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Abstract—Network reconfiguration is an effective strategy for
different purposes of distribution systems (DSs), e.g., resilience en-
hancement. In particular, DS automation, distributed generation
integration and microgrid (MG) technology development, etc., are
empowering much more flexible reconfiguration and operation of
the system, e.g., DSs or MGs with flexible boundaries. However,
the formulation of DS reconfiguration-related optimization prob-
lems to include those new flexibilities is non-trivial, especially for
the issue of topology, which has to be radial. That is, the existing
methods of formulating the radiality constraints can cause under-
utilization of DS flexibilities. Thus, in this work, we propose a new
method for radiality constraints formulation that fully enables the
topological and some other related flexibilities of DSs, so that the
reconfiguration-related optimization problems can have extended
feasibility and enhanced optimality. Graph-theoretic supports are
provided to certify its theoretical validity. As integer variables are
involved, we also analyze the issues of tightness and compactness.
The proposed radiality constraints are specifically applied to post-
disaster MG formation, which is involved in many DS resilience-
oriented service restoration and/or infrastructure recovery prob-
lems. The resulting new MG formation model, which allows more
flexible merge and/or separation of the sub-grids, etc., establishes
superiority over the models in the literature. Demonstrative case
studies are conducted on two test systems.

Index Terms—Distribution system, radiality constraints, recon-
figuration, microgrid, resilience.

I. INTRODUCTION

D ISTRIBUTION system (DS) reconfiguration is an effec-
tive and multi-function strategy [1]–[3]. Its optimization

thus has been extensively studied. As most DSs have to operate
with a radial topology, the mathematical formulation of radiality
constraints has been specifically investigated [4]–[8] (see more
details in Section III). This issue is resolved for conventional
DS reconfiguration. Nevertheless, now DSs can adopt much
more adaptive reconfiguration and operation owing to the added
flexibilities of automation equipment, distributed generations
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I: Search space of the model in [18]
II: Search space of the model in [19]

III: Search space of the proposed model

Fig. 1. The search space (i.e., considered DS flexibilities) of our MG formation
model and the models in [18] [19]. (Note: All comparisons in this work assume
the same formulation other than the topology modeling. For example, loads are
dispatchable in [19]. We alter them to be non-dispatchable as in [18] and here.)

(DGs), and microgrid (MG) components, etc. In particular, re-
garding the topology issue, DSs and MGs now can have flexible
boundaries [9]–[11]. For example, the DS is split into a to-be-
optimized number of MGs in [11]. Such added flexibilities are
actually empowering more resilient reconfiguration of DSs.

However, existing methods to formulate radiality constraints
cannot fully include those new flexibilities in optimizing DS
reconfiguration [12]. That is, the feasible region given by these
formulations only refers to a subset of the actual one. DS flexi-
bilities thus will be underutilized and less coordinated, which is
especially adverse for resilience-oriented reconfiguration [13].
For example, post-disaster reconfiguration is faced with quite
limited flexibilities due to many faults caused by an extreme
weather event [14], etc. In such cases, the faults also compli-
cates decision-making and even requires co-optimization with
other recovery efforts [15], etc. Actually, to co-optimize with
the repairing sequence of the damaged parts involves recon-
figuring a DS network with a physical structure evolving with
the repairing variables. Existing methods to formulate radiality
constraints cannot properly handle these situations.

This work proposes a new formulation of radiality constraints
that fully enables topological and some other related flexibilities
in DS reconfiguration-related optimization problems. It is supe-
rior to the literature’s other attempts with the same or similar
aims [12] [16] (see comparisons in Section II). Graph-theoretic
justifications are provided to affirm the analytical validity of it.
As integer variables are involved, the tightness and compactness
issues are also analyzed [17]. Generally, adopting the proposed
radiality constraints in DS reconfiguration optimization prob-
lems can attain extended feasibility and enhanced optimality.

For verification, the proposed radiality constraints are applied
to construct a new optimization model for post-disaster MG for-
mation, which reconfigures the DS to form MGs energized by
DGs and/or other power sources. It is an essential strategy for
many resilience-oriented DS restoration and/or recovery prob-
lems [12]–[16]. Our proposed model again establishes superi-
ority over the literature’s two groups of MG formation models
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Fig. 2. (a) A spanning tree; (b) A spanning forest. (Illustrated on the modified
IEEE 13-node test system [21].)

[18] [19]. As compared in Fig. 1, while their models exclude
some DS flexibilities, our model allows more flexible merge and
separation of sub-grids, etc. (See more details in Section IV.)

In the following, Section II details the proposed method of
formulating radiality constraints. Section III analyzes its tight-
ness and compactness issues. Sections IV and V apply it to re-
silient MG formation. Section VI provides the conclusion.

II. PROPOSED RADIALITY CONSTRAINTS

This work proposes to construct radiality constraints based on
two simple graph-theoretic concepts and their relationships.

First, the definition of spanning tree, which may be already
well-known, is still given here to make this paper self-contained:

Definition 1: A spanning tree is a graph that connects all the
vertices and contains no cycles [20].

