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Scaling Up Cooperative Game Theory Based
Energy Management using Prosumer Clustering

Liyang Han, Student Member, IEEE, Thomas Morstyn, Member, IEEE,
and Malcolm D. McCulloch, Senior Member, IEEE

Abstract—Game theory based energy sharing schemes emerged
in recent years to incentivize efficient management of the in-
creasing amount of distributed energy resources. Among these,
cooperative game theoretic schemes provide detailed financial
incentives on the individual prosumer level. The nucleolus, a
mechanism to allocate these financial incentives, has been proven
to guarantee the prosumers’ willingness to participate. However,
the computation time of the nucleolus increases exponentially
with the number of participants, strictly limiting the size of this
scheme. This study proposes to incorporate clustering techniques
to estimate the nucleolus at reduced computation times, where
a novel marginal contribution profile is used as the clustering
features. A stratified random sampling based approach is for-
mulated to evaluate the estimation performance, showing that
the proposed method is able to scale up the cooperative energy
management scheme from less than 15 players to over 100 players
while maintaining high accuracy of the nucleolus estimation.

Index Terms—Prosumers, energy management, cooperative
game theory, nucleolus, clustering, sampling, energy storage

NOMENCLATURE

i Prosumer index.
j Cluster index.
m Stratum sample size for estimation evaluation.
t Timestep.

————————————————————–
α Mixing probability in a Gaussian Mixture Model.
δ Stratified sampling convergence threshold for eval-

uating nucleolus estimation.
∆F Grand coalition marginal contribution profile.
ε Excess of a coalition.
ηin Charge efficiency of energy storage units.
ηout Discharge efficiency of energy storage units.
θ Components in a Gaussian Mixture Model.
µ Mean vector of a Gaussian Distribution.
ν Nucleolus payoff allocation.
π(N ) Set of all possible permutations with N .
Σ Covariance Matrix of a Gaussian Distribution.
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b Charge (positive) or discharge (negative) energy of
energy storage units.

b Discharge limit of energy storage units.
b Charge limit of energy storage units.
c Centroid feature profile.
cl Cluster of prosumers.
e Energy capacity of energy storage units.
f Feature profile for clustering.
F Coalitional energy cost.
g Cluster assignment of prosumers.
GR Minimized coalitional energy cost.
K Total number of clusters.
Mil Set of permutation samples from Pil of size m.
N Number of prosumers in the grand coalition.
N Prosumer grand coalition.
O A permutation of N .
Pil Set of all O’s that assign player i to position l.
Prei Set of predecessors of the player i in any O.
q Net energy consumption (positive) or generation

(negative) without energy storage.
R Total number of timesteps.
rex Export price of energy.
rim Import price of energy.
Rm Combined set of all Mil,∀i, l ∈ [1, N ].
Si Set of coalitions of clusters with each element

being the joint coalition of i and a coalition in Ui.
SoC0 Initial state of charge of energy storage units.
SoC State of charge lower limit of energy storage units.
SoC State of charge upper limit of energy storage units.
T Prosumer coalition.
TclK Prosumer coalitions for nucleolus estimation.
TN Set of all the possible coalitions in an N -player

cooperative energy management scheme.
U Set of cluster indices for a coalition of clusters.
Ui Set of coalitions of clusters that do not contain i.
v Value of a coalition.
x Prosumer payoff allocation.

I. INTRODUCTION

D ISTRIBUTED energy resources (DER) are enabling
electricity consumers to more actively control their en-

ergy behaviors [1]. These proactive consumers with DER
are known as prosumers [2]. However, distributed energy
generation (e.g. PV, wind) is often intermittent and hard to
predict, leading to reliability issues in the distribution networks
[3]. Energy storage (ES), due to its arbitrage ability, has been
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identified as a useful tool to address this [4]. Energy prices are
often structured to inform ES owners on how to schedule their
ES units, and they can be adopted by individuals or shared on
a community scale [5].

Prosumer-centric local energy markets emerged in recent
years as an economic solution for coordinating flexible re-
sources, such as ES, in the distribution network [6]. Under
the common assumption that the price to export energy back
to the grid is lower than the price to import [7], they create
economic benefits for the prosumer participants by allowing
them to trade or share energy within the local market.

Assuming prosumers are free to choose the market action
that yields the best economic outcome for themselves, game
theory, as a subject to study strategic situations, has been
widely adopted as the theoretic framework for these prosumer-
centric markets.

Non-cooperative game theory based schemes rely on dy-
namic pricing of energy [8]. The iterative communication
between the electricity suppliers and the end users converges
to the real-time prices, or the Nash equilibrium [9], from which
no player can be financially better off deviating. However, non-
cooperative games lack protection against market manipulation
[10], and they do not consider alternative, and potentially
economically preferable, market solutions for the subsets of
participants, causing concerns about market stability [11].

Cooperative game theory, on the other hand, focuses on the
fairness and the level of incentive of the profit allocation [12].
A cooperative game theoretic scheme for local energy trading
was first proposed in [13], offering prosumer participants
stabilizing payoffs, meaning that no prosumer or coalition
can be financially better off by leaving the grand coalition,
which contains all the prosumers considered for the scheme.
However, ES operation was not considered in this scheme.
Considering multi-period time-of-use prices for both importing
and exporting energy, [14] constructs a cooperative energy
management scheme allowing ES units to actively participate
in the market. It was proven in [11] that the nucleolus, a payoff
allocation that minimizes the dissatisfaction of coalitions, is
stabilizing.

However, as the number of prosumers in this cooperative
energy management scheme increases, the nucleolus becomes
computationally intractable, because 1) it requires solving
convex optimization problems to calculate the values of all
coalitions, the number of which is an exponential function
of the number of prosumers [15]; 2) given the values of all
coalitions, the number of iterative steps required to compute
the nucleolus is also an exponential function of the number of
prosumers [16]. A stabilizing payoff allocation in an analytical
expression was proposed in [17], and a worst-case excess
method was used in [18] to compute a partial nucleolus.
However, both of these payoff allocations only address the
second computational problem, leaving the coalition value
calculations still intractable for large games. Among all the
case studies for the cooperative energy management scheme
in [11], [17], [18], the highest number of players shown is 15.

