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Market-based Energy Management Model of a
Building Microgrid Considering Battery

Degradation

Kyriaki Antoniadou-Plytaria, Graduate Student Member, IEEE, David Steen, Le Anh Tuan, Member, IEEE,
Ola Carlson, and Mohammad Ali Fotouhi Ghazvini, Member, IEEE

Abstract—This paper presents a model for energy management
system of a building microgrid coupled with a battery energy
storage. The model can be used to dispatch the battery as
a flexible energy resource using a market-based setting. The
battery is modeled considering battery degradation and real-
life operation characteristics derived from measurements at a
residential building. The performance of the model was evaluated
first with simulations and integrated afterwards to an energy
management system, which was demonstrated at a real residential
building (HSB Living Lab) equipped with photovoltaic and
battery storage systems. The simulation results showed that the
building owner, and subsequently the residents, could benefit
from the proposed model in reduced annual cost up to 3.1%
under the considered pricing scheme. The demonstration results
showed that dispatch under the measurement-based model could
decrease the undelivered energy over the daily requested amount
from the battery from 13.3% to 3.7%. Thus, the proposed model,
which couples the measurement-based dispatch with battery
degradation, can lead to a more accurate estimation of the
building operation cost and an improved overall performance
of battery as a flexible resource in building microgrids.

Index Terms—Battery degradation, battery energy storage,
building microgrid, energy management system, optimization.

NOMENCLATURE

Sets

H Set of time steps (simulation horizon)

I/K Set of discharging/charging sample data

P Set of sample points of the lifecycle loss function

Indices

i/k Index for discharging/charging sample data

p Index for lifecycle loss function sample point

t Index for time step

Parameters
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PL
t Active load

PPV
t Active power from solar generation

SoEmax Upper state-of-energy limit of the battery

SoEmin Lower state-of-energy limit of the battery

ηch/ηdis Charging/discharging efficiency of the battery

P spot
t Spot price [$/kWh]

Ci Grid charge for energy transmission [$/kWh]

Ce Reimbursement fee paid to producers of small-

scale generation [$/kWh]

∆t Time discretization step

κ Power to energy ratio

Emax Installed battery capacity [kWh]

M A large positive number

CB,0 Purchase cost of battery [$]

Cpp Power-based grid tariff [$/kW/month]

η Percentage of end-of-life retained capacity

P cap Converter capacity limit [kW]

P−

i /P+

i Sample measurements of output/input power

from/to the battery cells

P dis
i /P ch

i Sample measurements of discharging/charging

power to/from the grid

SoEdis
i Sample measurements of battery energy storage

state-of-energy during discharging

SoEch
k Sample measurements of battery energy storage

state-of-energy during charging

B1,B2 Cycle aging coefficients

Ic Average charging C-rate

T Temperature [K]

H Adjacency matrix

ρ̂p Sample points of lifecycle loss percentage

DoDp Sample points of depth-of-discharge

Variables

pimt /pext Imported/exported power from/to the grid

p−t /p+t Output/input power from/to the battery cells

pdist /pcht Discharging/charging power to/from the grid

xti/ytk Positive variables indicating choice of discharg-

ing/charging samples i/k
dodt Depth-of-discharge for the battery energy storage

soet State-of-energy of the battery energy storage

q Battery capacity loss in %

rp Cost of peak power drawn from the grid [$]

cB Cost of cycle-based battery degradation in [$]

ρt Lifetime loss percentage associated with DoDt

ξtp Positive variable related to the choice of lifecycle



loss function sample point p
cDoD
t Cycle aging cost dependent on DoDt

bp,t Binary variable used with adjacency constraints

zt Binary variable indicating charging or discharging

I. INTRODUCTION

THE NEED for dispatchable renewable-based energy

sources (RES) has increased the focus on connecting

storage units to energy systems. Energy storages support the

penetration of RES by reducing the grid power fluctuations

they cause and can offer many other services that benefit the

grid operators (e.g., peak shaving, load leveling, frequency

regulation [1]).