Second, spanning forest, the other involved concept which
is less common, is defined as follows:

Definition 2: A spanning forest is a graph with no cycles [20].
As in Fig. 2, a spanning forest is a graph whose connected

components are spanning trees. Actually, a spanning forest with
κ components can be called as a κ-tree. For example, Fig. 2(b)
is a 3-tree. And, a 1-tree is a spanning tree, e.g., Fig. 2(a).
Obviously, both spanning trees and spanning forests are radial.

Let κ1 be the number of substations in the DS. In light of
Definitions 1 and 2, we can observe that normal DS reconfigura-
tion for loss reduction [1] and supply capacity improvement [2],
etc., is essentially forming a κ1-tree. That is, a spanning tree is
formed if κ1 = 1, while a spanning forest is formed if κ1 > 1.
It is also required that each component has a substation node.

Regarding resilient DS reconfiguration (e.g., MG formation
for service restoration), it is to form a κ2-tree with κ2 ≥ κ1.
In this case, it is required that each component has at most
one substation node, if any. Actually, the value of κ2 should
be optimized in resilient reconfiguration. If it is predefined, the
optimality can be impacted. In all relevant cases, we will have
κ2 > 1, which indicates that a spanning forest is formed. That
is, the topology issues in resilient DS reconfiguration can be
resolved by requiring the network to be a spanning forest. Thus,
we can formulate the radiality constraints as equations (1)-(2),
which are inspired by the remark as below:

Remark 1: An arbitrary subgraph of a spanning tree is a span-
ning forest.

Specifically, a subgraph of a graph consists of a subset of the
vertices and edges in the graph. For example, Fig. 2(b) is a sub-
graph of the graph in Fig. 2(a). According to Definitions 1 and 2,
Remark 1 is naturally true. Based on that, the proposed radiality
constraints are formulated as follows:

β ∈ Ω. (1)

αij ≤ βij ,∀(i, j) ∈ L. (2)

In (1)-(2), L is the set of DS branches; α , {αij ,∀(i, j) ∈ L},
where αij is the connection status of branch (i, j) (1 if closed,
0 if open); β , {βij ,∀(i, j) ∈ L}, where βij is the fictitious
connection status of branch (i, j) (1 if closed, 0 if open). By
“fictitious”, it indicates that β are just auxiliary variables, which
do not actually determine the network topology of the DS. The
topology is still determined by variables α. The symbol Ω is
the set of all incidence vectors of spanning tree topologies that
the network can form via reconfiguration (see Section III).

Thus, constraint (1) enforces β to form a fictitious spanning
tree. Constraint (2) then restricts the DS to close a subset of
the closed branches in the spanning tree determined by β. That
is, α form a subgraph of the fictitious spanning tree. Remark 1
indicates that the resulting network topology determined by α
is a spanning forest. Note that constraint (1) is just expressed
conceptually here. We will elaborate on its explicit formulations
in Section III. Besides, constraints (1)-(2) implicitly assume
that the DS has only one substation node. Section III will briefly
explain the reason for this assumption, and introduce a simple
method that enables the proposed radiality constraints to fully
handle a DS with multiple substation nodes. For uncontrollable
branches without switches or with faulted switches, constraints
can be added to specify their connection status (see Section IV).

Remark 1 only specifies that any α satisfying constraints (1)-
(2) is topologically feasible for the DS. The following theorem
indicates that any topologically feasible α satisfies constraints
(1)-(2). As it is somewhat less straightforward, its proof is also
provided. Remark 1 and Theorem 1 together certify the validity
of the proposed radiality constraints.

Theorem 1: A spanning forest subgraph of a connected graph
is also the subgraph of a spanning tree subgraph of the con-
nected graph.

Proof: Assume a κ-tree denoted as Gκ to be a subgraph of a
graph G. As G is connected, there exists at least one edge in G
that can link the κth component of Gκ to another component
of Gκ. Adding this edge to Gκ, which does not create cycles,
Gκ becomes a (κ − 1)-tree denoted as Gκ−1. Repeating this
process, Gκ ends up to be a 1-tree denoted as G1. Obviously,
the spanning forest Gκ is a subgraph of the spanning tree G1,
which is a subgraph of G. This completes the proof. �

The proposed radiality constraints (1)-(2) can be interpreted
as a two-step method to regulate DS topology in reconfiguration.
In the first step, constraint (1) ensures network radiality by hav-
ing a spanning tree to be the DS topology’s supergraph, which
is determined by the fictitious connection status of branches.
(If GA is a subgraph of GB , then GB is said to be a supergraph
of GA.) In the second step, constraint (2) enables more flexible
reconfiguration by allowing the DS to select a subgraph of the
fictitious spanning tree to be the actual network topology.

By contrast, common methods of formulating radiality con-
straints in the literature (e.g., [6] [8]) can be seen as a one-step
process that directly enforces the DS topology to be a spanning
tree or a spanning forest. Their models (the single-commodity
flow model [6], etc.) can also be used to formulate constraint (1)
here. Nevertheless, a new formulation will be presented in Sec-
tion III. Above all, the proposed two-step method for radiality
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constraints formulation enables many more flexibilities in DS re-
configuration, such as more adaptive merge or separation of sub-
grids, and more flexible allocation of power sources into sub-
grids. Such benefits will be detailed in Sections IV and V apply-
ing the proposed radiality constraints to resilient MG formation.

