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Risk Trading in Energy Communities
Niklas Vespermann, Student Member, IEEE, Thomas Hamacher, and Jalal Kazempour, Senior Member, IEEE

Abstract—Local energy communities are proposed as a reg-
ulatory framework to enable the market participation of end-
consumers. However, volatile local market-clearing prices, and
consequently, volatile cost give rise to local market participants
with generally heterogeneous risk attitudes. To prevent the
increased operational cost of communities due to conservative
trading decisions in the forward stage, e.g., a day-ahead market,
we propose risk trading in energy communities via financial
hedging products, the so-called Arrow-Debreu securities. The
conditional value-at-risk serves as our risk measure for players
to study different degrees of market completeness for risk. We
define a risk-averse Nash game with risk trading and solve the
Nash equilibrium problem for an incomplete market for risk as
a mixed complementarity problem. We show that such a Nash
equilibrium problem reduces to a single optimization problem
if the market is complete for risk. Numerical findings indicate
that a significant community cost saving can be realized when
players engage in risk trading and sufficient financial hedging
products are available. Moreover, risk trading efficiently protects
less risk-averse players from highly risk-averse decision-making
of rival players.

Index Terms—Arrow-Debreu security, conditional value-at-
risk, energy community, market completeness for risk, mixed
complementarity problem, risk trading, two-stage stochastic Nash
equilibrium problem

I. INTRODUCTION

A. Motivation and Aim

The development of distributed energy resources and the
progress in information and communication technologies em-
power end-consumers to engage in energy trading. Local
energy communities are proposed as a regulatory frame-
work that allows the market participation of these proactive
consumers, the so-called prosumers [1]–[3]. Energy trading
within a local energy community enables its members to
efficiently utilize distributed energy resources, such as roof-top
photovoltaic (PV) systems, battery storage units, and thermal-
electric appliances. In this way, community members are
expected to reduce their energy cost [4].

However, the uncertainty inherent to the intermittent injec-
tion of small-scale renewable energy sources such as PV sys-
tems causes increased price variability within the energy
community. As a result, the volatility of energy cost for local
energy market participants, the so-called players, increases.

Generally, energy markets are organized in a temporally
sequential manner to ensure a cost-efficient matching of supply
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and demand given the physical requirements of the techni-
cal system, such as the instantaneous balance of electricity
production and consumption. In this context, players make
decisions in a forward market, e.g., a day-ahead market,
before the realization of an uncertain event. The potential
realizations of the uncertainty in a spot market, e.g., a real-
time market, induce volatile prices, i.e., the spot market price
might be comparatively higher or lower than the forward
market price depending on the realization of the uncertain
event. This price volatility leads to a cost volatility for players,
giving rise to risk-averse preferences.1 At the stage before
uncertainty realization, i.e., the forward market, a risk-averse
player tends to make conservative decisions such that the
volatility of her overall cost is reduced in both markets.
This risk-averse decision-making comes with the cost of an
increased disbenefit, i.e., a higher cost or a lower profit for
individual players as well as a higher operational cost for the
whole energy community.

Under the common assumption of homogeneous risk aver-
sion [6], all players have identical risk attitudes. However, in
practice we rather observe heterogeneous risk aversion, where
individual players have different risk preferences, such that
some players are willing to accept a greater cost volatility
induced by an uncertain event, e.g., the power generation of
renewable energy sources, and thereby, a greater risk than
others. Consequently, if less risk-averse players could take
over the cost volatility of highly risk-averse players, these
highly risk-averse players are able to make less conservative
forward market decisions while ensuring a low cost volatility.
As a result, the total cost of the energy community as well as
disbenefits of risk-averse players resulting from conservative
forward market decisions decrease.

To this purpose, we propose risk trading within local energy
communities as a vehicle for the cost volatility transfer. Risk
trading describes the exchange of financial hedging products
in a market to reduce the cost volatility by a different mean
than conservative forward market decisions. However, this
transfer depends highly on the availability of financial hedging
products. In this context, local energy markets might range
from a fully incomplete market for risk, where no financial
hedging products are available, to a complete market for
risk [7], in which all potential realizations of the uncertainty
can be hedged. Both degrees of market completeness for
risk constitute extremes, while intermediate cases are those
in which risk trading is possible only for a part of potential

1Risk aversion is a natural attitude of decision-makers, which can be
observed not only in long-term planning decision-making problems but also
in short-term operational ones. However, since operational decisions are made
more often, e.g., on an hourly basis, decision-makers are able to adjust their
risk preferences over time. They can even learn how to play in dynamic games
with risky payoffs [5].
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realizations of the uncertainty.
The concept of risk trading gives rise to two important

market-driven questions: First, how to define and implement a
financial hedging product for energy communities to transfer
the cost volatility from highly risk-averse to less risk-averse
players? Second, does a potentially unique market equilibrium
under heterogeneous risk aversion and risk trading exist?

To answer these questions, we consider a two-stage stochas-
tic decision-making process for heterogeneously risk-averse
energy community members, who engage in risk trading. The
first stage corresponds to trading decisions in a local forward
market for energy and financial hedging products. The second
stage represents trading decisions in a local spot market,
where the uncertain PV power generation is characterized
through a set of discrete scenarios. We apply the well-known
Conditional Value-at-Risk (CVaR) [8] as the risk measure for
players, and then define a risk-averse non-cooperative Nash
game with risk trading based on the collection of all play-
ers’ decision-making problems. Next, we solve the resulting
two-stage stochastic Nash equilibrium problem as a mixed
complementarity problem [9]. However, for the special case
of a complete market for risk, we solve a single two-stage
stochastic optimization problem, which is equivalent to the
Nash equilibrium problem. We eventually evaluate different
degrees of market completeness for risk in terms of individual
costs and total community cost.

B. Literature Review
Neglecting risk aversion causes a systematic overestimation

of benefits as shown in [10], where heterogeneously risk-
averse players are considered for a generation expansion
planning problem. Reference [11] discusses the effect of
different risk preferences on market-clearing outcomes. Risk-
averse stochastic producers avoid the forward market, which
causes the system cost and market-clearing prices to increase.
However, if risk trading among players is available, the cost
volatility can be shifted through risk trading to less risk-
averse players as discussed in [12]. Thereby, even highly risk-
averse players make moderate forward market decisions, since
the volatile cost is hedged. Thus, market-clearing prices and
the system cost decrease. Reference [13] even highlights the
potential benefits of risk trading in the case of ill-designed
electricity markets.

From a methodological perspective, [14] and [15] link
heterogeneous risk aversion and complete as well as incom-
plete markets for risk by stating the problem as a risk-averse
Nash equilibrium problem with risk trading. If the market is
incomplete for risk, multiple equilibria may exist [16], which
are differently stable and may have different system cost as
discussed in [17]. However, if the market is complete for
risk, [14], [15], and [18] show how a risk-averse social planner
solution can be interpreted as a perfectly competitive risk-
averse Nash equilibrium, where sufficient hedging products
are available.

The principles for market clearing and risk trading in an en-
ergy community are not different than those in other electricity
markets, e.g., the transmission-level wholesale markets. How-
ever, since the number of players in local energy markets is

quite limited, their heterogeneous risk preferences potentially
have a great impact on market outcomes. In this context of
heterogeneous risk aversion in energy communities the recent
work [19] addresses the impact of risk trading on the notion of
fairness among community members. Moreover, [20] studies
heterogeneous risk-averse prosumers, where risk trading is
based on a distributed implementation of financial products.
A risk-averse equilibrium is computed given a generalized
potential game structure.

However, a great challenge remains in defining an appli-
cable financial product that enables risk trading. Here, [21]
studies a local energy market on the distribution system level,
i.e., a market organization layer above energy communities,
where financial hedging rights are proposed to reduce the
price volatility due to distribution network constraints. More-
over, [22] considers the simultaneous trading of energy and
the uncertain part of power generation by PV systems. Note
that financial products proposed by [21] and [22] leave the
market partially incomplete for risk [23].

C. Contributions and Paper Organization

To the best of our knowledge, there are only two works in
the existing literature that account for heterogeneously risk-
averse players in the context of local energy communities.
While [19] focuses on the notion of fairness, our work places
strong emphasis on game-theoretical analyses and properties.
In addition, [20] studies the risk-averse equilibrium based on
a generalized Nash equilibrium problem, while we provide
a formulation which yields a Nash equilibrium problem,
and therefore rigorous conclusions on the solution existence
and uniqueness. Moreover, [19] and [20] neglect a thorough
analysis of different degrees of market completeness for risk.

Methodologically, we move beyond [14] and [15] and
mathematically prove that no equivalent optimization problem
necessarily exists in the case that the market is incomplete
for risk, while the degree of incompleteness—either fully or
partially—is arbitrary. Moreover, in contrast to [14], [15],
and [18], we show that although for the complete case an
equivalent optimization problem exists, multiple Nash equi-
libria might still be found.

From the application perspective, we offer a thorough study
on local energy communities with a focus on risk-averse
prosumers, who engage in risk trading. Based on our numer-
ical results, we identify that prosumers with a deterministic
demand avoid the uncertain spot market, while prosumers with
stochastic generation tend to postpone trading decisions to
the spot market, where the realization of the uncertain power
generation is observed. Moreover, by risk trading a significant
community cost saving can be realized, while all players yield
reduced disbenefits.

The remainder of this paper is organized as follows. In
Section II we introduce the structure of the energy community
and describe methods for representing risk aversion and risk
trading. We present risk-neutral optimization problems and
start by defining a risk-neutral Nash game in Section III. In
Section IV we extend risk-neutral optimization problems by
adding the CVaR as a risk measure for players as well as
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risk trading among energy community members and define
the risk-averse Nash game with risk trading. In Section V
we present and discuss numerical results. We conclude our
work in Section VI. Mathematical proofs of propositions are
provided in Appendix A. Appendix B includes the resulting
mixed complementarity problem. Lastly, Appendix C provides
the formulation for a risk-averse social planner optimization
problem whose solution is equivalent to a risk-averse Nash
game in the case that the market is complete for risk.

