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Abstract

Voltage Regulation of DC-Microgrid with PV and Battery

Abstract

by

JIWEI SUN

This MS thesis develops voltage regulation and maximum power point tracking

(MPPT) control schemes for a class of DC-microgrids. The DC-microgrid under con-

sideration consists of photovoltaic (PV) panel, battery, constant resistance loads and

constant power loads. In this study, a dynamic model of the dc-microgrid system is

derived and described by a multi-input and multi-output nonlinear system with non-

affine inputs. Based on the nonlinear dynamic model thus built, we employ the output

regulation theory to design a local state feedback control law that regulates voltages to

prescribe set points and maximizes the power output from PV. Global set point regu-

lation is also studied by virtue of passive system theory for non-affine systems and the

Lyapunov stability theory. Three control strategies, namely, constant feedback, state

feedback and measurement feedback, are proposed. The effectiveness of the proposed

control schemes is validated by simulations when both illumination change and load

change occur.

viii
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1 Introduction

A microgrid is an integration of local generators and local loads. When the sources

and loads work in DC, it becomes a DC-microgrid. DC-microgrid has advantages over an

AC-microgrid in the following aspects: 1)Higher power system efficiency because most

systems are are naturally DC, so that fewer DC/AC or AC/DC converter will be used.

2)Higher reliability because fewer converters require fewer electronic components, and

with fewer potential of failure. 3)Lower capital cost because of fewer power electronic

components are used. 4)Lower control system complexity and higher survivability when

subject to disturbances. This is due to the elimination of synchronization requirements

of AC systems. The overall introduction can be seen in (Backhaus, 2015).

A DC-microgrid is able to work in either grid connected mode or island mode. When

working in grid connected mode, the microgrid can either absorb power from the grid,

or supply power to the grid depending on the amount of power it consumes and pro-

duces. If the microgrid generates more power than it needs, it can supply to the grid. If

the microgrid demands more power than it produces, it can absorb power from the grid.

In island mode, the local energy sources need to supply the local loads.



Introduction 2

An example of a DC-microgrid is the International Space Station. The International

Space Station has several solar arrays and batteries to supply power while operation sys-

tem and other devices consume power. When the solar arrays have access to the light,

it will provide power for the load and charging the batteries. If the solar arrays cannot

generate enough power for the loads, the batteries will discharge to supply energy. Lots

of DC-DC converters are used to regulate the voltage and protect the system. The details

can be found in (Gietl, 2000).

In this paper, the focus will be DC-microgrid with PV and battery working in island

mode. In this case, not only does the load voltage need to be regulated, but also the

battery needs to be charged from PV. In order to improve the efficiency of PV, the max-

imum power point tracking (MPPT) method is required, which is introduced in (Free-

man, 2010). The DC-microgrid system becomes a nonlinear system due to the nature

of some of the DC sources, DC converters and constant power loads, which makes the

system tough to control. For example, the PV output is not a constant source, and has

nonlinear property. The stability analysis of PV is discussed in (Tan, Jenkins, 2004), and

the stability when PV connects to the grid is researched in (Wang, Lin, 2000) and (Ro-

driguez, Amaratunga, 2004). Constant power loads are another big problem because

they can be viewed as negative impedance and tend to destabilize the converters. The

effect of constant power load is discussed in (Kwasinski, Krein, 2007) and (Kwasinski,

2011). For the system without constant power load, some research has been done to

solve the voltage regulation problem. (Zhang, 2015) and (Wu, 2016) applies MPPT al-

gorithm to maximum PV output and PI controller to do the voltage tracking; (Becherif,

2007) tries the passivity-based control. The DC-microgrid with constant power load has

also been studied. In (Radwan, Mohamed, 2012), the author uses the damping method
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to regulate voltage; compensation transfer function method is used in (Ahmadi, Fer-

dowsi, 2014); (Gautam, 2015), and (Agarwal, 2015) derives sliding mode control law.

In this study, output regulator theory, which is discussed in (Byrnes, 1997), is used to

design the controller for DC-DC converters. A new control law is derived to regulate the

DC bus and load voltage under various operating conditions. The load is considered to

be a combination of a kind of constant power load and conventional resistive load. To

enhance the efficiency, the power output from PV is always required to be maximized.

The performance of the proposed controller is verified through MATLAB simulation re-

sults.

The outline of the paper as follows: Chapter 2 discusses the system configuration

and build the DC-microgrid model; Chapter 3 describes the problem formulation and

the control objectives; Chapter 4 provides the stability analysis using Lyapunov stability

theorem and passivity-based design; Chapter 5 reviews the traditional control method

and output regulation theory and three different control laws are derived; Chapter 6

presents the case studies; Chapter 7 gives possible future directions; and the conclusions

are given in Chapter 8.



4

2 System Configuration and
DC-microgrid Model

The configuration of DC-microgrid system is shown in Fig. 2.1. The DC-microgrid

consists of a PV panel, a battery storage, a DC bus, several DC/DC converters and two

loads that work on different voltage level. A DC/DC boost converter is used between

PV and DC bus to maximize the power output from the PV. Battery connects to the DC

bus through a bidirectional DC/DC buck-boost converter to regulate the voltage on the

DC bus. A bus load directly connects to the DC bus. The other load links to the DC bus

through a DC/DC buck converter and can be viewed as a constant power load.

Figure 2.1. The DC-microgrid system configuration

The circuit is shown in figure 2.2.
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Figure 2.2. The circuit of DC-microgrid system

2.1 Photovoltaic panel model

The PV panel is modeled by a current source Iph (which relates to the irradiation and

temperature) connected in parallel with a diode and with a shunt resistor Rp . The resis-

tor represents the disturbance current and is is the current output of PV panel.

The power output of PV is: P = is v1.

is = Iph − iD1 − iRp

iD1 = I0(eav1 −1)

a = q

nkT
(2.1)

where I0 is the reverse saturation of the diode, q is the elementary charge, T is the

cell temperature, k is Boltzmann’s constant, n is the ideality factor. The I-V and P-V

characteristics are shown in Figure 2.3 and Figure 2.4.
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Figure 2.3. I-V curve

In this model, the irradiation and temperature is considered to be constant. Diodes

are ideal diodes except D1.

A DC/DC boost converter is used to connect the PV panel to the DC bus. The main

purpose of this converter is to control the power output of the PV panel.

