (15), and the triangle inequality, if |w| < w∗14n,
then with T1 = |C|C1 and T2 = |C|C2 + w∗14n one has

|u| ≤ T1|x|+ T2. (16)

The statements (11) and (16)) resemble [36, eq. (28)] and [36,
eq. (29)], respectively. Accordingly, if A in (11) is Hurwitz,
the stability and boundedness analyses of the system follows the
results of [36, Th. 2]. In other words, the solutions of the system
(11) are ultimately uniformly bounded (UUB). The interested
reader can refer to [36] for more info on the notion of UUB-
ness and the systematic approach for calculating the solutions
bounds. According to the foregoing analysis, the system is stable
if σ < 0.5, the matrix A is Hurwitz, and |w| < w∗14n. �

C. Sampling Delay Effects Analysis

In this part, the focus is on the cybernetic aspect of the
system and the underlying physical and control layers i.e.,
(9b) and (10) are neglected. According to Remark 4, if over
the τ seconds after triggering instants the measurement errors
do not violate the thresholds, the system is the ET control
system investigated previously. Otherwise, the time-dependent
threshold in (7) introduces a delay of τ to the system and hence
one can write Ṽ = Ṽ(t) = V(t− τ) & Ω̃ = Ω̃(t) = Ω(t− τ).
By replacing them in (9) and taking Laplace transform–where
s stands for the Laplace operator–one has

(sM′ −A′)y = y0 +
1

s
y∗ + D′P̂(s), where, (17)

M′ =

M′
V 0n 0n

0n M′
Ω 0n

0n 0n In

 ,A′ =

A′V 0n 0n
0n A′Ω A′ΩP
0n 0n A′P

 ,
y =

V(s)
Ω(s)
P(s)

 ,y∗ =

VrefIV bV 1n
∆f∗Ifbf1n

0n

 ,D′ =

 0n
D′Ω
D′P

 ,
y0 =

(In + KV bV )V0 + KV (In − bV )D−1LṼ0

(In + Kfbf )Ω0 + KfbΩD−1LΩ̃0

P0

 ;



M′
V = In + KV bV + KV (In − bV )D−1Le−τs,

M′
Ω = In + Kfbf + KfbΩD−1Le−τs,

A′V = −IV bV − IV (In − bV )D−1Le−τs,
A′Ω = −Ifbf − IfbΩD−1Le−τs,
A′ΩP = −(2πfcKfbf − Ifbf )m, A′P = −2πfcIn,
D′Ω = 2πfcKfbfm, D′P = 2πfcIn.

(18)

Note that y is the vector of states’ Laplace transforms; the zero-
sub-scripted quantities in y0 are initial values’ vectors; P̂(s) is
the Laplace transform of the non-filtered power vector P̂.

Let us derive sufficient conditions for stability of the system
(17) with the characteristic polynomial det(sM′ − A′) = 0.
Since A′, M′ are partitioned triangle matrices, one can write
det(sM′−A′) = det(sM′

V −A′V )det(sM′
Ω−A′Ω)det(sIn−

A′P ) and therefore it suffices to analyze the roots of the
polynomials det(sM′

V − A′V ) = 0, det(sM′
Ω − A′Ω) = 0,

det(sIn −A′P ) = 0. As the above determinants are zero, the
matrices sM′

V − A′V , sM′
Ω − A′Ω, sIn − A′P are singular;

hence, the preceding polynomials have solution if and only if

one has xT (sM′
V − A′V )x = 0, xT (sM′

Ω − A′Ω)x = 0, and
xT (sIn − A′P )x = 0 for some real unit-norm vector x [13].
These are simply scalar polynomials with coefficients in the
form of quadratic functions. Therefore, one can extract sufficient
conditions of having their roots with negative real parts which
is equivalent to the stability of the system. According to (18),
xT (sIn − A′P )x = 0 have roots with negative real parts and
hence the stability of the system is boiled down to checking
the location of the roots of xT (sM′

V − A′V )x = 0 and
xT (sM′

Ω−A′Ω)x = 0 that, from (18), one can check the roots
of the polynomials below, instead.

