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Abstract—A nested transactive energy (TE) market method-
ology is presented in this paper for the effective utilization of
demand-side flexibility of small-scale residential consumers. The
consumers’ flexibilities are traded in a local flexibility market
to prevent transformer overloading, whereas the demand-side
flexibilities are traded in an event-triggered central wholesale
demand response market after successive aggregation in the inter-
mediate layers. A two-stage optimization-based scheduling model
is presented to optimize the transactive bidding of residential con-
sumers with on-site distributed energy resources and controllable
loads. The optimal market methodologies are presented for the
integrated TE markets to ensure economic trading for all involved
stakeholders. The proposed methodology is numerically validated
by simulation studies for different consumer participation levels,
and the case studies indicate the efficacy of the proposed
methodology for economically feasible procurement of consumer
flexibility for transformer overloading and wholesale peak-price
events. Results also illustrate that the proposed method offers
2.8-14 times more profits to the participating consumers than
the energy-supply incentives according to existing retail tariff
structures even considering their thermal discomfort and cycle-
aging of storage units for the flexibility support.

Index Terms—Transactive Energy, Demand Side Management,
Demand Response, Local Flexibility Market, Nested Market

NOMENCLATURE

Indices and Sets
t ∈ T Time periods ∈ {1, 2, ..., T}
i ∈ I Flexible consumers ∈ {1, 2, ..., I}
j ∈ J Non-flexible consumers ∈ {1, 2, ..., J}
b ∈ B Storage units ∈ {1, 2, ..., B}
s ∈ S External building surfaces ∈ {1, 2, ..., S}
m ∈M Steps in bid function ∈ {1, 2, ...,M}
n ∈ N Local areas/aggregators ∈ {1, 2, ..., N}
k ∈ K DR aggregators ∈ {1, 2, ...,K}
Parameters
λ+/λ− Energy demand and supply tariff [$/kWh]
∆t Duration of time period [hour]
CR Storage unit replacement cost [$ AUD]
ω Coefficient for thermal discomfort [$/◦ C]
θset Thermostat set-point temperature
κ Coefficient-of-performance (CoP) of the AC
Qg Internal heat gain of the building [kW]
βs Heat transfer coefficient [W/m2K]
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As Building surface area [m2]
θo Ambient temperature [◦C]
ρ, V, Cth Density [kg/m3], volume [m3], and specific

heat capacity [J/kg◦C] of the building
θ, θ Indoor temperature limits [◦C]
P cn, P dn Nominal charging/discharging power [kW]
ηc, ηd Charging and discharging efficiencies
Ecap Maximum storage capacity [kWh]
σb, σb Maximum and minimum SoC of storage b
P il Power demand of inelastic building load [kW]
P g Power generation of residential DG unit [kW]
Variables
P+/P− Power demand/supply from/to the grid [kW]
C,Φ,Ω Electricity cost, Storage degradation cost and

Thermal discomfort cost [$ AUD]
P ac Power consumption of AC [kW]
P c/P d Storage charging/discharging power [kW]
θ Indoor temperature [◦C]
x, y, z Binary optimization variables ∈ {0, 1}
σ, γ State of charge and depth of discharge

I. INTRODUCTION

THE decentralization and decarbonization of the power
grid have steered a rapid proliferation of renewable-based

small-scale distributed energy resources (DER). Consequently,
most consumers of low-voltage (LV) residential networks are
now equipped with various on-site distributed generation (DG)
units with or without storage facilities. Besides, residential
energy demand is increasing due to the increased integration
of electric vehicles (EV) and heat pumps (HP). The inde-
terminacy of renewable-based DER units, myopic consumer
behavior for appliance usages, and growing energy demand
impose various capacity challenges to the local grid operators
(LGO) of residential LV networks including transformer over-
loading and local voltage-constraint violations [1]. Moreover,
the fluctuating energy profiles of such consumers require fast
and dynamic energy-balance measures to maintain reliable
energy supply [2].

The digitalization of the grid allows the utilization of the
demand-side flexibilities using demand response (DR) and
demand-side management (DSM) strategies to address local
grid-capacity issues and enhance energy-balance when grid
reliability is jeopardized [2]–[4]. While traditional DR and
DSM limit consumers’ profitability and raise privacy concerns
[3], [4], an advanced variant, known as the transactive energy
(TE) framework, enhances the utilization of demand-side
flexibilities for improved grid reliability and energy-balance
efficiency [5]. The TE framework uses economic and market-
based constructs for local energy balance while considering the
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reliability constraints of the grid [6]. The TE-based demon-
stration projects in [7]–[9] show that it allows the LGO to
effectively use local resources (energy supply from DG units
[7], [8] and consumers’ demand-reduction flexibility [9]) to
maintain reliable energy supply during peak-demand periods.
It also allows responsive consumers to actively negotiate their
energy and flexibility transactions while offering them full
decision making authority [10].

Significant efforts have been made to develop effective
energy management methodologies for optimal utilization of
demand-side flexibilities to enhance the energy-balance of
the grid. For example, the authors in [11], [12] explored
consumer engagement plans in DR schemes for peak-load
reduction of the residential networks considering user prefer-
ences for flexibility support. A consumer-centric DSM scheme
is proposed in [13] for residential load control that applies a
human behavior modeling approach to identify consumption
patterns and demand flexibility potentials of the consumers.
The transactive load control methods are presented in [5], [14]
for DR schemes to minimize energy cost for the consumers
and reduce peak-demand of the grid.

Several studies also presented market-based methods for
demand-side flexibility utilization in the local energy balance
of the grid. For example, energy trading in the local markets
is used in [15], [16] for consumers’ cost minimization, and
inter-microgrid TE markets are proposed in [17], [18] for
the economic energy balance of neighboring microgrids. The
integrated local and wholesale TE markets are proposed in
[19], [20] that utilize demand-side flexibilities for the efficient
and economic energy balance of the grid. An LGO-centric
integrated market model is presented in [21] whereby the
LGO acts as an aggregator of the demand-side flexibilities
and participates in both the day-ahead wholesale market and
local energy market. The authors in [22] also used an inte-
grated market model for transactive trading between energy
suppliers and grid operators, where consumers’ DER units
are scheduled in day-ahead by the LGO for an economic
energy balance within the local networks. Studies show that
market-based approaches can also facilitate LGO to procure
demand-side flexibilities for addressing local grid-capacity
issues. For example, a local TE market model is presented
in [10] where LGO procures consumers’ demand and supply
flexibility to prevent transformer overloading, and the authors
in [23] proposed a local TE market model for local voltage
regulations. Hierarchical and nested market models are used in
a few studies for effective trading and aggregation of demand-
side flexibilities. For example, the authors in [24] proposed
a hierarchical real-time electricity market involving LGO,
local flexibility aggregators and flexible consumers. Detailed
analyses show that the monopolistic method of flexibility
management is profitable for demand-side entities whereas
game-theoretic approaches favor the LGO [24]. A game-based
interaction method is also used in [25] that maximizes welfares
of the grid operator, local service providers and consumers in
a hierarchical wholesale DR market.

