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Fault Detection for Covered Conductors With
High-Frequency Voltage Signals: From Local

Patterns to Global Features
Kunjin Chen , Tomáš Vantuch , Yu Zhang , Member, IEEE, Jun Hu , Member, IEEE, and

Jinliang He , Fellow, IEEE

Abstract—The detection and characterization of partial dis-
charge (PD) are crucial for the insulation diagnosis of overhead
lines with covered conductors. With the release of a large dataset
containing thousands of naturally obtained high-frequency volt-
age signals, data-driven analysis of fault-related PD patterns
on an unprecedented scale becomes viable. The high diversity
of PD patterns and background noise interferences motivates
us to design an innovative pulse shape characterization method
based on clustering techniques, which can dynamically identify
a set of representative PD-related pulses. Capitalizing on those
pulses as referential patterns, we construct insightful features
and develop a novel machine learning model with a superior
detection performance for early-stage covered conductor faults.
The presented model outperforms the winning model in a Kaggle
competition and provides the state-of-the-art solution to detect
real-time disturbances in the field.

Index Terms—Covered conductor, partial discharges, cluster-
ing methods, gradient boosting trees.

I. INTRODUCTION

Covered conductors have been widely used for medium
voltage overhead lines in forested or dissected terrain areas
because of their higher operational reliability and reduced land
use [1]. Compared with uninsulated overhead lines, the inter-
phase touch of conductors or the contact with tree branches of
covered conductors does not lead to an immediate short-circuit
fault [2]. Nevertheless, a persistent contact with a tree branch
may degrade conductor insulation over time and develop into a
fault that hampers the normal operation of a power distribution
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system. Therefore, it is favorable to detect such faults to
prevent full deterioration of the insulation system. A major
indicator is the partial discharge (PD) activity induced by the
fault [1], [3], [4].

Generally speaking, the PD pattern can be represented as an
impulse component of the current or voltage signal generated
by PD activity rooted from the insulation deterioration [5], [6].
The correct evaluation of PD patterns on the medium voltage
overhead lines with covered conductors can be used for early
detection of developing faults, thus improving the system’s
safety and reliability [3], [7]–[9]. Depending on the PD pattern
evaluation from the current and voltage signals, two principles
are currently used to detect covered conductor faults. The first
principle is to evaluate the PD pattern as an impulse compo-
nent of the current measured by Rogowski coil [7]–[9]. The
second principle is to evaluate the PD pattern as an impulse
component of the voltage signal measured by a capacitive
divider [3].

The data used in this work comes from a metering sensor
that is based on a single layer coil wrapped around the cov-
ered conductor to acquire the voltage signal of electric stray
field along the covered conductor [10]. High cost efficiency is
an advantage of this solution compared to its competitors [8],
which leads to its broader deployment. However, to make
it really work, an effective pattern recognition method is
required to recognize faulty-related PD activities from its
acquired signals. Several studies were brought to analyse
the signal characters using fuzzy theory [11], mathematical
chaos [12], complex networks [2] or machine learning
models [4]. To bring more attention on this problem, in
2018, a dataset which contained a large number of signal
measurements was published on Kaggle, the world’s largest
data science collaboration platform [13]. The intent of the
organizers was to attract worldwide researchers and data
scientists to examine the signal data and to develop effective
pattern recognition models for PD detection.

A successful fault detection model for covered conductors
has to correctly handle the following factors:
• The measurements are not synchronised with sinusoidal

waveform shapes. Hence, accurate sine shape removal
must be included.

• Deployment in nature-like environment introduces a
significant and yet varying external background noise
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interference that interpolates false pulse patterns. A
proper signal thresholding procedure is needed [14].

• A large number of various PD pattern types [12] increases
the problem’s complexity, which requires a robust detec-
tion model.

• Naturally, a significantly higher number of fault-free
signal samples results in a highly imbalanced dataset [15].

In this article, we develop a novel fault detection model for
covered conductors based on data-driven PD pattern exploita-
tion. In the literature, signal processing and machine learning
techniques have been widely used in the PD pattern detection
in general [16], [17] and were combined with various
feature extraction techniques like wavelet decomposition [18],
recurrence quantification analysis [19], fractal features [20]
or image processing. Two common types of PD pattern repre-
sentations are phase-resolved PD patterns and individual PD
pulse shapes. For phase-resolved PD patterns, the extracted
features generally describe the distribution of quantities such
as phase angles, charges, and counts [21], [22]. In addition,
features can also be extracted by analyzing parameters related
to pulse shapes [23], [24]. Extracted features are generally
used as inputs for the machine learning models including
random forest, support vector machines (SVM), gradient
boosting machines [1], [4].

The fault detection task is not about classifying the source
of individual PD pulses, nor about classifying PD sources by
using overall PD patterns accumulated over multiple cycles.
The nature of early fault detection along with the complexity
of signals collected by low-cost sensors from real environ-
ments [1] requires that a good approach should be able to
identify fault-related pulse patterns and aggregate information
at the signal sample level. However, existing feature extrac-
tion methods mainly focus on individual pulses and aggregate
the pulse-level features via simple statistics, which may be
insufficient to reveal the fault-related information.