In the energy sector, clustering is often used to iden-
tify typical load patterns for energy pricing structure design
[19] and electric load forecasting and management [20].

Considering the payoffs derived from the nucleolus of the
cooperative energy management scheme heavily depend on
the participants’ consumption and generation profile patterns,
clustering is therefore a promising technique to help estimate
the nucleolus and overcome its computational challenges.

To speed up the nucleolus computation, the authors’ pre-
vious work [21] uses K-means clustering to group prosumers
into a reduced number of players, named clustered players.
Instead of computing the nucleolus for individual prosumers,
the nucleolus for these clustered players is computed, which
is then divided within the clustered players. However, for a
lack of means to distinguish the contributions of individual
prosumers within each clustered player, the in-cluster payoff
division is arbitrary, which results in individual payoffs devi-
ating significantly from the actual nucleolus.

To scale up the cooperative energy management scheme
while maintaining a high accuracy of nucleolus estimation,
this study proposes a new clustering based method, which
directly estimates the nucleolus for individual prosumers.
For categorizing energy load patterns, K-means clustering
is widely used as a reliable baseline clustering technique
[22], but hierarchical clustering and Gaussian mixture model
(GMM) are shown to have superior performances measured
by the Clustering Validity Indexes (CVIs) according to [23].
K-means, hierarchical, and GMM are chosen in this study to
demonstrate the effectiveness of the proposed method, but the
method can incorporate a wide range of clustering algorithms.

It is recognized that the CVIs, albeit standard metrics to
evaluate clustering techniques, cannot measure the estimation
accuracy of the proposed method. Knowing that the nucleolus
is a stabilizing payoff allocation, this study proposes the
novel use of stratified random sampling [24] to evaluate
the estimation performance by testing the stability that the
estimated nucleolus introduces to the market scheme.

The novel contributions of this study include:
• a clustering based method to estimate the nucleolus of

all prosumer participants in the cooperative energy man-
agement scheme. This method can incorporate a range
of clustering techniques, and significantly improves the
scalability of the cooperative energy management scheme
proposed in [11], [17], [18].

• the formulation of the grand coalition marginal contribu-
tion profile as the clustering feature vector. It significantly
improves the nucleolus estimation accuracy by capturing
effectively prosumers’ individual traits that are closely
linked to their nucleolus payoffs.

• a performance evaluation approach based on a stratified
random sampling technique. It is used to compare the es-
timation performances of different clustering techniques
coupled with different clustering features.

II. THE COOPERATIVE GAME THEORY BASED ENERGY
MANAGEMENT SCHEME

Prosumers are defined as proactive consumers who actively
control their energy behaviors in [2]. This study takes on a
broader definition and considers a prosumer as any energy
consumer who is financially incentivized to participate in a
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local energy management scheme. Cooperative game theory
offers a framework to coordinate the energy operation of
prosumers within a distribution network while offering them
financial rewards for participation.

The cooperative game theory based energy management
schemes proposed in [11], [17], [18] all define the value
of forming coalitions as the energy cost savings from joint
prosumer energy management within those coalitions. Overall,
these prosumer energy management schemes follow three key
steps: Step 1 is to establish the objective of cooperation, which
is to optimally schedule the ES units and flexible loads to
minimize the joint energy cost; Step 2 is to quantify the
value of forming each coalition by calculating the energy
cost savings from cooperative energy management; Step 3
is to calculate the individual payoffs by allocating the grand
coalition energy cost savings to the participating prosumers.
These three steps are detailed in the following subsections
respectively. The presented framework is representative of,
and can be adapted to, a range of cooperative game theoretic
schemes applied in joint energy management.

A. Coalitional Energy Cost
In an N -prosumer cooperative energy management scheme,

the set of all N prosumers is defined as the grand coalition
N = {1, 2, ..., N}. Each prosumer is indexed by i : i ∈ N .
Any subset of the grand coalition T : T ⊆ N is called a
prosumer coalition. Note that a set of a single player {i} is
also considered a coalition. Given R timesteps (t = 1, 2, ..., R)
with a time interval of ∆t, the coalitional energy cost for T
at timestep t is written as

F Tt (b) =
∑
i∈T

{
rimt [qit + bit]

+ + rext [qit + bit]
−
}

(1)

where [z]+ = max(z, 0), [z]− = min(z, 0), and subscripts
i and t are indices for the players and the timesteps. The
electricity import price rimt (£/kWh) and export price rext
(£/kWh) are known parameters, as well as qit (kWh), which
denotes the net energy consumption (positive) or generation
(negative) over ∆t without ES. The variables are ES charge
(positive) or discharge (negative) energy amounts (kWh) over
∆t, denoted by b = [bit],∀i ∈ [1, N ],∀t ∈ [1, R].

With the increasing penetration of distributed generation,
the price to export energy has largely fallen below the price to
import energy [7]. With the assumption that both the electricity
import and export price structures can vary with time as long
as rimt > rext ,∀t, the operation of ES units within coalition T
can be scheduled to minimize the coalitional energy cost:

GR(T ) = min
b

R∑
t=1

F Tt (b) (2)

s.t. bi ≤ bit ≤ bi, ∀i ∈ T ,∀t ∈ [1, R] (3)

eiSoCi ≤ eiSoC0
i +

r∑
t=1

([bit]
+ηini + [bit]

−/ηouti )

≤ eiSoCi, ∀i ∈ T ,∀r ∈ [1, R] (4)
R∑

t=1

([bit]
+ηini + [bit]

−/ηouti ) = 0, ∀i ∈ T (5)
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Fig. 1: 20 Prosumer loads: (a) individual load consumptions; (b)
individual consumptions + PV generations; (c) blue dotted: joint
consumption + PV generation, green: joint non-cooperative ES
operation, red: joint cooperative ES operation; (d) blue dotted:
joint consumption + PV generation, green: joint consumption + PV
generation + non-cooperative ES operation, red: joint consumption +
PV generation + cooperative ES operation.

where (3), (4), and (5) set the ES power constraints, energy
constraints, and cycle constraints1 respectively. Each prosumer
i’s ES system has an energy capacity (kWh) of ei ≥ 0, a
charge limit (kWh) of bi ≥ 0 and a discharge limit (kWh)
of bi ≤ 0 over the time span of ∆t, a charge efficiency of
ηini ∈ (0, 1) and a discharge efficiency of ηouti ∈ (0, 1), an
upper state of charge limit of SoCi ∈ [0, 1] and a lower state
of charge limit of SoCi ∈ [0, 1], and an initial state of charge
of SoC0

i ∈ [0, 1]. For a prosumer without ES, their energy
capacity and charge/discharge limits are all set to zeros.