A. Background and Motivation

Energy storage also emerges as a critical resource for

microgrid (MG) energy management [2] offering services such

as increased self-consumption of RES-based generation and

energy arbitrage [3], which benefit the MG owners. Following

a decrease in the battery cost [4], the installation of behind-

the-meter battery energy storages (BESs) has increased [3],

signifying their value in reducing the building electricity cost.

Energy management systems (EMSs) designed for building

microgrids (BMGs) apply energy scheduling solutions that

enable the end-users to fully utilize the BES potential in reduc-

ing the energy cost [5], [6]. The accuracy of the BES model

used by the BMG energy management system (BMG-EMS)

can affect the reliability of the solution in terms of delivered

energy and cost calculation. The link between BES dispatch

and BES degradation is also essential, as it can be exploited to

further reduce the operation cost of the BMG [5]. For efficient

dispatch and accurate evaluation of the BES utilization, it is

important to consider both real-life performance and lifetime

degradation of the BES.

B. State-of-the-Art

1) Battery Degradation: Some studies present results on

optimal BES dispatch considering BES degradation cost (e.g.,

[7]–[16]). A penalty is often used in the objective function in

order to reduce BES stress, usually by avoiding deep cycle

depths and/or high power rates [7]–[9]. Other works consider

the impact of low state-of-charge (SoC) [10]–[13], while the

simplest approach is to limit the number of cycles [14].

In [7], a mixed-integer non-linear programming model links

the aging cost to the cycle depth and updates the BES capacity

per time-step. The BES degradation in [8] is a function of the

power rates, while authors in [9] link aging cost to both cycle

depth and charge/discharge rates. However, the studies [7]–[9]

do not consider the depth-of-discharge (DoD) of each cycle.

In contrast, the degradation cost in [10] is calculated using

an approximation that links capacity loss with a weighted sum

of SoC levels. Authors in [11] also consider SoC level and

use Q-learning to approximate the non-convex cycle aging

cost. The rainflow algorithm is employed in [12], where the

authors prove convexity of the degradation function and use a

subgradient algorithm to approximate the solution of optimal

BES dispatch. The loss of lifecycle as a function of DoD

is also studied in [13], although the specific DoD related to

each cycle is not considered. The authors propose a piecewise

linearization of the lifecycle loss function, where the BES

sizing of an under planning MG is decided based on the

expected degradation associated with the maximum DoD of

all cycles.
Unlike most studies, which neglect calendar aging, the

authors in [15] incorporate both calendar and cycle aging

into a mixed-integer linear programming (MILP) problem

considering their dependencies on time elapsed and cumulative

throughput, respectively. However, a predefined desired BES

lifetime must be entered as a parameter to include calendar

aging in the MILP problem, while the impact of SoC is not

evaluated in either cycle or calendar aging.
2) BES Scheduling Models: Up until now, studies on op-

timal BES dispatch that consider degradation use technical

BES models, which are built on some simplifying assumptions

regarding the BES operation, e.g., the BES power and efficien-

cies are assumed independent of SoC. The BES scheduling

in [16], which is formulated as a Markov decision process,

considers both degradation and effective charging/discharging

power dependent on the SoC resulting in an improved BES

model compared to previously mentioned works. Still though,

the round-trip efficiency is considered to be constant.
A few recent works proposed models that can integrate the

actual, non-linear behavior of a real BES in linear program-

ming (LP) optimization problems [17]–[18]. The authors in

[17] provide a piecewise linear approximation of the charging

curve to account for the non-constant charging power limits,

while simplifications are still applied on BES efficiency. In

[18], each state of the BES operation is a linear combination

of sampled points of operation taken from measurements. This

approach considers dependency of both power and efficiency

on SoC. Ref. [17]–[18] did not consider BES degradation.

C. Paper Contributions and Structure

This paper presents a market-based energy management

model, which can be integrated in a BMG-EMS that uses BES

as a flexible resource.
The BES is modeled using the sampling-based approach

introduced in [17]–[18] to capture a more realistic BES

operation performance. The proposed model also incorporates

BES degradation.
The main contributions of this paper include the following:

• Development of a BMG energy management model with

a market-based approach for BES dispatch. The model

can be utilized by building owners for real-time (5-

15 min) energy management and monthly or annual

assessment of the building energy cost. A measurement-

based BES model and the impact of degradation are

considered in the BES dispatch, while the effect of DoD

is assessed both in cycle and calendar aging.