Our approach differentiates from existing methods mainly
by its feature construction procedure. The major contribution
of the present work is that we approach the pulse patterns
in a data-driven manner and use clustering to bridge the
gap between the locality of pulses and the desirability of
building global features. The clustering results are not used
for identifying the sources of pulses, but for constructing
discriminative features. Different from features constructed
using all pulses, cluster-specific features are not affected by
pulses within other clusters. Novel features including template-
matching degree and intra-cluster concentration degree are
proposed. The results based on the same dataset and evalua-
tion criteria from the Kaggle competition also make the model
comparable and reproducible.

The organization of the paper is as follows. In Section II,
detailed steps of the proposed approach are provided, which
include signal pre-processing, pulse identification and feature
construction. Section III covers the detailed numerical results
and discussions. Finally, conclusions are drawn in Section IV.

II. THE PROPOSED FAULT DETECTION APPROACH

In this section, we first describe the dataset and the over-
all diagram of the proposed approach. Steps including signal

Fig. 1. An example of a three-phase signal labelled as faulty. The label
is decided according to examination of a fault that was recorded after the
timestamp of this signal sample, together with visual inspection of the pulses
within the range from 0 to 5 ms.

pre-processing, pulse identification, and pulse clustering are
implemented before the construction of features. The classi-
fier used for fault detection and the evaluation metric are also
introduced.

A. Problem Description and Overview of the Approach

In Fig. 1, an example of a three-phase high-sampling-rate
voltage signal measured from a medium voltage overhead line
is presented. The time span of the signals is 0.02 seconds
and the sampling rate is 40 MHz (i.e., each signal has 800000
time steps). The fault detection task aims to determine whether
developing covered conductor faults appear in the signals. To
construct the training dataset, the one-cycle signals are labelled
by a combination of expert observation and field examina-
tion [10]. For the faulty class, only the signals corresponding
to the time range prior to the full development of faults are
included. Therefore, a model that is able to classify faulty
and non-faulty signals correctly can help prevent the covered
conductors from being burned completely, which may lead
to serious consequences like wildfires. A major challenge for
the task is that some of the non-faulty signals appear to have
faulty patterns [10]. It is worth noting that unlike lab exper-
iments, no prior knowledge of fault-related PD patterns or
background noise interference is available from the dataset.
Therefore, a data-driven approach developed for this setting
has a high potential to be generalizable to other measurement
devices, interference sources, etc. More details of the fault
detection task can be found in [1], [3], [10].

A total of 2904 three-phase signals are collected for the
training dataset, while 2916 three-phase signals (the same as
the private leaderboard in the Kaggle competition) are used
for testing. Out of the 8712 single-phase signals in the training
dataset, 8187 signals (93.97%) are non-faulty, which indicates
that the dataset is quite imbalanced. Although faulty and non-
faulty labels are manually assigned to each single-phase signal,
we consider each three-phase signal as a whole and treat it as
faulty if at least one of the single-phase signals is faulty. More
details of the dataset can be found in [10].

The diagram of the proposed approach is illustrated in
Fig. 2, where the implementation steps are as follows:
• The three-phase signals first go through a phase correc-

tion process so that the signal of each phase is aligned to
the same phase angle.

• The signals are flattened so that the pulses’ amplitudes
in the signals can be compared. A threshold is estimated
for each signal to filter out the background noise.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 21,2023 at 01:42:03 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. The diagram of the proposed fault detection approach.

• The pulses are detected by finding the points with the
highest amplitudes within their neighbourhoods and the
waveforms surrounding the pulses are clustered to reveal
the waveform patterns. Clustering is performed for the
three phases individually as well as combined.

• Features are constructed based on the detected pulses and
the clustering results. The features are then used to train
a classifier that is able to distinguish between faulty and
non-faulty signals.

B. Signal Pre-Processing

The information related to PD is generally contained within
the pulses in the signals. Thus, an important step before the
implementation of machine learning models is to detect and
analyze the pulses. Specifically, we propose a data-driven
approach to reveal the characteristics of the pulses.

Two steps of pre-processing are needed before we can detect
pulses from the signals. The first step is phase angle correction
and signal flattening, and the second step is noise level esti-
mation. For phase angle correction, we use discrete Fourier
transform (DFT) to extract the power frequency component
in the signals and align the signals to have a phase angle of
zero degree at the first time step. We then use the Savitzky-
Golay filter [25] to fit the low frequency part of a signal,
which is then subtracted from the signal so that the signal is
flattened. Specifically, a value y∗j in the filtered signal can be
calculated as

y∗j =
(m−1)/2∑

i=(1−m)/2

Ciyj+i, (1)

where m is the window size and Ci is the ith coefficient. The
details for computing the coefficients can be found in [26]. In
Fig. 3, the process of filtering the signal with the Savitzky-
Golay filter and signal flattening is illustrated.

The method for noise level estimation is described in
Algorithm 1. The inputs of the algorithm are the flattened
signal s, the number of signal sections Nnoise, the length of
each signal section Lnoise, the threshold for the number of sec-
tions to cover Ncover, the maximum noise level Cmax, and the
incremental step size for noise level Cstep. For simplicity, we
estimate one global noise level for each single-phase signal.
An illustration of the noise estimation algorithm is illustrated

Fig. 3. An example of the signal flattening process.