aV1 s+ aV0 + (aV2 s+ aVτ )e−τs = 0, (19a)
aΩ

1 s+ aV0 + (aΩ
2 s+ aΩ

τ )e−τs = 0, (19b)

where, aVτ = xT IV (In − bV )D−1Lx, aVτ = xT IfbΩD−1Lx,
aV0 = xT IV bV x, aΩ

0 = xT Ifbfx, aV1 = xT (In + KV bV )x,
aΩ

1 = xT (In + Kfbf )x, aV2 = xTKV (In − bV )D−1Lx, and
aΩ

2 = xTKfbΩD−1Lx. Equations (19a) and (19b) correspond
to [37, Eq. (2.46)]. From the Lemma, if di ≥ doi ,∀i, then aVτ ,
aΩ
τ , aV2 , aΩ

2 are positive and hence the system is stable at τ = 0.
The roots of (19a) and (19b) are continuous as a function of
positive τ . In this way, according to the direct method provided
in [37, Chap. 2.3.2], if at some τ roots of (19) cross the imagi-
nary axis, one has ejωτ = −aVτ /(jωejωτaV2 + jωaV1 + aV0 ) and
ejωτ = −aΩ

τ /(jωe
jωτaΩ

2 + jωaΩ
1 + aΩ

0 ), resulting in (20a) and
(20b), respectively (see [37, Eqs. (2.47)-(2.48)]).{

ω2 = [(aVτ )2 − (aV0 )2]/[(aV1 )2 − (aV2 )2],

ωτ = arg(− jωa
V
2 +aVτ

jωaV1 +aV0
) + 2πk, k = 0, 1, · · · ,

(20a){
ω2 = [(aΩ

τ )2 − (aΩ
0 )2]/[(aΩ

1 )2 − (aΩ
2 )2],

ωτ = arg(− jωa
Ω
2 +aΩ

τ

jωaΩ
1 +aΩ

0
) + 2πk, k = 0, 1, · · · ,

(20b)

where, arg(·) denotes the argument operator. From [37,
Prop. 2.1], if (19) with τ = 0 is stable and the first lines of (20a)
and (20b) do not have solutions, then the polynomials in (19)
are delay-independent stable (independent of τ ). Otherwise, the
first-line equations in (20a) and (20b) yield the positive crossing
frequencies ωVc =

√
(aVτ )2 − (aV0 )2/

√
(aV1 )2 − (aV2 )2 and

ωΩ
c =

√
(aΩ
τ )2 − (aΩ

0 )2/
√

(aΩ
1 )2 − (aΩ

2 )2, respectively. Sub-
stituting these crossing frequencies for ω in the argument
equations in (20a) and (20b), respectively, one can obtain the
respective crossing delays as

τVk ω
V
c =π + arctan(

aV2 ωc
aVτ

)− arctan(
aV1 ωc
aV0

) + 2πk, (21a)

τΩ
k ω

Ω
c =π + arctan(

aΩ
2 ωc
aΩ
τ

)− arctan(
aΩ

1 ωc
aΩ

0
) + 2πk, (21b)

where, k = 0, 1, · · · . Correspondingly,

τV0 =
(
π + arctan(

aV2 ω
V
c

aVτ
)− arctan(

aV1 ω
V
c

aV0
)
)
/ωVc , (22a)

τΩ
0 =
(
π + arctan(

aΩ
2 ω

Ω
c

aΩ
τ

)− arctan(
aΩ

1 ω
Ω
c

aΩ
0

)
)
/ωΩ

c ; (22b)

which implies the stability for τ < min(τV0 , τ
Ω
0 ). �

D. Equilibrium Analysis

According to (4a), in steady state one has

bfi (fref − fcom) +
bΩi
di

∑
j∈Ni

aij(Ω̃j − Ω̃i) = 0, (23)
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where, fcom is common frequency. Eq. (23) can be written as

bf (fcom − fref )1n + bΩD−1LΩ̃ = 0n, (24)

corresponding to [14, eq.(8)]. Therefore, if the CN among the
DGs has a rooted spanning tree and bi 6= 0 for at least one
root node, then the results of [14, Th. 2] hold, i.e., in steady
state one has fi = fref , Ω̃i = Ω̃j , ∀i, j. One can bound the
neighborhood error of Ωi as

| 1
di

∑
aij(Ωj − Ωi)| ≤ |z̃Ω

i |+ 1
di

∑
aij(|ej |+ |ei|). (25)