• Comprehensive evaluation of the BES dispatch under

different technical and degradation BES models that

reveals which modeling approach can yield the maximum

reduction to the electricity cost of the residents.



• Validation of the performance of the measurement-based

BES model against the real behavior of an on-site BES

in a demonstration site. The validation proves the effec-

tiveness of integrating a measurement-based model in a

BMG-EMS and confirms its advantage against conven-

tional BES scheduling models.

The rest of the paper is organized as follows. Section

II presents the model and Section III describes the study

approach. Section IV discusses simulation results and Section

V presents test results from a real demonstration site. Finally,

Section VI presents the main conclusions from the paper.

II. BMG ENERGY MANAGEMENT MODEL

The proposed model is integrated in a BMG-EMS, which

controls the BES using the forecasted values of the electricity

price, photovoltaic (PV) generation and building electricity

consumption as inputs. The model also uses the last measured

value of the BES’s state-of-energy (SoE) as an input, while

the output is the BES charging/discharging power for each

time step of the scheduling period. The BES throughput is

calculated in Wh, and thus the term SoE is used instead of SoC

[17]. However, the term SoC is still used for the experimental

measurements of the BES. In addition, DoD is defined as the

discharged energy from 100% SoE, i.e., DoD = 1− SoE.

It is assumed that the building owner is also the BES owner

as well as the BMG operator, and employs the BMG-EMS for

economic BES dispatch considering a business model, where

the BMG can purchase and sell energy to a retail electricity

provider at wholesale market price. Moreover, it is assumed

that the building owner intends to use the whole BES capacity

that is available by the BES’s operation limits in order to

reduce the energy cost using energy arbitrage (load-shifting).

A. Objective Function

The BMG-EMS seeks to minimize the total cost given by:

min
∑

t∈H

((P spot
t + Ci)p

im
t ∆t− (P spot

t + Ce)p
ex
t ∆t)

+ rp + cB .

(1)

The scheduling horizon and the time intervals are respec-

tively shown by H and ∆t in (1). The positive variables

pimt /pext are the imported/exported power from/to the grid at

time step t. The first term in (1) is the cost of the imported

energy, where P spot
t is the spot price and Ci is the grid charge

for energy transmission (grid utilization). The second term is

the revenue associated with the energy exported to the grid.

The reimbursement fee Ce is paid by the distribution system

operator (DSO) as an incentive to reduce network losses. The

term cB denotes the cost of BES capacity loss due to cycle

aging and rp is the cost for the peak power drawn from the

main grid, which satisfies:

rp ≥ Cppp
im
t , ∀t ∈ H. (2)

The power-based grid tariff Cpp is linked to the maximum

average power of the studied period (measured per ∆t).

BES

PVs

Building

AC grid

load

Pt
PV

pt
ch pt

dis

pt
ex

pt
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L

Direction of power flow

Fig. 1. Power flow of the building microgrid.

B. Power Balance

The PV system and the BES are connected to the upstream

AC grid via a converter with bi-directional operation, since

the solar energy and the BES stored energy can be exported to

the AC grid and, in addition, the BES can be charged through

both the upstream AC grid and the PV system (see Fig. 1).

The power balance of the BMG is given by

PPV
t + pdist − pcht = pext − pimt + PL

t , ∀t ∈ H, (3)

where PPV
t , PL

t , and the positive variables pcht /pdist respec-

tively refer to PV generation, building electric power consump-

tion, and charging/discharging power that the BES draws from

the grid and the PVs or injects to the grid. The losses of the

grid side converter are ignored. The PV generation and the

discharging/charging power of the BES might be curtailed due

to inverter capacity limitations:

∣∣PPV
t + pdist − pcht

∣∣ ≤ P cap, ∀t ∈ H. (4)