Traditional DR or consumer-centric DSM schemes are
profitable for the consumers and enhance the energy-balance
of the grid. However, they offer little to no support for

the LGO in terms of addressing grid-capacity issues. On
the other hand, grid-centric schemes benefit the LGO while
limiting consumers’ profit and welfare. Inclusion of grid issues
in consumer-centric approaches also affect their profitability
and can raise privacy concerns if consumers are required to
share consumption-related information with grid-entities or
aggregators. While offering optimal equilibrium for distributed
interactions, the game-theoretic methods also fail to address
consumers’ privacy issues and often reduce their decision-
making authority. In this regard, marker-based methodologies
involving transactive trading can offer consumers with full-
decision making authority if they are allowed to actively bid
for energy or flexibility transactions. Such active bidding also
nullifies any privacy concerns as they only required to submit
cost-quantity bids to the market entities. However, active
bidding for energy or flexibility trading is limited for small-
scale residential consumers in most TE models found in the
literature. For example, consumers’ flexibilities are managed
by a third-party transactive aggregator in [7], [17], [18], [20]
or microgrid aggregator in [5], [14], [19]. On the other hand,
[15], [16], [22] model consumers as price-taker in the TE
market. In addition to that, the myopic human behaviors in
terms of convenience reservations for appliance usage are not
considered in the TE methodologies of [8], [9], [18], [22],
[23]. Our previous work in [10] illustrates that active con-
sumer bidding for transactive trading would encourage higher
participation in the TE market by increasing their profitabil-
ity, reducing privacy concerns, reserving their conveniences,
and offering them full decision-making authority. However,
only local flexibility trading is considered in [10], whereas
integrated wholesale and local TE markets [19], [20], [22]
would significantly enhance both local and wholesale energy-
balance while addressing local and system-level grid issues.
The integrated marker models required bottom-up flexibility
aggregation and a nested approach would effectively reduce
the communication complexity in this regard [26].

To this end, a nested TE market model is presented in this
paper for the effective utilization of demand-side flexibilities.
The proposed TE market includes local flexibility markets
(LFM) at the LV side of the grid where LGO procure active
consumers’ demand-reduction and energy-supply flexibilities
to prevent transformer overloading, and a central wholesale
DR market (WSDRM), where a wholesale DR service provider
(WDRSP) procures aggregated demand-side flexibilities to
minimize wholesale energy price during peak wholesale tariff
periods. The demand-side flexibilities are aggregated in nested
layers to integrate LFM with WSDRM with feasible commu-
nication complexity. A novel biding strategy is proposed for
residential consumers with DER to ensure active consumer
participation in the TE market. The key contributions of this
paper are to:

• design a nested TE market model for integrating LFM
and WSDRM, where demand-side flexibilities can be
traded for local grid issues (i.e. transformer overloading)
in the LFM, and WSDRM utilizes aggregated demand-
side flexibilities to minimize wholesale energy price when
wholesale energy-balance is subjected to unpredicted
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peak tariffs,
• develop a novel transactive bidding strategy for the small-

scale residential consumers that maximizes profit while
considering electricity cost, storage degradation, and ther-
mal discomfort, and

• develop a flexibility trading model for the proposed inte-
grated TE markets to minimize cost (or maximize profits)
for all involved stakeholders including active consumers,
grid operators, transactive agents, and wholesale DR
service provider.

The remainder of this paper is organized as follows: the
proposed TE framework is presented in Section II, the mathe-
matical formulations of consumers flexibility bidding and TE
market methodology are discussed in Section III, and Sec-
tion IV respectively, then the simulation studies are discussed
in Section V for numerical validation of the proposed method,
followed by the conclusion of the paper in Section VI.

II. TRANSACTIVE MARKET FRAMEWORK

The proposed nested TE market framework is illustrated
in Fig. 1. At the bottom layer, each local aggregator (LA)
coordinates an LFM that provides grid-support services to
the LGO. In this paper, the network service area within a
distribution transformer is considered as a local area. When
aggregated load demand within a local area exceeds beyond
the maximum transformer capacity, then the LGO requests for
demand-reduction support from the LFM. The LA procures the
demand-reduction and energy-supply flexibility of the partici-
pating consumers within the local area to provide grid-support
service to the LGO. The LA is remunerated for its flexibility-
support according to the aging cost of the transformer for over-
loading. During each flexibility trading interval, the LA broad-
casts flexibility requests to the participating consumers within
the local area, who then submit flex bids to be traded in the
local market. The flex bids of the consumers are quantity-cost
transactive bids that include the demand-reduction flexibility
of the consumers and the associated costs for the flexibility
support. The demand-reduction of a particular consumer can
be higher than its consumption indicating energy-supply to
the grid. The LA determines the market-clearing tariff for the
LFM by maximizing its profit for each trading interval. The
consumers are rewarded for their accepted flex bids based on
the market-clearing tariff.

On the other hand, the WSDRSP requests DR bids from
the participating DR aggregators (DRA) of the WSDRM prior
to any wholesale DR events, identified as the scenario when
wholesale tariff exceeds a predetermined threshold level. The
DRAs notify the consumers for transactive flex bid submission
via corresponding LAs. Each LA aggregates the flex bids of
the consumers within its cluster and submits an aggregated
transactive DR flex bid to their coordinating DRA. The DR
flex bids of the LAs includes the step-wise demand reduction
flexibility for its local area and required cost (or reward to be
given to the consumers) for each demand reduction level. The
DRAs aggregate the DR flex bids of their LAs and submit
the aggregated DR bids to the WDRSP. The WDRSP clears
the WSDRM by minimizing the total DR rewards required for

Fig. 1. Overview of the nested transactive market framework.

each DR event. The DRAs and LAs distribute the DR reward
among the consumers by determining an optimal clearing
tariff for their corresponding service area that minimizes total
payable reward for the DRAs and LAs while satisfying local
grid constraints. As a result, all the consumers in a local area
are rewarded at an unique clearing tariff for their accepted
flexibility support, which ensures fair distribution of reward.