II. PRELIMINARIES

A. Energy Communities

We understand a local energy community as an aggregation
of a few prosumers, which are spatially located very close
to each other and physically connected to the distribution
system as a single entity. For example, energy communities
were recently demonstrated through “The Energy Collective”
project [24] implemented in Bofællesskabet Svalin, Denmark,
the “EnergyLab Nordhavn” project [25] implemented in the
Nordhavn neighborhood of Copenhagen, Denmark, as well
as the “pebbles” project [26] implemented in Wildpoldsried,
Germany. These projects enable prosumers to directly engage
in energy trading with their neighbors via a local energy
market within the energy community. This is one key aspect
that the European Commission asks its member states for by
the renewable energy directive, Article 21 [27].

Local markets for energy communities should be differ-
entiated from any other market schemes on the distribution
system level that may geographically cover a whole feeder or
even a suburb. Distribution-level markets might be designed
for trading energy [28] or flexibility [29], taking into account
power losses and technical constraints such as limits on nodal
voltage magnitudes and apparent power flow of lines. We
treat local markets for energy communities as one market-
organization layer below any distribution-level market, and
rather see the energy community as a whole as a potential
market participant in such distribution-level markets. However,
we leave the explicit consideration for future research.

B. Definitions

In this study we consider a local forward as well as a
local spot market, and represent the probability distribution
of an uncertain realization in the spot market by a finite
number of discrete scenarios ω ∈ Ω. Each scenario embodies
a collection of the PV power generation for all prosumers
under that scenario. Prior to the uncertainty realization, the
local forward market determines the energy production and
consumption schedule for each community member for, e.g.,
the next day, as well as a local forward market-clearing price.
In real time when the uncertainty is realized, any deviations
from the local forward market schedule are balanced in the
local spot market, providing a local spot market-clearing price.

In the local forward market, risk-neutral players make
decisions based on physical probabilities πΘ

ω of uncertain
realizations, i.e., empirical real-world observations [15]. Risk-
averse players, however, observe physical probabilities and

Retailer for energy

Spatial arbitrageur

Local market
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· · ·

import export
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Local
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scenarios
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Fig. 1: Plot 1a shows the structure of the energy community, where explicitly
considered players are marked in blue. Plot 1b depicts the two-stage stochastic
decision-making process of energy community members.

increase/decrease the weight of some scenarios to derive risk-
adjusted probabilities πρω [10], which describe their individual
risk preferences on uncertain realizations. In fact, a risk-averse
player treats risk-adjusted probabilities as her individual de-
cision variables, such that she considers comparatively higher
weights for scenarios under which she incurs a high cost, or
achieves a low profit. Similarly, she considers comparatively
lower weights for scenarios, resulting in a low cost, or a high
profit. Note that the sum of risk-adjusted probabilities should
still be equal to one. By decision-making based on resulting
risk-adjusted probabilities, the risk-averse player reduces her
cost volatility at the cost of increased disbenefits.

To outweigh conservative forward market decisions and to
reach a consensus among energy community members on
risk preferences, we consider risk trading via a financial
market product, the so-called Arrow-Debreu security [30].2

For each scenario ω ∈ Ω, an Arrow-Debreu security is an
unconstrained contract between a security buyer and a seller
in the forward market. Both the buyer and seller are local
energy community members. The buyer pays to the seller in
the forward market based on a market-driven price, the so-
called risk price µω , whose value is lower than or equal to 1.
In return, the buyer receives from the seller a payment of 1
in the spot market if scenario ω realizes. For example, if a
prosumer buys 100 securities from another prosumer for a
given scenario ω, she should pay e100µω but will be paid
back e100 if that scenario occurs. We will show later in
Section V how risk-adjusted probabilities converge towards
a consensus on risk preferences if risk trading is possible.

C. Local Market Structure

Within the energy community we explicitly consider three
types of players as illustrated in Figure 1a, namely pro-
sumers, a spatial arbitrageur and a price setter. Moreover,
Figure 1b schematically depicts the underlying two-stage
stochastic decision-making process of each player.

Prosumers, who potentially have an inelastic demand and
own PV systems with an uncertain power generation, buy
and sell energy as well as Arrow-Debreu securities in the

2While the definition of Arrow-Debreu securities in [30] is based on a
discretization of an uncertain event, recent efforts have been made to consider
risk trading for a continuous probability distribution of an uncertain event [31].



IEEE TRANSACTIONS ON SMART GRID 4

local forward market. At the same time, they anticipate all
possible local spot market realizations ω ∈ Ω, i.e., the spot
market-clearing price and the uncertain PV power generation
in scenario ω, as well as their respective response in terms of
energy trades and the cost/revenue from buying/selling Arrow-
Debreu securities for each scenario ω.

In the case of a shortage or a surplus of energy the spatial
arbitrageur imports and exports energy from and to the energy
community. Since an energy community supplies and demands
fairly small energy volumes, a direct access for the spatial ar-
bitrageur to the wholesale market is rather unlikely. Therefore,
we consider a retailer3, who serves as an intermediary for the
energy community. The spatial arbitrageur decides on energy
imports and exports as well as her Arrow-Debreu security
trades in the local forward market. She also takes into account
all possible realizations of local spot market-clearing prices as
well as her optimal recourse in terms of energy imports and
exports and the cost/revenue from Arrow-Debreu securities for
each scenario ω.

Finally, a price setter, who is a fictitious player [32], reveals
local market-clearing prices evolving under free trade and
perfect competition. In detail, the price setter reveals a local
forward market-clearing price for energy and prices for Arrow-
Debreu securities given trading decisions by prosumers and
energy imports/exports by the spatial arbitrageur. At the same
time, she anticipates the recourse by prosumers due to the
uncertain PV power generation as well as the optimal response
by the spatial arbitrageur and reveals a spot market-clearing
price for each scenario ω ∈ Ω.4

D. Towards a Complete Market for Risk

We study four different cases as summarized in Table I. In a
case wherein all players are risk-neutral, a Nash equilibrium is
determined by an optimization problem. The fully incomplete
case constitutes a setting where prosumers and the spatial
arbitrageur are heterogeneously risk-averse and no financial
hedging products are available. We relax the constraint on
the availability of hedging products and consider a partially
incomplete market for risk, where some realizations of the
uncertain PV power generation can be hedged. For these two
cases of an incomplete market for risk, we rely on solving
the Nash equilibrium problem as a mixed complementarity
problem along with its challenges [16], [17], such as potential
multiplicity, instability, and computational burden. However,
if the market is complete for risk, i.e., all realizations of
uncertain PV power generation can be hedged, the Nash
equilibrium problem reduces to an equivalent optimization
problem [18]. According to [15], expected disbenefits decrease
as we move from a fully incomplete to a complete market for
risk, as illustrated in the last column of Table I.

3A retailer is a self-interested profit-seeking entity which buys great energy
volumes at the wholesale market and sells energy to many small customers.

4In a perfectly competitive market environment the spatial arbitrageur and
the price setter can be interpreted as a community manager, who simultane-
ously fulfills both tasks, ensuring liquidity and revealing prices [9].

TABLE I: Problem overview with respect to the degree of risk trading.

Risk attitude Risk trading Problem type Expected disbenefits

Neutral - Optimization∗ ?
Averse Fully incomplete Equilibrium+ ? ? ??
Averse Partially incomplete Equilibrium+ ? ? ?
Averse Complete Optimization∗ ??
∗Equivalent Nash equilibrium problem exists.
+Equivalent optimization problem does not necessarily exist.

E. Overview of the Conditional Value-at-Risk

The seminal work [33] defines coherent risk measures ρ(·)
of an uncertain disbenefit function Zω . We will apply the dual
representation of a coherent risk measure defined by [34] as

ρ(Zω) = max
πρω∈D

∑
ω∈Ω

πρωZω, (1a)

where the risk set D defines the feasible region for risk-
adjusted probabilities πρω . For the CVaR as a coherent risk
measure in particular, the risk set DCVaR [10] is given by

DCVaR =
{
πρω :

∑
ω∈Ω

πρω = 1, 0 ≤ πρω ≤
1

α
πΘ
ω

}
, (1b)

where the equality constraint ensures that the sum of risk-
adjusted probabilities is still equal to one. The lower bound
of the inequality constraint ensures that all risk-adjusted
probabilities πρω are non-negative. The upper bound allows
increasing the weight of some scenarios according to physical
probabilities πΘ

ω and the risk aversion parameter α ∈ (0, 1]
indicating the percentile of the CVaR measure. For the special
case α= 1, risk-adjusted probabilities are equal to physical
probabilities, which represents a risk-neutral attitude.

In fact, (1a) with the risk set (1b) states a constrained
optimization problem that determines risk-adjusted probabil-
ities according to the risk aversion expressed by the CVaR.
This optimization problem is an equivalent representation of
the CVaR metric expressed by the well-known linear program-
ming problem [8] as

ρCVaR(Zω) = min
ζ

{
ζ +

1

α

∑
ω∈Ω

πΘ
ω

(
Zω − ζ

)+}, (1c)

which states the weighted mean deviation from the αth quan-
tile, where ζ denotes the value-at-risk. However, implementing
the CVaR by (1c) causes the objective function to be non-
smooth, i.e., non-continuously differentiable, owning to the
positively defined term in (·)+, and thus, limits our possibil-
ities for deriving optimality conditions to draw conclusions
on the uniqueness of the equilibrium point in game-theoretic
models.