Algorithm 1: Noise Level Estimation
Input: s, Nnoise, Lnoise, Ncover, Cmax, Cstep
Output: a

1 Sample Nnoise sections (s̄1 to s̄Nnoise ) with length Lnoise
equidistantly from s

2 for i = 1 to Nnoise do
3 mi ← max(abs(s̄i))

4 end
5 for i = 1 to Cmax/Cstep do
6 k← 0
7 for j = 1 to Nnoise do
8 if mj < i · Cstep and mj >= (i− 1) · Cstep then
9 k← k + 1

10 if k > Ncover then
11 a← i · (Cstep + 1)

12 break
13 end
14 end
15 end
16 end
17 return a

Fig. 4. An illustration of the noise estimation method with a threshold of
80. Five examples are randomly selected and the line sections crossing the
threshold from top to bottom are highlighted.

in Fig. 4. It can be seen that the threshold Ncover = 80 helps
find a step number that has a low mi for each signal, such that
the amplitudes covered in the section are not likely to belong to
background noise. In Fig. 5, we present examples of flattened
signals together with estimated noise levels. It is observed that
the estimated noise levels are able to cover the low-amplitude
background noise without covering the high-amplitude pulses
in the signals.

C. Pulse Identification

Specifically, a point in a signal is considered a pulse if it
has the highest absolute amplitude in its neighbourhood. A fast
and robust way to locate the pulses in the signals is needed

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 21,2023 at 01:42:03 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 5. Examples of estimated noise level on flattened signals.

Fig. 6. Examples of detected pulses on flattened signals.

to facilitate the subsequent feature extraction and classifica-
tion steps. Concretely, a two-stage pulse detection method
is adopted, where the first stage finds a set of pulse candi-
dates, and the second stage verifies if the candidates are valid
pulses. The pulse detection method is described in detail in
Algorithm 2. Besides s, the algorithm inputs also include the
number of sections to equally split the signal Nsort, the number
of largest amplitude values to keep Ntop, the neighbourhood
radius for masking Nmask, the neighbourhood radius of local
maximum Nlocal, the estimated noise level a, and the threshold
for magnitude comparison Cmag.

The first stage of the algorithm ensures that the pulses are
not densely distributed within a small time section of the sig-
nals and that pulses of both high and low amplitudes can be
selected. In the second stage, all pulse candidates collected
from the first stage are verified to guarantees that the absolute
amplitudes of the pulses are the maxima within their neigh-
bourhoods. Examples of detected pulses can be seen in Fig. 6.
In addition to the verification of amplitude, three conditions for
relocation of pulses are described as Condi:s[p − i]s[p] < 0
and sabs[p − i] > Cmagsabs[p], i = 1, 2, 3. Relocation of the
pulses is crucial for the construction of features based on the
shapes of the waveforms surrounding the pulses. The condi-
tions above are able to find high-amplitude points a few time
steps before the pulse candidates.

D. Pulse Clustering and Global Features Construction

The previously-mentioned pulse detection method is able
to locate the pulses with high absolute amplitudes within
their neighbourhoods, but as we are more concerned about
the waveforms surrounding the pulses, it is then of great
importance to investigate the shapes of the waveforms.
A straightforward way to compare the shapes of different

Algorithm 2: Pulse Identification and Processing
Input: s, Nsort, Ntop, Nmask, Nlocal, a, Cmag
Output: P

1 smask ← abs(s), sabs ← abs(s), P′ ← Ø, P← Ø
2 for i = 1 to 3 do
3 Divide smask into Nsort sections (s̄1 to s̄Nsort )
4 for j = 1 to Nsort do
5 P′j ← indexes of largest Ntop values in s̄j

6 Add P′j to P′
7 for p′ ∈ P′j do
8 smask[p′ − Nmask : p′ + Nmask]← 0
9 end

10 end
11 end
12 for p ∈ P′ do
13 if sabs[p] = max(sabs[p− Nlocal : p+ Nlocal]) then
14 while Cond1 is satisfied do
15 p← p− 1
16 end
17 if Cond2 is satisfied then
18 p← p− 2
19 else if Cond3 is satisfied then
20 p← p− 3
21 end
22 if sabs[p] > a and sabs[p] < 50 then
23 Add p to P
24 end
25 end
26 end
27 return P

waveforms is to align the waveforms with the pulses as the
anchor point. That is, we normalize the waveforms surround-
ing the pulses by dividing the amplitude of the corresponding
pulses and align the waveforms such that the pulses are located
at the same position. Further, we expect that typical pulse
waveform patterns can be revealed by clustering of the wave-
forms. The patterns will later serve to produce a set of finely
tuned features describing the signal for the purpose of its
classification.

The clustering of pulses is carried out for individual phases
as well as all phases combined. Up to Nsample pulses are ran-
domly sampled from the signal of each phase for clustering
so that the clustering process is not excessively influenced by
signals with a large number of pulses. Specifically, k-means
clustering with k-means++ initialization [27] is applied to the
waveforms surrounding the identified pulses. Given a wave-
form x, the length of the waveform is Nbefore+Nafter+1, where
Nbefore and Nafter are the number of time steps before and after
the anchor point. After the clustering of pulse waveforms is
performed, the centroids of the clusters can be calculated for
further analysis.