From (1d), (8a), & (25), in steady state when z̃Ω
i = 0, one has

miPi = Ωi ⇒ | 1
di

∑
aij(mjPj −miPi)| ≤ 2γΩ. (26)

The last inequality implies that in steady state, the active powers
are shared properly but with the maximum neighborhood error
of 2γΩ Hertz. According to (1d), this error can be translated
into (regarded as) steady-state frequency error.

From (4b), if bVi = 1, i.e., the DG voltage is not affected by
its neighbors, then in steady state one has Vi = Vref . Otherwise,
its steady-state voltage is influenced by their in-neighbors. Let
zVi = 1

di

∑
j aij(Vj−Vi),∀di 6= 0 be the neighborhood voltage

error. Then, one has zVi = z̃Vi − 1
di

∑
j aij(e

V
j − eVi ). From

(9a), one has (bVi − 1)z̃Vi = bVi ∆Vi in steady state. By using
these equations, (8b), and the triangle inequality one has

|zVi | ≤ 2γV , ∀i|bVi = 0. (27)

Hence, the maximum neighborhood voltage error is 2γV . �

E. Inter-Event Time Analysis

Transient effects of τ : Consider the functions yΩ
i = |eΩ

i |
and yVi = |eVi | over [tiki , t

i
ki+1). According to the event-

triggering condition in (7), the inter-event time intervals are
always greater than τ . In what follows the growth of the
functions yΩ

i and yVi over the first τ seconds after triggering
instant tiki is investigated. Differentiating them by using (4)
yields ẏΩ

i ≤ |Ω̇i| ≤ αΩ
ki

and ẏVi ≤ |V̇i| ≤ αVki ; where,
αΩ
ki

and αVki are the corresponding maximum values over
[tiki , t

i
ki+1). Considering yΩ

i (tiki) = yVi (tiki) = 0 and integrating
these inequalities, one can write yΩ

i (tiki + τ) ≤ αΩ
ki
τ and

yVi (tiki + τ) ≤ αVkiτ , which demonstrate the maximum possible
growth of measurement errors over the first τ seconds and can
be used for proper selection of τ .

Inter-event times: According to (7), if yΩ
i (tiki + τ) >

σbΩi |z̃Ω
i | + γΩ or yVi (tiki + τ) > σ(1 − bVi )|z̃Vi | + γV , then

tiki+1−tiki = τ , otherwise tiki+1−tiki > τ . For the second case,
considering yΩ

i (tiki) = yVi (tiki) = 0 and integrating ẏΩ
i ≤ αΩ

ki
,

ẏVi ≤ αVki one has yΩ
i ≤ αΩ

ki
(t − tiki) and yVi ≤ αVki(t − t

i
ki

).
From (8), the next event time tiki+1 is when yΩ

i > σbΩi |z̃Ω
i |+γΩ

or yVi > σ(1− bVi )|z̃Vi |+ γV . Hence, if tiki+1 − tiki > τ , then

tiki+1 − tiki > min(τΩ
ki , τ

V
ki) = τki (28)

where αΩ
ki
τΩ
ki

= σbΩi |z̃Ω
i |+γΩ and αVkiτ

V
ki

= σ(1−bVi )|z̃Vi |+γV .
The bound in (28) is a function of σ ∈ [0, 0.5), γΩ, and
γV . Accordingly, if γΩ

i = γVi = 0 then τΩ
i and τVi are

proportional to σ, i.e., the more σ, the less τΩ
i , τVi , and the

more communications. In fact, the parameters γΩ
i , γVi alleviate

the impact of σ on the communication and inter-event time.
All in all, if τ is small then the inter-event times are highly

affected by σ, γΩ, and γV such that the more σ, γΩ, and γV , the
more inter-event times, and the less communications. But then,
for large values of τ the inter-event times are mainly affected
by τ and the other parameters have less effects. �
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