Remark 1. In Section IV we combine the dual representation
of a coherent risk measure (1a) with the risk set of the
CVaR (1b) when introducing the generic framework of a risk-
averse Nash equilibrium problem with risk trading. This allows
us to use a framework that relies on analyzing the resulting
game-theoretic models in their equivalent forms of variational
inequality (VI) problems [35]. This VI representation enables
us to draw conclusions on the existence and uniqueness of a
game solution. For the case of a complete market for risk,
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we apply the CVaR metric (1c) in the equivalent optimization
problem of the Nash equilibrium problem. This allows us
to efficiently solve the equivalent optimization problem and
derive numerical values of trades and prices.

F. Assumptions

We assume that all players are price takers, resulting in
a perfectly competitive local energy market. The PV power
generation is the only source of uncertainty, though other
sources of uncertainty can be incorporated in the same manner.
Owning to the low spatial distance, we assume that all PV
systems have the same power generation profile and players
possess the same information on scenarios as well as identical
beliefs on physical probabilities πΘ

ω .5 Furthermore, owning to
the size of the energy community and the fact that spatial
distances and trade volumes are relatively small, we neglect
network constraints within the energy community. However,
network constraints between the energy community and the
distribution system, which are observed by the spatial arbi-
trageur are of interest and are modeled in this work. Results
change in a way that a network congestion and consequently
limited energy imports or exports affect local forward and spot
market-clearing prices. Moreover, we consider the local market
clearing for a single hour only, since we do not consider any
technology with time-coupling constraints, e.g., energy storage
units. A problem extension to consider multiple time steps
is mathematically straightforward, though it complicates the
solution interpretation on how risk trading affects local energy
market outcomes. Lastly, we consider two trading floors,
e.g., day-ahead and real-time, only, and exclude additional
floors, such as intraday markets. The possibility of peer-
to-peer trading among prosumers within the community is
also discarded.

In the next two sections we introduce the mathematical
formulation of each player’s problem. We start by describing
a risk-neutral energy community in Section III. In Section IV,
we extend the risk-neutral problem formulation to a setting
with risk-averse players and risk trading.

Notation: We use a tilde, i.e., (̃·), for those symbols associ-
ated with the local spot market. Symbols followed by a colon
denote dual variables of respective constraints. We use these
dual variables when we derive Karush-Kuhn-Tucker (KKT)
conditions of optimization problems in Appendix B.

III. MARKET CLEARING WITH RISK-NEUTRAL PLAYERS

In a risk-neutral setting, each prosumer n ∈ P minimizes
her expected energy cost Jn of meeting the demand as{

Min
pn,p̃nω

Jn= λpn︸︷︷︸
Forward market

cost

+
1

2
βp2

n︸ ︷︷ ︸
Regularizer

+
∑
ω∈Ω

πΘ
ω

(
λ̃ωp̃nω︸ ︷︷ ︸

Spot market
cost

+
1

2
βp̃2

nω︸ ︷︷ ︸
Regularizer

)
(2a)

s.t. pn + p̃nω + S̃nω −Dn = 0 : φ̃nω, ∀ω, (2b)

− Pn ≤ pn ≤ Pn : χp
n
, χp

n, (2c)

− Pn ≤ p̃nω ≤ Pn : χp̃
nω
, χp̃

nω, ∀ω
}
∀n. (2d)

5A relevant model accounting for asymmetric information about scenarios,
but without modeling risk aversion, is available in [36].

The first term in the objective function (2a) states the
cost incurred from power trades in the local forward market.
Positive values of pn indicate a demand while negative values
state a supply. Each prosumer n pays/is paid based on the local
forward market-clearing price λ for her energy exchange pn.
The second term in (2a) states a regularizer [37] for for-
ward market trades, where β is a small positive constant6,
e.g., 10−3. Institutionally, this regularizer can be interpreted
as a transaction cost arising from trades. The third and fourth
terms of (2a) refer to the expected cost and the regularizer in
the local spot market, weighted by physical probabilities πΘ

ω .
The prosumer n pays/is paid based on the local spot market-
clearing price λ̃ω for her power exchange p̃nω in scenario ω.
Note that market-clearing prices λ and λ̃ω are parameters
within (2), while they are variables in the Nash equilibrium
problem, i.e., the collection of all prosumers’ n ∈ P , the spa-
tial arbitrageur’s, and the price setter’s optimization problems,
which are solved simultaneously.

For each scenario ω, the prosumer n has to ensure the
satisfaction of her individual power balance, enforced by (2b).
Her demand Dn has to be met by the power exchange pn
in the forward market, p̃nω in the spot market, and her
PV power generation S̃nω , which is a scenario-dependent
parameter. Finally, (2c) and (2d) restrict power exchanges
within the energy community by parameters Pn. We introduce
theoretical bounds Pn on power exchanges to achieve a
closed and compact decision set for all players [12]. This
will be necessary later for proving the existence of the game
solution [35]. However, we select sufficiently large values
for Pn, and check the equilibrium solution a posteriori to
ensure (2c) and (2d) are always inactive.

Furthermore, the spatial arbitrageur Par minimizes her
expected cost Jar from trading energy between the energy
community and a retailer for energy as

Min
pi,pe,p̃i

ω,p̃
e
ω

Jar =
(
C i − λ

)
pi︸ ︷︷ ︸

Forward market import cost

−
(
Ce − λ

)
pe︸ ︷︷ ︸

Forward market export cost

+
∑
ω∈Ω

πΘ
ω

[ (
C̃ i − λ̃ω

)
p̃i
ω︸ ︷︷ ︸

Spot market import cost

−
(
C̃e − λ̃ω

)
p̃e
ω︸ ︷︷ ︸

Spot market export cost

]
(3a)

s.t. 0 ≤ pi ≤ P i
: χpi

, χpi
, (3b)

0 ≤ pe ≤ P e
: χpe

, χpe
, (3c)

0 ≤ p̃i
ω ≤ P

i
: χp̃i

ω
, χp̃i

ω , ∀ω, (3d)

0 ≤ p̃e
ω ≤ P

e
: χp̃e

ω
, χp̃e

ω , ∀ω. (3e)

The first term of the objective function (3a) corresponds to
the cost in the forward market from importing power pi at the
fixed price C i while being paid at the local forward market-
clearing price λ. Similarly, the second term represents the
cost from exporting energy pe at the forward market-clearing
price λ, while receiving the fixed exporting price Ce. The risk-

6Very small values for β do not alter the total operational cost of the energy
community in comparison to β = 0. However, β = 0 yields linear objective
functions, and may give rise to multiple trading solutions for players [38]. We
introduce regularizers to ensure strictly monotone objective functions. This
allows us to draw conclusions on the uniqueness of the solution. In fact, a
very small value for the regularizer ensures identical cost for players, who
have identical risk preferences, production, and consumption profiles.
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neutral spatial arbitrageur weights local spot market scenarios
according to physical probabilities πΘ

ω . The third and fourth
terms of (3a) resemble the cost from energy arbitrage between
the energy community and the retailer under each scenario of
the spot market, where C̃ i and C̃e are fixed importing and
exporting prices, respectively. Constraints (3b)–(3e) set bounds
for importing P

i
and exporting P

e
power to and from the

energy community.
Finally, for given values of pn, pi, pe, p̃nω, p̃

i
ω, and p̃e

ω , the
price-setter Pps derives forward and spot market-clearing
prices, i.e., λ and λ̃ω , as

Min
λ,λ̃ω

Jps = λ
( ∑
n∈N

pn − pi + pe)
︸ ︷︷ ︸

Buyers’ forward market cost / sellers’ forward market revenue

+
∑
ω∈Ω

πΘ
ω

[
λ̃ω
( ∑
n∈N

p̃nω − p̃i
ω + p̃e

ω

)
︸ ︷︷ ︸

Buyers’ spot market cost / sellers’ spot market revenue

]
(4a)

s.t. −Λ ≤ λ ≤ Λ : χλ, χλ, (4b)

−Λ ≤ λ̃ω ≤ Λ : χλ̃
ω
, χλ̃ω, ∀ω. (4c)

The first line of the objective function (4a) minimizes
the cost for energy buyers and maximizes the revenue for
energy sellers in the local forward market. By sellers, we
refer to producers and energy imports. Similarly, by buyers,
we refer to consumers and energy exports. The second line
minimizes/maximizes the expected cost/revenue in the local
spot market, where each scenario is weighted by the physical
probability πΘ

ω . Constraints (4b) and (4c) set the lower and
upper bounds on market-clearing prices7. Note that in the
case that (4b) and (4c) are inactive, the KKT conditions
of (4) enforce power balance conditions within the energy
community in both forward and spot markets.

Definition 1. Given optimization problems (2)–(4), we define
Γ(Z,K, {Ji}∀i∈Z) as the risk-neutral non-cooperative Nash
game, where Z = (P ∪ Par ∪ Pps) is the set of all players.
K = (K1× · · · ×KP ×Kar×Kps) denotes the strategy set
of the game, where Ki is the strategy set of player i ∈ Z .

Proposition 1. For the risk-neutral non-cooperative Nash
game Γ(·) an equivalent optimization problem exists. In addi-
tion, the Nash equilibrium solution is unique.

Proof 1. We provide the proof in Appendix A-A. �

IV. MARKET CLEARING WITH RISK-AVERSE PLAYERS
AND RISK TRADING

We extend optimization problems of risk-neutral pro-
sumers n ∈ P and the risk-neutral spatial arbitrageur Par
by adding the coherent risk measure function ρ(·) as stated
in (1a) over local spot market scenarios. The risk set of each
player DCVaR is built upon the CVaR measure as defined

7Again, we theoretically consider a price floor and a price cap to achieve a
compact and closed decision set for the price-setter, and thereby, to mathemat-
ically prove the solution existence. In our numerical study, we will consider
a very large value for parameter Λ to ensure bounds are inactive. We refer
the interested reader to [39], addressing how an active price cap may cause
market inefficiency.