2.2 Battery model

The battery is modeled with an electromotive force E and a series resistor r . The battery

connects to the DC bus through a DC/DC bidirectional buck-boost converter. This con-

verter serves to regulate the voltage on the DC bus as well as control the charge/discharge

of the battery. When the power output of the PV is bigger than the consumption of the
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Figure 2.4. P-V curve

load, the battery will absorb the extra power. If the solar power is not enough to serve

the loads, the battery will release power to maintain the DC bus voltage.

2.3 Load model

There are two loads in the model. R1 represents the load that connects to the DC bus

directly. The other load R2 works on a different voltage level. Thus, a DC/DC buck con-

verter is used for the change of voltage level and regulate the load voltage. Both loads are

modeled as constant resister. There is a line resister RL which represents the loss of the

transmission line. Since P = V 2/R, the power consumption of R2 is constant. Because
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there’s no power loss at the buck converter, the load R2 together with the buck converter

can be viewed as a constant power load connects to the DC bus.
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3 Problem Formulation

3.1 Control Signals

There are three controls in the model. The control signals are duty cycles of the convert-

ers shown in firgure 2 and have the following restrictions: 06 ui 6 1, i = 1,2,3.

The input signal of the transistor is zero −→ the switch is closed. The input signal of

the transistor is one −→ the switch is open. If the input signal is 1−u, then 1−u = 0 −→

the switch is closed.

u1 controls the power output of the PV; u2 controls the DC bus voltage and the

charge/discharge of the battery; u3 controls the load voltage.
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3.2 Dynamic Model

Using Kirchhoff’s laws, the dynamic model of the system can be written as

L1
di1

d t
= v1 − v2(1−u1)

C1
d v1

d t
= is − i1 = Iph − I0(eav1 −1)− v1

Rp
− i1

L2
di2

d t
= E − i2r − v2u2

C2
d v2

d t
= i1(1−u1)+ i2u2 − v2

R1
− i3(1−u3)

L3
di3

d t
= (v2 − i3(1−u3)RL)(1−u3)− v3

C3
d v3

d t
= i3 − v3

R2
(3.1)

with the constraints: v2 > 0, v3 > 0, i1 > 0, i3 > 0.

3.3 State Space Model

Let xT = [x1, x2, x3, x4, x5, x6] = [i1, v1, i2, v2, i3, v3] and the system can be rewritten as

state space model

ẋ1 = 1

L1
[x2 −x4(1−u1)]

ẋ2 = 1

C1
[Iph − I0(eax2 −1)− x2

Rp
−x1]

ẋ3 = 1

L2
[E − r x3 −x4u2]

ẋ4 = 1

C2
[− x4

R1
+x1(1−u1)+x3u2 −x5(1−u3)]

ẋ5 = 1

L3
[−x6 +x4(1−u3)−RL x5(1−u3)2]

ẋ6 = 1

C3
[x5 − x6

R2
] (3.2)
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with the constraints: x1 > 0, x4 > 0, x5 > 0, x6 > 0.

3.4 Equilibrium Point

Let uT = [u1,u2,u3] = [0,0,0], solve the equations ẋ = 0 to get x?.

x?2 −x?4 = 0

Iph − I0(eax?2 −1)− x?2
Rp

−x?1 = 0

E − r x?3 = 0

−x?4
R1

+x?1 −x?5 = 0

−x?6 +x?4 −RL x?5 = 0

x?5 − x?6
R2

= 0 (3.3)

x?1 = R1 +R2 +RL

R1R2
x?6

x?2 = x?4 = R2 +RL

R2
x?6

x?3 = E

r

x?5 = x?6
R2

Iph − I0(eax?2 −1)− x?2
Rp

−x?1 = 0 (3.4)

x?
T = [x?1 , x?2 , x?3 , x?4 , x?5 , x?6 ]T (3.5)
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3.5 Translation

Translation means to move the equilibrium points of the system to the origin. Let x =

x −x? and rewrite the state equations.

f (x,u) =



1
L1

(x2 −x4 + (x4 +x?4 )u1)

1
C1

(−x1 − x2
Rp

− I0eax?2 (eax2 −1))

1
L2

(−r x3 − (x4 +x?4 )u2)

1
C2

(x1 − x4
R1

−x5 − (x1 +x?1 )u1

+(x3 +x?3 )u2 + (x5 +x?5 )u3)

1
L3

(x4 −RL x5 −x6 + (2RL(x5 +x?5 )

−(x4 +x?4 ))u3 −RL(x5 +x?5 )u2
3)

1
C3

(x5 − x6
R2

)



(3.6)

with the constraints: x1 >−x?1 , x4 >−x?4 , x5 >−x?5 , x6 >−x?6 .

3.6 Control Objectives

The control objectives are to maximum the power output of PV panel, regulate the DC

bus voltage and load voltage. The DC bus voltage and load voltage are scheduled con-

stants. However, the maximum power output needs to be decided. Based on the model

formulation, the power output

P = (Iph − I0(eav1 −1)− v1

Rp
)v1 (3.7)

Since P only depends on v1 and P is continuous, one can find maximum P by calculating

∂P

∂v1
= (−aI0eav1 − 1

Rp
)v1 + Iph − I0(eav1 −1)− v1

Rp
= 0 (3.8)
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aI0v1eav1 + I0eav1 + 2

Rp
v1 = Iph − I0 (3.9)

By solving the equation, the solution v1 = v?1 can achieve the maximum power out-

put.

Therefore, the control objectives are v1 −→ v?1 , v2 −→ v?2 , v3 −→ v?3 .
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4 Stability Analysis

In this chapter, the stability analysis of the system is discussed. Lyapunov stability

theory can be used to decide the stability of unforced system. Because the system has

certain property, it’s a good example to apply the passivity-based design. The definition

of passivity and passive system theory is introduced and the control law is designed.