The pulses detected in the signals and the clustering results
cannot be directly used as inputs to machine learning mod-
els. Thus, it is necessary to build compact global features
that can be used to distinguish between faulty and non-faulty
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Fig. 7. An illustration of template-matching features (green dots) and intra-
cluster concentration features (orange dots).

signals. With the clustering results for individual phases and
all phases combined, building features based on pulses in a
specific phase (or all phases) or in a specific cluster becomes
possible. Some traditional and trivial features include count of
pulses, average height of pulses, and standard deviation (SD)
of height of pulses. These features, however, are insufficient
in reflecting the shapes of the pulses. Thus, two additional
deep feature groups, namely, template-matching degree, and
intra-cluster concentration degree, are introduced. Specifically,
the features are constructed by calculating the rooted mean
squared error (RMSE) between pulse waveforms and tem-
plates (for template-matching degrees) or cluster centroids (for
intra-cluster concentration degrees).

Given the ith template pi, the corresponding template-
matching feature ri is calculated as

ri = 1

Npulse

Npulse∑

j=1

RMSE(xj, pi), (2)

where Npulse is the number of pulses detected in a three-
phase signal. The templates are not necessarily cluster cen-
troids but can be built based on the centroids. While the
template-matching features are calculated using all pulses, the
intra-cluster concentration degrees are obtained using pulses
assigned to each cluster centroid. For each cluster centroid
µi, the intra-cluster concentration feature di is obtained by

di =

∑
xj:NC(xj)=i

RMSE(xj,µi)

∑
xj:NC(xj)=i

1
, (3)

where NC is the centroid assignment function given the cluster
centroids. For phase-specific cluster centroids, the pulses are
also limited in the phases. The features of all-phase cluster
centroids use pulses from all phases.

We use Fig. 7 to demonstrate the concepts of template-
matching and intra-cluster concentration features. Suppose the
green data samples belong to a specific signal, then the template-
matching features are calculated based on all the samples
(indicated by the green arrows). Further, suppose the orange
data samples belong to another signal, we can calculate the
intra-cluster concentration features using the samples within
each voronoi cell (indicated by the orange arrows).

In the proposed approach, we construct two types of fea-
tures, namely, all-pulse features and cluster-specific features.
Specifically, all-pulse features are constructed using all pulses
identified across three phases, while cluster-specific features
are constructed with pulses within pulse clusters (both for
individual phases and all phases combined). As each pulse
is assigned to one of the clusters, features constructed for a
specific cluster are not affected by pulses in other clusters.
In addition, template-matching features are built for all-pulse
features only and intra-cluster concentration features are exclu-
sive for cluster-specific features. Pulse count, average height,
and SD of height features are used for both types of features.
When all the features are constructed, we put them together
and build classifiers based on the features.

E. Classifier and Evaluation Metric

In this article, we use light gradient boosting machine
(lightGBM) [28] as the classifier. The lightGBM model is
an efficient implementation of gradient boosting decision tree
(GBDT) [29], a gradient boosting framework built upon tree-
based learning algorithms. Specifically, the GBDT model is
an addictive ensemble of decision trees that are trained in a
sequential manner, and each tree is trained based on the neg-
ative gradients of the loss function. The implementation of
lightGBM is based on XGBoost [30], which optimizes the
loss function using second-order approximation. The light-
GBM model is suitable for the features we have constructed
because of the following reasons:

1) Tree-based models are in general insensitive to the val-
ues of the features, thus only the raw features are needed.
Specifically, the values of a feature are ordered and put
into bins by building a histogram. For each split, values
within bins on two sides of the split point are separated
into two new leaves.

2) The lightGBM model automatically decides which fea-
ture to use when splitting a leaf node. Thus, the impor-
tance of a feature can be reflected by the number it is
used or the gain of the feature.

Specifically, binary-crossentropy is used as the loss function
for lightGBM for the binary classification task in this work.
As non-faulty samples account for over 93% of the training
dataset, the training of the classification model may be ham-
pered by this imbalance. One effective method to tackle class
imbalance is over-sampling the minority class (faulty) near the
borderline between two classes, which can lead to an improved
decision boundary with a mild increase in dataset size. In this
work, borderline synthetic minority oversampling technique
(SMOTE) with SVM is used to create synthetic faulty sam-
ples. Specifically, SMOTE-SVM [31] first trains an SVM on
the original dataset to approximate the borderline area with
support vectors. New faulty samples are synthesized near sup-
port vectors for the faulty class so that the desired ratio of the
number of faulty samples to the number of non-faulty sam-
ples, α, is achieved (interested readers are referred to [31] for
the details). The SMOTE-SVM is used as a final ingredient
for our proposed approach.

The Matthews correlation coefficient (MCC) is used to
evaluate the fault classification performance of different
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approaches, and it is defined as

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, (4)

where TP is the true positive rate (the rate samples predicted
as positive are indeed true samples, similarly hereinafter); TN
the true negative rate; FP the false positive rate; and FN
the false negative rate. The MCC is considered a good eval-
uation metric for binary classification tasks on imbalanced
datasets [32].