III. CONSUMERS’ FLEXIBILITY MODELING

An optimization-based two-stage scheduling model is pro-
posed for the flexible consumers. In the first stage, consumers’
flexible resources are pre-scheduled in day-ahead to minimize
cost, whereas consumers’ flex bids are determined in the
second-stage for real-time TE market by rescheduling the
flexible building resources.

A. Pre-schedule model

The pre-schedule model is formulated as a cost-
minimization problem to determine the schedule of flexible
building resources for the next 24 hours. The consumers are
considered to be equipped with three flexible resources -
air-conditioners (AC), electrical energy storage (EES) units
and electric vehicle (EV) with vehicle to building (V2B) and
vehicle to grid (V2G) functionalities. However, the inelastic
load demand and on-site DG supply are considered non-
controllable and foretasted with reasonable accuracy for the
pre-scheduling.

1) Objective function: The pre-scheduling model deter-
mines the energy consumption and supply of each consumer
i ∈ I for the time periods t ∈ T of the next day. Considering
time varying tariffs for demand and supply of λ+ and λ−

respectively, the electricity cost can be calculated as:

Ci,t = (λ+
t P

+
i,t − λ

−
t P
−
i,t)∆t ∀i, t (1)

However, such scheduling often introduces irregular and fre-
quent charge-discharge cycles for storage units and accelerate
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their cycle-aging. The storage degradation cost can be calcu-
lated as:

Φi,t =
∑
b∈B

CRb,iΨ
(
P db,i,t

)
∀i, t (2)

where, CRb,i is the replacement cost of the storage unit, b ∈ B
for consumer, i, and Ψ(P d) is the marginal cycle-aging
degradation function for a discharge cycle with P d kW. In
addition to that, flexible operation of AC often introduces
thermal discomfort when indoor temperature deviates from the
consumer-specified set-points for cost minimization in peak-
tariff periods. Such thermal discomfort cost is calculated as:

Ωi,t = ωi|θi,t − θseti,t | ∀i, t (3)

where, the coefficient ωi represents the flexibility of consumer,
i regarding deviation of indoor temperature, θ from set-point
temperature, θset.

The pre-schedule model minimizes the electricity cost,
storage degradation, and thermal discomfort of the consumers
for next day, i.e.:

min
∑
t∈T

(Ci,t + Φi,t + Ωi,t) ∀i (4)

2) Power balance constraint: The power balance constraint
for the pre-scheduling model is written as:

P+
i,t−P

−
i,t = P ili,t+

∑
b∈B

(
P cb,i,t − P db,i,t

)
+P aci,t−P

g
i,t ∀i, t (5)

where, inelastic load demand, P il and DG generation, P g are
considered to be known.

3) Indoor temperature constraints: For the flexible opera-
tion of AC, a flexible temperature range is considered as:

θi,t ≤ θi,t ≤ θi,t ∀i, t (6)

According to the isothermal model [10], [15] the thermal
equilibrium equation for the building can be written as:

ρViC
th
i

∂θi,t
∂t

= Qgi,t+
∑
s∈S

βs,iAs,i(θ
o
t−θi,t)−κiP aci,t ∀i, t (7)

where, Qg is the internal heat gain, κ is the coefficient of
performance (COP) of the AC, and building’s heat transfer
coefficient, β determines the heat exchange through building
surfaces, s ∈ S.

4) State of charge (SoC) constraints of storage units: The
nominal rated charging and discharging of the storage units
are considered, where the binary decision variables, xc = 1
indicates charging, xd = 1 for discharging, and xc = xd = 0
when it is idle. The charge-discharge constraints are written
as:

P ct,i,b = xct,i,bP
cn
i,b ∀t, i, b (8)

P dt,i,b = xdt,i,bP
dn
i,b ∀t, i, b (9)

xct,i,b + xdt,i,b ≤ 1 ∀t ∈ T ai,b,∀i, b
xct,i,b + xdt,i,b = 0 ∀t /∈ T ai,b,∀i, b

(10)

here, T a indicates the set of periods when the storage unit
is available, which is the same as the set T for ESS and in
case of EV battery it reflects the period when the EV is at
home. Therefore, Eq. (10) indicates that both x and y are zero
when the storage unit is unavailable, and a particular storage
unit can only be charged or discharged at any time when it
is available. The changes in the battery state of charge (SoC)
can be written as Eq. (11), whereas the SoC-thresholds are
imposed by the constraint in Eq. (12).

∂

∂t
(σt,i,b) =

(
ηci,bP

c
i,b +

Pdi,b
ηdi,b

)
∆t

Ecapi,b

∀t, i, b (11)

σi,b ≤ σt,i,b ≤ σi,b ∀t, i, b (12)

The proposed model also satisfies user preferences in terms
of SoC requirement for the EV before a trip, which is ensured
by following constraint:

σb,i,t ≥ σsetb,i,t ∀t = Td ∈ TD,∀i, b (13)

where, σset = {σsetT1
, σsetT2

, ...σsetTD} indicates the consumer-
specified SoC requirements before departure at Td =
{T1, T2, ...TD} ∈ TD. As such SoC requirements are only
valid for EV battery, σset is a null set for ESS.

5) Storage degradation: The cycle-aging storage degrada-
tion model presented in [10] is used in this paper to estimate
the marginal storage degradation as:

Ψ(P ) =
∂ϕ

∂P
× P =

∆ϕ

∆γ
× ∂

∂P
(γ)× P (14)

where, ϕ = c1γ
c2 , γ is the depth of discharge (DoD), and ϕ

is the non-linear DoD stress function for storage degradation
specified by constants c1 and c2. However, a piece-wise
linear model is used in this paper for estimating the storage
degradation so that the pre-scheduling optimization problem
can be solved in ‘off the shelf’ solvers within feasible time.
The piecewise linearized DOD stress function is written as:

ϕl,b,i,t =
∑
l∈L

(
Ml,b,iγ

lin
l,b,i,t + Cl,b,iµl,b,i,t

)
∀b, i, t (15)

where, the auxiliary optimization variables γlin and µ deter-
mine the active segments of the piece-wise linearized model
in Eq. (15), whereas l ∈ L indicates its the linear segments
with line coefficients Ml and Cl. Only the linear line segment
corresponds to the initial DoD of any discharge cycle must
be active, which can ensured by the constraint in Eq. (16),
whereas the constraints in Eqs. (17) and (18) restrict γlin

within that line segment, and the initial DoD for any discharge
cycle is estimated from Eqs. (19) to (21).∑

l∈L

µl,b,i,t = xdb,i,t ∀b, i, t (16)
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∑
l∈L

γlinl,b,i,t = γdb,i,t ∀b, i, t (17)

µl,b,i,tγ
lin
l,d,i ≤ γlinl,b,i,t ≤ µl,b,i,tγlinl,d,i ∀l, b, i, t (18)

γcb,i,t + γdb,i,t = γb,i,t = 1− σb,i,t ∀b, i, t (19)

γdb,i,t ≤ xdb,i,t ∀b, i, t (20)

γcb,i,t ≤ 1− xcb,i,t ∀b, i, t (21)

where, γlinl,d,i and γlinl,d,i are the initial and final DoD levels
in the linear line segment, l. On the other hand, γd and γc are
included as auxiliary optimization variables related to storage
DoD, where γd is the battery DoD when the storage unit
is discharging (as indicated by xdb,i,t), and the variable γc

indicates its DoD when it is charging.