Due to the critical importance of network reconfiguration in
DS resilience enhancement, etc., many publications also pro-
pose to develop new methods of ensuring radiality to allow undi-
minished flexibilities and adaptivities of DSs in optimization.
Specifically, references [12] [16] have presented two applicable
methods, which are compared to our proposed method as below:

1) Validity: Remark 1 and Theorem 1 theoretically prove the
validity of constraints (1)-(2) here. References [12] [16] how-
ever lack such analytical proofs for their proposed formulations.

2) Tightness: With constraint (1) properly formulated, our
proposed model attains the tightest formulation of the spanning
forest polytope of the DS, i.e., the convex hull of incidence vec-
tors of possible spanning forest topologies (see Section III). The
methods in [12] [16] produce relatively less tight formulations.

3) Compactness: Constraint (1) can also be formulated in
less tight but more compact manners (see Section III). In this
regard, the resulting topology constraints (1)-(2) are generally
more compact than (i.e., with fewer variables and constraints),
and still as tight as or even tighter than those of [12] [16].

4) Application convenience: The application of our proposed
method can be quite straightforward, i.e., simply adding con-
straint (2) to the commonly-used single-commodity flow-based
radiality constraints. The methods in [12] [16] however involve
the introduction of a virtual source node and virtual branches,
and the modeling of a virtual DC optimal power flow subprob-
lem and its Karush-Kuhn-Tucker conditions etc., respectively.

5) Applicability: The proposed radiality constraints (1)-(2)
can be adopted in different DS optimization problems involving
reconfiguration. Topological and some other related flexibilities
thus can be fully enabled in optimization. The methods in [12]
[16] have some limitations in this regard. For example, the radi-
ality constraints proposed in [12] allow the merge of sub-grids
in optimization, but do not enable their possible separation.

III. TIGHTNESS AND COMPACTNESS ISSUES

Constraint (1) is only expressed conceptually in Section II.
As aforementioned, common methods or models for represent-
ing radiality constraints in DS reconfiguration-related publica-
tions can be used for its explicit formulation. Those methods
and models are revisited here. A new model is also presented.
The tightness and compactness issues are specifically discussed.

DS reconfiguration is essentially a mixed-integer program-
ming (MIP) problem generally solved by the branch-and-cut
(B&C) method, which needs to solve its linear programming
(LP) relaxations (i.e., relaxing integer/binary constraints). The
computational complexity of a MIP depends on its tightness
and compactness, etc. A MIP formulation is tight if its feasible
region is similar to that of its LP relaxation, contributing to a
smaller gap between the optimal values (solutions) of the MIP
and its LP relaxation, and less explored nodes in the B&C
search tree (i.e., fewer iterations and faster convergence). A
compact MIP formulation has a small number of variables and

𝛽12 𝛽13

𝛽23

(1, 1, 0)

(0, 1, 1)(1, 0, 1)

node 1 node 2 node 3

𝛽12 𝛽23

𝛽13

(a) (b)

Fig. 3. (a) A 3-node sample system; (b) The set of incidence vectors of spanning
trees (i.e., Ω) and spanning tree polytope (i.e., convex hull of Ω) illustrated
on the sample system.

TABLE I
COMPARING DIFFERENT TYPES OF SPANNING TREE CONSTRAINTS

Type of formu-
lation/model

Number of
variables Number of constraints Spanning tree

polytope ?
Subtour

elimination |L| O(2|N|) Yes

Directed cutset 3·|L| O(2|N|−1)
Yes (extended
formulation)

Single-com-
modity flow 3·|L| |N |+2·|L| No

Primal & dual
graphs-based 4·|L| 2·|L| Yes (extended

formulation)
Directed multi-
commodity flow

2·|N |·|L|
+|L|

|N |2+2·|N |·|L|
−|N |−|L|+1

Yes (extended
formulation)

constraints, leading to shorter computation time for each ex-
plored node in the B&C search tree. Tightness and compactness
are often conflicting objectives in formulating a MIP [17].

Several relevant concepts are further introduced. Here, inci-
dence vectors of spanning trees are values of β defining ficti-
tious spanning tree topologies of the DS; and spanning tree poly-
tope is the convex hull of such incidence vectors. For example,
the system in Fig. 3(a) has β = [β12, β13, β23]. Its incidence
vectors of spanning trees include [1, 1, 0], [1, 0, 1] and [0, 1, 1],
and its spanning tree polytope is the shaded region with those
vectors as the vertices in Fig. 3(b). Incidence vectors of span-
ning forests and spanning forest polytope are defined likewise.

That is, constraint (1) actually requires β to be an incidence
vector of a spanning tree. A tight and compact formulation is
desired to explicitly represent this requirement. LP relaxations
of the tightest formulations define the spanning tree polytope.