Risk-neutral Nash game Γ(·)

Prosumers n ∈ P :
Spatial arbitrageur Par:
Price-setter Pps:

(2)
(3)
(4)

Risk-averse Nash game Γρ(·)

Prosumers n ∈ Pρ :
Spatial arbitrageur Par,ρ:

Price-setter Pps,∩:

(5),(6)
(7),(8)
(9),(10)

Risk aversion
and

risk trading

Fig. 2: By adding risk aversion and risk trading to the risk-neutral Nash game,
each player simultaneously solves two optimization problems within the risk-
averse Nash equilibrium problem with risk trading.

in (1b). Moreover, we introduce risk trading among prosumers
and the spatial arbitrageur. Finally, we extend the optimization
problem of the price-setter Pps such that she clears the market
and respects prosumers’ and the spatial arbitrageur’s risk pref-
erences when revealing local market-clearing prices. Figure 2
depicts the affiliation of optimization problems moving from
the risk-neutral Nash game Γ(·) with one optimization problem
per player to the risk-averse Nash game Γρ(·) with risk trading,
where we consider two optimization problems per player.

We first start with risk-averse prosumers n ∈ Pρ. Each
prosumer is able to hedge the risk induced by the uncertain
PV power generation in scenario ω by trading Arrow-Debreu
securities anω in the local forward market. We develop two
optimization problems related to each risk-averse prosumer.
These two problems are solved simultaneously within the
Nash equilibrium problem. The first problem of prosumer n
minimizes her risk-adjusted expected cost Jρ1n by determining
her trading decisions pn, p̃nω , and anω while risk-adjusted
probabilities πρnω are given. The second one exhibits the
dual representation (1a) of the CVaR as risk measure func-
tion ρCVaR(·) and determines risk-adjusted probabilities, while
her trading decisions are treated as fixed parameters. The first
problem writes as

{
Min

pn,p̃nω,anω
Jρ1n = λpn +

1

2
βp2

n +
∑
ω∈Ω

µωanω︸ ︷︷ ︸
Forward market hedging cost/revenue

+
∑
ω∈Ω

πρnω
(
λ̃ωp̃nω +

1

2
βp̃2

nω − anω︸︷︷︸
Hedging cost/revenue in ω

)
(5a)

s.t. (2b)− (2d)
}
∀n. (5b)

Compared to (2a) in the risk-neutral setting, the objective
function (5a) includes risk-adjusted probabilities πρnω instead
of physical ones. It also comprises one additional free variable
per scenario, i.e., Arrow-Debreu security anω , and two addi-
tional cost/revenue components related to such securities. The
first line of (5a) includes

∑
ω∈Ω µωanω , which refers to the

total cost/revenue of prosumer n over scenarios in the local
forward market, obtained by trading securities anω at the risk
price µω . A positive value for anω implies that prosumer n
buys securities in the forward market for scenario ω, and
thereby lowers her associated risk under that scenario. In
contrast, a negative value for anω means that prosumer n
sells securities in the forward market, and therefore is willing
to accept a higher risk under scenario ω. Note that similar
to λ and λ̃ω , the risk price µω is a parameter in (5), while it
is a variable within the Nash equilibrium problem. Note also
that anω and µω are Nash equilibrium variables in the forward
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stage, though they are indexed by scenario ω. If scenario ω
occurs in the local spot market, the seller/buyer of security anω
pays/is paid at price 1, as given in the second line of (5a).

The second optimization problem corresponding to each
risk-averse prosumer n ∈ Pρ resembles the risk measure func-
tion ρCVaR(·), takes her scenario-indexed trading decisions p̃nω
and anω into account as parameters, and endogenously deter-
mines her risk-adjusted probabilities πρnω as{

Min
πρnω

Jρ2n = −
∑
ω∈Ω

πρnω
(
λ̃ωp̃nω +

1

2
βp̃2

nω − anω
)

(6a)

s.t.
∑
ω∈Ω

πρnω − 1 = 0 : φρn, (6b)

0 ≤ πρnω ≤
1

αn
πΘ
ω : χρ

nω
, χρnω, ∀ω

}
∀n, (6c)

where the objective function (6a) minimizes the negative
expected cost in the local spot market by optimally choosing
values for risk-adjusted probabilities πρnω . Note that according
to the definition of a coherent risk measure in (1a), the ob-
jective function (6a) maximizes the disbenefit for prosumer n
in the local spot market by increasing the weight of the worst
scenarios. Constraints (6b) and (6c) set the bounds of risk-
adjusted probabilities πρnω according to the risk set DCVaR

n of
each risk-averse prosumer n.

Similarly, as for risk-averse prosumers we consider two opti-
mization problems for the risk-averse spatial arbitrageur Par,
who is also able to participate in risk trading. In fact, she
minimizes her risk-adjusted expected cost Jar,ρ1 as

Min
pi,pe,p̃i

ω,p̃
e
ω,bω
Jar,ρ1=

(
C i − λ

)
pi −

(
Ce − λ

)
pe +

∑
ω∈Ω

µωbω︸ ︷︷ ︸
Forward market hedging cost/revenue

+
∑
ω∈Ω

πarω
[(
C̃ i − λ̃ω

)
p̃i
ω −

(
C̃e − λ̃ω

)
p̃e
ω − bω︸︷︷︸

Hedging cost/revenue in ω

]
(7a)

s.t. (3b)− (3e). (7b)

Compared to (3a) in the risk-neutral model, the first line
of (7a) includes the total cost/revenue for the spatial arbi-
trageur from trading Arrow-Debreu securities bω at the risk
price µω in the local forward market. The second line refers
to her expected cost in the local spot market weighted by risk-
adjusted probabilities πarω , including the hedging cost/revenue
under each scenario ω.

Similar to (6), the second optimization problem of the
spatial arbitrageur within the Nash equilibrium problem de-
termines her risk-adjusted probabilities πarω , while treating
her scenario-indexed trading decisions p̃i

ω , p̃e
ω , and bω as

parameters. This problem writes as

Min
πarω

Jar,ρ2=−
∑
ω∈Ω

πarω
[(
C̃ i−λ̃ω

)
p̃i
ω−
(
C̃e−λ̃ω

)
p̃e
ω−bω

]
(8a)

s.t.
∑
ω∈Ω

πarω − 1 = 0 : φar, (8b)

0 ≤ πarω ≤
1

αar
πΘ
ω : χar

ω
, χarω , ∀ω. (8c)

The objective function (8a) minimizes the negative expected
local spot market cost Jar,ρ2 by choosing πarω . Constraints (8b)
and (8c) ensure bounds for risk-adjusted probabilities πarω

according to the risk set DCVaR,ar of the risk-averse spatial
arbitrageur.

Finally, the price-setter Pps,∩ also considers two optimiza-
tion problems within the Nash equilibrium problem. In the
first optimization problem, she minimizes the risk-adjusted
expected cost for energy/security buyers, maximizes the risk-
adjusted expected revenue for energy/security sellers, and
determines market-clearing prices λ, λ̃ω and µω as

Min
λ,λ̃ω,µω

Jps,∩1= λ
(∑
n∈N

pn− pi + pe)+
∑
ω∈Ω

µω
(∑
n∈N

anω + bω
)

+
∑
ω∈Ω

π∩ω
[
λ̃ω
( ∑
n∈N

p̃nω − p̃i
ω + p̃e

ω

)]
(9a)

s.t. (4b)− (4c), (9b)

−M ≤ µω ≤M : χµ
ω
, χµω, ∀ω. (9c)

For given values of Arrow-Debreu securities anω traded by
prosumers n ∈ Pρ as well as securities bω traded by the spatial
arbitrageur for scenarios ω ∈ Ω, the price-setter chooses risk
prices µω , such that the cost for buyers is minimized and the
revenue for sellers is maximized. Moreover, she weights cost
in the local spot market according to system-wide risk-adjusted
probabilities π∩ω , which are considered as parameters in (9).
Constraint (9c) imposes theoretical lower and upper bounds
for risk prices µω .

In the second optimization problem, the price-setter deter-
mines the system-wide risk-adjusted probabilities π∩ω given
scenario-indexed trading decisions p̃nω , p̃i

ω , and p̃e
ω , as

well as risk sets of prosumers DCVaR
n and the spatial arbi-

trageur DCVaR,ar as

Min
π∩
ω

Jps,∩2 = −
∑
ω∈Ω

π∩ω
[
λ̃ω
( ∑
n∈N

p̃nω − p̃i
ω + p̃e

ω

)]
(10a)

s.t.
∑
ω∈Ω

π∩ω − 1 = 0 : φ∩, (10b)

0 ≤ π∩ω ≤
1

α∩
πΘ
ω : χ∩

ω
, χ∩ω , ∀ω. (10c)

Aligned with the definition of a coherent risk measure
in (1a), the objective function (10a) maximizes disbenefits.
In other words, it minimizes the expected energy revenue
of sellers and maximizes the energy cost of buyers in the
local spot market, aiming at determining system-wide risk-
adjusted probabilities π∩ω . Constraints (10b) and (10c) ensure
bounds for system-wide risk-adjusted probabilities π∩ω , given
the risk set DCVaR,∩. The risk set DCVaR,∩ is formed based
on the intersection of risk sets of prosumers and the spatial
arbitrageur. In fact, this risk set corresponds to the risk set of
the least risk-averse player as described in [14]. This implies
that α∩ in (10c) is equal to min{α1, · · · , αN , αar}.