4.1 Stability of Unforced System

The system without control (u = 0) is globally asymptotically stable at x = 0. When u = 0,

the system becomes

f (x,0) =



1
L1

(x2 −x4)

1
C1

(−x1 − x2
Rp

− I0eax?2 (eax2 −1))

1
L2

(−r x3 −x4)

1
C2

(x1 − x4
R1

−x5)

1
L3

(x4 −RL x5 −x6)

1
C3

(x5 − x6
R2

)



(4.1)

It can be shown with the Lyapunov function

V (x) = 1

2
L1x2

1 +
1

2
C1x2

2 +
1

2
L2x2

3 +
1

2
C2x2

4 +
1

2
L3x2

5 +
1

2
C3x2

6 (4.2)
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V̇ (x) = L1x1ẋ1 +C1x2ẋ2 +L2x3ẋ3 +C2x4ẋ4 +L3x5ẋ5 +C3x6ẋ6

= x1x2 −x1x4 −x1x2 − 1

Rp
x2

2 − I0eax?2 (eax2 −1)x2 − r x2
3

−x3x4 +x1x4 − 1

R1
x2

4 −x4x5 +x4x5 −RL x2
5

−x5x6 +x5x6 − 1

R2
x2

6

= − 1

Rp
x2

2 − I0eax?2 (eax2 −1)x2 − r x2
3 −

1

R1
x2

4 −RL x2
5 −

1

R2
x2

6 (4.3)

Since V̇ is nonpositive, system without control is stable in the sense of Lyapunov. By

La Salle’s Invariance Principle,

V̇ (x) = 0 → x2 = x3 = x4 = x5 = x6 = 0 → ẋ2 = 0 → x1 = 0 (4.4)

Therefore, system without control is globally asymptotically stable.

The system is a good example for passivity-based stability analysis. Consider the

case when r = 0. This could be using an ideal battery model or the value of r is small

enough comparing to the loads. In this case, the unforced system is no longer asymp-

totically stable. The only conclusion we can get is that the system is stable in the sense of

Lyapunov. The passivity-based design is powerful to solve the problem with such prop-

erty.

In fact, many circuit systems and power systems are passive systems and can use the

following method to design the controller. The advantage of passivity-based design is

that it can deal with certain nonlinear system which has multi-input/multi-output and

is nonaffine. The control signal can be very small and the control law can make the

system globally asymptotically stable.
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4.2 Definition of Passivity

Consider the nonlinear system

ẋ = f (x,u) (4.5)

y = h(x,u) (4.6)

An input-output systemΣ of the form (4.2.5) (4.2.6) is said to be passive if there exists

a C 0 (continuous) nonnegative functions V : Rn →R, with V (0) = 0, such that

V (x(t ))−V (x0)6
∫ t

0
yT (s)u(x)d s ∀u ∈Rm , ∀x0 ∈Rn , (4.7)

where x(t ) is a solution of ẋ = f (x,u) starting from x(0) = x0.

If V is a C r r > 1 function, the passivity inequality is equivalent to

V̇ 6 yT u ∀u ∈Rm . (4.8)

4.3 Passive System Theory

The details and proof of this section can be seen in (Lin, 1996). In this paper, the symbol

L f V represents Lie derivative, which equals to ∂V
∂x f (x).

A smooth nonlinear system ẋ = f (x,u) can always be represented as

ẋ = f0(x)+ g0(x)u +R(x,u)u = f0(x)+ g0(x)u +
m∑

i=1
ui (Ri (x,u)u) (4.9)
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where

f0(x) = f (x,0)

g 0
i (x) = gi (x,0) = ∂ f

∂ui
(x,0)

g0(x) = ∂ f

∂u
(x,0) = [g 0

1 (x) ... g 0
m(x)] ∈Rn×m

H4.1:there exists a C r r > 1 function V : Rn → R, with V (0) = 0, which is positive

definite and proper on Rn , such that the unforced dynamic system ẋ = f (x,0) , f0(x) is

Lyapunov stable, i.e. L f0V (x)6 0 ∀x0 ∈Rn

H4.2:system is zero-state detectable.

A system is called zero-state detectable if

u(t ) = 0, y = 0, ∀t > 0 =⇒ lim
t→∞x(t ) = 0

Theorem: consider a multi-input non-affine nonlinear system of the form

ẋ = f0(x)+
m∑

i=1
g 0

i (x)ui +
m∑

i1=1

m∑
i2=1

gi1i2 (x)ui1 ui2

+...+
m∑

i1=1
...

m∑
il=1

gi1...il (x)ui1 ...uil (4.10)

Suppose that H4.1 and H4.2 holds. Then the system (4.3.10) is GAS by arbitrarily small

smooth state feedback. In particular, a possible choice is

u(x) =−α(x)
[Lg0V (x)]T

1+‖Lg0V (x)‖2
(4.11)

where α(x) can either be the function

α(x) =
β
m

1+‖ ∂V
∂x ‖2ρ2(x)

for any 0 <β< 1,

with

ρ(x)>
∑l

k=2[
∑m

i1=1 ...
∑m

ik=1[1+‖gi1...ik (x)‖2]],
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or the function

α(x) = β

1+∑l
k=2[

∑m
i1=1 ...

∑m
ik=1[1+Lgi1

...gik
V (x)]2]

for any 0 <β< 1.

4.4 Controller Design

For system (3.5.6),

f0(x) = f (x,0) =



1
L1

(x2 −x4)

1
C1

(−x1 − 1
Rp

x2 − I0eax?2 (eax2 −1))

1
L2

(−r x3 −x4)

1
C2

(x1 − 1
R1

x4 −x5

1
L3

(x4 −RL x5 −x6)

1
C3

(x5 − x6
R2

)



(4.12)

g0(x) = ∂ f

∂u
(x,0)

=



1
L1

(x4 +x?4 ) 0 0

0 0 0

0 − 1
L2

(x4 +x?4 ) 0

− 1
C2

(x1 +x?1 ) 1
C2

(x3 +x?3 ) 1
C2

(x5 +x?5 )

0 0 1
C3

(2RL(x5 +x?5 )− (x4 +x?4 ))

0 0 0



(4.13)
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g33(x) =



0

0

0

0

−RL
L3

(x5 +x?5 )

0



(4.14)

ẋ = f0(x)+ g0(x)u + g33(x)u2
3 (4.15)

Lg0V (x) = ∂V

∂x
g0(x) =

[
L1x1 C1x2 L2x3 C2x4 L3x5 C3x6

]
g0(x) (4.16)

(Lg0V (x))T =


x?4 x1 −x?1 x4

−x?4 x3 +x?3 x4

x?5 x4 −x?4 x5 +2RL(x5 +x?5 )x5

 (4.17)

It has been shown that system (3.7) is Lyapunov stable without control, which means

L f0V (x)6 0 ∀x0 ∈Rn . Therefore, H4.1 is satisfied.