A 20-prosumer cooperative energy management example is
demonstrated in Fig. 1. The model inputs can be found in
Section V. It shows that in order to minimize the coalition
energy cost, the cooperative scheme tries to match consump-
tion and generation, which results in a flatter cooperative load
profile. The optimal scheduling of energy operation is based
on the predicted consumption and generation, and the impact
of the prediction uncertainties on the outcome of the model is
discussed in Case Study V-C.

The cooperative energy management scheme coordinates
resources within a local distribution network, which is not
expected to have significant losses and constraints between
prosumers. Additionally, due to the load flattening effect of
cooperation presented in Fig. 1, it is expected to reduce losses
and alleviate upstream congestion. The cooperative energy
management scheme focuses on the financial benefits for
the prosumers, which do not consider losses and network
constraints at this stage, but it would be an important area for
future work if the scheme was scaled across larger networks.

B. Value of Coalitions

Cooperative game theory is a framework for allocating the
profit from cooperation to the participants. It consists two main

1ES units are restored to their original states of charge at the end of each
simulation period to ensure that ES units are only a resource for arbitrage
instead of generation.
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tasks: 1) quantification of the value of cooperation within
coalitions; 2) allocation of the total profit achieved through
the grand coalition cooperation to all the participants. In a
cooperative energy management scheme, the value function
of a coalition is defined as the energy cost savings as a result
of forming the coalition:

v(T ) =
∑
i∈T

GR({i})−GR(T ) (6)

where
∑

i∈T G
R({i}) is the sum of the energy costs of all the

prosumers within coalition T by having them schedule their
DER operations to minimize their own costs, and GR(T ) is
the minimized coalitional energy cost achieved by having all
prosumers within coalition T schedule their DER operations
cooperatively. Using this definition, the value of the grand
coalition v(N ) is the total energy cost savings of a coopera-
tive energy management scheme, which determines the total
amount of payoffs that can be allocated to the participants.

C. Payoff Allocation and Nucleolus

Having obtained the total amount of payoffs, the next step
is to determine how to allocate it to each prosumer.

Vector x is denoted as the payoff allocation, and its entry
xi represents the payment to prosumer i ∈ N . Payoffs can be
allocated in various ways, but in order to attract participation,
a payoff allocation needs to be minimally

1) Efficient:
∑

i∈N xi = v(N ). This requires the entirety of
the profit created by the grand coalition to be allocated
to the prosumers.

2) Individually Rational: xi ≥ v({i}),∀i ∈ N . This
ensures that no prosumer is financially worse off.

However, even an efficient and individually rational payoff
allocation does not necessarily guarantee everyone being sat-
isfied in the grand coalition, as some players may be able to
achieve higher payoffs by forming smaller coalitions.

Definition 1 (Excess): An energy coalition’s dissatisfaction
with respect to x is measured by its excess defined as

ε(x, T ) = v(T )−
∑
i∈T

xi (7)

If ε(x, T ) > 0, it means the value of coalition T is higher
than the sum of the profits allocated to the prosumers within
T under the grand coalition payoff scheme x. Since v(T )
represents the energy cost savings that can be achieved for
coalition T alone by having its members cooperatively sched-
ule their DER operations, it signals that T is better off on
its own and can offer higher payoffs to its members than
the grand coalition. Reversedly, if none of the excesses are
positive, there is no incentive for any coalition to defect from
the grand coalition. Therefore, the excess is an indicator of
whether a payoff allocation is stabilizing, or can guarantee
the stability of the cooperative energy management scheme.

Definition 2 (Stabilizing): Given a payoff allocation x, it is
said to be stabilizing if ε(x, T ) ≤ 0,∀T ⊆ N .

The set of stabilizing payoff allocations for a cooperative
game is called the core. Two popular payoff allocations, the

Shapley value [25] and the nucleolus, are analyzed and com-
pared for the cooperative energy management scheme in [11],
which proves that the Shapley value is not in the core, while
the nucleolus is. In fact, the nucleolus is the only known payoff
allocation that actively validates the coalition dissatisfaction,
for its computation lexicographically minimizes excesses of
all the possible coalitions [26]. Therefore, this study only
discusses the computation of the nucleolus.

Algorithm 1 explains the iterative steps of lexicographically
minimizing the excesses of a given set of coalitions. In order to
compute the nucleolus ν, the set of all the possible coalitions
in an N -player cooperative energy management scheme is
denoted as TN := {T |T ⊆ N}. By setting T∗ = TN ,
Algorithm 1 outputs x∗, and ν = x∗.

Algorithm 1 Lexicographical Minimization of Excesses

T0 ← {N}, w(N )← v(N ), a← 1
while a ≤ 2N do

LPa : εa = min
xa,ε

ε

s.t.
∑
∀i∈T

xai
= w(T ), ∀T ∈ Ta−1 (8)

v(T )−
∑
∀i∈T

xai
≤ ε, ∀T ∈ T∗ \ Ta−1

(9)

Ta ← {T | v(T )−
∑
∀i∈T xai

= εa,∀xa}
w(T )← v(T )− εa,∀T ∈ Ta

Ta ← Ta−1 ∪Ta

if Ta = T∗ then
end while

else
a← a+ 1
continue while

x∗ ← xa

return x∗

Here, subscript a numbers each linear program (LP ) in the
iteration process. Constraints (8) ensure the efficiency criterion
of the payoff allocation, and fix the excesses of the coalitions
that have been minimized in all previous iterations. Constraints
(9) cap the excesses for all remaining coalitions at ε that is then
minimized in LPa. At the end of each iteration, all the binding
constraints among (9) are identified, with their corresponding
coalitions defined as Ta. Ta’s excesses are then fixed for all
subsequent iterations using (8).