C. BES Scheduling

1) Conventional Model: The BES model that has been most

frequently used in the latest literature on BES scheduling (e.g.,

[7], [14], [19]–[20]) assumes that the SoE of the BES at each

time step is linearly dependent on the cumulative BES through-

put of the previous time steps. The charging/discharging

energy efficiency and the power limits are considered to be

constant and independent of the SoE level. This model is

described by the following equations:

soet = soet−1 + ηch
pcht ∆t

Emax

−
pdist ∆t

ηdisEmax

, ∀t ∈ H (5)

SoEmin ≤ soet ≤ SoEmax, ∀t ∈ H, (6)

0 ≤ pcht ≤ κEmax, ∀t ∈ H, (7)

0 ≤ pdist ≤ κEmax, ∀t ∈ H, (8)

pcht ≤ ztM, ∀t ∈ H, (9)



pdist ≤ (1− zt)M, ∀t ∈ H. (10)

In the above formulation, κ denotes the power to energy ratio,

which determines the maximum charging/discharging power

according to the specifications of the BES manufacturer.
2) Measurement-based Model: The assumptions that sim-

plify the BES operation, i.e., the constant charging/discharging

efficiencies and maximum power limits can be seen in (5),

(7)–(8). Depending on the application and the BES’s state-

of-health (SoH), these assumptions may lead to mismatches

between the estimated and actual SoE or the BES may fail to

deliver the rated power. Therefore, a sampling-based approach,

which was first presented in [18], is used to derive a model that

captures more accurately the behavior of an actual BES by uti-

lizing underlying patterns that exist in the charging/discharging

data. This measurement-based model uses sample data from

charging/discharging curves and satisfies (11)–(18), where the

positive variables p−t /p+t represent power output/input from/to

the BES cells respectively, before/after BES losses have been

taken into account:

soet = soet−1 +
p+t ∆t

Emax

−
p−t ∆t

Emax

, ∀t ∈ H, (11)

p−t =
∑

i∈I

P−

i xti, ∀t ∈ H, (12)

pdist =
∑

i∈I

P dis
i xti, ∀t ∈ H, (13)

p+t =
∑

k∈K

P+

k ytk, ∀t ∈ H, (14)

pcht =
∑

k∈K

P ch
k ytk, ∀t ∈ H, (15)

soet =
∑

i∈I

SoEdis
i xti +

∑

k∈K

SoEch
k ytk, ∀t ∈ H, (16)

I∑

i

xi,t = 1, 0 ≤ xi,t ≤ 1, ∀t ∈ H, (17)

K∑

k

yk,t = 1, 0 ≤ yk,t ≤ 1, ∀t ∈ H. (18)

Unlike the conventional model, the dependency of max-

imum charging/discharging rates on SoE levels is consid-

ered in the measurement-based model. That is because

the feasibility regions of BES power and SoE in the

measurement-based model are not independent from each

other. Instead, a 3-dimensional feasibility region is defined

by (12)–(13) and (16)–(17) using the discharging sample data

(SoEdis
i , P−

i , P dis
i ) to constrain the values of the variables

(soet, p
−
t , p

dis
t ), which are dependent to each other, during

discharging. Similarly, (14)–(16) and (18) define the feasi-

bility region of the variables (soet, p
+
t , p

ch
t ) during charging

using the charging sample data (SoEch
k , P+

k , P ch
k ). In other

words, the sample data form the convex hull of the fea-

sible region for BES operation points. Thus, the variables

(soet, p
+
t , p

ch
t , p−t , p

dis
t ) can be written as convex combinations

of the sample measurements. Each convex combination (BES

operation point) depends on the variables xi,t and yk,t, which

are associated respectively with the choice of discharging or

charging sample data.
The charging sample data can be obtained by any charging

curve pcht (soet) during a charging period for the BES. The

samples (SoEch
k , P ch

k ) can be directly taken from the curve,

while to derive the corresponding value for P+

k , one can solve

(11) for p+t , where soet = SoEch
k and ∆t is equal to the

time interval between this sample and the previously measured

SoE value. The discharging sample data can be obtained in a

similar way. The sample data should also include the BES

state, where the BES is an open-circuit and fully charged or

fully discharged according to [18].
This model also incorporates the variable (with respect to

BES power and SoE) charging/discharging efficiencies of the

BES system (both internal BES losses and DC/DC converter

losses are considered), which are given by ηcht = p+t /p
ch
t

and ηdis = pdist /p−t , respectively, ∀t ∈ H [18]. As the

efficiencies are correlated with the model’s decision variables,

the efficiency values (at each BES power and SoE level)

depend on the feasible values of xi,t and yk,t, which determine

the choice of pdist and p−t (or pcht and p+t during charging).