III. RESULTS AND DISCUSSION

In this section, we describe the implementation details of the
proposed approach and present the results for fault detection.
The performance of the proposed approach is enhanced by
analyzing feature importance values. Additionally, a discussion
on the number of clusters is provided.

A. Implementation Details for Signal Pre-Processing and
Pulse Identification

The implementation details of the methods for signal pre-
processing and pulse identification are elaborated as follows:

1) Signal flattening: the Savitzky-Golay filter uses a win-
dow size of 99 and a polynomial order of 3.

2) Noise level estimation: Nnoise and Lnoise are set to 1000
for the sampling of signal sections. The threshold Ncover
is set to 80. Considering the possible range of noise
level, Cmax is set to 15 and the step size Cstep is −0.5.

3) Pulse identification and processing: We set Nsort and Ntop
to 20 and 100, respectively. The values for Nmask and
Nlocal are 50 and 25. The magnitude coefficient Cmag is
set to 0.5.

B. Analysis of Pulse Patterns and Clustering of Pulses

Clustering of waveforms surrounding the pulses plays an
important role in the proposed approach. In this subsection, we
first use clustering of pulse waveforms from phase B to explain
why the conditions in Algorithm 2 are added. Specifically,
the inspection of the clustering results indicate that reloca-
tion of the pulses is needed to reveal the characteristics of the
waveforms surrounding pulses. After the pulses are identified,
we perform clustering to the pulse waveforms from individ-
ual phases as well as from all three phases, producing four
groups of clustering results that are further exploited to con-
struct features. Specifically, the clustering results are obtained
with Nsample = 100.

We use the waveforms taken from phase B signals that are
faulty to illustrate the pulse waveform inspection procedure.
As a first step, the 30-time-step waveforms (Nbefore = 15
and Nafter = 14) are clustered into three groups using the
k-means algorithm with k = 3. Waveforms of two clusters are
shown in Fig. 8 (a) with different colors, and it is observed
that both clusters have two sub-modes within them. We shift
the anchor points of the waveforms in phase B two or three
steps ahead if either of the two time steps has an amplitude
lower than −0.5. It is clearly observed in Fig. 8 (b) that the
modification of the anchor points helps reveal the two types

Fig. 8. Two clusters of the waveforms of pulses for phase B before and after
modifying the anchor points: (a) before and (b) after.

Fig. 9. Centroids for the waveforms of different clusters for phase B when
k = 6. Random waveform samples of the clusters are also illustrated.

of waveforms that have an opposite pulse two or three steps
after the anchor point. In addition, a similar modification of
anchor points for waveforms that has an amplitude lower than
−0.5 one time step before the anchor point is implemented. As
multiple pulses with opposite signs may exist, the modification
process can repeat for more than once.

The previous analysis is only for waveforms from faulty
signals, which does not cover the complete characteristics of
the different waveform types in phase B. A larger value of k
can be selected to discover more types of waveforms. Here,
a simple heuristics is used to determine the value of k. As
The two waveform types in Fig. 8 (b) are quite similar to
each other, waveforms of the two types are prone to be found
within the same cluster if waveforms from non-faulty signals
are included and the value of k is small. Thus, we increase the
value of k and set it to the first value that is able to separate
waveforms from the two types. Specifically, k = 6 satisfies
the criterion and we use the same value for the clustering of
waveforms for phase A and C.

The six waveform types for phase B signals are illus-
trated in Fig. 9. The centroids of the clusters are plotted with
black lines. Apart from the two types discussed earlier, the
four remaining types are also quite distinctive. A visualiza-
tion of the clustering result for phase B is shown in Fig. 10.
Principal component analysis (PCA) [33] is used to reduce the
dimensionality of the waveforms and the first three principal
components are chosen. For ease of presentation, 15% of the
pulse waveforms are randomly sampled for the visualization.
In addition, we use a few examples to show how the different
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Fig. 10. Visualization of the clustering result for phase B using three principal
components.

Fig. 11. Examples of flattened signals for phase B that are faulty. The
detected pulses are marked with colors corresponding to the types in Fig. 9.

Fig. 12. Examples of flattened signals for phase B that are not faulty. The
detected pulses are marked with colors corresponding to the types in Fig. 9.

waveform types can be used to distinguish between faulty and
non-faulty signals. In Fig. 11 and Fig. 12, we use dots with
different colors to indicate the location of different types of
waveforms in the signals. The colors for the dots are identi-
cal for the waveforms of different types in Fig. 9. It can be
observed from the figures that faulty and non-faulty signals
differ in terms of the types of waveforms surrounding pulses
and the density of pulses.

The clustering of pulse waveforms for phase A and C can be
implemented in a similar way, and the centroids of the clusters
for the two phases are shown in Fig. 13. Although the orders
of the centroids for the two phases are not matched, it can be
observed that there is a one-to-one relationship between the
centroids. It is worth pointing out that the pulse waveforms
in each cluster appear in both faulty and non-faulty signals.
To better illustrate this, the average ratios of pulse counts in
the clusters to the number of pulses in faulty and non-faulty
signals for each phase are given in Fig. 14. It can be seen that
although some clusters account for higher proportions in faulty

Fig. 13. Centroids for the waveforms of different clusters for (a) phase A
and (b) phase C when k = 6.