D. Computational Complexity

The cooperative energy management scheme offers a way
to encourage DER collaboration while ensuring that all pro-
sumers are financially incentivized to remain in the grand
coalition. Its computation involves obtaining the grand coali-
tion profit v(N ) and allocating the profit to the participating
prosumers based on the nucleolus. The grand coalition profit
is calculated by solving cost minimization problems for the
grand coalition and all N prosumers using (2). The actual
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implementation of the grand coalition cooperation can be
through centralized or distributed control algorithms [27], [28],
but is outside of the scope of this study.

The problems needed for calculating the grand coalition
profit only make up a small portion of the nucleolus computa-
tion, whose complexity is two-folded. First, the values need to
be calculated for all possible coalitions, the number of which
is |TN | = 2N−1. Second, in solving for the lexicographically
minimal excesses of all coalitions, both the number of linear
problems and the number of constraints in each linear problem
are ∼ O(2N ). Both are closely linked to the number of
coalitions, so the key to reducing the computation time is to
limit the number of coalitions considered in the computation.

The nucleolus payoff each player receives is determined
by their contribution to the coalitions, which means players
of similar energy behaviors tend to receive similar payoffs.
Meanwhile, the value of cooperation relies on the matching of
generation and consumption within the coalition, which means
it is the heterogeneity within a coalition that creates value
for its members. By capturing the similarities and differences
among players, a reduced number of coalitions that are most
likely to be dissatisfied can be identified. It then becomes
possible to estimate the nucleolus by only minimizing the
excesses of these coalitions. For this purpose, Section III in-
vestigates the use of different clustering techniques to identify
similarities and differences, and Section IV explores the use
of these clustering techniques for estimating the nucleolus.

III. CLUSTERING TECHNIQUES FOR CLASSIFYING LOAD
PROFILES

Clustering algorithms for identifying load patterns have
been studied extensively in the literature [19], [20], [22], [23],
[29]. K-means clustering is often used as a baseline clustering
technique [22], [29], and a recent comparative study identifies
hierarchical clustering with ward linkage and Gaussian Mix-
ture Model (GMM) with a full-unshared covariance matrix
as the best performing clustering techniques in classifying
load profiles [23]. These three clustering techniques are used
to validate the performance of the proposed clustering based
method for nucleolus estimation, which is detailed in Section
IV. The purpose of choosing a selection of popular clustering
techniques is to demonstrate the effectiveness of the proposed
method; a comprehensive investigation of the best possible
clustering technique to use is left for future work.

For clarity, prosumers are grouped into K clusters, denoted
as clK := {cl1, cl2, ..., clK}, and the clustering assignment is
g : gi = j | i ∈ clj ,∀i ∈ N . Here, K is applicable for not
only K-means, but all clustering techniques.

A. K-Means Clustering

K-means clustering is a widely used data clustering tech-
nique for unsupervised learning tasks. It requires a prede-
termined number of clusters K, and an initial set of K
centroids usually chosen at random among the given instances.
Clustering is done through an iterative process of minimizing
the sum of all the squared errors between all instances and
their corresponding centroids. To cluster prosumers, the error

is measured by the Euclidean distance. The Euclidean distance
between Player i and Cluster clj’s centroid is defined as

d(fi, cj) =

√√√√ R∑
t

(fit − cjt)2 (10)

where fi denotes player i’s feature profile, and cj denotes
cluster clj’s centroid feature profile.

Each K-means iteration completes two tasks:
1) Assign each instance to the cluster with the closest

centroid profile:

gi ← arg min
j

d(fi, cj) (11)

2) Recompute the centroid profiles for each cluster based
on the instances assigned to it using:

cj = arg min
c

∑
i∈clj

d2(fi, c) =

∑
i∈clj fi

|clj |
(12)

where |clj | is the number of prosumers in Cluster clj .
These two tasks are repeated until the convergence criteria

are met, which either means no changes in cluster assignment
are observed or the number of iterations reaches the prespec-
ified limit. Assuming the maximum number of iterations is
set to itermax, the iterative steps of K-means clustering for
classifying feature profiles are detailed in Algorithm 2.

Algorithm 2 K-means Clustering of Prosumer Feature Profiles

Initialize cj ,∀j ∈ [1,K]
g0i ← 0,∀i ∈ N
for iter ∈ [1, itermax] do

for i ∈ N do
assign clusters: giteri ← arg minj d(fi, cj)

for j ∈ [1,K] do
compute centroids: cj ←

∑
i∈clj fi/|clj |

if giter = giter−1 then
end iteration.

return g, c

The random initial centroid selection coupled with this
iteration process often traps the solution in the local min-
ima, so it is advised to perform K-means repeatedly with
different randomized initializations and pick the run with
the lowest K-means objective function value denoted by
min

∑
i∈N d

2(fi, cgi). In this study, K-means clustering is run
1000 times with different initial centroids. Fig. 2 shows an
example of 100 prosumers grouped into 6 clusters based on
their grand coalition cooperative energy profiles.

B. Hierarchical Clustering

Unlike K-means clustering, hierarchical clustering can be
performed deterministically without a preset total number of
clusters [30]. It is done by either an agglomerative (bottom-up)
or a divisive (top-down) approach. Here, only the agglom-
erative approach is investigated as it is preferred in power
system applications [23]. It begins by treating each instance as
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Fig. 2: Load profiles of 100 prosumers grouped into 6 clusters based
on the grand coalition cooperative energy profiles: (a) individual
consumptions + PV generations; (b) individual cooperative profiles:
consumptions + PV + ES optimized for the grand coalition; (c) 6
centroid cooperative energy profiles using K-means clustering.
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Fig. 3: Hierarchical clustering centroids of 100 prosumers’ grand
coalition cooperative energy profiles with different linkage criteria.

an individual cluster, and proceeds by continuously merging
clusters that are most similar to each other. The Euclidean
distance, defined in (10), is used to measure the dissimilarity
between clusters [31].