Let u = 0, y = (Lg0V (x))T = 0.

x?4 x1 −x?1 x4 = 0

−x?4 x3 +x?3 x4 = 0

x?5 x4 −x?4 x5 +2RL(x5 +x?5 )x5 = 0 (4.18)

x4 =
x?4
x?1

x1

x4 =
x?4
x?3

x3 (4.19)
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ẋ3 = 1

L2
(−x?4

x?3
x3) (4.20)

Because x?3 > 0, x?4 > 0, x3(t ) is asymptotically stable. Thus, x3 → 0 as t →∞. Assume

that x3 = 0 when t > T .

x4 =
x?4
x?3

x3 x4 = 0 as t > T

x4 =
x?4
x?1

x1 x1 = 0 as t > T

ẋ2 = 1

C1
(−x1 − x2

Rp
− I0eax?2 (eax2 −1))

= 1

C1
(− x2

Rp
− I0eax?2 (eax2 −1)) as t > T

Using Lyapunov function

V1(x2) = C1

2
x2

2, (4.21)

it’s easy to show that x2 → 0 as t →∞.

For the same reason, when t > T ,

ẋ5 = 1

L3
(−RL x5 −x6)

ẋ6 = 1

C3
(x5 − x6

R2
) (4.22)

Choosing Lyapunov function

V2(x5, x6) = L3

2
x2

5 +
C3

2
x2

6, (4.23)

one can get the conclusion that x5 → 0, x6 → 0 as t →∞.
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Therefore, limt→∞ x(t ) = 0, H4.2 is satisfied and the theorem can be used. The de-

signed controller is

u(x) =−α(x)
[Lg0V (x)]T

1+‖Lg0V (x)‖2

where α(x) is the function

α(x) =
β
3

1+‖ ∂V
∂x ‖2ρ2(x)

for any 0 <β< 1,

with

ρ(x)> 1+‖g33(x)‖2.

Remark: Through the passivity-based design, the system is globally asymptotically

stable. The controller u can be arbitrarily small. However, the controller is using state

feedback, which may require some states that are unmeasurable. It’s possible to get

output feedback controller to globally stabilize the system if the unforced system has

linear property, but it’s hard for general nonlinear systems.
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5 Output Regulation and Controller
Design

In this chapter, how to design a controller to achieve the control objectives is going to

be discussed. The control objectives are v1 −→ v?1 , v2 −→ v?2 , v3 −→ v?3 which is a track-

ing or output regulation problem. First, the traditional control method will be looked

into. Then, the output regulator theory will be introduced to design the controller both

using state feedback and measurement feedback. However, the solution using output

regulator theory is only local result. Finally, the passivity-based design is applied.

5.1 Traditional Method for Tracking Problem

Following the traditional method for tracking problem, another translation is needed to

move the tracking objective point to origin. x2, x4, x6 are the signals that needed regula-

tion. Therefore, we move the tracking point x2 = v?1 , x4 = v?2 , x6 = v?3 to the origin. The

values of x1, x3, x5 are not required so they only need to be bounded.
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Let x̃1 = x1, x̃2 = x2−v?1 +x?2 , x̃3 = x3, x̃4 = x4−v?2 +x?4 , x̃5 = x5, x̃6 = x6−v?3 +x?6 . The

system after translation is

f (x̃,u) =



1
L1

(x̃2 + v?1 −x?2 − x̃4 − v?2 +x?4 + (x̃4 + v?2 )u1)

1
C1

(−x̃1 − 1
Rp

x̃2 − 1
Rp

(v?1 −x?2 )− I0eav?1 (eax̃2 −1))

1
L2

(−r x̃3 − (x̃4 + v?2 )u2)

1
C2

(x̃1 − 1
R1

x̃4 − 1
R1

(v?2 −x?4 )− x̃5 − (x̃1 +x?1 )u1

+(x̃3 +x?3 )u2 + (x̃5 +x?5 )u3)

1
L3

(x̃4 + v?2 −x?4 −RL x̃5 − x̃6 − v?3 +x?6 + (2RL(x̃5 +x?5 )

−(x̃4 + v?2 ))u3 −RL(x̃5 +x?5 )u2
3)

1
C3

(x̃5 − 1
R2

x̃6)



(5.1)

To achieve the control objectives, the straight thinking is to find a controller that the

system under control is stable in the sense of Lyapunov. At the same time, x̃2, x̃4, x̃6 need

turn to 0 as t goes to ∞. However, due to that the system is non-affine nonlinear system,

it is hard to find such a control law directly.

On the other hand, one might think about another aspect which is the physical

meaning of the original system. The original system is a circuit system, states x1, x3, x5

are currents, states x2, x4, x6 are voltages. The control objective is the voltage regulation.

When the voltages change, the currents will change correspondingly. At steady state,

the voltages will track the set point, and the currents must satisfy the Kirchhoff laws.

Therefore, one can calculate what values of the currents should be at the steady state.
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The original system is

ẋ1 = 1

L1
[x2 −x4(1−u1)]

ẋ2 = 1

C1
[Iph − I0(eax2 −1)− 1

Rp
x2 −x1]

ẋ3 = 1

L2
[E − r x3 −x4u2]

ẋ4 = 1

C2
[− 1

R1
x4 +x1(1−u1)+x3u2 −x5(1−u3)]

ẋ5 = 1

L3
[−x6 +x4(1−u3)−RL x5(1−u3)2]

ẋ6 = 1

C3
[x5 − 1

R2
x6]

which is exactly the Kirchhoff laws.

Let x2 = v?1 , x4 = v?2 , x6 = v?3 , ẋ = 0, one can calculate the current x??1 , x??3 , x??5 and

the control signal at the steady state u? by solving the equations below.

0 = v?1 − v?2 (1−u?
1 )

0 = Iph − I0(eav?1 −1)− 1

Rp
v?1 −x??1

0 = E − r x??3 − v?2 u?
2

0 = − 1

R1
v?2 +x??1 (1−u?

1 )+x??3 u?
2 −x??5 (1−u?

3 )

0 = −v?3 + v?2 (1−u?
3 )−RL x??5 (1−u?

3 )2

0 = x??5 − 1

R2
v?3 (5.2)
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Next, a translation is needed to move the tracking objective point to the origin. Let

x̂1 = x1 −x??1

x̂2 = x2 − v?1

x̂3 = x3 −x??3

x̂4 = x4 − v?2

x̂5 = x5 −x??5

x̂6 = x6 − v?3

u1 = u?
1 +µ1

u2 = u?
2 +µ2

u3 = u?
3 +µ3 (5.3)

where µ(x̂) is the difference between real-time control signal u and the control signal at

steady state u?, with µ(0) = 0.