Definition 2. Given (5)–(10), we define Γρ(Z,K, {Ji}∀i∈Z)
as the risk-averse non-cooperative Nash game, where Z =
(Pρ ∪Par,ρ ∪Pps,∩) is the set of all players. K=(K1×· · ·×
KPρ1,2 ×Kar,ρ1,2×Kps,∩1,2) denotes the strategy set of the
game, where Ki is the strategy set of player i∈Z .

Remark 2. The risk-averse Nash game Γρ(·) with risk trading
provides a generalized representation. By adjusting the risk
aversion parameter of players, i.e., α1, · · · , αPρ , αar, and
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TABLE II: A summary of problems to be solved.

Problem

Fully incomplete Mixed complementarity problem (15)–(20)
Partially incomplete Mixed complementarity problem (15)–(20)
Complete Optimization (21), followed by optimization (22)
Neutral Optimization (12)

the availability of Arrow-Debreu securities, Γρ(·) is able to
describe several game setups, including both risk-neutral and
risk-averse Nash games. The risk-averse setups range from
a fully incomplete market for risk, where no Arrow-Debreu
security is available for trading, to a complete market for
risk, where Arrow-Debreu securities are available for trading
in all scenarios. The intermediate setups represent partially
incomplete markets for risk, where Arrow-Debreu securities
are only available for trading in a subset of scenarios.

Proposition 2. If the risk-averse non-cooperative Nash
game Γρ(·) is either fully or partially incomplete for risk,
then no equivalent optimization problem necessarily exists. In
addition, multiple Nash equilibria may exist.

Proof 2. We provide the proof in Appendix A-B. �

Proposition 3. If the risk-averse non-cooperative Nash
game Γρ(·) is complete for risk, then an equivalent optimiza-
tion problem exists, where all players reach a consensus on
risk-adjusted probabilities due to unconstrained risk trading.
This is in line with the findings of [14], [15], and [18]. How-
ever, multiple Nash equilibria may still exist, since objective
functions are not strongly convex in anω and bω .

Proof 3. We provide the proof in Appendix A-C. �

Remark 3. We reformulate the risk-averse Nash game Γρ(·)
with risk trading as a mixed complementarity problem [9] by
concatenating KKT conditions from all optimization problems
within Γρ(·), i.e., optimization problems (5)–(10). Appendix B
provides the full formulation of the resulting mixed com-
plementarity problem. This mixed complementarity problem
contains bilinear terms due to products of risk-adjusted prob-
abilities and trading decisions, resulting in a mixed non-linear
complementarity problem. However, it can be solved using
PATH [40] or other mixed complementarity problem solvers.

Remark 4. The risk-averse Nash game Γρ(·) with a complete
market for risk can be solved in the same way as stated in
Remark 3. However, Proposition 3 shows that an equivalent
optimization problem for such a problem exists, which is
a risk-averse social planner problem endowed with the risk
measure function ρ∩(·) and the risk set DCVaR,∩. We provide
such an optimization problem related to our risk-averse Nash
game Γρ(·) with a complete market for risk in Appendix C.
By solving this convex optimization we avoid computational
issues, coming along with solvers for mixed complementarity
problems as highlighted in [17].

According to Remark 3 and Remark 4, we solve optimiza-
tion problems for the risk-neutral Nash game Γ(·) and for the
risk-averse Nash game Γρ(·) when the market is complete for
risk. In contrast, we solve mixed complementarity problems

TABLE III: Average computational time in seconds.

Fully incomp. Partially incomp. Complete Neutral

6 Scenarios 2.1 1.8 0.4 0.2
500 Scenarios 437.1 891.0 5.1 4.0

associated with Γρ(·) when the market is partially or fully
incomplete for risk. We provide a summary of problems to be
solved in Table II.

V. NUMERICAL STUDY AND DISCUSSION

We apply models presented in Sections III and IV to analyze
the impact of heterogeneous risk aversion within an energy
community. We start with an illustrative example with 6 sce-
narios to gain insights into risk trading. In the second part, we
turn our attention to a problem with 500 scenarios, where we
shed light on the payment flows among energy community
members in the local forward and spot markets. Moreover,
we gradually increase the risk aversion of one prosumer to
highlight the implication for rival players.

Throughout this section, we consider three players,
namely n1, n2, and n3, in addition to the spatial arbitrageur ar.
Player n1 is a prosumer who owns a stochastic PV system with
a mean power generation of 6 kW while having a deterministic
demand of 10 kW. Player n2 owns a stochastic PV system
only, with a mean power generation of 6 kW. Finally, player n3

is an inelastic demand, with a deterministic load of 10 kW.
We consider the spatial arbitrageur to be the least risk-averse

player with αar = 0.9. Player n1 is moderately risk-averse
with α1 = 0.5. Player n2 is highly risk-averse with α2 = 0.3,
while player n3 is slightly risk-averse with α3 = 0.7. The
fixed importing price C i in the local forward market for the
spatial arbitrageur is e0.5/kW, while she receives a price Ce

of e0.25/kW for exporting electricity in the forward market.
In the local spot market, the fixed price for importing C̃ i

is e0.75/kW, while the exporting price C̃e is e0.125/kW. This
incentivizes the energy community to optimally settle in the
forward market, since costs are lower and revenues are higher.
The regularizer is set to β = 0.01. The lower and upper bounds
for power trades and clearing prices—if unequal to zero—are
chosen such that those bounds are never binding8. Lastly, for a
partially incomplete market for risk, Arrow-Debreu securities
are available for a third of the scenarios only.

A. Computational Issues

We use Gurobi Optimizer 9.0.1 under Python 3.7.6 to solve
optimization problems, and PATH [40] under GAMS 24.6 to
solve mixed complementarity problems. All these problems

8Note that upper bounds on imports and exports for the spatial arbitrageur
represent the network capacity constraint between the energy community and
the distribution system. These bounds, if active, alter local market-clearing
prices. In particular, if upper bounds for energy imports and exports are
binding and the energy community exhibits an energy surplus, local market-
clearing prices decrease, while in the case of an energy shortage local
market-clearing prices increase. Therefore, the network congestion changes
the cost/revenue of players n1 to n3, while the spatial arbitrageur earns a profit
from energy arbitrage. This profit comes from the price difference between
the local market-clearing price and the buying/selling price of the retailer.
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Fully
incomplete

λ
[e/kWh]

PV
[kW]

πΘ λ̃ω
[e/kWh]

µω
[e/AD]

πρn1
πρn2

πρn3
πar

0.50

0.0
2.4
6.1
8.9
9.2
9.6

0.167
0.167
0.167
0.167
0.167
0.167

0.750
0.750
0.374
0.125
0.125
0.125

-
-
-
-
-
-

0.333
0.333
0.106
0.000
0.000
0.227

0.556
0.000
0.000
0.000
0.000
0.444

0.238
0.238
0.238
0.238
0.000
0.048

0.179
0.174
0.092
0.185
0.185
0.185

Partially
incomplete 0.50

0.0
2.4
6.1
8.9
9.2
9.6

0.167
0.167
0.167
0.167
0.167
0.167

0.750
0.750
0.618
0.125
0.125
0.125

-
0.167
0.167

-
-
-

0.333
0.185
0.143
0.000
0.006
0.333

0.326
0.185
0.143
0.000
0.000
0.346

0.234
0.185
0.143
0.000
0.196
0.238

0.185
0.185
0.143
0.183
0.150
0.154

Complete 0.50

0.0
2.4
6.1
8.9
9.2
9.6

0.167
0.167
0.167
0.167
0.167
0.167

0.750
0.750
0.750
0.430
0.125
0.125

0.167
0.167
0.167
0.167
0.167
0.167

0.185
0.185
0.185
0.185
0.185
0.075

0.185
0.185
0.185
0.185
0.185
0.075

0.185
0.185
0.185
0.185
0.185
0.075

0.185
0.185
0.185
0.185
0.185
0.075

Given physical
probabilities

Resulting risk-adjusted probabilities for
4 players (3 prosumers and spatial arbitrageur)

Fig. 3: Forward λ, spot λ̃ω , and Arrow-Debreu (AD) security µω market-
clearing prices as well as risk-adjusted probabilities per player resulting from
the stochastic PV power generation, which is reported per player, under dif-
ferent degrees of market completeness for risk, i.e., fully incomplete, partially
incomplete, and complete. Equally weighted scenarios among four players are
indicated in blue, while differently weighted scenarios are indicated in red.

are solved on a 8 GB-RAM computer clocking at 2.40 GHz.
Note that all source codes are available in our online compan-
ion [41].

Optimization problems in general and mixed complementar-
ity problems with at least one risk-neutral player scale well as
the number of scenarios increases. Table III provides the com-
putational time required to solve the underlying problem. For
the case of 6 scenarios the computational time remains within
seconds, while for the case of 500 scenarios the computational
time needed by the PATH solver significantly increases. We
observe computational challenges in the PATH solver when the
problem size increases with respect to the number of scenarios.
For such a case, an alternative solution algorithm is to use a
decomposition approach, e.g., an alternating direction method
of multipliers, to compute a risk-averse Nash equilibrium [42],
though we leave it for future research.

We emphasize that the proposed Nash equilibrium prob-
lem does not serve as a tool for clearing a local energy
market, where computational time significantly matters, but
rather provides a framework for analyzing the implications
of heterogeneous risk aversion and risk trading within local
energy communities.