A linkage criterion needs to be selected in order to perform
hierarchical clustering. Based on the definition of similarity
between clusters, there are four types of linkage criteria,
namely single, complete, average and ward. Single linkage and
complete linkage define the similarity between two clusters as
the distance between the closest and farthest members respec-
tively from the two clusters. Average linkage sets the similarity
of two clusters as the average distance between all pairs of
instances between the two. The ward criterion minimizes the
increase in the sum of squared distances between all members
of the clusters and their corresponding cluster centroids.

Using the same inputs as Fig. 2, Fig. 3 shows the results of
sorting 100 prosumers into 6 groups using hierarchical cluster-
ing. As the process of hierarchical clustering does not involve
the computation of centroids, all the centroid profiles are com-
puted post clustering using cj = arg minc

∑
i∈clj d

2(fi, c).
The main goal of clustering in this study is to identify both
similarities and dissimilarities among all prosumers; hence
sensitivity to outliers is undesirable. In the rest of this study
only the ward linkage criterion is considered, for it produces
the most even spread of prosumers among clusters. This
observation is consistent with the results in [23].

C. Gaussian Mixture Model (GMM)

Both K-means clustering and hierarchical clustering are
distance-based clustering techniques. GMM, on the other hand,
is a probabilistic technique. It is part of the finite mixture mod-
els family, which develops a probability distribution function
(PDF) that is a mixture of K components: θ = {θ1, ...,θK}.
This PDF has the maximum likelihood to fit the given in-
stances, given by

p(fi|θ) =
K∑
j=1

αjp(fi|θj) (13)

where θj = {θjt | t ∈ [1, R]}, and αj is the mixing probability
or weight of the jth component θj , αj ≥ 0, j = 1, 2, ...,K,
and

∑K
j=1 αj = 1. In the case of GMM, θj = (µj ,Σj),

where µj is the R-dimensional mean vector, and Σj is the
covariance matrix. (13) can be rewritten as

p(fi|θ) =
K∑
j=1

αj

exp
{
− 1

2 (fi − µj)
ᵀ Σ−1j (fi − µj)

}
(2π)

R
2 |Σj |

1
2

The maximum likelihood estimate of {µ,Σ,α} is often
obtained through an iterative expectation-maximization (EM)
algorithm [29], [32]. To prevent convergence to local optima,
GMM can be run repeatedly with different initial conditions
[33]. In this study, the number of runs for GMM is set to
be 100. Finally, clustering is completed by assigning each in-
stance to the component with the highest posterior probability:

p(k|fi) =
αkp(fi|θk)∑K
j=1 αjp(fi|θj)

, k = 1, ...,K

To implement GMM, the structure of the covariance matrix
needs to be specified. For each component, a full covariance
matrix has uncorrelated dimensions, while a diagonal covari-
ance matrix has correlated dimensions. A spherical covariance
matrix is a diagonal covariance matrix that has the same
covariance across all dimensions. Full, diagonal, spherical
covariance matrices are unshared among components. Tied
covariance matrices have uncorrelated dimensions, and are
shared by all components.

Again, with the same inputs as Fig. 2 and Fig. 3, GMM is
used to cluster 100 prosumers into 6 groups and the results
are postprocessed to generate the centroid profiles, shown in
Fig. 4. The most even spread of prosumers among clusters
can be achieved with a full covariance matrix. For the reason
explained in Section III-B, only the full covariance matrix,
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Fig. 4: GMM clustering centroids of 100 prosumers’ grand coalition
cooperative energy profiles with different covariance matrices.

which has uncorrelated dimensions, is considered for GMM
clustering in the rest of this study.

IV. NUCLEOLUS ESTIMATION AND VALIDATION

Coalitions with the most diverse mix of players tend to
create the highest values for their members when independent
from the grand coalition, and therefore they are most likely to
defect. Reversely, a payoff allocation that prevents these types
of coalitions from defecting is likely to retain other coalitions
in the game as well. This is reflected in the algorithm for
nucleolus computation, which is to iteratively minimize the
excesses of all coalitions. Partially following this algorithm,
the nucleolus can therefore be estimated by minimizing the
excesses of selected coalitions of the highest diversity that are
most likely to defect. Clustering, as described in the previous
section, can identify dissimilarities among prosumers, offering
a strategy to construct these coalitions of diverse populations.
In this section, a nucleolus estimation algorithm is proposed
incorporating clustering of prosumers with different features.

A. Clustering for Nucleolus Estimation

Both a coalition and a cluster represent a collective of
players. However, while a prosumer coalition is any subset of
the grand coalition, a prosumer cluster is a group of prosumers
with similar traits sorted together with a clustering technique.
Coalitions can adopt cooperative energy management and
allocate profits to the participating prosumers, whereas clusters
are created in this study only to facilitate the computation
of the payoff allocation. Clustering has no influence on the
optimal scheduling of the energy operation within coalitions.

The nucleolus estimation method presented in [21] defines
a prosumer cluster as a clustered player, and simplifies the
cooperative energy management scheme to a cooperative
game among the clustered players. With K clustered players

(K � N), the computational complexity can be reduced
from ∼ O(2N ) to ∼ O(2K). However, the contributions
of individual prosumers cannot be distinguished within each
clustered player, leading to arbitrary in-cluster division of
payoffs. As a result, the payoff allocations to the prosumers are
highly inaccurate estimates of the nucleolus. A comparison of
the estimation performances of this clustered players method
and the proposed method is shown in Case Study V-A.

Clustering separates dissimilar players, but it does not pro-
vide any information about the differences between prosumers
within the same cluster. To solve this issue, instead of treating
each cluster as a distinctive player, every prosumer can be
paired with clusters they do not belong to in order to form
coalition samples for excess minimization. This way, not only
is the diversity within the coalition samples ensured, but each
prosumer’s individuality is preserved as well. The proposed
method for estimating the nucleolus is as follows:

1) Based on a certain prosumer feature (see Section IV-B),
prosumers are separated into K prosumer clusters, the
complete set of which is denoted as clK := {clj |j ∈ K}
where K = {1, 2, ...,K}. The clustering assignment is
g : gi = j | i ∈ clj ,∀i ∈ N .