B. Reschedule model and consumers’ flex bids

The flex bids represent the demand reduction flexibility
of the consumers in kW and the associated reward rate in
$/kWh. In this paper, a multi-step flex bid is considered where
the maximum demand reduction flexibility of a consumer is
divided into m steps in cumulative-ascending order. Let, at
time t = tf , the participating consumers receive flexibility
requests from the coordinating LA, then the flex bids are
calculated in following 3 steps:

1) Determine maximum demand reduction (∆P totaltf ,i
):

The maximum demand reduction of the AC at any given
time, ∆P ac is written as in Eq. (22), which depends on
the indoor temperature and user-specified maximum temper-
ature threshold of that time. Here, the function [.]+ indicates
[X ]+ = max(X , 0). Eq. (22) indicates that when the indoor
temperature is at the maximum limit, then demand reduction
is not possible for the AC as it would violate temperature
constraint. On the other hand, when the temperature is lower
than the maximum limit, the AC power demand can be reduced
to a level sufficient enough to maintain indoor temperature at

the maximum allowed limit. On the other hand, the maximum
demand reduction flexibility of the storage units, ∆P st de-
pends on their SoC levels according to the pre-schedule and
defined as in Eq. (23). Here, the function [X ,Y]+ indicates
max(X ,Y), and [X ,Y]− represents min(X ,Y). Therefore,
Eq. (23) indicates that the charging of a storage unit could be
curtailed and can even be allowed to discharge at t = tf if it
does not violate any SoC constraints.

Therefore, the total maximum demand reduction of a con-
sumer, ∆P total at t = tf can be written as:

∆P totali,tf
= ∆P aci,tf +

∑
b∈B

∆P stb,i,tf ∀tf ∈ T ,∀i ∈ I (24)

2) Reschedule- determine new schedules: For each step
increase of the demand reduction level indicated by m ∈M,
a new schedule is estimated for time periods t = tf to t = T .
The reschedule model is also formulated as a minimization
problem, which can be written as:

min
δ

T∑
t=tf

(Ci,t + Φi,t + Ωi,t) ∀i (25a)

s.t. δtotalm,i,tf
= δacm,i,tf +

∑
b∈B

δstm,b,i,tf ≤ m∆P totali,tf
(25b)

P ac
′

m,i,tf
= P aci,tf − δ

ac
m,i,tf

(25c)

P c
′

m,b,i,tf
− P d

′

m,b,i,tf
= (P cb,i,tf − P

d
b,i,tf

)− δstm,b,i,tf
(25d)

P+
m,i,tf

− P−m,i,tf =P ili,tf − P
g
i,tf

+ P ac
′

m,i,tf
+∑

b∈B

(
P c

′

m,b,i,tf
− P d

′

m,b,i,tf

) (25e)

Eqs. (5)to (13) ∀t > tf (25f)
δaci,tf ∈ [0,m∆P aci,tf ], δstb,i,tf ∈ [0,m∆P stb,i,tf ] (25g)

where, δac and δst indicate the demand reduction of the
AC and storage units respectively. Therefore, the total demand
reduction according to the reschedule is δtotal and correspond-
ing power for AC and storages at time t = tf is indicated by
P ac

′

m , P c
′

m , and P d
′

m for the demand reduction level, m. The
power balance at tf is indicated in Eq. (25e), whereas other
optimization constraints are the same as the pre-schedule for

∆P aci,tf =

[
P aci,tf −

1

κi

{
Qgi,tf +

∑
s∈S

βs,iAs,i(θ
o
tf
− θi,tf )− ρViCthi

θi,tf − θi,tf−1

∆t

}]
+

∀tf ∈ T ,∀i ∈ I (22)

∆P stb,i,tf =



[
P cnb,i + P dnb,i ,

1
∆t

(
σb,i,tf −

[
σsetb,i,tf , σb,i

]
+

)]
−

∀tf ∈ T ,∀i, b if xcb,i,tf = 1[
P cnb,i ,

1
∆t

(
σb,i,tf −

[
σsetb,i,tf , σb,i

]
+

)]
−

∀tf ∈ T ,∀i, b if xcb,i,tf = xdb,i,tf = 0

0 ∀tf ∈ T ,∀i, b if xdb,i,tf = 1

(23)

πm,i,t =

∑T
t=tf

([
C

′

m,i,t −
(
Eg

′
m,i,t

Egi,t

)
Ci,t

]
+

+

[
Φ

′

m,i,t −
B∑
b=1

(
xd

′
m,b,i,t

xdb,i,t

)
Φi,t

]
+

+

[
Ω

′

m,i,t −
(
Pac

′
m,i,t∆t

Paci,t∆t

)
Ωi,t

]
+

)
δtotalm,i,tf

∆t
(26)
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t ≥ tf as indicated in Eq. (25f). The values of Ci,t, Φi,t, and
Ωi,t are calculated according to Eqs. (1) to (3) and Eqs. (14)
to (21).

3) Estimate reward rate for demand reduction: In the
final step, the required rewards for each incremental demand
reduction, δtotalm are estimated according to Eq. (26). Here, X ′

indicates the optimal value of X according to the reschedule
model in Eq. (25), i.e.:

X
′

m,i,tf
= arg minEq. (25) ∀m, i, tf (27)

The energy demand/supply from/to the grid is represented by
Eg in Eq. (26), i.e.:

Egt,i =
(
P+
t,i − P

−t, i
)

∆t ∀t, i (28)

The rationale of Eq. (26) is that a consumer should be
rewarded any additional electricity cost incurred due to
rescheduling for flexibility support. In addition to that, Eq. (26)
ensures that a consumer is rewarded any incidental storage
degradation and thermal discomfort cost incurred due to
reschedule.