Some methods or models to express radiality constraints in
DS reconfiguration-related publications can be used to formu-
late the spanning tree constraint (1). They are revisited here:

1) Loop-eliminating method [4]: It enumerates all loops of
the DS, and enforces each one to be open. However, finding all
loops in a graph is NP-hard. This method is essentially equiv-
alent to the subtour elimination formulation of spanning tree
constraints in graph theory. As one of the tightest formulations,
its LP relaxation defines the spanning tree polytope and thus
has integer extreme points. It has only |L| variables but also an
exponential number of constraints, which limits its application.

2) Path-based model [5]: It enumerates all paths to the sub-
station for each node, and activates only one of them. Still, find-
ing all paths between two graph nodes is NP-hard. This model
also has a counterpart in graph theory, i.e., the directed cutset
formulation of spanning tree constraints with 3·|L| variables
and an exponential number of constraints. It is one of the tight-
est formulations with integer vertices of its LP relaxation, too.
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TABLE II
NOTATIONS OF THE SPANNING TREE CONSTRAINTS (3)-(9)

Parameters
N/L Set of all DS nodes/branches.
ir Index for the substation node.

Variables
fkij Flow of commodity k from node i to node j.

λij
Binary, 1 if arc (i, j) is included in the
directed spanning tree, 0 otherwise.

βij
Binary, 1 if the fictitious connection status of
branch (i, j) is closed, 0 if open.

3) Single-commodity flow-based model [6]: It closes |N |−1
branches (N : set of DS nodes), and ensures connectivity by im-
posing unit fictitious flow from the substation to each node.
With 3·|L| (or reduced to 2·|L|) variables and a linear number
of constraints, it is one of the most compact formulations. Due
to its simplicity, it is also the most commonly used DS radiality
model. Still, it is less tight. The projection of its LP relaxation
into the β-space defines a region larger than the spanning tree
polytope, and therefore has fractional extreme points.

4) Parent-child relation-based method [7]: It instructs every
node except the substation to have one parent. However, this
method can produce a disconnected graph with loops [8].

5) Primal and dual graphs-based model [8]: It froces each
primal (dual) node to be connected to another primal (dual)
node, and forbids the primal and dual spanning trees to be inter-
sected. With 4·|L| variables and a linear number of constraints,
it is one of the most compact formulations. Originally proposed
in [22], it actually has a totally unimodular constraint matrix to
define a polyhedron with integer vertices. Thus, it is also one of
the tightest formulations with its LP relaxation defining the
spanning tree polytope in the β-space. Still, it is only applicable
to planar graphs, and needs to construct dual graphs. It also has
a flaw to be avoided by appropriate selection of roots [23]. Gen-
erally, its applicability is limited and its use is not convenient.

Using notations in Table II, we further introduce a new flow-
based formulation of the spanning tree constraint (1) as below:∑

(j,ir)∈L

fkjir −
∑

(ir,j)∈L

fkirj = −1,∀k ∈N \ ir. (3)

∑
(j,i)∈L

fkji −
∑

(i,j)∈L

fkij = 0,∀k ∈N \ ir,∀i ∈N \ {ir, k}.

(4)∑
(j,k)∈L

fkjk −
∑

(k,j)∈L

fkkj = 1,∀k ∈N \ ir. (5)

0 ≤ fkij ≤ λij , 0 ≤ fkji ≤ λji,∀k ∈N \ ir,∀(i, j) ∈ L. (6)∑
(i,j)∈L

(λij + λji) = |N | − 1. (7)

λij + λji = βij ,∀(i, j) ∈ L. (8)

λij , λji ∈ {0, 1},∀(i, j) ∈ L. (9)

The above formulation is called as the directed multicommodity
flow-based model of the spanning tree constraints. It defines a
fictitious commodity for each node k 6= ir, and enforces 1 unit
of commodity k delivered from the substation node ir to node
k. Constraint (6) implies that each commodity can flow on an

arc only if the arc is included in the directed spanning tree
defined by variables λij . Other equations are self-explanatory.

The LP relaxation of the above formulation (3)-(9) defines
the spanning tree polytope (i.e., conv(Ω)) in the β-space by a
polynomial number of variables and constraints. As compared
in Table I, it is generally the most compact formulation among
the ones that are the tightest and applicable for both planar and
non-planar graphs. Now the models listed in Table I actually
cover a wide spectrum of tightness and compactness levels for
the formulation of spanning tree constraints. Researchers and
practitioners may choose an appropriate model based on their
preferences and needs, etc.

Next, the tightness and compactness of constraints (1)-(2),
rather than solely constraint (1), are further discussed briefly.

Proposition 1: If the LP relaxation of the explicit formulation
of constraint (1) defines the spanning tree polytope in the β-
space, the LP relaxation of the proposed radiality constraints
(1)-(2) defines the spanning forest polytope in the α-space.