2) A coalition of prosumer clusters is defined as clU :=
{clj |∀j ∈ U}, clU ⊆ clK. Any clU can be converted to
a coalition of prosumers by using Q(clU ) = {i | clgi ∈
clU}. Therefore, all the prosumer coalitions derived from
coalitions of prosumer clusters can be written as U =
{T | T = Q(clU ), ∀clU ⊆ clK}.

3) For each prosumer i ∈ N , the set of coalitions of
prosumer clusters that do not contain i is Ui =
{clU | ∀clU ⊆ (clK \ {clgi})}. If prosumer i is then
added to each of the coalitions in Ui, this new set
of prosumer coalitions becomes Si = {T | T =
Q(clU ) ∪ {i},∀clU ∈ Ui}. Si is then constructed for
every prosumer, all of which are combined into a single
set S = {T | T ∈ Si,∀i ∈ N}.

4) Finally, the set of prosumer coalition samples for excess
minimization is constructed, denoted as TclK = S ∪ U.

In addition to the coalitions of whole clusters denoted by U
(used as coalitions of clustered players in [21]), the coalition
sample set TclK also includes S that groups every prosumer
i with all possible coalitions of prosumer clusters that do not
contain i. This diversity based paring means Si very likely
contains the coalition samples that can provide the highest
payoffs to player i. Therefore, by minimizing the excesses of
these coalitions, player i’s tendency to defect from the grand
coalition can be significantly reduced. The nucleolus estima-
tion νest can thus be obtained by implementing Algorithm 1
with T∗ = TclK . The size of TclK is bounded by

|TclK | ≤ |U|+ |S| (14)

≤ (2K − 1) + (2K−1N) (15)

= 2K−1(N + 2)− 1

Where the inequalities in (14) and (15) both occur when clus-
tering yields one or more single-prosumer clusters. Therefore,
given a selected number of clusters K, both the number of
coalitions that require a value calculation and the number of
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iterations in the nucleolus calculation become ∼ O(N), a
significant reduction compared to the full nucleolus calculation
∼ O(2N ) as explained in Section III.

B. Clustering Features

The choice of the clustering features has a direct impact on
the clustering results. To identify typical load patterns, cus-
tomer consumption profiles are used as the clustering features
[34]. However, in a cooperative energy management scheme,
some prosumers’ energy profiles are not fixed but dependent
on the coalition they are in. Therefore, the following clustering
features suitable for identifying similarities among prosumers
are investigated for cooperative energy management.

1) Grand coalition cooperative energy profile p :=
{p1,p2, ...,pN}. Although prosumers’ DER operation
needs to be simulated under different coalition config-
urations to calculate these coalitions’ values, the grand
coalition yields the actual total profit. The cooperative
energy profile of Prosumer i may differ based on the
coalition they participate in, but their grand coalition
cooperative energy profile pi is the most representative
of its actual contribution to the scheme, capturing infor-
mation about the prosumer’s fixed energy consumption,
PV generation, and ES operation. Based on (1),

bN = arg min
b

R∑
t=1

FNt (b) (16)

pi = qi + bNi ,∀i ∈ N

Fig. 2 shows an example of using K-means to group
100 prosumers into 6 prosumer clusters based on their
grand coalition cooperative energy profiles.

2) Grand coalition marginal contribution profile ∆F :=
{∆F1,∆F2, ...,∆FN}. In the cooperative energy man-
agement scheme, the value of a coalition corresponds to
its energy cost savings, and the payoff is closely linked
to a prosumer’s marginal contributions to coalitions.
Since the total profit is created through cooperation
within the grand coalition, the marginal contribution to
the grand coalition can be used as an identifier of the
participating prosumers. Therefore, ∆F is investigated
as a clustering feature. Expanding the definition of the
optimal ES operation in (16) to any coalition T :

bT = arg min
b

R∑
t=1

F Tt (b)

∆Fi is defined as the total cost savings by having Player
i join the existing cooperative scheme of N \ {i}:

∆Fit = F
N\{i}
t (bN\{i}) + F

{i}
t (b{i})− FNt (bN )

Fig. 5 shows an example of using GMM to group 100
prosumers into 6 prosumer clusters based on their grand
coalition marginal contribution profiles.

Both the grand coalition cooperative energy profile and the
grand coalition marginal contribution profile contain identify-
ing information about the prosumers while they are partici-
pants in the grand coalition. The grand coalition cooperative
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Fig. 5: GMM clustering of 100 prosumers using the grand coalition
marginal contribution profiles as clustering features: (a) individual
marginal contribution profiles; (b) centroid marginal contribution
profiles with legend showing the number of prosumers in each cluster

.

energy profile is better at retaining information about the
magnitude of a prosumer’ energy consumption and generation,
while the grand coalition marginal contribution profile is better
at retaining information about the direct impact of a pro-
sumer’s energy operation on the total profit. Since clustering
is used as a method to estimate the nucleolus, the effectiveness
of the clustering features should be evaluated based on their
estimation performances.

C. Evaluating Nucleolus Estimation with Stratified Random
Sampling

The proposed nucleolus estimation method involves three
different clustering techniques, namely K-means clustering,
Hierarchical clustering with ward linkage, and GMM with full
covariance matrices. For each of these clustering techniques,
two types of clustering features are investigated, namely the
grand coalition cooperative energy profile, and the grand
coalition marginal contribution profile. To compare these
methods, a tool that is independent of all the clustering
techniques is needed to evaluate the estimated nucleolus νest.

The stratified random sampling strategy proposed in [24] is
used as the base technique. In this approach, π(N ) is defined
as the set of all possible permutations with player set N ,
and O : N → N is a permutation that specifies the player
assigned to position l as O(l). For a given O ∈ π(N ), the set
of predecessors of the player i is denoted as Prei(O), where if
i = O(l), then Prei(O) = {O(1), O(2), ..., O(l − 1)}. π(N )
is then divided into subpopulations, each of which is called
a stratum that has the same number of predecessors for each
player. A stratum, or a stratified set of player permutations, is
denoted as Pil := {O ∈ π(N ) | O(l) = i,∀i, l ∈ [1, N ]}.
Therefore, Pil contains every permutation O ∈ π(N ), in
which player i is in position l.