IV. TE MARKET MECHANISM

The overall flowchart for the TE markets is illustrated in
Fig. 2. The LFM and WSDRM are event-triggered markets,
where LFM activates for transformer overloading (i.e. if
P txt > P tx) and WSDRM is active for any period when
wholesale tariff, πwst exceeds a threshold limit, πws. The
corresponding market operators broadcast flexibility requests
to the participating consumers for each market interval. The
consumers then generate their flex bids by comparing the
pre-schedule with a real-time reschedule at that time. Upon
receiving step-wise cost-quantity bid functions from the con-
sumers, the market operator of LFM and WSDRM clears the
corresponding market by minimizing total profit for them and
send dispatch signals to the consumers. The dispatch signal
includes the market-clearing tariff, π∗ and the selected bid,
δ∗i for each consumer, i ∈ I. Based on this, the consumers
then update their schedule if their flex bids are accepted. For
example, out of M demand reduction flex bid steps, if m-
th bid is accepted for a consumer i, it shall be rewarded
(π∗t×δm,i,t)$ for its flexibility support, where π∗t is the market-
clearing tariff at t for the local area the consumer i belongs
to. This is to be noted that, the market-clearing mechanisms
ensure that pi∗t > pii,m,t to guarantee profits for consumers’
flexibility support. If a flex bid for a particular consumer is
accepted, then the reschedule from the corresponding bid-
level (as shown in Eq. (25)) is used as the updated schedule.
The updated schedule is later used as a pre-schedule for flex
bid calculation for any subsequent transactions. The market-
clearing mechanisms for the LFM and WSDRM are discussed
in the following sections.

A. Local flexibility market (LFM)

LA coordinates the flexible consumers within its cluster and
manages the LFM. It procures demand reduction flexibility
of the consumers and provides grid-support service to the
LGO. We only consider transformer overloading prevention in

Fig. 2. Flowchart of the TE markets.

this paper, however, other grid-assistance services (e.g. local
voltage support) can also be incorporated into the proposed
TE model. The LA receives a reward for the flexibility service
based on the transformer aging cost due to overloading.

1) Transformer aging cost for overloading: The aging cost
of transformer can be calculated according to the hottest-spot
temperature model of IEEE standard C57.91-2011 [27], which
specifies hottest-spot temperature, θH as:

θHt = θot + ∆θRT
[
K2
tR+ 1

R+ 1

]
+ ∆θRHK2

t ∀t (29)

here, R is the ratio of rated-load loss to the no-load loss. The
rated-load temperature rise beyond the ambient temperature,
θo in the tap-oil and winding hottest spot are represented
by ∆θRT and ∆θRH respectively, whereas for a maximum
transformer capacity of P tx kW, the load factor, K can be
written as:

Kt =
P txt
P tx

(30)

P txt =
∑
i∈I

(
P+
i,t − P

−
i,t

)
+
∑
j∈J

P ilj,t ∀t (31)

where, P tx is the aggregated transformer load, and P ilj is the
power demand of the traditional consumers j ∈ J , without
any flexible resources.

The transformer-aging acceleration factor, A can be ex-
pressed as a function θH as [27]:

At = exp

[
15000
383 −

15000

θHt +273

]
∀t (32)
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Therefore, considering a transformer with replacement cost of
Ctx and normal insulation life of N hours, the overloading
cost can be calculated as:

Γt = Ctx
At∆t
N

∀t (33)

2) Market clearing of LFM: The market-clearing problem
of the LA is formulated as an optimization model to maximize
profit as follows:

max
y

Γt − π∗t
∑
m,i

ym,i,tδ
total
m,i,t∆t

 ∀t (34a)

s.t.
∑
m

ym,i,t ≤ 1 ∀i, t (34b)

π∗t = max {ym,i,t × πm,i,t} ∀t (34c)∑
m,i

ym,i,tδ
total
m,i,t ≥ ∆P txt =

[
P txt − P txt

]
+
∀t (34d)

here, the first part of the objective function in Eq. (34a) is
the rewards received from the grid operator and the second part
is the flexibility procurement cost. Therefore, it maximizes the
profits for the local aggregator. The binary variable y indicates
the accepted flex bids of the consumers that leads to maximum
profits for the aggregator, and the constraint in Eq. (34b)
ensures that maximum one bid is selected from a particular
consumer. The market-clearing price, π∗ is considered as the
maximum reward-tariff from the accepted flex bids (as indi-
cated in Eq. (34c)) to maintain fair distribution of flexibility
reward among consumers. The constraint in Eq. (34d) ensures
that total procured demand reduction flexibility is at least the
same as the transformer overloading.

B. Wholesale demand response market (WSDRM)

During a DR event, the WDRSP requests demand reduction
flexibilities to the participating DRAs (k ∈ K), who then
broadcast flex bid requests to the participating consumers
(i ∈ I) via LAs (n ∈ N ). Consumers submit their flex
bids according to the methodology presented in Section III.
Consumers’ flex bids are aggregated in two-stages, first locally
by LAs and then centrally by the DRAs, who then submit
aggregated transactive DR bids to the WDRSP. The WSDRM
is cleared by WDRSP with the main objective of minimizing
the DR rewards for the required demand reduction. Therefore,
the objective of WDRSP can be written as:

min
z

πDRAt

∑
m,k

zm,k,tδ
agg
m,k,t∆t ∀k (35a)

s.t.
∑
m

zm,k,t ≤ 1 ∀t, k (35b)∑
m,k

zm,k,tδ
agg
m,k,t ≥ ∆PDRt ∀t (35c)

πDRAt = max{zm,k,t × πt,m,k} (35d)

here, the binary variables z determine the accepted DRA bids
from the aggregated bids, δaggm,k,t for DRA, k ∈ K, and ∆PDRt

is the required demand reduction for the DR event at time, t.

Eq. (35b) ensures that maximum accepted bid for a DRA is
one, and the DR rewards are distributed fairly at πDRAt ¢/kWh
among accepted DRAs according to Eq. (35d).

Once the whole-sale DR market is cleared, the DRAs
(whose DR bids are accepted for demand reduction) distribute
the required demand reduction, δ∗t,k among the participating
consumers by minimizing the total rewards for consumers’
flexibility subject to local grid constraints, which can be
written as:

min
y

∑
n

πLAn,k,t
∑
m,i

ym,i,n,k,tδ
total
m,i,n,k,t∆t ∀t, k (36a)

s.t.
∑
m

ym,i,n,k,t ≤ 1 ∀t, i, n, k (36b)∑
m,i,n

ym,i,n,k,tδ
total
m,i,n,k,t =

∑
m

zm,k,tδ
agg
m,k,t ∀t, k (36c)

πLAn,k,t = max{ym,i,n,k,t × πm,i,n,k,t} ∀t, n, k (36d)

P txn,k,t −
∑
m,i

ym,i,n,k,tδ
total
m,i,n,k,t ≥ P txn,k ∀t, n, k (36e)

here, the binary variables y indicates the accepted flex bids
of the consumers for the DR event, and πLA is the clearing
tariff for the flexibility support for the consumers within a
LA. Eq. (36c) is the power balance equation that distributes
the required demand reduction of a DRA within its LAs.