The system after translation is

f (x̂,µ) =



1
L1

(x̂2 − (1−u?
1 )x̂4 + (x̂4 + v?2 )µ1)

1
C1

(−x̂1 − 1
Rp

x̂2 − I0eav?1 (eax̂2 −1))

1
L2

(−r x̂3 −u?
2 x̂4 − (x̂4 + v?2 )µ2)

1
C2

((1−u?
1 )x̂1 +u?

2 x̂3 − 1
R1

x̂4 − (1−u?
3 )x̂5 − (x̂1 +x??1 )µ1

+(x̂3 +x??3 )µ2 + (x̂5 +x??5 )µ3)

1
L3

((1−u?
3 )x̂4 −RL(1+u?

3 )2x̂5 − x̂6 + (2RL(1−u?
3 )(x̂5 +x??5 )

−(x̂4 + v?2 ))µ3 −RL(x̂5 +x??5 )µ2
3)

1
C3

(x̂5 − 1
R2

x̂6)



(5.4)
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It can be shown that the system ˙̂x = f (x̂,µ) is GAS when µ = 0. One can choose the

Lyapunov function

V (x̂) = 1

2
L1x̂2

1 +
1

2
C1x̂2

2 +
1

2
L2x̂2

3 +
1

2
C2x̂2

4 +
1

2
L3x̂2

5 +
1

2
C3x̂2

6 (5.5)

V̇ (x̂) =− 1

Rp
x̂2

2 − I0eav?1 (eax̂2 −1)x̂2 − r x̂2
3 −

1

R1
x̂2

4 −RL x̂2
5 −

1

R2
x̂2

6 (5.6)

Since V̇ is nonpositive, system without control is stable in the sense of Lyapunov. By La

Salle’s Invariance Principle,

V̇ (x̂) = 0 → x̂2 = x̂3 = x̂4 = x̂5 = x̂6 = 0 → ˙̂x2 = 0 → x̂1 = 0 (5.7)

Therefore, system without control is GAS. For the original system, using constant control

u = u? will achieve the control objectives.

Even though the system with constant control will achieve the voltage regulation,

the state signal may not have satisfied performance, which will be shown in the simula-

tion result. In this case, µ signal needs to be designed in order to change the dynamic

performance.

5.2 Nonlinear Regulator Theory and Controller Design

Nonlinear regulator theory is an effective method for regulating. Using this method, one

can verify the result above and design the controller for improving the performance. In

this section, we first review nonlinear output regulation theory and then design the con-

troller both using state feedback and output feedback. The details and proof of nonlin-

ear regulator theory, please see (Byrnes, 1997).

We consider a multivariable nonlinear system modeled by differential equations of

the form:
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ẋ = f (x,u, w)

ẇ = S(w)

e = h(x, w) (5.8)

The first equation describes a plant, with state x, defined on a neighborhood X of

the origin of Rn , and input u ∈ Rm . The input vector w consists of the disturbance sig-

nals to be rejected and the reference trajectories to be tracked. The second equation

describes an autonomous system, the so-called exosystem, defined in a neighborhood

W of the origin of R s , which models the class of disturbance and reference signals taken

into consideration. The third equation defines the error e ∈ Rp between the actual plant

output and the reference signal to be tracked. There are two control objectives: 1) When

w = 0, the closed loop system is locally asymptotically stable. 2) When w 6= 0, the error

signal will turns to zero as time goes to infinity.

To apply the output regulator theory, there’s two hypotheses that must be satisfied.

H5.1: w = 0 is the equilibrium of the exosystem, and there exists a neighborhood

Ŵ ⊂ W of the origin with the property that each initial condition w(0) ∈ Ŵ is Poisson

stable.

H5.2: The pair (A,B) = (∂ f
∂x |(x,u,w)=(0,0,0),

∂ f
∂u |(x,u,w)=(0,0,0)) has a stabilizable linear ap-

proximation at x = 0.

The state feedback regulator problem is solvable if and only if there exist C k (k >

2) mappings x = π(w), with π(0) = 0, and u = c(w), with c(0) = 0, both defined in a

neighborhood W 0 ⊂W of 0, satisfying the conditions
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f (π(w),c(w), w) = 0

h(π(w), w) = 0 (5.9)

The designed controller is

u = c(w)+K (x −π(w)) (5.10)

where K is any matrix which places the eigenvalues of A+BK in C−.

Remark: The result of output regulator theory is local result defined in the neighbor-

hood of w = 0 since it uses linear approximation. The benefit of the output regulator

theory is that one can manage the dynamic performance by choosing certain matrix K .

It is the same strategy as pole assignment in the linear system.

In this study, there is no disturbance. The reference signals to be followed are the

voltages. That is, w = [w1, w2, w3]T = [x?2 , x?4 , x?6 ] = [v?1 − x?2 , v?2 − x?4 , v?3 − x?6 ]T . As a

result, S(w) = 0 in this paper.

We can rewrite our model into the standard form of output regulator theory.

ẋ = f (x,u)+p(x)w

ẇ = S(w) = 0

e = h(x)+q(w) (5.11)
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where

f (x,u) =



1
L1

(x2 −x4 + (x4 +x?4 )u1)

1
C1

(−x1 − x2
Rp

− I0eax?2 (eax2 −1))

1
L2

(−r x3 − (x4 +x?4 )u2)

1
C2

(x1 − x4
R1

−x5 − (x1 +x?1 )u1

+(x3 +x?3 )u2 + (x5 +x?5 )u3)

1
L3

(x4 −RL x5 −x6 + (2RL(x5 +x?5 )

−(x4 +x?4 ))u3 −RL(x5 +x?5 )u2
3)

1
C3

(x5 − x6
R2

)



(5.12)

,

p(x) = 0, h(x) =


x2

x4

x6

, q(w) =


−w1

−w2

−w3


H5.1 is stisfied when w is constant. The linear approximation at x = 0 is shown be-

low.