Fig. 14. The average ratio of pulse counts in each cluster to the number
of pulses in faulty and non-faulty signals for (a) phase A, (b) phase B, and
(c) phase C.

signals, these clusters still share relatively large proportions in
non-faulty signals. Therefore, it is more important to use the
clustering results for the construction of distinctive features
instead of using them as fault indicators directly. In addition,
it is impractical to classify the source of all the pulses appear-
ing in the field signals. The data-driven approach based on
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Fig. 15. Centroids for the waveforms of the detected pulses of different clusters for all phases when k = 15. The ordering of the types is from left to right,
then from top to bottom.

Fig. 16. The values of normalized SSE for (a) individual phases and (b) all
phases.

Fig. 17. The templates used for constructing the template-matching features.

clustering can provide clues about early-stage faulty conditions
without explicitly identifying the fault-related pulses.

In addition to phase-specific clustering of waveforms, the
clustering of waveforms from all phases is also conducted.
In Fig. 15, the waveforms of the clusters with k = 15 are
presented. For most of the centroids in the figure, it is not
difficult to find similar centroids for individual phases.

The sum of squared error (SSE) (i.e., the sum of squared
distance from each pulse to its centroid) can be used to choose
proper values of k for k-means clustering. In Fig. 16, we plot
the values of SSE for the several cases with different values of
k. We normalize the SSE values so that the first value is always
1. A simple method for choosing k is picking a k so that the
slope of the curve after the kth point becomes relatively small
and stable. While it is hard to determine optimal values of k
from the curves, we can see that k = 6 for individual phases
and k = 15 for all phases (dashed lines) roughly satisfy the
criterion of the heuristic method.

C. Description of Features and Classifier

As is introduced in II-D, we construct all-pulse and cluster-
specific features separately. The descriptions for the all-pulse

features are provided in Table I. The features in Table I are
referenced from the Kaggle’s 1st place solution, and the tem-
plates for template-matching features are shown in Fig. 17.
The length of the templates is 50 time steps. Initially, only the
first template in Fig. 17 is introduced in the Kaggle’s 1st place
solution. We add 7 more features to this feature group based
on the centroids illustrated in Fig. 15. In Table II, we describe
the cluster-specific features in detail. Each feature group has
33 features, 15 of which are for all phases combined and 18
of which are for individual phases (6 for each phase).

Similar to the implementation in the Kaggle’s 1st place
solution, a total of 125 lightGBM models are trained with
25 different random seeds and 5-fold cross-validation [34].
Generally speaking, 5-fold cross-validation means that we split
the training dataset into 5 disjoint parts and leave one of the
parts out at a time as the validation set. In order to compare
with the Kaggle’s 1st place solution, we follow its cross-
validation scheme that uses 60% of the data for training, 20%
for validation, and the remaining 20% for testing. After deter-
mining the features and the hyper-parameters, five models are
trained in the 5-fold manner. With a different random seed,
the split of the training dataset changes so that more models
can be trained to facilitate ensemble learning [35]. The final
logits are calculated by averaging the logits of all models and
the threshold for the logits is estimated by training samples.

The experiments of the proposed approach are conducted in
Python 3.6 using CPUs. With a single thread, the average time
lengths for feature extraction (three phases) and inference of
125 LightGBM models are 0.0156 and 0.0055 seconds, respec-
tively. Using multiple threads for calculation further reduces
the computation time. For instance, it takes less than 0.0008
seconds for the inference of the LightGBM models when 8
threads are used. Hence, our efficient approach is suitable for
real-time fault detection applications.

D. Fault Detection Results and Comparison

We compare the performance of the proposed model with
other approaches. Spcecifically, the 1st place solution1 is also
based on features constructed on pulses, but the majority of
the features are pulse counts and statistics of pulse heights.

1https://www.kaggle.com/mark4h/vsb-1st-place-solution
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TABLE I
DESCRIPTION OF ALL-PULSE FEATURES

TABLE II
DESCRIPTION OF CLUSTER-SPECIFIC FEATURES BASED ON PULSES OF DIFFERENT CLUSTERS

TABLE III
COMPARISON OF THE MCC VALUES FOR DIFFERENT APPROACHES

The 2nd place solution2 is a combination of CatBoost mod-
els [36] and recurrent neural network models. The 5th place
solution3 combines lightGBM models with recurrent neural
networks and convolutional neural networks. The approach
in [4], which uses a series of traditional features including
count, width, and height of pulses, is also implemented as a
benchmark. In Table III, the metrics of the different models are
presented. It is seen in the table that the proposed approach
outperforms the benchmark as well as the top solutions for
the competition on MCC. The metrics of precision TP

TP+FP and
recall TP

TP+FN are also shown in Table III. It is observed in the
table that the proposed approach has much higher precision.
Specifically, there are 377 faulty signals in the test dataset, 327
out of the 531 signals predicted as faulty are actually faulty
for the Kaggle’s 1st place solution, and 317 out of the 474
signals predicted as faulty are true positives for the proposed
approach. In a nutshell, the proposed approach is less likely
to produce false positive predictions while the recall rates of
the two approaches are roughly at the same level.