D. BES Degradation

The BES degradation can be expressed as loss of available

capacity or increase in the BES resistance and is non-linearly

linked to many factors [9] depending on the chemistry [21].

Cycle aging can increase due to high C-rates, frequent cycling

with high DoD, high operating temperatures, and operation in

very high/low storage voltages (SoC levels). Calendar aging

is more severe at high temperatures and SoC [21], [22].
1) Dependency of Cycle Aging on Cumulative Throughput:

The degradation model presented in [23] and modified in

[15], [24] is used to model the dependency of cycle aging

on cumulative throughput:

q = B1e
B2Ic

∑

t∈H

(p−t + p+t )∆t. (19)

In (19), q represents the BES capacity loss in %, while

the pre-exponential and exponential factors B1 and B2 can

be obtained from empirical fitting of experimental data. The

daily average C-rate Ic is entered as a parameter and thus (19)

becomes linear. The BES cost used in (1) is calculated as:

cB =
CB,0q

100%− η
, (20)

where CB,0 is the installation cost of the BES and η is the

end-of-life retained capacity percentage.
2) Dependency of Cycle Aging on DoD: The model pre-

sented in [25] is used to study the dependency of cycle aging

on maximum DoD. Given a function of lifecycle percentage

loss for one cycle of a specific DoD, the cycle-based BES

degradation cost entered in the objective function is given by

cB =
∑

t∈H

cDoD
t , (21)
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Fig. 2. The percentage of lifetime loss of one cycle at a specific DoD.

where cDoD
t is the cycle aging cost per time step t, given by:

cDoD
t = max{0, (ρt − ρt−1)C

B,0}. (22)

This cost is related to the percentage of lifetime loss ρt =
1/φ(DoD) for a cycle at a specific DoD. An example of the

loss of lifetime as a function of DoD derived from data of a

Li-ion BES can be seen in Fig. 2 (based on data from [13]).

In (22), ρt is greater than ρt−1 only when the BES is

discharging, since the loss of BES lifetime increases, when

the DoD increases. Thus, the aging cost is added for every

discharging half-cycle, while it is zero during charging. As

can be seen from (21)–(22), it is the starting DoD at the

beginning of each discharging half-cycle and the DoD at

the end of the respective half-cycle that increases the aging

cost function. This formulation does not directly impact the

charging or discharging time except for the purpose of limiting

the number of discharging half-cycles within the time horizon.

Two discharging half-cycles with the same starting and end

DoD will induce the same aging cost even if the discharging

time (number of time steps) is different between these two

cycles. The degradation model can be piecewise linearized

according to (23)–(27):

dodt =
∑

p∈P

DODpξtp, (23)

ρt =
∑

p∈P

ρ̂pξtp, (24)

P∑

p

ξtp = 1, 0 ≤ ξtp ≤ 1, (25)




ξt1
ξt2
...

ξtP


 ≤

[
H

]




b1,t
b2,t

...

bP−1,t


 , (26)

P−1∑

p=1

bp,t = 1. (27)

In (23)–(24), DODp and ρ̂p respectively refer to the sample

points of DoD (dodt) and lifetime loss percentage (ρt), which

are used for the piecewise linearization of the lifecycle loss

function curve (Fig. 2). Eq. (26)–(27) are adjacency con-

straints, which are used to ensure interpolation of the decision

variables dodt and ρt between consecutive sample points.