Selecting the same number of samples from each stratum
ensures that all players and all sizes of coalitions are equally
represented. To adapt this approach to evaluate the nucleolus
estimation results, the following procedure is implemented:

1) An initial stratum sample size m = 1 is set.
2) For each stratum Pil, a random permutation sample Mil

of size m is obtained.
3) A set of coalitions Rm := {T | T = Prei(O)∪ i,∀O ∈

Mil,∀i, l ∈ [1, N ]} is defined.
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4) v(T ) is calculated using (6), ∀T ∈ Rm. Then the
coalition samples’ excesses εm(νest, T ),∀T ∈ Rm are
calculated using (7). The number of positive excesses
|εposm | is obtained.

5) m = m+1, and then Step 2 - 4 is repeated until | |ε
pos
m |
|Rm| −

|εposm−1|
|Rm−1| | ≤ δ where δ is the convergence threshold. In
this study it is set to be 0.5%.

V. CASE STUDIES

The model inputs in this study are as follows: the domes-
tic load data were measured in the Customer-Led Network
Revolution trials [35]; the model time frame is 24 hours
starting from the midnight of a sunny summer day in July;
the PV systems are 4kW with fixed 20 degree tilt, simulated
in PVWatts [36] using the London Gatwick solar data; the
energy import price follows a UK Economy 7 residential rate
structure: £0.08/kWh for midnight–7am, and £0.18/kWh for
7am–midnight [37], and the energy export price is the UK
feed-in tariff [38] fixed at £0.0379/kWh; the ES model has
an energy capacity of 7 kWh, a maximum charge power of
3.5 kW, a maximum discharge power of 3.2 kW, both charge
and discharge efficiencies of 95%, an initial state of charge of
50%, and a state of charge range of 20-95%.

Both the PV and ES adoption rates are fixed at 50%,
and ownerships are randomly assigned independently of each
other. In other words, each prosumer can have a PV system, or
an ES system, or both, or neither. Even though the majority of
current ES owners also own PV systems, the model is set up
this way to provide an insight into how the profit distributes
among different prosumer types. Additionally, whether the ES
assignment correlates with the PV assignment does not affect
the grand coalition cooperative operation.

Three case studies are conducted in this section. The first
case study compares the computation times under varying
numbers of clusters K and with different clustering tech-
niques. The second case study demonstrates the higher ac-
curacy of the proposed method over an existing one, and
compares the estimation accuracies of different techniques
with different clustering features. The third case study focuses
on the trade-off between the computation time and estimation
accuracy and the impact of uncertainty in large games.

A. Nucleolus Estimation Computation Time

The first case study focuses on the nucleolus computation
time2. Taking K-means clustering as an example, using the
grand coalition cooperative energy profile as the clustering
features, the nucleolus computation time is plotted with an
increasing number of prosumers in Fig. 6. Compared to the
full nucleolus computation, clustering is able to help scale up
the cooperative energy management scheme to hundreds of
players while limiting the computation time within 24 hours,
which is the time scale of this proposed scheme.

2The models in this paper are run on a computer equipped with 16 GB
RAM and a 2.8 GHz Quad-Core Intel Core i5 processor.

0 50 100 150 200 250 300 350 400
Number of Prosumers

101

102

103

104

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

): 
30

 R
un

 A
ve

ra
ge

full model
est. w/ K=10

est. w/ K=9
est. w/ K=8

est. w/ K=7
est. w/ K=6

est. w/ K=5
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.

TABLE I: Clustering Computation Time (s) Avg. over 10 Runs
No. prosumers (K) 14 (10) 20 (9) 30 (8) 50 (7) 100 (6)

K-means 5.3 4.0 3.5 4.1 5.1
Hierarchical-ward 0.6 0.5 0.5 0.6 0.5

GMM-full 2.2 1.8 1.7 2.1 1.7

It can be expected that the higher the K value is, the
more accurate the estimation would be (this is empirically
validated in Section V-C). In order to demonstrate the con-
trast of results between different clustering techniques, an
aggressive computation time target is set: ≤ 103s. If up to
100 players is considered, based on Fig. 6, the maximum
K that guarantees the computation time being less than
103s is selected. Therefore, for 14, 20, 30, 50, 100 players,
K = 10, 9, 8, 7, 6 respectively. Table I shows the computation
time for the clustering step only. Note that the computation
time for K-means clustering and GMM is influenced by the
number of runs repeated with different initial conditions. This
number is set to be 1000 for K-means and 100 for GMM in
this paper. It can be seen that although different clustering
techniques require slightly different computation times, the
clustering computation time is negligible compared to the
rest of the nucleolus estimation process. Therefore, Fig. 6 is
representative of all of the clustering techniques.

B. Nucleolus Estimation Computation Accuracy

As discussed in Section IV-A, the advantage of the proposed
method is its ability to preserve the individuality of the
prosumers and to estimate the nucleolus for all participating
prosumers. Even though clustering is also used in the nucleolus
estimation method in [21], it fails to provide a robust division
of payoffs within the clustered players. For a 14-prosumer ex-
ample, Fig. 7 compares the nucleolus estimation performances
of the two methods, where each marker represents a participat-
ing prosumer’s payoff allocations based on the full nucleolus
(y-axis) and the nucleolus estimations (x-axis). Regardless of
the prosumer type, the proposed nucleolus estimation method
is shown to significantly outperform the clustered players
method in terms of the estimation accuracy. It is worth noting
that all prosumer types benefit from the scheme, and even
though the prosumers with only ES systems in this example
have higher payoff allocations than the other prosumer types,
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this is not always the case. The payoff distribution among
different prosumer types is influenced by factors such as the
DER penetration, the prosumer overall consumption level, the
energy prices, etc. How these factors affect the final payoffs
is an interesting area for future work.

Under the proposed method, the estimation performances
of different clustering techniques are compared based on the
percentage of coalitions with divisible excesses. A divisible
excess is a positive excess that, after divided by the number
of prosumers within the corresponding coalition, has a rounded
value greater or equal to £0.01, the smallest monetary reward
that can be realized in practice. A coalition with a divisible
excess can become independent and achieve enough additional
profits to be allocated to all of its member prosumers.