Proof: Assume that the LP relaxation of constraints (1)-(2)
has a fractional vertex (α∗,β∗) in the (α,β)-space. Further as-
sume that β∗ has fractional entries. Thus, β∗ can be represented
by an integer vertex βm and another point βn of the spanning
tree polytope: β∗ = ξ ·βm+(1− ξ) ·βn with 0 < ξ < 1. For
(i, j) with βmij = 0 or βmij = 1, we have β∗ij = (1− ξ) ·βnij and
β∗ij = ξ+(1−ξ)·βnij , respectively. As 0 ≤ βnij ≤ 1 and 0 ≤ α∗ij
≤ β∗ij ≤ 1, we have 0 ≤ α∗

ij

1−ξ ≤ β
n
ij for (i, j) with βmij = 0, and

have 0 ≤ α∗
ij−ξ·χij

1−ξ ≤ βnij with χij ∈ [
α∗

ij−β
∗
ij+ξ

ξ ,
α∗

ij

ξ ] ∩ [0, 1]
for (i, j) with βmij = 1. Then, we can construct αm and αn to

have αmij = 0 and αnij =
α∗

ij

1−ξ for (i, j) with βmij = 0, and have

αmij = χij and αnij =
α∗

ij−ξ·χij

1−ξ for (i, j) with βmij = 1, so that
(α∗,β∗) = ξ ·(αm,βm)+(1−ξ) ·(αn,βn). This contradicts
the assumption of (α∗,β∗) being a vertex. The case with β∗ as
a vertex of conv(Ω) can be analyzed similarly. Thus, vertices
of the projection of constraints (1)-(2)’s LP relaxation into α-
space are 0-1 incidence vectors of spanning forests of the DS. �

Proposition 1 implies that the tightness and compactness fea-
tures of constraints (1)-(2) essentially follow the explicit formu-
lation of constraint (1). Thus, the proposed radiality constraints
(1)-(2) also cover a wide spectrum of tightness and compactness
levels for the formulation of spanning forest polytope. An ap-
propriate model can be selected based on one’s preferences, etc.

Specifically, to exploit the aforementioned properties of the
formulations, the DS is assumed to have only one substation
node. For a DS with multiple substation nodes, one can merge
them into one node in modeling constraints (1)-(2), but still treat
them as separate nodes in modeling DS operational constraints.

IV. APPLICATION TO RESILIENT MG FORMATION

The proposed radiality model (1)-(2) can be applied in differ-
ent optimization problems involving DSs and/or MGs with flex-
ible boundaries [9]–[11], etc. Here, we apply it to regulate the
DS topology in resilient MG formation to verify its advantages.

MG formation has recently been extensively studied in [13]
[18] [19] [24] [25], etc. It is to reconfigure the DS into multiple
MGs energized by DGs, so as to restore critical loads, etc. The
literature currently has two major types of optimization models
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TABLE III
NOTATIONS OF THE MG FORMATION MODEL (10)-(21)

Parameters
Nr/Ng Set of substation nodes/DG nodes.
No/Nc Set of nodes with faulted open/closed load switches.
Lo/Lc Set of faulted open/closed branches.
pci/q

c
i Real/reactive power demand of the load at node i.

pgi /q
g
i Real/reactive power capacity of the power source at node i.

vi/vi Maximum/minimum squared voltage magnitude of node i.
rij/xij/Sij Resistance/reactance/apparent power capacity of branch (i, j).

ωi Priority weight of the load at node i.
ϑi Number of branches starting or ending with node i.
M A large enough positive number.

Variables
δi Binary, 1 if the load at node i is picked up, 0 otherwise.
εi Binary, 1 if node i is energized, 0 otherwise.
αij Binary, 1 is branch (i, j) is closed, 0 if open.
pgi /q

g
i Real/reactive power output of the power source at node i.

vi Squared voltage magnitude of node i.
Pij/Qij Real/reactive power flow on branch (i, j).

for this problem [18] [19]. Using the proposed radiality model,
a new formulation for resilient MG formation is constructed:

max
∑
i∈N

δi · ωi · pci (10)

s.t. (1)− (2).

pgi − δi · p
c
i +

∑
(j,i)∈L

Pji −
∑

(i,j)∈L

Pij = 0,∀i ∈N . (11)

qgi − δi · q
c
i +

∑
(j,i)∈L

Qji −
∑

(i,j)∈L

Qij = 0,∀i ∈N . (12)

pgi = qgi = 0,∀i ∈N \ {Nr,Ng}. (13)

0 ≤ pgi ≤ p
g
i , 0 ≤ q

g
i ≤ q

g
i ,∀i ∈ {Nr,Ng}. (14)

vi − vj ≥ 2 · (Pij · rij +Qij · xij) + (αij − 1) ·M,

vi − vj ≤ 2 · (Pij · rij +Qij · xij) + (1− αij) ·M,

∀(i, j) ∈ L.
(15)

vi ≤ vi ≤ vi,∀i ∈N . (16)

P 2
ij +Q2

ij ≤ αij · S
2

ij ,∀(i, j) ∈ L. (17)

αij = 0,∀(i, j) ∈ Lo;αij = 1,∀(i, j) ∈ Lc. (18)

δi = 0,∀i ∈No; δi ≥ εi,∀i ∈Nc. (19)

εi = 1,∀i ∈ {Nr,Ng}. (20)

(
∑

(i,j)∈L

εj · αij +
∑

(j,i)∈L

εj · αji)/ϑi ≤ εi

≤
∑

(i,j)∈L

εj · αij +
∑

(j,i)∈L

εj · αji,∀i ∈N \ {Nr,Ng}.