E. Performance Enhancement With Feature Analysis

The LightGBM model can evaluate the importance of fea-
tures by calculating the total gain of each feature. Since
the final classification result is given by the combination
of multiple LightGBM models, the feature importance of
each individual model are added to obtain the final feature

2https://www.kaggle.com/c/vsb-power-line-fault-detection/discussion/8661
6#latest-501584

3https://www.kaggle.com/c/vsb-power-line-fault-detection/discussion/8517
0#latest-500367

importance. Fig. 18 shows the logarithmic values of feature
importance, which are given by the model with an MCC of
0.735. In order to facilitate the comparison of different types
of features, they are divided into four categories, and their
positions in the feature importance ranking are marked with
different colors. The four types of features are count features,
RMSE features, SD features and height features. Specifically,
RMSE features include both template-matching features and
intra-cluster concentration features.

It can be seen in Fig. 19 that the three most important
features are pulse count features, followed by three RMSE
features (two of which are template-matching features). The
importance values of SD features and average height features
are lower overall. The average height features generally have
the lowest importance values. It is expected that the distribu-
tions of faulty and non-faulty samples are quite different for
the most important features. Fig. 19 shows the distributions of
faulty and non-faulty samples for the six most important fea-
tures. The three pulse count features are all cluster-specific, of
which the first and third features use pulses from all phases,
and the second feature is a single-phase feature (A-5 indicates
the fifth cluster of phase A). The fourth and fifth features
are template-matching features, and the sixth feature is an
intra-cluster concentration feature that uses pulses from three
phases. It is observed that the distributions of the top pulse
count features of faulty samples are significantly higher than
those of non-faulty samples, while the distributions of top
RMSE features are significantly lower than those of non-faulty
samples. Thus, these features can be used to distinguish the
faulty and non-faulty samples.

A difference between template-matching features and intra-
cluster concentration features is that the template-matching
features only use pulses within quadrant one and quadrant
three of the signals, while the intra-cluster concentration fea-
tures use all pulses. An obvious reason is that the numbers
of pulses used for intra-cluster concentration features are
much smaller than template-matching features, which may
increase the chance of overfitting if the number of pulses
is further reduced. A detailed analysis on the reason that
template-matching features use pulses within quadrant one and
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Fig. 18. The feature importance values of different feature groups provided by the LightGBM model.

Fig. 19. Distributions of six features with the highest feature importance
values. The top three features are pulse count features and the other three are
RMSE features.

quadrant three is given in Fig. 20, which shows the distribu-
tions of pulse counts within phase-resolved segments for the
clusters corresponding to the four most important template-
matching features. Each signal is evenly divided into 20 signal
segments where the pulses are counted separately. Specifically,
the four clusters are clusters 13, 4, 15, and 6, which correspond
to templates 7, 4, 3, and 1, respectively. For the first two fea-
tures, the pulse counts in quadrant one and quadrant three
(marked with red line) are generally more than quadrant two
and quadrant four for faulty samples, while non-faulty sam-
ples generally have more pulses in quadrant two and quadrant
four. This distributional characteristic indicates that these two
features can be more discriminative if the counts are taken for
quadrant one and quadrant three only.

Fig. 21 shows the distributions of three SD features with
the highest feature importance, ranking 15, 16, and 19,
respectively. Compared with the top-ranked features, the dis-
criminative power of these features for faulty and non-faulty

Fig. 20. Boxplots for phase-resolved distributions of the number of pulses
for types 13, 4, 15, and 6 in Fig. 15 (top to bottom).

Fig. 21. Distributions of three SD features with the highest feature importance
values.

samples has decreased. Nevertheless, the distributions of faulty
samples and non-faulty samples for these features are still visi-
bly different. This indicates that these features can still provide
useful information during the learning process of DTs.
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Fig. 22. Distributions of three average height features with the highest feature
importance values.

TABLE IV
COMPARISON OF RESULTS FOR THE PROPOSED MODEL

In Fig. 22, the distributions of three average height features
with the highest feature importance are plotted (the features
ranked 9, 14, and 31, respectively). Although the importance
ranks of the first two features are relatively high, it can be
seen that the distributions of faulty and non-faulty samples
are quite similar (almost identical mean values). Compared
with other types of features, these features are more likely
to lead to overfitting of the models. To justify this argument,
we can remove the average height features and evaluate the
performance of the model.

As mentioned above, the average height features have lower
feature importance values in general. Even the features with
the highest importance values have lower distinguishability
between faulty and non-faulty samples than other feature
groups. Therefore, in a new experiment setting, average height
features are removed and the LightGBM models are retrained.
Next, we change the cross-validation scheme to the standard
leave-one-out version and estimate the threshold using vali-
dation data, which improves the model’s performance (also
without average height features). Finally, over-sampling of
faulty samples with SMOTE-SVM is implemented in addition
to the improved cross-validation scheme.