E. Optimization Models

Four optimization models are defined based on the em-

ployed BES scheduling and degradation models:

• Model-1: The conventional BES scheduling model (Sec-

tion II-C1) is used, while degradation cost is neglected,

i.e., the term cB is omitted from (1). The formulated

MILP problem is given by (1)–(10).

• Model-2: A measurement-based BES scheduling model

(Section II-C2) is used, which was validated with exper-

imental values. As in Model-1, aging is neglected. The

formulated LP problem is given by (1)–(4), (6), (11)–(18).

• Model-3: The measurement-based model is combined

with the cycle aging model of Section II-D1. The for-

mulated LP problem is given by (1)–(4), (6), (11)–(20).

• Model-4: The measurement-based model is combined

with the cycle aging model presented in Section II-D2.

The formulated MILP problem is given by (1)–(4), (6),

(11)–(18), (21)–(27).

The optimization models were implemented in GAMS [26]

interfacing CPLEX [27] to solve the LP and MILP problems.

III. STUDY APPROACH

A flow diagram of the approach adopted in the simulation

studies and demonstrations of BES dispatch is depicted in Fig.

3. The four models presented in Section II-E have been applied

in the simulation studies using an existing 7.2 kWh BES with

6 kW charging/discharging power limits. The BES is installed

at the HSB Living Lab (HSB LL) building [28], [29], located

at the campus of Chalmers University of Technology. The

BES dispatch under Model-1 and Model-2 was demonstrated

at the same building to prove the increased accuracy of the

measurement-based BES model compared to the conventional

model and thus justify its integration in Model-3 and Model-4.

Nord Pool spot market prices [30] were used in the study,

while the energy and power grid tariffs as well as the reim-

bursement fee were taken from the website of the local DSO

[31]. For the peak power cost, the power tariff for commercial

customers was used and scaled down to a cost that suited the

scheduling time horizon (24h), as this is in practice a monthly

fee paid to the DSO. The parameters for the measurement-

based model were obtained from sample data of tests on the

HSB LL BES, while ηch = 0.91 and ηdch = 0.98 for Model-1,

corresponding to the average values that were recorded during

those tests. The Li-ion cycle aging parameters of Model-3 were

taken from [23] (where B1 = 0.0013 and B2 = 0.3534),

while the BES loss function ρt, which is used in Model-4,

was derived from Li-ion BES data provided in [13]. For the

parameter Ic in (19), which is included in Model-3, the daily

average C-rate was used, which was found to be 0.3 for the

charging/discharging patterns of all four models over the 365

day-ahead simulations.
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Fig. 3. The flow diagram presenting the simulation and demonstration of the
BMG energy management model.

The main purpose of the simulations was to show the

impact of different BES dispatch models on the building

cost and degradation, while the purpose of the demonstration

was to validate the accuracy of the BES scheduling models.

Therefore, historical data of building consumption, PV gen-

eration, and electricity price were used as the input values to

the models both in simulations and in demonstrations. These

values are assumed to have been obtained by perfect forecasts.
A number of methodologies have been developed in the

literature to forecast the short-term load demand, power gen-

eration and the electricity price [32]. It is essential to consider

the complexity of each forecast tool, their strengths and

weaknesses while choosing for the integration with an EMS.

A review of various methodologies for threshold, probabilistic

and point forecasting of the short-term electricity price is

presented in [33]. The key techniques for short-term power

forecast are statistic parametric methods, non-parametric in-

telligent methods and hybrid models, which are reviewed in

[32]. Although the development of the forecast algorithms was

outside of the scope of this paper, each of these techniques

could be used to integrate with the proposed BMG energy

management model.