With prosumer profiles randomly selected from [35] in each
of the 10 runs, Fig. 8 compares the estimation accuracies of
different clustering techniques with different clustering fea-
tures. Setting 103s to be the upper bound of the computation
time, The maximum numbers of clusters are 10, 9, 8, 7 for
N = 14, 20, 30, 50 respectively, regardless of the clustering
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Fig. 9: Nucleolus estimation performance with GMM-full with
marginal contribution feature using different K values, validated
using the stratified random sampling based approach (m = 1).

technique. It shows that for N ≤ 30, all of the clustering
techniques lead to an average of less than 1% and a maximum
of less than 5% of the coalitions having divisible excesses. For
N = 50, however, hierarchical clustering with both clustering
features and K-means with the marginal contribution profiles
all yield an average of more than 1% and a maximum of more
than 20% of coalitions with divisible excesses, while GMM
with the grand coalition marginal contribution profile as the
clustering features produces the best estimation results with
only an average of 0.1% and a maximum of 0.9% of coalitions
having divisible excesses.

C. Scaling up with Relaxed Computation Time

If the computation time threshold is relaxed, the estimation
accuracy can be improved by increasing the number of K. For
example, if the time limit is 104s, K can be increased to 7
and 6 for a 100-player and a 200-player game respectively.

Identified as the best nucleolus estimation method in Section
V-B, GMM with the grand coalition marginal contribution
profile as the clustering feature is applied to compare the
model performances with varying K values. The results are
shown in Fig. 9, in which two metrics are used: 1) percentage
of coalitions that have divisible excesses, which indicates the
fraction of coalitions that are dissatisfied in the grand coalition;
2) the largest per-player divisible excess, which indicates
the level of incentive for defection for the most dissatisfied
coalition. A coalition’s per-player divisible excess is obtained
by dividing its divisible excesses by the number of players
within the coalition. It represents the average amount of
additional payoff a coalition can offer to its member prosumers
after becoming independent. Although the investigation of
what level of incentive can lead to defection in practice is
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Fig. 10: The average change in profit as percentages of the total profit
due the prediction errors. Over a range of numbers of prosumers, the
results of two sets of standard deviations from the predicted values
are shown: (i) low error case: σPV = 5%, σload = 15%; (ii) high
error case: σPV = 10%, σload = 30%.

out of the scope of this paper, the closer these two values are
to zero, the better the nucleolus estimation is.

Important observations can be made of Fig. 9. First, there is
a trade-off between the computation time and the estimation
accuracy. For a 100-player case, switching from K = 6 to
K = 7 increases the computation time from ∼ 103s to
∼ 5 × 103s. Meanwhile, the fraction of coalitions having
divisible excesses is reduced from 0.9% to 0.1%, and the
maximum per-player excess is reduced from £0.07 to £0.02.
Second, when the same number of clusters K is applied
to different numbers of players N , increasing N leads to a
higher percentage of coalitions with divisible excesses and
higher per-player divisible excesses, and thus worse nucleolus
estimation. Third, with insufficient clusters the composition
of the prosumers can have a big impact on the estimation
performance. Among the 10 runs in the N = 200,K = 5
case, 4 runs yield no coalitions with divisible excesses, while
one run yields 19% of coalitions with divisible excesses. An
interesting extension is to investigate the types of prosumer
compositions that lead to poor estimation results and the
strategies to resolve this issue without increasing K.

It is expected that the consumption and generation predic-
tion uncertainties may influence the model outcome. A Monte
Carlo analysis is conducted on the impact of uncertainties on
the total profit of the scheme. The actual consumption and
generation profiles are generated assuming the value at each
timestep follows a normal distribution, with the mean being
the predicted value. For each model run, only one actual PV
profile is generated that is followed by all PV units since
they are assumed to be located close to one another, but the
actual consumption profiles are individually generated for all
prosumers. Using two sets of standard deviations: (i) σPV =
5%, σload = 15%; (ii) σPV = 10%, σload = 30%, the model is
run 100 times for each game size (N = 20, 50, 100, 200, 400).
Fig. 10 shows the resulting changes in the grand coalition
profits as percentages of the total profits. It can be seen that
uncertainties can lead to a reduction in the total profit, but
the reductions are only around 2% and 3-4% respectively
for the low and high uncertainty cases. This reduction is
insignificant mainly because the profit is measured by the cost

difference between the baseline non-cooperative operation and
the proposed cooperative operation, and the deviations from
the expected values apply to both of these quantities.

VI. CONCLUSION

To improve the scalability of the cooperative game theory
based energy management scheme, this paper proposes a
clustering based method to estimate the nucleolus, a stabilizing
payoff allocation that guarantees that no player or group of
players can be financially better off by defecting from the
grand coalition. With K clusters, the computational complex-
ity for an N -player ‘game’ is reduced from ∼ O(2N ) to
∼ O(2KN). While existing studies are only able to compute
a stabilizing payoff allocation for a maximum of 15 players in
such a cooperative energy management scheme, the proposed
method is shown to scale it up to over 100 players, making
this scheme applicable to a normal distribution feeder.

Three clustering techniques and two clustering features are
applied in the proposed estimation method, and the Gaussian
mixture model coupled with the marginal contribution profiles
is shown to have the best estimation performance. For a 100-
player ‘game’, by grouping the prosumers into 7 clusters, the
computation of the cooperative scheme including the payoff
allocations to the prosumers takes less than 3 hours, which is
shorter than the time needed to compute the full nucleolus of a
14-player ‘game’. The nucleolus estimation leaves an average
of only 0.1% of the coalitions that will have divisive excesses,
the highest of which is only £0.02 per person, amounting
to a very low incentive for any coalition to defect from this
cooperative energy management scheme.

The proposed method has made the theoretic scheme of
cooperative energy management computationally viable at a
realistic scale. Additional technological challenges such as
real-time communication and control of appliances, and reg-
ulatory challenges around community sharing of energy still
need to be addressed for the implementation of the cooperative
energy management scheme.
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