V. NUMERICAL VALIDATION

A. Simulation setup

The proposed methodology is validated via simulation stud-
ies considering different participation levels of residential con-
sumers. The following sections discuss the input parameters
and setup for the case studies used to numerically validate the
proposed method.

1) Market parameters: For the nested TE market, each
local area is considered to be consist of 100 consumers,
who are supplied by a 400 kVA distribution transformer and
coordinated by an LA. A total of 100 such LAs are considered
to be coordinated by a DRA, and 100 identical DRAs are
considered resulting in a total consumer of 1 Million. All the
consumers are considered to be offered the same time-varying
tariffs for demand and supply, which are shown in Fig. 3. The
time-of-use (TOU) demand tariff and feed-in-tariff (FIT) used
in this paper are estimated from the average tariffs offered by
the major retailers in New South Wales, Australia [10].

2) Consumer parameters: Synthetic profiles of consumers’
inflexible load demand are generated by applying appropriate
distribution fitting to the Smart-Grid Smart-City (SGSC) cus-
tomer trial data [28]. It is assumed that non-flexible consumers
(who do not have any flexible loads or resources) do not have
any incentives to participate in the TE market. Therefore, only
the flexible consumers are considered to be participating in the
proposed TE market. The flexible consumers are considered
to be equipped with a rooftop solar PV unit, an EV with
V2G and V2B functionality, an ESS, and an AC. The PV
units are considered with a maximum installed capacity of
1.5-6 kWp, and their generation profiles are generated from
the distribution fitting of roof-top solar PV data in [29].
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Fig. 3. Simulation input data (tariff and temperature profiles.)

The EV batteries are considered with 18-100 kWh maximum
capacity, with rated charge-discharge power ranging from
2.8-6.6 kW and round-trip efficiencies of 90-95%. The EV
availability, SoC requirements before departure, and energy
used for daily commute are approximated from the SGSC
EV trail data [30]. The ESS units are considered with 4-10
kWh storage capacity, 1-4 kW rated charge-discharge power,
and the charge-discharge efficiencies are considered as 95-
98%. The capacities of ACs are considered as 2.5-6 kW
with COP ranging from 2.5-3. The consumer buildings are
considered with 120-250 m2 effective floor area in 1-2 levels
representing typical detached and semi-detached suburban
houses of the region. The thermal parameters of the buildings
are estimated from [15] considering different building surface
areas and occupancy levels. The storage replacement costs are
considered as 500 $/kWh for both ESS and EV battery. For the
piecewise linear model of Eq. (15), 10 linear line segments are
found sufficient as it gives less than 0.001 root-mean-squared-
error (RMSE) for c1 = 5.024E − 4 and c2 = 2.03 [10], [15].

3) Case studies setup: The simulations are run with discrete
periods of 5 min, which is the same as the bidding period of
regional wholesale market. The simulations are run for a hot
summer day (14 January 2016), and the outdoor temperature
profiles for the day is shown in Fig. 3. Due to the higher
mid-day temperature, the wholesale electricity tariff reached a
record peak on this specific day. For this reason, this specific
day is used for simulation studies to evaluate the effectiveness
of the proposed method in an extreme situation.

Based on the input parameters the pre-schedule is first
generated for the flexible consumers, and when the aggregated
transformer load for an LA exceeds its rated capacity, the
participating consumers within the LA are asked to submit
their flex bids. Consumers’ flex bids are generated by com-
paring the real-time reschedule with their pre-schedule. Then
the LA clears the LFM, sends the market-clearing signal
to the consumers, and the consumers update their schedule
accordingly. For the LFM, the transformer replacement cost is
considered as 30000$ AUD [31] with an insulation life of 15
years [32]. The transformer parameters R, θRT , and θRH are
considered as 6, 45◦ C, and 35◦ C respectively [32], [33].

On the other hand, the DRAs aggregates consumers’ flex
bids and submit aggregated DR bids to WSDRSP during
wholesale DR events WSDRSP clears the WSDRM, and the
DR rewards are distributed to the DRAs, LAs and consumers

Fig. 4. Required demand reduction for transformer overloading.

according to methodology discussed in Section IV-B.
Matlab distribution fitting toolbox is used to generate the

distributions of datasets in [28]–[30], which is then used to
generate profiles for 1 Million consumers. The flex bids for
the WSDR event are also generated in a similar way from the
simulated datasets of 10000 consumers. All the optimization
problems are formulated as mixed-integer programming (MIP)
problems in General Algebraic Modeling System (GAMS)
and solved using Baron solver with an absolute and related
optimality gap of 0. GAMS Data Exchange (GDX) is used
to interface between Matlab and GAMS. The optimization
problems for consumers’ flex bidding took less than 1 second
and none of the market-clearing optimization problems took
more than 2 seconds on an Intel Core i7 3.40 GHz computer
with 16 GB of RAM.

Different case studies are conducted by running the simu-
lations of the LFM and WSDRM for different participation
levels of consumers. The consumer participation level repre-
sents the percentage of the total consumers within the area
that participate in the TE market. It is noteworthy that only
flexible consumers are considered to be participating in the TE
markets. Therefore, consumer participation levels also indicate
the percentage of flexible consumers to total consumers.

B. Results of local flexibility trading

The simulation results of the local flexibility trading for
transformer overloading of a local area are discussed in this
section. The demand for non-flexible consumers is considered
known and estimated from the SGSC data [28]. On the other
hand, the power profiles for flexible consumers (including
consumption and grid-supply) are calculated according to the
pre-schedule model discussed in Section III-A based on the
input data discussed in Section V-A. The aggregated demand
for the local area is then calculated and the required demand
reduction, ∆P txt is calculated according to Eq. (34d).