A =



0 1
L1

0 − 1
L1

0 0

− 1
C1

− 1
RpC1

−aI0eax?2 0 0 0 0

0 0 − r
L2

0 0 0

1
C2

0 0 − 1
R1C2

− 1
C2

0

0 0 0 1
L3

−RL
L3

− 1
L3

0 0 0 0 1
C3

− 1
C3R2


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B =



1
L1

x?4 0 0

0 0 0

0 − r
L2

x?4 0

− 1
C2

x?1
1

C2
x?3

1
C2

x?5

0 0 1
L3

(2RL x?5 −x?4 )

0 0 0



which is stabilizable.

Applying the theory to our model, one can get

π2(w)−π4(w)+ (π4(w)+x?4 )c1(w) = 0

−π1(w)− π2(w)
Rp

− I0eax?2 (eaπ2(w) −1) = 0

−rπ3(w)− (π4(w)+x?4 )c2(w) = 0

π1(w)− π4(w)
R1

−π5(w)− (π1(w)+x?1 )c1(w)

+(π3(w)+x?3 )c2(w)+ (π5(w)+x?5 )c3(w) = 0

π4(w)−RLπ5(w)−π6(w)+ (2RL(π5(w)+x?5 )

−(π4(w)+x?4 ))c3(w)−RL(π5(w)+x?5 )c2
3(w) = 0

π5(w)− π6(w)
R2

= 0

π2(w) = w1, π4(w) = w2, π6(w) = w3

(5.13)
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After solving the equations, one can get

π1(w) =− 1
Rp

w1 − I0eax?2 (eaw1 −1)

π2(w) = w1

π3(w) =−w2+x?4
r c2(w)

π4(w) = w2

π5(w) = 1
R2

w3

π6(w) = w3

c1(w) = w2−w1
w2+x?4

− 1
Rp

w1 − I0eax?2 (eaw1 −1)− w2
R1

− 1
R2

w3

−(− 1
Rp

w1 − I0eax?2 (eaw1 −1)+x?1 ) w2−w1
w2+x?4

+(−w2+x?4
r c2(w)+x?3 )c2(w)+ ( 1

R2
w3 +x?5 )c3(w) = 0

w2 −RL
1

R2
w3 −w3 + (2RL( 1

R2
w3 +x?5 )

−(w2 +x?4 ))c3(w)−RL( 1
R2

w3 +x?5 )c2
3(w) = 0

(5.14)

Finally, the control law is u = c(w)+K (x−π(w)), where K is any matrix which places

the eigenvalues of A+BK in C−. Due to the restriction of u, 0 < u < 1.
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Remark: Equation (5.1.2) and (5.2.13) are same equation since

π1(w)+x?1 = x??1

π2(w)+x?2 = v?1

π3(w)+x?3 = x??3

π4(w)+x?4 = v?2

π5(w)+x?5 = x??5

π6(w)+x?6 = v?3

c1(w) = u?
1

c2(w) = u?
2

c3(w) = u?
3

K (x −π(w)) = µ (5.15)

This verifies the result of the previous section.

In practical problem, sometimes the full state feedback controller is not implementable

because some of the state is not measurable. In this case, one could use partial state

feedback control.

Partial state feedback control means the control signal only use the states that are

measurable. By choosing certain K matrix, one can let the unmeasurable state do not

appear in the control. For example, if state x1 is not measurable, choose the first column

of K to be zero so that state x1 will not appear in u. However, in order to promise the

stability, all the eigenvalues of A+BK must set in C−.
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However, if partial state feedback doesn’t work, one could use measurement feed-

back control. Since the signals to be tracking are known constants, there’s no need to

build observers for w . The strategy of the measurement feedback design is the same as

the linear case.

For a stabilizable and detectable linear system

ẋ = Ax +Bu

y = C x (5.16)

there exist a measurement feedback controller of the form

ξ̇ = Fξ+G y

u = Hξ (5.17)

such that the closed-loop system is AS where F = A +BK −MC , H = K , G = M and the

eigenvalues of A+BK and A−MC must set in C−.
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In order to apply the measurement feedback design, the first step is to do the trans-

lation and move the system to the objective point. The system after translation is

f (x̂,µ) =

1
L1

(x̂2 − (1− c1(w))x̂4 + (x̂4 +π4(w)+x?4 )µ1)

1
C1

(−x̂1 − 1
Rp

x̂2 − I0ea(π2(w)+x?2 )(eax̂2 −1))

1
L2

(−r x̂3 − c2(w)x̂4 − (x̂4 +π4(w)+x?4 )µ2)

1
C2

((1− c1(w))x̂1 + c2(w)x̂3 − 1
R1

x̂4 − (1− c3(w))x̂5

−(x̂1 +π1(w)+x?1 )µ1 + (x̂3 +π3(w)+x?3 )µ2 + (x̂5 +π5(w)+x?5 )µ3)

1
L3

((1− c3(w))x̂4 −RL(1+ c3(w))2x̂5 − x̂6 + (2RL(1− c3(w))(x̂5

+π5(w)+x?5 )− (x̂4 +π4(w)+x?4 ))µ3 −RL(x̂5 +π5(w)+x?5 )µ2
3)

1
C3

(x̂5 − 1
R2

x̂6)



y =


x̂2 + v?1

x̂4 + v?2

x̂6 + v?3

 (5.18)

which is the same as the one in the previous section.

The next step is do the linear approximation.

Â =

0 1
L1

0 − 1
L1

(1− c1(w)) 0 0

− 1
C1

− 1
RpC1

−aI0ea(π2(w)+x?2 ) 0 0 0 0

0 0 − r
L2

− 1
L2

c2(w) 0 0
1

C2
(1− c1(w)) 0 1

C2
c2(w) − 1

R1C2
− 1

C2
(1− c3(w)) 0

0 0 0 1
L3

(1− c3(w)) −RL
L3

(1+ c3(w))2 − 1
L3

0 0 0 0 1
C3

− 1
C3R2


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B̂ =

1
L1

(π4(w)+x?4 ) 0 0
0 0 0
0 − 1

L2
(π4(w)+x?4 ) 0

− 1
C2

(π1(w)+x?1 ) 1
C2

(π3(w)+x?3 ) 1
C2

(π5(w)+x?5 )

0 0 2RL
1

C3
(1− c3(w))(π5(w)+x?5 )− 1

C3
(π4(w)+x?4 )

0 0 0



Ĉ =


0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


r ank[B̂ ÂB̂ Â2B̂ Â3B̂ Â4B̂ Â5B̂ ] = 6

System is controllable.

r ank



Ĉ

Ĉ Â

Ĉ Â2

Ĉ Â3

Ĉ Â4

Ĉ Â5



= 6

System is observable.