B. Illustrative Example with 6 Scenarios

Figure 3 presents the PV power generation S̃nω as scenario-
dependent input data, as well as optimization/Nash equilibrium
problem outcomes for different degrees of market complete-
ness for risk, including forward λ and spot λ̃ω market-clearing
prices, risk prices µω , and risk-adjusted probabilities of dif-
ferent players, i.e., πρnω and πarω . In the fully incomplete case,
risk-adjusted probabilities vary highly among players. The
most risk-averse player n2 weights the scenario with zero PV
power generation the most with πρn2ω1

= 0.556, since no
revenues are achieved. Interestingly, the weight of the scenario
with the highest PV power generation is increased since this
event causes the local spot market-clearing price to reduce,
which also induces lower revenues. A similar behavior, but

TABLE IV: Power schedules in the local forward market [kW].

n1 n2 n3 Spatial arbitrageur

Fully incomplete 3.72 -2.27 5.34 6.79
Partially incomplete 2.91 -2.15 4.89 5.65
Complete 2.00 -2.99 4.86 3.87
Neutral 1.67 -3.33 4.68 3.03
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ω5

n1 n2 n3 ar

ω6

Fig. 4: Arrow-Debreu (AD) security trades among the three players n1 to n3

and the spatial arbitrageur (ar) for all scenarios ω1 to ω6 in the forward stage
of a complete local energy market for risk.

less extreme, is observed for player n1. In contrast, player n3,
who is a sole consumer, increases weights for scenarios with
high spot market-clearing prices while accordingly reducing
weights of scenarios with low spot market-clearing prices.
As we move towards the complete case, for scenarios where
Arrow-Debreu securities are available, players reach a con-
sensus on risk-adjusted probabilities, marked in the partially
incomplete and complete cases in blue.

Based on risk-adjusted probabilities given in Figure 3, play-
ers adjust their forward market trades, as listed in Table IV.
If the market is fully incomplete for risk, player n2, who
owns a stochastic PV system, reduces her local forward market
trades and postpones trading decisions to be made in the local
spot market when the realization of PV power generation
is observed. In contrast, player n3, who has a deterministic
load, prefers meeting the majority of her demand in the local
forward market, and thereby avoids the price volatility over
local spot market scenarios. Player n1 has a stochastic PV
power generation as well as a deterministic load. We observe
that she meets her demand in the local forward market while
postponing decisions regarding PV power generation to the
local spot market. The spatial arbitrageur imports/exports
to/from the energy community according to trading strategies
of players n1 to n3.

Risk trading outweighs heterogeneous risk aversion and
shifts risk-adjusted forward trades towards observations in
a risk-neutral setting. Figure 4 illustrates the Arrow-Debreu
security trades in the forward stage for each scenario in a
complete market for risk, which allow reaching a consensus
on risk preferences. All three players n1 to n3 buy Arrow-
Debreu securities for scenario ω1 with the lowest PV power
generation, while the least risk-averse player, who in our case
is the spatial arbitrageur, is the only Arrow-Debreu security
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Fig. 5: Cost distribution over scenarios ω1 to ω6 for players as well as for the community as a whole in dependence of the degree of market completeness
for risk. Colored markers refer to the risk-adjusted expected cost from each player’s perspective. The distribution of the cost over scenarios is given by boxes,
horizontal lines, and circles. Each box highlights the cost between the second and the third quartile. Horizontal lines show the 5th and 95th quantiles. Finally,
circles indicate outliers below the 5th and beyond the 95th quantiles.

seller. However, for the following scenarios, we observe
the opposite trend. In most cases, risk-averse players n1

to n3 emerge as Arrow-Debreu security sellers, while the
spatial arbitrageur appears as a Arrow-Debreu security buyer.
Therefore, players n1 to n3 erase their cost volatility, while
the spatial arbitrageur absorbs it. Thus, unconstrained risk
trading leads to a consensus on risk-adjusted probabilities
corresponding to the risk preference of the least risk-averse
player, i.e., the spatial arbitrageur.

The effect of risk trading on the cost distribution as well
as the distribution of the total community cost is shown in
Figure 5. Moving from a fully incomplete market to a complete
market for risk, the cost distribution for players reduces to
the point where in the complete case costs in all scenarios
are identical. However, since the spatial arbitrageur absorbs
the cost volatility of players n1 to n3, her cost volatility
increases. Nevertheless, her expected cost remains unchanged.
If all players are risk-neutral, they realize the lowest disbenefit.
Similarly, looking at the total community cost we observe
that moving from a fully incomplete market to a complete
market for risk, the total expected community cost reduces
by 5%, while the community cost volatility increases. This cost
reduction as a result of completing the market for risk confirms
findings by [15] as discussed in Section II-D. Moreover,
owning to risk trading, the expected community cost from
each player’s perspective converges towards a common belief,
indicating a consensus on risk preferences.

C. Assessing Risk Aversion with 500 Scenarios

In this section we assume the spatial arbitrageur to be
risk-neutral, i.e., αar = 1, because we expect the spatial
arbitrageur to be a necessary automated service for the energy
community in a similar way as the price setter clears the
local market. Moreover, this assumption allows us to solve
mixed complementarity problems with the PATH solver under
GAMS without any computational issues as the number of
scenarios increases.

Figure 6 illustrates the evolution of the expected community
cost and its standard deviation in the risk-neutral Nash game
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Fig. 6: Expected community cost and standard deviation highlighted by the
shaded area in the risk-neutral Nash game. The Wasserstein distance shows
the convergence against a good representation of the probability distribution
as the number of scenarios increases.

with the number of scenarios. Moreover, we show the Wasser-
stein distance [43] between each set of sampled scenarios and
its predecessor. Based on these numerical findings, we observe
that from 500 scenarios onward changes arising from one ad-
ditional scenario representing uncertain PV power generation
hardly take place. Therefore, we choose 500 discrete scenarios
to approximate the underlying continuous probability distribu-
tion of PV power generation.

Figure 7 presents the expected cost of all players as well
as the total community cost. It provides details of costs
specifically incurred in the local forward and spot markets
by trading energy and Arrow-Debreu securities. Figure 7a
corresponds to a fully incomplete market for risk, where
players n1 to n3 incur the highest cost among all cases.
This causes the expected community cost with 8.39e to be
comparatively high too.

As risk trading is possible for one-third of 500 scenarios,
Figure 7b illustrates how players n1 to n3 reduce their energy
trades in the local forward market and increase more profitable
activities in the local spot market, though subject to the PV
power generation uncertainty. This uncertainty is partially
hedged by awarded Arrow-Debreu securities. Note that the
cost for all players n1 to n3 as well as the community cost de-
crease to some extent in comparison to those costs in the fully
incomplete case. In particular, the expected community cost
decreases from 8.39e in the fully incomplete case to 7.62e
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(a) Fully incomplete market for risk.
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Fig. 7: Expected cost of players n1, n2, n3 and the spatial arbitrageur
over 500 scenarios incurred by trading energy and Arrow-Debreu (AD)
securities in local forward and spot markets. Plot 7a corresponds to a fully
incomplete market for risk, plot 7b associates with a partially incomplete
market for risk, and lastly, plot 7c refers to a complete market for risk.

in the partially incomplete case, implying a 9.18% saving in
the community cost.

Figure 7c shows results for a case wherein the local energy
market is complete for risk, i.e., risk trading is possible
for all 500 scenarios. The three players n1 to n3 as well
as the community as a whole incur the lowest cost among
all three cases. In particular, the expected community cost
drops to 5.53e, i.e., a 34.09% saving in the community cost
compared to a fully incomplete market for risk. Moreover, this
plot shows that energy trades in the local forward market have
been reduced even further, while the engagement of players n1

to n3 in the local spot market has been increased. It is worth
noting that the expected cost of each player in the local spot
market is fully compensated by Arrow-Debreu securities. This
causes a significant cost volatility for the spatial arbitrager,
who is the greatest security seller in this case study.

Finally, we note that the spatial arbitrageur yields a zero cost
in expectation in all three cases. In particular, since constraints
on energy imports and exports are never binding, the local
forward and spot market-clearing prices are equal to importing
and exporting prices. Moreover, the revenue of the spatial
arbitrageur from selling Arrow-Debreu securities in the local
forward market are fully balanced with her expected cost in
the local spot market for compensating the security buyers.

In the following, we gradually increase the risk aversion of
one of the players, e.g., player n1, and investigate impacts on
her rivals. Figure 8a shows such an effect on the expected
cost as well as the cost standard deviation. For the fully
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Fig. 8: Cost under an increasing risk aversion of player n1. Plot 8a graphs
observations for a fully incomplete market for risk, while plot 8b illustrates
the situation for a complete market for risk. Marked lines refer to the expected
cost while shaded areas highlight the cost standard deviation.

incomplete case the expected cost for player n1 increases
significantly as her risk aversion α1 increases. However,
owning to her risk-adjusted forward market position the cost
standard deviation decreases. Moreover, we observe that the
risk aversion of player n1 impacts the expected cost and the
cost standard deviation of players n2 and n3. Player n3 incurs
comparatively lower expected cost, while her cost standard
deviation increases. The reason for this is that player n1 trades
her stochastic PV power generation in the local spot market,
and thereby lowers the local spot market-clearing price from
which player n3 profits.

As noted previously, if the market is complete for risk, risk-
averse players n1 to n3 fully erase their cost volatility, while
the spatial arbitrageur absorbs all the cost volatility as graphed
in Figure 8b. Thus, the standard deviation of players n1 to n3

is zero, while the spatial arbitrageur experiences a remarkable
cost volatility, though with an expected value of zero.

VI. CONCLUSION AND FUTURE WORK

This work proposes risk trading within energy communities
to outweigh market inefficiencies arising from heterogeneously
risk-averse community members. We have formulated a two-
stage stochastic Nash equilibrium problem and show differ-
ent solution approaches depending on the degree of market
completeness for risk. Risk trading complements local en-
ergy markets within energy communities when players have
heterogeneous risk preferences. Risk trading protects players
with slight risk aversion from conservative decisions made by
highly risk-averse players. As a result, a significant system
cost saving can be realized, while disbenefits for all players
are reduce.