Fig. 4 illustrates the total required demand reduction to
prevent transformer overloading for the whole day with dif-
ferent percentages of flexible consumers within the local area.
It can be seen that the required demand reduction decreases
as the consumer participation level increases from 10% to
50%, however, beyond that, it starts increasing and eventually
reaches almost 100kWh for 100% of consumer participation
level. It is to be noted that the consumer participation level also
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indicates the percentage of flexible consumers. The flexible
consumers utilize the demand shifting flexibility of AC and
storage units (including ESS and EV battery) to minimize
energy consumption during peak hours. As a result, Fig. 4
indicates that the transformer overloading decreases in peak-
tariff hours as the percentage of flexible consumers increases.
On the other hand, a higher percentage of flexible consumers
result in more transformer overloading in off-peak tariff hours
as the flexible consumers schedule their EV charging in off-
peak hours to minimize electricity costs. A few instances of
transformer overloading are also noticed in shoulder tariff
periods. For a lower percentage of flexible consumers, these
shoulder-period overloading instances are due to inflexible
AC consumption of non-flexible consumers during mid-day.
However, as the flexible consumers increase in number the
AC consumption during mid-day is slightly reduced due to
the flexible operation of AC. As a result, nil or negligible
overloading instances are noticed during mid-day for flexible
consumers’ percentage of 30% to 50%. However, as it exceeds
60% a few overloading instances were noticed in the second
shoulder period (20 - 22h) due to EV charging as most EVs
arrive home by this time and start charging once the peak-tariff
periods passed.

It can also be seen that the required demand reduction is
zero for this LA when 50% of the consumers have flexible
resources. It can vary for different LAs and also depends on the
consumers’ demand used for simulation studies. However, it
gives an insight that the impact on the transformer overloading
can be minimized if there is an even distribution of flexible
and non-flexible consumers. This is because the DER units and
flexible loads of flexible consumers in this case help reduce the
aggregated peak demand of the network. However, for lower
penetration levels of DER and flexible loads transformer can
be overloaded, especially during peak-tariff periods as non-
flexible consumers consume more during the evening when the
tariff is at its peak. On the other hand, higher adoption levels
of DER and flexible loads can effectively prevent demand-
peaks during peak-tariff periods due to optimized scheduling,
however, it can often cause rebound peaks when electricity is
cheaper.

This required demand reduction is procured in the LFM by
utilizing consumers’ flexibility. The distribution of consumers’
reward for their support are illustrated in Fig. 5 along with their
demand reduction or energy-supply support in kWh. In case
of lower participation levels, fewer consumers are providing
support, therefore, the average support per consumer is higher
compared to the case of higher consumer participation levels as
more consumers are providing support in these cases making
the average support per consumer lower. As a result, it can
be seen that consumers receive a comparatively higher reward
on-average when only 10% of consumers participate in the
TE market as the market-clearing tariff is higher in this case
due to fewer available flex bids. On the other hand, for the
consumer participation level of 20% to 100%, their reward is
proportional to the total required demand reduction.

The overall profits for all involved stakeholders of the LFM
are shown in Fig. 6. It can be seen that the transformer
overloading cost (solid red line) and the total consumer

Fig. 5. Distribution of consumers’ reward and associated flexibility support.

Fig. 6. Overall profit of local flexibility trading.

rewards (indicated by gray fill) are proportional to transformer
overloading. On the other hand, the difference between these
two is the profit for the LA, which is 12-26$ depending on
consumer participation level.

Figs. 5 and 6 illustrate that the median reward rate of an av-
erage consumer is 1.5-2.1 $/kWh, which is 10-14 times higher
than the existing peak-FIT and 2.8-4 times higher than the
peak-TOU tariff. The simulation results also indicate that the
proposed LFM methodology would allow the LGO to prevent
transformer overloading at a lower cost than the transformer
aging cost if the LGO directly procures consumers’ flexibility.
On the other hand, when the LA coordinates the LFM, it
receives at up to 26$/day, while LGO’s flexibility procurement
cost never exceeds the transformer aging cost even when 100%
of the consumer buildings are equipped with EVs. Therefore,
it can be argued that the proposed LFM methodology provides
significant profits to all the involved stakeholders.

C. Results of wholesale DR trading

The wholesale energy price for the region peaked at
5,022.74$/MWh for the period 13.30h to 14.00h on the 14th
of January, 2016 [34], whereas the weekly volume-weighted
average wholesale price of that week were 87$/MWh for the
region [35]. The main reasons behind this high price peak are
higher AC demand due to extreme heat, and unplanned outage
of a 344MW generation unit [34]. The cheaper generators
took 30min to ramp-up and provide necessary generation,
therefore, the dispatch price reduced below average after
14h [34]. Therefore, the case studies were conducted for 6
dispatch periods between 13.30h to 14.00h to evaluate the
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Fig. 7. Average WSDRM tariff and distribution of consumer reward for 6
dispatch periods between 13.30h to 14.00h on 14 January, 2016.

effectiveness of the proposed method. Determining flex bids
for 1 Million consumers for 6 dispatch periods would be
highly time consuming. Therefore, the flex bids are gener-
ated for the consumers coordinated by a DRA (a total of
100 × 100 = 10000 consumers) for the 6 dispatch periods.
Then their distributions are used to scale up for all 1 Million
consumers to reduce computation time.

Fig. 7 depicts the wholesale DR tariff for procuring 344MW
of generation shortage from the proposed TE market. The
tariffs represented by the solid black line indicate the average
WSDRM clearing price for the 6 dispatch periods. Fig. 7
indicates that the shortage generation can be purchased at
one-fourth of the wholesale price with just 10% of consumer
participation in the TE-based DR market. Moreover, the tariff
for procuring the shortage generation decreases as consumer
participation level increases, and it drops below 400$/MWh
when 1 Million consumers participate in the proposed TE
market, which represents less than half of the total residential
consumer of the region. On the other hand, this shortage gener-
ation can be bought cheaper when consumers’ flexibilities are
directly procured by the WDRSO, as indicated by the dashed
black line in Fig. 7. The DR tariff drops to about one-third in
this case, however, this comes with additional communication
complexity and higher infrastructure investment cost as the
WDRSO needs to coordinate and directly communicate with
a large number of consumers [26]. On the other hand, the
distribution of rewards received by the consumers for their
flexibility support during this DR event is also shown in Fig. 7,
which expectedly decreases as consumer participation level
increases.