Therefore, by choosing certain matrix K and M , one can form the measurement

feedback compensator

ξ̇ = Fξ+G y

µ = Hξ (5.19)

Due to the limitation of u, 06µ+ c(w)6 1.
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5.3 Passivity-based Design

Passivity-based design can also be used for set point regulation. The advantage of passivity-

based design is that it provides an arbitrary small controller to globally stabilize the

system. However, the controller itself is nonlinear and there’s no guidance for how to

choose a controller to improve the dynamic performance.

For system (5.1.4) and Lyapunov function (5.1.5), H4.1 is satisfied.

f0(x̂) = f (x̂,0) =



1
L1

(x̂2 − (1−u?
1 )x̂4)

1
C1

(−x̂1 − 1
Rp

x̂2 − I0eav?1 (eax̂2 −1))

1
L2

(−r x̂3 −u?
2 x̂4)

1
C2

((1−u?
1 )x̂1 +u?

2 x̂3 − 1
R1

x̂4 − (1−u?
3 )x̂5

1
L3

((1−u?
1 )x̂4 −RL(1+u?

1 )2x̂5 − x̂6)

1
C3

(x̂5 − x̂6
R2

)



(5.20)

g0(x̂) = ∂ f
∂µ

(x̂,0)

=



1
L1

(x̂4 + v?2 ) 0 0

0 0 0

0 − 1
L2

(x̂4 + v?2 ) 0

− 1
C2

(x̂1 +x??1 ) 1
C2

(x̂3 +x??3 ) 1
C2

(x̂5 +x??5 )

0 0 1
C3

(2RL(1−u?
3 )(x̂5 +x??5 )− (x̂4 + v?2 ))

0 0 0



(5.21)
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g33(x̂) =



0

0

0

0

−RL
L3

(x̂5 +x??5 )

0



(5.22)

˙̂x = f0(x̂)+ g0(x̂)µ+ g33(x̂)µ2
3 (5.23)

Lg0V (x̂) = ∂V

∂x̂
g0(x̂) =

[
L1x̂1 C1x̂2 L2x̂3 C2x̂4 L3x̂5 C3x̂6

]
g0(x̂) (5.24)

(Lg0V (x̂))T =


v?2 x̂1 −x??1 x̂4

−v?2 x̂3 +x??3 x̂4

x??5 x̂4 − v?2 x̂5 +2RL(1−u?
3 )(x̂5 +x??5 )x̂5

 (5.25)

Using the same argument in section 4.4, one can prove that system is zero-state de-

tectable and H4.2 is satisfied.

The designed controller is

µ(x̂) =−α(x̂)
[Lg0V (x̂)]T

1+‖Lg0V (x̂)‖2
(5.26)

where α(x̂) is the function

α(x̂) =
β
3

1+‖ ∂V
∂x̂ ‖2ρ2(x̂)

for any 0 <β< 1,

with

ρ(x̂)> 1+‖g33(x̂)‖2.
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For example, when choosingβ= 0.5 and ρ(x̂) = 1+‖g33(x̂)‖2, the designed controller

is

µ(x̂) =− 0.5/3

1+(L2
1 x̂2

1+C 2
1 x̂2

2+L2
2 x̂2

3+C 2
2 x̂2

4+L2
3 x̂2

5+C 2
3 x̂2

6)(1+(
RL
L3

(x̂5+x??5 )2)2

[Lg0V (x̂)]T

1+((v?2 x̂1−x??1 x̂4)2+(−v?2 x̂3+x??3 x̂4)2+(x??5 x̂4−v?2 x̂5+2RL(1−u?3 )(x̂5+x??5 )x̂5)2)
(5.27)
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6 Case Studies

In this chapter, the simulation results of controllers discussed in the previous is shown.

All the simulation results are generated by MATLAB.

There’s two cases of simulation. One is the illumination change when the load re-

mains the same. The other is the load change while the illumination remains constant.

6.1 Illumination Change

All the results below reflect the illumination change when the load remains the same.

The situation is assumed as follows:

At t = 0s, system works at steady state, the PV is working at its MPPT, the photogen-

erated current Ip h relates to the irradiance. At t = 0.2s, the irradiance decreases, so is

Ip h. At t = 0.4s, there is no illumination, Ip h becomes zero. At t = 0.6s and t = 0.8s, the

illumination recovers gradually.

6.1.1 Constant Feedback Control

Figure 6.1 shows the simulation result of the constant feedback control.

Apparently, the dynamic performance is not satisfied using constant feedback con-

trol. At t = 0.4s, the output voltage of PV cannot turns to zero in a short time as the light

out, and an oscillation happens due to the inductor, capacitor and lack of shunt resistor
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Figure 6.1. simulation result of illumination changes using constant
feedback control

of the dc converter. Some applications use a series of shunt resistor to solve this oscil-

lation problem. At t = 0.6s, the bus voltage has a big jump which is out of the range of

safety. Therefore, dynamic control is needed to improve the dynamic performance.

6.1.2 State Feedback Control

Figure 6.2 shows the simulation result of the state feedback control.

The K matrix is chosen as


−0.01 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 .

It’s clearly that the closed-loop system has good dynamic performance. The PV out-

put voltage equals to the value that maximizes the power output and both bus voltage

and load voltage recover in a short time without huge deviation. The current of battery

is within tolerance too.
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Figure 6.2. simulation result of illumination changes using state feedback
control

Only one state x1 is used for the controller design. Unfortunately, the state x1 is an

unmeasurable state. Thus, the controller is not implementable.

6.1.3 Measurement Feedback Control

Figure 6.3 shows the simulation result of the measurement feedback control.

The K matrix is chosen as


−0.01 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 .

The M matrix is chosen as



1000 1000 1000

0 0 0

−100 −100 −100

0 0 0

−100 −100 −100

0 0 0



.
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Figure 6.3. simulation result of illumination changes using measurement
feedback control

As shown above, dynamic performance is a little worse than state feedback control,

but it is still within tolerance. The voltages and the current recover in a short time with-

out huge deviation.

6.2 Load Change

All the results below reflect the load change when the illumination remains the same.