(21)
Notations are listed in Table III. The objective function (10)

maximizes the weighted sum of restored loads. Constraints (1)-
(2) are used to ensure radiality and enable topological flexibili-
ties, etc. Constraint (1) is formulated using the methods in Sec-
tion III. Equations (11)-(12) enforce real and reactive power bal-
ance, respectively. Equation (13) imposes zero power output for
nodes without power sources. Constraint (14) indicates real and

TABLE IV
COMPARING DIFFERENT MG FORMATION MODELS

——— Model in [18] Model in [19] Proposed model
Applicable

systems Radial Radial
or meshed

Radial
or meshed

Radiality
constraints —— Single-commo-

dity flow-based
Proposed radi-

ality constraints
Allocation of

DGs into MGs
One DG

in each MG
One DG

in each MG Flexible

Number of MGs Fixed Fixed Flexible
Unenergized islands Not allowed Not allowed Allowed

Loads w/ faulted
closed switches

Forced to
pick up

Forced to
pick up Flexible

reactive power capacities of substations or DGs. Constraint (15)
represents the DistFlow model with the much smaller quadratic
terms ignored [1] [26]. It is relaxed for open branches. Con-
straint (16) expresses the voltage magnitude limits. Constraint
(17) is convex though non-linear, and can be linearized by the
technique in [3], etc. It limits the apparent power on a branch
by its capacity. Equation (18) restricts the connection status of
faulted open or faulted closed branches. Equation (19) prohibits
picking up the loads with faulted open switches, and enforces
picking up the loads with faulted closed switches as long as
their located nodes are energized. Equation (20) specifies that
substation and DG nodes are energized. Constraint (21) derives
the energization status of other nodes by examining if they are
connected to an energized node. The non-linear and non-convex
terms, i.e., εj · αij and εj · αji, can be equivalently linearized
and convexified by the McCormick envelopes [27].

Note that the areas with surviving access to the main grid
power via substation nodes are also considered. Operational
constraints may prohibit those areas to be fully restored by the
substations, and forming MGs with DGs can help achieve better
restoration of them [14]. For statement simplicity, a sub-grid
powered by a substation is also counted as a MG here.

Table IV compares the proposed model with the two existing
MG formation models in the literature. The summaries in the ta-
ble are self-explanatory. Brief explanations are given as below:

1) The model in [18] is designed for radial systems. It is ex-
tended in [25] to deal with meshed systems. Still, the extended
model does not eliminate loops. Thus, it may be used for the
bulk power system, but does not apply to meshed DSs, which
have to open some branches to be operated in radial topologies.
Both model in [19] and our model can handle meshed DSs, as
radiality constraints are included to avoid loops when reconfig-
uring the network. Single-commodity flow-based radiality con-
straints are used in [19], while our model adopts the proposed
radiality constraints to fully enable topological flexibilities, etc.

2) Both models in [18] and [19] allocate one DG to each MG.
Therefore, the number of MGs is actually fixed and equal to the
number of DGs and/or other power sources. As for our proposed
model, the number of DGs designated to different MGs, and
the resulting number of MGs, are flexible. Thus, it can also
be used for dynamic MG formation, which involves adaptive
merge and/or separation of MGs when damaged parts of the
DS are sequentially repaired, etc. Such flexibilities introduce
many benefits. For example, larger MGs can be formed to better
match DGs with different-sized loads, so as to enhance capacity
utilization rates of DGs and the restoration of critical loads.
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Fig. 4. An illustrative case of MG formation on IEEE 33-node test system:
(a)/(b) Use the model in [18]/[19]; (c) Use our proposed model.

3) Both models in [18] [19] energize all nodes included in N .
Thus, their models cannot consider the nodes in load islands
without power sources and isolated by faulted open branches.
Discrete/non-dispatchable loads at nodes Nc are also forced to
be picked up in their models. Our model can consider such load
islands, and can be easily extended to optimize the allocation of
mobile power sources in such islands and their merge with other
islands after faulted open branches are repaired. Our model
can also intentionally form unenergized islands in optimization,
enabling more flexible pick-up of the loads at nodes Nc. This
flexibility can be critical, as some DSs may have a large portion
of loads not equipped with switches, causing Nc to be a large
set. In [13], with additional binary variables, the model in [19]
is modified to permit more flexible allocation of DGs into MGs.
However, it does not fully enable topological and some related
flexibilities. For example, it still requires energizing all nodes.

In general, as indicated in Table IV, the proposed MG for-
mation model is more adaptive and allows more flexibilities.

V. CASE STUDIES

In this section, the proposed resilient MG formation model is
demonstrated on two test systems. We use a computer with an
Intel i5-4278U processor and 8GB of memory. Involved MIP
problems are solved by Gurobi 7.5.2 with the default settings.