The DR reward for an average consumer is compared with
its flexibility support in Fig. 8. The positive bars in the figure
indicate the consumer’s reward in $, whereas the negative bars
represent its net energy reduction (including energy supply)
for the 6 dispatch periods between 13.30h to 14.00h. The
portion of energy reductions from the AC and storage units
are distinguished by different colors in the figure, whereas
the received reward is broken down into degradation cost for
storage units, penalty cost for thermal discomfort, and the ac-
tual profit of flexibility support, each represented by different
colors. The outdoor temperature is too high during 13.30h to
14.00h, therefore, the thermal discomfort per kWh AC energy
reduction is higher compared to the degradation cost per kWh

Fig. 8. Comparison between reward and flexibility support of an average
consumer in the WSDRM

energy reduction (or supply) from the storage units. Therefore,
the proposed bidding methodology bids higher rewards for
AC energy reduction compared to the energy reduction (or
supply) from the storage units. Due to fewer flex bids for lower
consumer participation levels, higher-priced bids are accepted
to provide the necessary support, therefore, both the AC and
storage units are selected for flexibility support in such cases.
Consequently, it can be noticed that the consumer received a
higher reward compared to kWh support for lower consumer
participation levels. However, as the consumer participation
level increases beyond 60%, the available flex bids become
more than the required kWh support, therefore only lower-
price bids are accepted. As a result, the consumer received less
reward in such cases, and only the storage units are selected
for energy reduction (supply) in such situations. Nonetheless,
results illustrate that the consumer achieves more profit com-
pared to net storage degradation and thermal discomfort cost
by participating in the TE market, and the net profit is always
higher than the energy-supply incentives according to existing
FIT and TOU tariffs.

D. Discussion

An integrated demand-side flexibility trading model is pre-
sented in this paper based on a nested TE market architecture.
Compared to traditional DR or DSM strategies, the proposed
TE market-based framework offers an economic flexibility-
trading method for all involved stakeholders. It maximizes the
welfare (or minimizes cost) for both the LGO and participating
consumers while providing them with full-autonomy. The
proposed market framework reserves consumers’ privacy as
they only share their flexibility bids with the associated cost.
Contrary to game-theoretic methodologies in [18], [24], [25]
and most TE-based models found in the literature [5], [7], [14],
[17]–[20], the flexibility bidding strategy of this paper offers
the consumers with full decision-making authority by allowing
them to actively bid for transactive trading. Unlike [5], [7],
[14]–[18], [18]–[20], [22], [24], the proposed bidding strategy
allows the consumers to act as a price-giver thereby encour-
ages more consumer participation and increases their prof-
itability. In addition to that, the single bidding- and clearing-
based market operation of the proposed method requires
less communication between market participants compared to
iterative market-settlement of game-theoretic models in [18],
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[25]. Moreover, the mixed-integer programming (MIP)-based
market-clearing of this paper can be solved using ‘off the
shelf’ optimization solvers within feasible time. Besides, it can
be easily implemented in embedded devices and incorporated
into a residential energy management system for real-world
applications.

The efficacy of the proposed method is validated via detailed
numerical studies and analyses considering various consumer-
participation levels in the proposed TE market. Consumer
participation is highly affected by various socio-economic and
environmental factors, such as potential economic incentives,
peer-pressure, caring for green energy, and so on [36]. There-
fore, consumer-participation levels tend to drop as potential
financial gain decreases in reactive methodologies, where con-
sumers react to reward or incentive signal forwarded by grid
entities (or market) [11], [36]. However, the proposed bidding
strategy of this paper allows consumers to bid pro-actively the
reward for their potential flexibility support. The flexibility
bids are modeled as multi-step price-quantity bids indicating
different levels of demand-reductions with associated asking
reward. The asking reward of a particular consumer for a
specific flexibility support level (i.e. demand reduction) is
calculated according to Eq. (26), which ensures that the asking
reward is always higher than the additional incurred (if any)
electricity cost, storage degradation, and thermal discomfort.
Therefore, it is always economically beneficial for a consumer
even if its lowest bid is accepted in the market. In addition
to that, as indicated in Eqs. (34c) and (35d), the market-
clearing prices are set at the highest asking reward among the
accepted flex bids to ensure a fair distribution of reward among
consumers, whose flexibilities are activated by the market
operators for addressing transformer overloading or wholesale
price-spikes. Therefore, the proposed market mechanism of the
proposed paper increases the profitability of the participating
consumers, thereby influencing their active participation.

Case studies also indicate that the flexibility procurement
is more economical from the market’s or grid operator’s
perspective with higher consumer participation levels. This
is mainly because of the availability of economic flexibility
options with higher participation of consumers. The case
studies in Sections V-B and V-C were conducted for a summer
day, therefore, the flexibility support by curtailing AC power
consumption would lead to higher thermal discomfort for the
consumers compared to the storage degradation associated
with the same demand-reduction (or supply increase by dis-
charging) from storage units. Therefore, the first few levels in
the consumers’ flex bids represent potential flexibility support
from storage units, and they only bid to curtail AC con-
sumption if it does not violate thermal constraints of Eqs. (6)
and (7). However, the asking reward of the consumers is higher
for demand-reduction levels with AC power curtailment. As a
result, when fewer consumers participate in the TE markets,
then their higher demand-reduction levels are activated (i.e.
higher flexibility support required from each consumer to meet
the market objectives), which requires expensive flexibility-
support from AC. On the other hand, as the number of
consumers increases, their flexibility support from storage
units is sufficient to meet the market demand, hence, an

average consumer receives less reward as indicated in Fig. 7.
However, their rewards still exceed thermal discomfort and
storage degradation as shown in Fig. 8.

VI. CONCLUSION

This paper presents a nested TE market framework for
optimal utilization of demand-side flexibility of the residential
consumers. Optimal bidding strategy is presented for the resi-
dential consumers with DER and flexible loads that minimizes
energy cost, storage degradation, and thermal discomfort.
Optimization-based market models are developed to trade
demand-side flexibility in a nested TE market for addressing
transformer overloading and reducing wholesale price peaks
when system-level supply is jeopardized. Detailed simulation
studies indicate that the proposed method can economically
prevent the transformer overloading irrespective of consumer
participation levels. Simulation results also illustrate that the
demand-side flexibility trading of the proposed methodology
is more economic than the wholesale price during the unpre-
dicted and unexpected outage of generation units or excess
demand. Moreover, the proposed bidding strategy allows the
consumers to trade their flexibility at a higher rate compared
to existing FIT or TOU of the regional retailers while consid-
ering their thermal discomfort and storage degradation for the
flexibility support.

However, the interaction and competition among the ag-
gregators are considered out of the scope of this paper, and
the actual wholesale tariff reduction is not quantified as it
would require a rigorous bidding model of wholesale suppliers.
Besides, the consumer engagement in such a TE market
can be largely influenced by many socio-economic factors
other than financial gains. These will be considered in future
researches by the authors. The proposed market framework
is scalable, therefore, another interesting avenue for future
research can be integration of other grid-assistance services
into the market framework, such as local voltage violation
support and ancillary grid services.
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