The situation is assumed as follows:

At t = 0s, system works at steady state, the PV is working at its maximum power

output and the battery is charging. At t = 0.2s, the bus load increases (R1 decreases); At

t = 0.4s, the load decreases (R2 increases).

6.2.1 Constant Feedback Control

Figure 6.4 shows the simulation result of the constant feedback control.
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Figure 6.4. simulation result of load changes using constant feedback control

Similar to the case when illumination changes, the dynamic performance is not sat-

isfied using constant feedback control. The output voltage of PV cannot recover in a

short time as the load changes, and an oscillation happens due to the inductor, capaci-

tor and lack of shunt resistor of the dc converter.

6.2.2 State Feedback Control

Figure 6.5 shows the simulation result of the state feedback control.

The K matrix is chosen as


−0.01 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 .

Apparently, the closed-loop system has good dynamic performance. The output

voltage of PV remains the same and bus voltage and load voltage recover after a short

time. The charging rate of the battery changes correspondingly.

Only one state x1 is used for the controller design. Unfortunately, the state x1 is an

unmeasurable state. Thus, the controller is not implementable.
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Figure 6.5. simulation result of load changes using state feedback control

6.2.3 Measurement Feedback Control

Figure 6.6 shows the simulation result of the measurement feedback control.

Figure 6.6. simulation result of load changes using measurement feed-
back control
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The K matrix is chosen as


−0.01 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 .

The M matrix is chosen as



1000 1000 1000

0 0 0

−100 −100 −100

0 0 0

−100 −100 −100

0 0 0



.

Using the measurement feedback control, the closed-loop system has good dynamic

performance similar to the state feedback control.
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7 Future Study

In this section, the future study of DC-microgrid is discussed. There’s three possible

directions. The first one is considering more practical situation, which means adding

disturbance into the system. The second direction is dealing with more complexed sys-

tem, such as a DC-microgrid with multiple PVs and batteries, or even connect with AC

power grid. The last one is using more advanced control method. Adaptive control or

robust control may be applied to this problem.

7.1 System with Disturbance

In the case study, the dynamic performance of system is researched for known change

of illumination and load. If the change of illumination and load is unknown, it can be

modeled as disturbance. The disturbance may also appear at output due to inaccuracy

of the sensor. The disturbance can be constant or periodical. For example, the inaccu-

racy of the sensor will cause constant disturbance and the change of illumination can

be modeled as periodical disturbance. Also, the maximum power point of PV may also

be unknown, which means the control objective is unknown.

The output regulator theory has the ability to deal with the problem with disturbance

listed above. The input vector w has two components, which are disturbance signals to
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be rejected and the reference trajectories to be tracked. Using the same technique, one

can get the controller by full state feedback. However, the controller u = c(w)+K (x −

π(w)) may not be complementable since w insists the disturbance that is unknown.

There’s two possible ways to solve the problem. One is using partial state feedback. By

choosing suitable K matrix, it is possible that all the unknown x and w do not appear in

the controller. If the partial state feedback control fails, the other approach is the output

feedback control. In this case, the observer is needed not only for unmeasurable state x,

but also unmeasurable disturbance w .

7.2 More Complexed System

The following firgue shows the configuration of a DC-microgrid with two PVs and two

batteries.

As shown in the picture, the whole system insists of two subsystem connecting with

a transmission line. With multiple PVs and batteries, the system has more flexibility. If

the PVs and batteries have enough capacity, one PV and one battery can supply for the

whole system. In another case, if someone wants the subsystem supplies for its own

load, it is possible that there is no current on the transmission line by choosing certain

control. In fact, two subsystem could back up each other, which increases the stability

for the whole system. Besides, by detecting the current on the transmission line, one

can determine whether the subsystem has problem.

Another direction is to set constraints for battery. For example, battery has a limited

capacity, and charging current has a maximum value. Grid-connected DC-microgrid is

also an interesting area to study. The DC-microgrid can connect to the power grid with
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Figure 7.1. The DC-microgrid system with two PVs and batteries

DC/AC converter. At day time, the energy generated from the PV can provide for the grid

while the DC-microgrid absorbs power from the power grid at night.

7.3 More Advanced Control

Adaptive control can deal with the system with unknown constant parameters. For ex-

ample, if the values of some resistors are unknown, adaptive control will help. Robust

control are designed to deal with the system with uncertain parameters that within some

set. For a certain PV, the photogenerated current is within a known range. Therefore,

robust control can help with the uncertainty of Iph . Adaptive control and robust con-

trol have similar function as output regulator theory that they are all used for system
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with unknown disturbances. The output regulator theory can only get local result while

adaptive control and robust control may obtain global solution.

Another research area is to study the sensitive of the system. In practice, some of the

parameters in the system can only be estimated. Thus, it’s important to know whether

the designed controller is robust. Robustness can be defined as the ability of a system

to resist change without adapting its initial stable configuration. Fortunately, the output

regulator theory has a robust version and the passivity-based design is robust too.
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8 Conclusion

This work has developed a dynamic model for a DC-microgrid system that consists

of a PV, battery, constant resistance load and constant power load. The control objec-

tives are to regulate the bus and load voltage, and to maximize the PV power output.

The stability of the system is analyzed. The DC-microgrid system is a nonlinear non-

affine system which is globally asymptotically stable when using constant control. If us-

ing the ideal model of a battery, the system becomes stable in the sense of Lyapunov, but

not asymptotically stable. In this case, passivity-based design can help globally asymp-

totically stabilize the system by arbitrarily small smooth state feedback.

Using both traditional control method and output regulator theory, the controllers

are derived for the voltage regulation. In the traditional control method, using the physi-

cal meaning of state equations, one can prove that the constant control works. However,

constant control may lead to bad dynamic performance. The output regulator theory is

useful when dealing with regulation problems. Using output regulator theory, the same

equation is derived as the traditional method, which verifies the result. The state feed-

back control is solved at first, but the state it uses is unmeasurable. Then, the measure-

ment feedback control is developed. The result using output regulator theory is a local
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result due to the use of linear approximation. Finally, a globally controller is derived by

passivity-based design.

The controllers are confirmed by simulation results. For both illumination change

and load change, controllers using constant control, state feedback control and mea-

surement feedback control are tested. It is shown that constant control will lead to bad

dynamic performance which can be solved by state feedback control and measurement

feedback control.

The future directions are discussed. Three possible directions are adding distur-

bance to the system, studying more complexed system and using more advanced con-

trol.
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