A. IEEE 33-Node Test System [1]
Fig. 4 depicts an illustrative case based on a scenario with 27

TABLE V
COMPUTATION TIME AND THE NUMBER OF INFEASIBLE CASES (IEEE

33-NODE TEST SYSTEM)

——— Model in [18] Model in [19] Proposed model
Avg. comput. time 0.56 s 0.75 s 0.49 s

Infeasible cases 212/10000 272/10000 2/10000

TABLE VI
SUMMARY STATISTICS FOR THE RESTORED LOADS (IEEE 33-NODE TEST

SYSTEM)

—— Restored loads (kW) Box plots
avg. std. max. med. min. 1100 2000 3000 3800

3

2

11: Model in [18] 2686 531 3715 2750 1175
2: Model in [19] 2849 495 3715 2915 1380

3: Proposed model 3088 393 3715 3165 1425

TABLE VII
SUMMARY STATISTICS FOR THE DG CAPACITY UTILIZATION RATE (IEEE

33-NODE TEST SYSTEM)

—— DG capacity utilization rate Box plots
avg. std. max. med. min. 0 25% 50% 75% 100%

3

2

11: Model in [18] 64.4% 9.8% 88.4% 65.1% 29.7%
2: Model in [19] 60.7% 15.1% 94.8% 61.0% 15.3%

3: Proposed model 74.1% 15.7% 100% 74.4% 6.6%

faults in total. The model in [18] does not apply to meshed DSs.
Thus, as indicated in Fig. 4(a), it does not consider the normally
open branches. It forms 6 MGs energized by the 6 DGs, respec-
tively. As the model in [19] can handle meshed DSs, it gets bet-
ter results via further reconfiguration involving those normally
open switches, etc. Fig. 4(b) shows that it restores more loads by
forming 6 larger MGs, which is essentially a 6-tree. By contrast,
as in Fig. 4(c), our proposed model forms a 7-tree, i.e., 4 MGs
and 3 load islands. Specifically, MG 4 and MG 6 in Fig. 4(b) are
merged into a single MG in Fig. 4(c), so that the loads at nodes
31 and 33 can also be restored. MG 2 in Fig. 4(b) is separated
into a MG and a load island in Fig. 4(c), so that node 23 is not
energized and its load is not forced to be picked up. For space
limit, we do not detail on other differences. The models in [18]
[19] and our proposed model have DG capacity utilization rates
of 55.6%, 67.4% and 95.4%, respectively. They restore 1500kW,
1820kW and 2575kW loads, respectively. Our model achieves
more coordinated matching among the different-sized DGs and
loads, and thus attains better service restoration. Generally, as
the proposed radiality constraints can fully enable topological
and some other related flexibilities of the DS, our MG formation
model has extended feasibility and enhanced optimality.

To establish superiority of the proposed radiality constraints
and MG formation model, we further run 10000 cases based on
randomly generated scenarios of DS faults. Table V shows that
our model has far less infeasible cases. In many scenarios, it
finds a feasible operating point of the DS, while the models in
[18] [19] return infeasibility. Such results verify that our model
has extended feasibility as the proposed radiality constraints
fully enable topological and some related flexibilities. Besides,
while its search space is the largest, its average computation
time is the shortest. Thus, its enlarged feasible set may possess
more computationally tractable characteritics. As in Table VI,
our model has the highest average/median/minimum restored
loads and the smallest standard deviation. The same maximum
value corresponds to the cases with all loads restored. On aver-
age, the proposed model restores 15.0% and 8.4% more loads
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Fig. 5. Left: Histograms of the extra restored loads of our proposed MG forma-
tion model, compared with the model in [18] (A), and compared with the model
in [19] (B). Right: Histogram of the extra explored nodes in the B&C search tree
of the proposed MG formation model using the single-commodity flow-based
method to formulate constraint (1), compared with that using the directed mul-
ticommodity flow-based method. (IEEE 33-node test system.)

TABLE VIII
COMPUTATION TIME AND THE NUMBER OF EXPLORED NODES IN THE

B&C SEARCH TREE (IEEE 33-NODE TEST SYSTEM)

Avg. Ts Avg. Tm
Number of cases with:

Ts < Tm Ts = Tm Ts > Tm
0.49 s 0.56 s 8911/10000 0/10000 1089/10000

Avg. Ns Avg. Nm
Number of cases with:

Ns < Nm Ns = Nm Ns > Nm

407 143 402/10000 21/10000 9577/10000
Ts/Tm (resp. Ns/Nm): Computation time (resp. the number of ex-
plored nodes in the B&C search tree) of the proposed MG formation
model using the single-commodity flow-based method/directed multi-
commodity flow-based method to formulate constraint (1).

than models in [18] and [19], respectively. Actually, our model
performs equally well or better in all cases. The histograms in
Fig. 5(Left) depict the outperformance. Such results validate the
enhanced optimality of the proposed model. Here, one of the
major reasons for its superiority is more coordinated matching
among the DGs and loads. Table VII indicates that the average
DG capacity utilization rate of our model is much higher than
those of the models in [18] [19]. The smaller minimum and
larger standard deviation are due to the cases with the substation
contributing much power injection for service restoration.