This work opens a wide range of research questions to
be addressed in the future. The role of an energy storage
system should be considered, since energy arbitrage over time
can reduce the volatility of local market-clearing prices, and
therefore the cost volatility for players by a different mean
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than risk trading. In addition, the small number of energy
community members gives rise to potential strategic behavior
by some local market participants. This aspect should not
be neglected in designing a suitable risk trading product. If
the spatial size of an energy community increases, network
constraints within the community and resulting power losses
have to be respected too. In addition, it is of interest to include
the possibility of peer-to-peer energy trading among prosumers
within the energy community. Another interesting research
direction is to explore risk trading among retailers/aggregators
on a distribution system level, i.e., one level above energy
communities. Furthermore, we note that Arrow-Debreu se-
curity is a highly stylized financial product, which can only
be traded for predefined scenarios. Therefore, the probability
distribution of an uncertain event must be certainly known
to complete the market for risk. Research on a less stylized
product is of interest for determining an optimal trade-off
between market completeness for risk and applicability of a
financial product. Lastly, from a computational perspective,
research on different solution algorithms for Nash equilibrium
problems, e.g., based on various decomposition algorithms,
is promising.

APPENDIX A
PROOFS

Proofs are based on equivalent forms of Variational In-
equality (VI) problems and strict monotonicity of players’
preferences [35].

A. Proof of Proposition 1

We state the problem Γ(·) of finding a Nash equi-
librium as a VI(F,K) with the game map F (z) =

[O1J1(z1, z−1), · · · ,OarJar(zar, z−ar),OλJλ(zλ, z−λ)]>, where
z = [p1, p̃1ω, · · · , pi, pe, p̃i

ω, p̃
e
ω, λ, λ̃ω] denotes the strategy vec-

tor. For the game Γ(·) the strategy set Ki is compact, convex,
and non-empty. Moreover, the game map F (z) is continuous,
since all cost functions Ji∈Z are continuously differentiable.
Therefore, a solution set SOL(K,F ) exists.

To show the singleton nature of the solution set SOL(K,F )
we derive the Jacobian matrix of F (z) as

β 0 · · · 0 0 0 0 1 0

0 πΘ
ω β · · · 0 0 0 0 0 πΘ

ω

...
. . . . . .

...
...

...
...

...
...

0 0 · · · 0 0 0 0 −1 0

0 0 · · · 0 0 0 0 1 0

0 0 · · · 0 0 0 0 0 −πΘ
ω

0 0 · · · 0 0 0 0 0 πΘ
ω

1 0 · · · −1 1 0 0 0 0

0 πΘ
ω · · · 0 0 −πΘ

ω πΘ
ω 0 0





OzF (z) = .

Jn

Jar

Jps

The Jacobian matrix above is symmetric indicated by the
blue diagonal entries, meaning that the corresponding game
is integrable [9]. This implies that an equivalent optimization
problem solving the VI(F,K) exists, whose objective function
is given by

θ(z) =

∫ 1

0

F (z0 + t(z − z0))>(z − z0)dt =

C ipi − Cepe +
∑
n∈N

1

2
βp2

n

+
∑
ω∈Ω

πΘ
ω

(
C̃ ip̃i

ω − C̃ep̃e
ω +

∑
n∈N

1

2
βp̃2

nω

)
, (11)

which motivates the optimization problem

Min.
pn,pi,pe,p̃nω,p̃i

ω,p̃
e
ω

(11) (12a)

s.t. (2b), (2c), (3b), (3d). (12b)

The objective function of the resulting optimization problem
is convex and quadratic. This confirms that a unique Nash
equilibrium point for the risk-neutral Nash game Γ(·) exists. �

B. Proof of Proposition 2

Following Appendix A-A we state Γρ(·) as VIρ(F,K) with
F (z) =[O1J

ρ1
1 (z1, z−1),O1J

ρ2
1 (z1, z−1),· · ·,OarJar,ρ1(zar, z−ar),

OarJar,ρ2(zar, z−ar),OpsJps,∩1(zps, z−ps),OpsJps,∩2(zps, z−ps)]
>,

where z = [p1, p̃1ω, a1ω, π
ρ
1ω, · · · , pi, pe, p̃i

ω, p̃
e
ω, bω, π

ar
ω , µω, λ, λ̃ω,

π∩ω ] denotes the strategy vector of the game. Moreover, to
apply tools from VI we assume constraints on Arrow-Debreu
security trades, although they are never binding. We write the
Jacobian matrix as

β 0 0 0 · · · 0 0 0 0 0 0 0 1 0 0

0 βπρnω 0 0 · · · 0 0 0 0 0 0 0 0 πρnω 0

0 0 0 −1 · · · 0 0 0 0 0 0 1 0 0 0

0 0 1 qn · · · 0 0 0 0 0 0 0 0 0 0

...
. . . . . . . . . . . .

...
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 · · · 0 0 0 0 0 0 0 1 0 0

0 0 0 0 · · · 0 0 0 0 0 C̃ i 0 0 −πarω 0

0 0 0 0 · · · 0 0 0 0 0 −C̃e 0 0 πarω 0

0 0 0 0 · · · 0 0 0 0 0 −1 1 0 0 0

0 0 0 0 · · · 0 0 −C̃ i C̃e 1 qar 0 0 0 0

0 0 1 0 · · · 0 0 0 0 1 0 0 0 0 0

1 0 0 0 · · · −1 1 0 0 0 0 0 0 0 0

0 π∩ω 0 0 · · · 0 0 −π∩ω π∩ω 0 0 0 0 0 0

0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 q∩





OzF (z) = ,

Jρ1n

Jρ2n

Jar,ρ1

Jar,ρ2

Jps,∩1

Jps,∩2

where qn = − 1
πρnω

(λ̃ωp̃nω− 1
2βp̃

2
nω), qar = 1

πarω
λ̃ω(p̃i

ω− p̃e
ω),

q∩ = − 1
π∩
ω

( 1
2βp̃

2
nω + C̃ ip̃i

ω − C̃ep̃e
ω). Since the market is

incomplete for risk, players potentially apply different risk-
adjusted probabilities. Therefore, the Jacobian matrix of Γρ(·)
is asymmetric as highlighted by the red entries. Thus, an
equivalent optimization problem does not necessarily exist. �

C. Proof of Proposition 3

If the market is complete for risk, all players apply iden-
tical risk-adjusted probabilities, i.e., πρnω = πarω = π∩ω . This
observation is based on the equivalence by the zero-gradient
conditions with respect to Arrow-Debreu securities among all
players for the case of unconstrained risk trading as given in
Appendix B. Thus, the Jacobian matrix of Γρ(·) is symmetric,
with a skew symmetric inner part. An equivalent optimization
problem solving VIρ(F,K) exists. Its objective is given by

θ(z) =

∫ 1

0

F (z0 + t(z − z0))>(z − z0)dt =
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C ipi − Cepe +
∑
n∈N

1

2
βp2

n

+
∑
ω∈Ω

π∩ω
(
C̃ ip̃i

ω − C̃ep̃e
ω +

∑
n∈N

1

2
βp̃2

nω

)
, (13)

where π∩ω ∈ DCVaR,∩. This gives rise to

Min.
pn,pi,pe,p̃nω,p̃i

ω,p̃
e
ω

(13) (14a)

s.t. (2b), (2c), (3b), (3d). (14b)

However, we cannot derive a conclusion on the solution
uniqueness, since Arrow-Debreu security trades are not explic-
itly stated in the optimization problem. Therefore, the objective
function (13) is not strongly convex in anω and bω . �

APPENDIX B
MIXED COMPLEMENTARITY PROBLEM

We reformulate the Nash equilibrium problem as a mixed
non-linear complementarity problem, which solves the risk-
averse Nash game Γρ(·) with risk trading. In the following,
we provide this problem by concatenating the KKT conditions
associated with prosumers’ optimization problems (5)–(6), the
spatial arbitrageur’s optimization problems (7)–(8), and the
price setter’s optimization problems (9)–(10). Note that L
refers to the Lagrangian function of the underlying optimiza-
tion problem.

The KKT conditions associated with (5) are as follows. Note
that in order to obtain a closed and compact decision set, we
consider theoretical lower and upper bounds on Arrow-Debreu
security trades in the form of −Y ω ≤ anω ≤ Y ω, ∀n, ω,
whose dual variables are χa

nω
and χa

nω , respectively.

∂L
∂pn

= λ+ βpn +
∑
ω∈Ω

φ̃nω − χp
n

+ χp
n = 0, ∀n, (15a)

∂L
∂p̃nω

=πρnω
(
λ̃ω+βp̃nω

)
+φ̃nω− χp̃

nω
+ χp̃

nω= 0, ∀n, ω, (15b)

∂L
∂anω

= µω − πρnω − χa
nω

+ χa
nω = 0, ∀n, ω, (15c)

0 ≤ pn − Pn ⊥ χp
n
≥ 0, ∀n, (15d)

0 ≤ Pn − pn ⊥ χp
n ≥ 0, ∀n, (15e)

0 ≤ p̃nω − Pn ⊥ χp̃
nω
≥ 0, ∀n, ω, (15f)

0 ≤ Pn − pp̃
nω ⊥ χp̃

nω ≥ 0, ∀n, ω, (15g)

0 ≤ anω + Y ω ⊥ χa
nω
≥ 0, ∀n, ω, (15h)

0 ≤ Y ω − anω ⊥ χa
nω ≥ 0, ∀n, ω, (15i)

pn + p̃nω + S̃nω −Dn = 0, ∀n, ω. (15j)

The KKT conditions associated with (6) are
∂L
∂πρnω

= −
(
λ̃ωp̃nω +

1

2
βp̃2

nω − anω
)

+ φρn − χρnω + χρnω

= 0, ∀n, ω, (16a)
0 ≤ πρnω ⊥ χρnω ≥ 0, ∀n, ω, (16b)

0 ≤ 1

αn
πΘ
ω − πnω ⊥ χρnω ≥ 0, ∀n, ω, (16c)∑

ω∈Ω

πρnω − 1 = 0, ∀n. (16d)

The KKT conditions corresponding to (7) are as follows.
Again, in order to achieve a closed and compact decision set,
we consider theoretical lower and upper bounds on Arrow-
Debreu security trades of the spatial arbitrageur in the form
of −Y ω ≤ bω ≤ Y ω, ∀ω, whose dual variables are χb

ω
and χb

ω , respectively.