A comparison of the results for the proposed approach is
presented in Table IV, where model I represents the model
with all features, model II represents the model with the
improved cross-validation scheme, and model III represents
model II with SMOTE-SVM applied to each split of cross-
validation. For model II, additional results are added for
models with only all-pulse features or cluster-specific fea-
tures. As shown in the table, the average height features have
a negative impact on the performance of the classification
model when other groups of features are used. Shifting to
the standard leave-one-out cross-validation also improves the
model’s performance. Over-sampling the faulty samples with
SMOTE-SVM with an α between 0.1 and 0.2 generally lifts
the MCC, and model III with α = 0.15 has the highest MCC.

Nevertheless, as a single threshold is used for the evaluation
of the metrics, the trade-off between precision and recall leads
to the discussion in the following subsection.

F. Performance Comparison With Varying Thresholds

For each test sample, the classification model first gives
the sample a “fault probability” between 0 and 1, and then
determines whether the sample is faulty or not based on a
threshold obtained by cross-validation. In fact, as the threshold
moves from 0 to 1, the values of both TP and FP gradually
decrease, while the value of FN gradually increases. Therefore,
the recall value decreases monotonically with the increase of
the threshold. The precision value, whose shape is determined
by the distribution of the output probabilities of the samples,
tends to increase with the increase of the threshold. In order
to have a clear understanding of the performance of different
models, we draw curves of various metrics obtained by varying
the threshold within a wide range.

Fig. 23 shows a comparison of the proposed model and
the 1st place solution on Kaggle for several metrics when the
threshold varies from 0.2 to 0.8. As the figure suggests, the
proposed model II and Kaggle’s 1st place solution have similar
recall values, but model II has a significant improvement on
the precision value. In fact, the threshold estimated for model
II is 0.434, while the threshold for the 1st place solution on
Kaggle is 0.350. The result shows, however, that model II per-
forms better on MCC for all thresholds ranging from 0.2 to
0.8. The proposed model III significantly improves the recall
metric with an estimated threshold of 0.566. As expected, over-
sampling the faulty samples is prone to producing more false
positive samples and fewer false negative samples. In sum-
mary, model III has the highest MCC at its estimated threshold
and outperforms other models when the threshold is greater
than 0.5.

G. Discussion on the Number of Clusters

In Section III-B, it is mentioned that the number of clus-
ters can be determined by two methods, namely, the heuristic
method and the method based on SSE evaluation. Although
pulse waveform clustering is only an intermediate process of
feature construction, the analysis in Section III-B implies that
a proper choice of the number of clusters can help reveal the
pulse patterns.

Specifically, increasing the number of clusters results in a
more finely-divided space of pulse waveforms, so that the
constructed features can capture the distribution of pulse wave-
form data more precisely. However, a large number of clusters
reduces the number of pulse waveforms within each cluster,
thus it is more likely to cause the problem of overfitting.
Therefore, it is necessary to examine the effect of the number
of clusters on the model’s performance. We conduct exper-
iments with different number of clusters and compare the
MCC values of each case. Model II with only cluster-specific
features is used to have a rigorous comparison.

The MCC values of the proposed model with different clus-
ter numbers are shown in Fig. 24. The labels for different cases
represent the numbers of clusters for pulses from individual
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Fig. 23. Comparison between the proposed model and the 1st place solution on Kaggle with varying thresholds.

Fig. 24. The MCC values of the proposed model using cluster-specific
features with different cluster numbers. Each value is averaged from five trials
and the error bars indicate the range of one SD above and below the average
values.

phases and all phases, respectively. Five trials are conducted
for each case (clustering results differs from trial to trial as
the pulses used for clustering are randomly sampled) and the
SD values are calculated to yield the error bars. With only
cluster-specific features available, the proposed model is able
to achieve MCC values larger than 0.73 for all cases. Two
conclusions can be drawn from Fig. 24.
• The number of clusters has a certain influence on the

performance of the model. However, Fig. 24 shows that
the performance does not vary much for different num-
bers of cluster within a certain range. Nevertheless, the
methods of determining the number of clusters provided
in Section III-B are able to find the numbers that result
in relatively high MCC values.

• Increasing the number of clusters will increase the vari-
ance of the MCC values. This is probably due to the
fact that the number of pulses assigned to each cluster
decreases, so the model is more prone to overfitting.

IV. CONCLUSION

In this article, we propose an efficient approach for faulty
and non-faulty covered conductor classification based on PD
patterns. With a meticulous design of data pre-processing
procedure, pulses related to PD patterns are revealed. In-
depth analysis of pulse patterns and clustering of pulse
waveforms enable the construction of cluster-specific and all-
pulse features. In addition to traditional features, two new
features, namely, template-matching degree, and intra-cluster
concentration degree are proposed. An in-depth analysis of
feature importance reveals that average height features can
be excluded for the fault detection task. Over-sampling the

faulty data samples near the borderline is proved to be use-
ful in dealing with the imbalance of faulty and non-faulty
samples. Extensive results show that the proposed approach,
which achieves an MCC value of 0.766, has a significant
edge over existing methods. Results with varying classification
thresholds further corroborate the superiority of the proposed
approach. Furthermore, our generic design can be applied to
many other pattern recognition tasks.

Our future goal will be focused on performance enhance-
ment by using deep neural networks. Deeper evaluation of
representative pulse waveforms can be utilized to identify
whether they come from noise interference, PD effect or
other sources. Such a procedure may further improve the
explainability of the proposed approach.
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