The single-commodity flow-based model is used to formulate
constraint (1) in all previous cases. Here, for comparison, the di-
rected multicommodity flow-based model is used instead. Con-
sequently, the proposed radiality constraints and MG formation
model become tighter, though less compact. The revised model
is run on the same 10000 scenarios. As indicated in Table VIII,
Nm is much smaller than Ns, both on average and in 95.8% of
the cases. The histogram in Fig. 5(Right) also details the extra
explored nodes in the B&C search tree of the less tight model.
Although Ts is slightly shorter than Tm on average, Tm is much
shorter than Ts in 10.9% cases. Specifically, in those cases, Ts
and Tm are 1.92 s and 0.69 s on average, respectively; Ns and
Nm are 815 and 186 on average, respectively. In general, the
computation time of the revised tighter model is more consistent.
It also reduces the computation time in many cases that require
the less tight model to explore much more nodes in the B&C
search tree. That is, the proposed radiality constraints can satisfy
the need for tighter formulations of DS reconfiguration-related
optimization problems.

B. IEEE 123-Node Test System [28]

Fig. 6 provides an illustrative case based on a 60-fault sce-
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Fig. 6. An illustrative case of MG formation on IEEE 123-node test system (use
our proposed model).

TABLE IX
COMPUTATION TIME AND THE NUMBER OF INFEASIBLE CASES (IEEE

123-NODE TEST SYSTEM)

——— Model in [18] Model in [19] Proposed model
Avg. comput. time 13.41 s 4.36 s 1.79 s

Infeasible cases 109/10000 196/10000 2/10000

TABLE X
SUMMARY STATISTICS FOR THE RESTORED LOADS (IEEE 123-NODE TEST

SYSTEM)

—— Restored loads (kW) Box plots
avg. std. max. med. min. 1100 2500 3500 4600

3

2

11: Model in [18] 2917 482 4150 2915 1555
2: Model in [19] 3008 524 4350 3010 1265

3: Proposed model 3189 494 4450 3195 1665

TABLE XI
SUMMARY STATISTICS FOR THE DG CAPACITY UTILIZATION RATE (IEEE

123-NODE TEST SYSTEM)

—— DG capacity utilization rate Box plots
avg. std. max. med. min. 20% 40% 60% 80% 100%

3

2

11: Model in [18] 63.0% 9.1% 90.5% 63.1% 30.8%
2: Model in [19] 63.3% 10.6% 97.4% 63.1% 30.1%

3: Proposed model 70.9% 12.4% 100% 70.7% 24.9%

nario using the proposed MG formation model. It forms 7 MGs
powered by 8 DGs, and a sub-grid powered by the substation.
The DG capacity utilization rate is 75.0%, and 3730kW loads
are restored. We again run 10000 cases on random scenarios of
DS faults. Table IX-XII and Fig. 7 show results similar to the
previous system. That is, the proposed radiality constraints and
MG formation model’s superiority is also established on this
larger system. For example, our model matches DGs and loads
in a more coordinated manner, thus achieving better service
restoration. For space limit, we do not go into the details. In
short, our MG formation model has extended feasibility and
enhanced optimality due to the proposed radiality constraints’
fully enabling topological and some related flexibilities of DSs.

It is worth mentioning that, as in Table XII, Tm is averagely
shorter than Ts for this larger system. Specifically, in the cases
with Tm < Ts, Tm and Ts are 1.26 s and 5.59 s on average, re-
spectively; Nm and Ns are 89 and 937 on average, respectively.
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Fig. 7. Left: Histograms of the extra restored loads of our proposed MG forma-
tion model, compared with the model in [18] (A), and compared with the model
in [19] (B). Right: Histogram of the extra explored nodes in the B&C search tree
of the proposed MG formation model using the single-commodity flow-based
method to formulate constraint (1), compared with that using the directed mul-
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TABLE XII
COMPUTATION TIME AND THE NUMBER OF EXPLORED NODES IN THE

B&C SEARCH TREE (IEEE 123-NODE TEST SYSTEM)

Avg. Ts Avg. Tm
Number of cases with:

Ts < Tm Ts = Tm Ts > Tm
1.79 s 1.54 s 7348/10000 0/10000 2652/10000

Avg. Ns Avg. Nm
Number of cases with:

Ns < Nm Ns = Nm Ns > Nm

496 71 108/10000 134/10000 9758/10000
Ts/Tm (resp. Ns/Nm): Computation time (resp. the number of ex-
plored nodes in the B&C search tree) of the proposed MG formation
model using the single-commodity flow-based method/directed multi-
commodity flow-based method to formulate constraint (1).

That is, the computation time of the tighter version of our MG
formation model is not only shorter on average, but also more
consistent. It greatly reduces the computation time especially
for cases requiring the less tight model to explore much more
B&C search tree nodes. Thus, the tighter version of the pro-
posed radiality constraints can allow both more flexible DS
operation and more efficient computation for reconfiguration-
related optimization problems, e.g., MG formation here.

VI. CONCLUSION

This work proposes a new method for formulating radiality
constraints that fully enables topological and some other related
flexibilities in DS reconfiguration optimization problems. It is
specifically applied to resilient post-disaster MG formation to
attain extended feasibility and enhanced optimality. As verified
in case studies, compared to the existing MG formation models,
our model based on the proposed radiality constraints achieves a
higher resilience enhancement via more coordinated utilization
of DS flexibilities, etc., and reduces the computational com-
plexity. Future work includes exploring the effects of increased
topological flexibilities on other DS performance metrics, etc.
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