∂L
∂pi = C i − λ− χpi

+ χpi
= 0, (17a)

∂L
∂pe = −Ce + λ− χpe

+ χpe
= 0, (17b)

∂L
∂p̃i

ω

= πarω
(
C̃ i − λ̃ω

)
− χp̃i

ω
+ χp̃i

ω = 0, ∀ω, (17c)

∂L
∂p̃e

ω

= −πarω
(
C̃e − λ̃ω

)
− χp̃e

ω
+ χp̃e

ω = 0, ∀ω, (17d)

∂L
∂bω

= µω − πarω − χb
ω

+ χb
ω = 0, ∀ω, (17e)

0 ≤ pi ⊥ χpi
≥ 0, (17f)

0 ≤ P i − pi ⊥ χpi
≥ 0, (17g)

0 ≤ pe ⊥ χpe
≥ 0, (17h)

0 ≤ P e − pe ⊥ χpe
≥ 0, (17i)

0 ≤ p̃i
ω ⊥ χp̃i

ω
≥ 0, ∀ω, (17j)

0 ≤ P i − p̃i
ω ⊥ χp̃i

ω ≥ 0, ∀ω, (17k)

0 ≤ p̃e
ω ⊥ χp̃e

ω
≥ 0, ∀ω, (17l)

0 ≤ P e − p̃e
ω ⊥ χp̃e

ω ≥ 0, ∀ω, (17m)

0 ≤ bω + Y ω ⊥ χb
ω
≥ 0, ∀ω, (17n)

0 ≤ Y ω − bω ⊥ χb
ω ≥ 0, ∀ω. (17o)

The KKT conditions corresponding to (8) are

∂L
∂πarω

= −
[(
C̃ i − λ̃ω

)
p̃i
ω −

(
C̃e − λ̃ω

)
p̃e
ω − bω

]
+ φar

− χar
ω

+ χarω = 0, ∀ω, (18a)

0 ≤ πarω ⊥ χarω ≥ 0, ∀ω, (18b)

0 ≤ 1

αar
πΘ
ω − πarω ⊥ χarω ≥ 0, ∀ω, (18c)∑

ω∈Ω

πarω − 1 = 0. (18d)

The KKT conditions associated with (9) are
∂L
∂λ

=
∑
n∈N

pn − pi + pe − χλ+ χλ= 0, (19a)

∂L
∂λ̃ω

= π∩ω
(∑
n∈N

p̃nω− p̃i
ω+ p̃e

ω

)
− χλ̃

ω
+ χλ̃ω= 0, ∀ω, (19b)

∂L
∂µω

=
∑
n∈N

anω + bω − χµω+ χµω = 0, ∀ω, (19c)

0 ≤ Λ + λ ⊥ χλ ≥ 0, (19d)

0 ≤ Λ− λ ⊥ χλ ≥ 0, (19e)

0 ≤ Λ + λ̃ω ⊥ χλ̃ω ≥ 0, ∀ω, (19f)

0 ≤ Λ− λ̃ω ⊥ χλ̃ω ≥ 0, ∀ω, (19g)
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0 ≤M + µω ⊥ χµω ≥ 0, ∀ω, (19h)

0 ≤M − µω ⊥ χµω ≥ 0, ∀ω. (19i)

Finally, the KKT conditions associated with (10) are

∂L
∂π∩ω

= −λ̃ω
( ∑
n∈N

p̃nω − p̃i
ω + p̃e

ω

)
+ φ∩ − χ∩

ω
+ χ∩ω

= 0, ∀ω, (20a)
0 ≤ π∩ω ⊥ χ∩ω ≥ 0, ∀ω, (20b)

0 ≤ 1

α∩
πΘ
ω − π∩ω ⊥ χ∩ω ≥ 0, ∀ω, (20c)∑

ω∈Ω

π∩ω − 1 = 0. (20d)

The resulting mixed complementarity problem is the collec-
tion of conditions (15)–(20).

APPENDIX C
COMPLETE MARKET FOR RISK

We solve the risk-averse Nash game with a complete market
for risk based on a risk-averse social planner problem, which
minimizes the negative expected risk-adjusted system cost as

Min
Ξ

C ipi − Cepe +
∑
n∈N

1

2
βp2

n︸ ︷︷ ︸
Community cost in the forward market

−φ∩ +
1

α∩

∑
ω∈Ω

πΘ
ω χ
∩
ω︸ ︷︷ ︸

CVaR metric (1c)

(21a)

s.t. (2b)− (2c), (3b)− (3d), (21b)

φ∩+ C̃ ip̃i
ω − C̃ep̃e

ω +
∑
n∈N

1

2
βp̃2

nω︸ ︷︷ ︸
Community cost in the spot market

≤ χ∩ω : µω, ∀ω, (21c)

0 ≤ χ∩ω , ∀ω, (21d)

where Ξ = {pn, pi, pe, p̃nω, p̃
i
ω, p̃

e
ω, φ

∩, χ∩ω}. The objective
function (21a) minimizes the total community cost in the
forward market as well as the total expected community
cost in the spot market, which are endowed with the CVaR
metric introduced in (1c). Variable φ∩ shows the value-at-risk,
and χ∩ω is a non-negative auxiliary variable. Constraints (21c)
and (21d) ensure the non-negativity of CVaR-related variables,
where the dual variable µω of (21c) corresponds to system-
wide risk-adjusted probabilities [10], and thus, risk prices.

Given the optimal values obtained for a risk-adjusted so-
cial plan (pn, p

i, pe, p̃nω, p̃
i
ω, p̃

e
ω), as well as risk prices µω ,

forward λ and spot λ̃ω market-clearing prices, we solve the
following optimization problem to derive values for Arrow-
Debreu securities traded, i.e., anω and bω:

Min
Φ

∑
n∈N

(∑
ω∈Ω

µ∗ωanω − φρn +
1

αn

∑
ω∈Ω

πΘ
ω χ

ρ
nω︸ ︷︷ ︸

Prosumer’s CVaR metric (1c)

)

+
∑
ω∈Ω

µ∗ωbω − φar +
1

αar

∑
ω∈Ω

πΘ
ω χ

ar
ω︸ ︷︷ ︸

Spatial arbitrageur’s CVaR metric (1c)

(22a)

s.t. φρn + λ̃∗ωp̃
∗
nω +

1

2
βp̃∗2nω − anω︸ ︷︷ ︸

Prosumer’s spot market cost

≤ χρnω, ∀n, ω, (22b)

φar+
(
C̃ i− λ̃∗ω

)
p̃i,∗
ω −

(
C̃e− λ̃∗ω

)
p̃e,∗
ω − bω︸ ︷︷ ︸

Spatial arbitrageur’s spot market cost

≤ χarω , ∀ω, (22c)

0 ≤ χρnω, ∀n, ω, (22d)
0 ≤ χarω , ∀ω, (22e)

where Φ = {anω, φρn, χρnω, bω, φar, χarω }. Parameters denoted
by (·)∗ correspond to values obtained from the risk-averse
social planner problem (21). The first line of the objective
function (22a) corresponds to Arrow-Debreu security trades
by risk-averse prosumers, while the second line refers to the
spatial arbitrageur’s trades. Constraints (22b) and (22c) define
the CVaR metric for each prosumer and the spatial arbitrageur,
respectively. Lastly, (22d) and (22e) ensure the non-negativity
of CVaR-related variables.

ACKNOWLEDGEMENT

We would like to thank Harry van der Weijde (University
of Edinburgh) for our earlier discussions about risk trading.
We also thank David Wozabal and Soner Candas (Technical
Universtiy of Munich) for giving feedback on the initial
version of the manuscript. We also thank Benjamin F. Hobbs,
Puneet Chitkara (Johns Hopkins University), and Christoph
Weber (University of Duisburg-Essen) for our discussions after
the presentation of this work at the Johns Hopkins University.
We also would like to thank Uday Shanbhag (Pennsylvania
State University) for his inspiring course on advanced game-
theoretic models at the Technical University of Denmark
in May 2019. Finally, we would like to thank the three
anonymous reviewers for their helpful comments.

REFERENCES

[1] T. Morstyn, N. Farrell, S. J. Darby, and M. D. McCulloch, “Using
peer-to-peer energy-trading platforms to incentivize prosumers to
form federated power plants,” Nature Energy, vol. 3, pp. 94–101,
2018.

[2] Y. Parag and B. K. Sovacool, “Electricity market design for the
prosumer era,” Nature Energy, vol. 1, no. 16032, pp. 1–6, 2016.

[3] F. Moret and P. Pinson, “Energy collectives: A community and
fairness based approach to future electricity markets,” IEEE Trans.
Power Syst., vol. 34, no. 5, pp. 3994–4004, 2019.
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