A. Simulations Studies

The building load, PV generation, and electricity price data

in 2018 were used to run 365 day-ahead BES scheduling

simulations, where ∆t = 5 min. Considering the uncertainty in

the future price of residential, stationary BESs [3], a sensitivity

analysis was performed with three prices, i.e., $100, $290,

and $500 per kWh, for the BES installation cost. These

approximately correspond to a best-case, likely, and worst-

case scenario. Moreover, two scenarios of SoE limits were

investigated: 30%-80% (Scenario-1) and 10%-90% (Scenario-

2). The initial and end SoE of each simulation was set to 50%.
As shown in Fig. 3, the BES capacity was updated after

each day-ahead optimization. The capacity loss was calculated

again after the performed optimization to obtain the most

accurate results, as the linearizations of the aging models in-

troduced an average error of 4.6% and 14% to the cycle aging

estimated by Model-3 and Model-4, respectively. First, the

capacity loss due to cycle aging given by cB(100%−η)/CB,0

was calculated using one of the models presented in Section

II-D (dependency on throughput or DoD), where the real-time

C-rate was used in (19). Afterwards, this loss was subtracted

from the capacity that the BES had at the beginning of the

day. Finally, the loss due to calendar aging was calculated

according to (28) and subtracted from the remaining capacity

for every t that was an open-circuit period for the BES:

Qr = Qr,0 − ac∆t. (28)

In (28), Qr is the percentage of retained capacity after the

rest period, Qr,0 is the capacity percentage at the beginning

of the rest period, and ac is a parameter dependent on SoC.

Thus, the dependency of calendar aging on both SoC and rest

period was considered. The values for ac were derived from

linear interpolation of the calendar aging data given in [22].
The temperature in stationary BESs can easily be controlled

and was therefore considered constant (T = 298K). The BES

of this study is installed in an indoor cabinet and according

to the IEEE/ASHRAE standard [34], [35], it is the thermal

management of the room rather than the individual BESs that

controls the temperature of the stationary BESs. According to

this standard, the supply air of the ventilation unit should assist

in controlling the room temperature. Ideally, the optimization

problem could seek to minimize the building energy cost by

controlling the aggregated BES charging/discharging power

and power consumption of the BES thermal management

system. However, considering that the temperature of the room

can be controlled during many months of the year through the

heating system of the building and considering also that the

power consumption of the BES thermal management system is

relatively small in comparison with the BES power, then the

impact of this power consumption to the total building cost

can be considered negligible.

B. Demonstrations

A rolling horizon (RH) approach was used for the demon-

strations. The optimization problem was solved before each

15-minute time interval (∆t). The set-point for the first time

step was dispatched after each simulation, while the time

horizon was shifted forward by ∆t for the next simulation, as

shown in the flow diagram (Fig. 3). Since the RH approach was



used and the set-points were continuously adjusted, Eq. (1) did

not refer to the actual cost during the scheduling horizon.
The input values for load, PV generation, and spot price

were updated at each time step to consider values that were

outside of the previous simulation horizon (as the new sim-

ulation horizon had been shifted forward). The same input

data (including initial SoC measured at t = 0) were used in

both demonstrations to allow for comparison of their results,

while the SoE limits were set to 30%-80% (Scenario-1). If

actual forecasts are to be used, then the updated input at each

time step can also consider potential changes/updates in the

forecasts. Thus, the rolling horizon approach can substantially

reduce the impact of forecast and SoE estimation errors to

the building cost by both renewing the input values and

dynamically adjusting the set-points at each time step (the

latter was implemented in the demonstrations).

IV. SIMULATION RESULTS

Fig. 4 presents the annual assessment metrics of the BES

dispatch according to the four models presented in Section

II-E in the two scenarios of SoE limits as described in Section

III-A. The calculation of cycle aging and the respective cost

is presented for both approaches (dependency on through-

put/DoD) for comparison. The assessment of the models was

performed according to the measurement-based BES model.

Thus, the maximum feasible charging/discharging power was

chosen, when the BES power set-points of Model-1 were

infeasible with respect to the measurement-based model.

A. Analysis

1) Scenario-1: As Fig. 4(a) shows, Model-3 and Model-4

yielded the most economic operation at all prices. The total

cost for either model was not higher than $4401 at $100,

while Model-4 yielded the lowest cost at $290 and $500,

which was not higher than $4591 and $4795, respectively.

Even though the energy cost was increased in these models,

the total capacity loss was lower than in Model-1 and Model-

2, which did not include the cycle aging cost in their objective

functions and gave a total cost of at least $4408 at $100, $4616

at $290, and $4847 at $500. Comparing with the highest cost

of either Model-1 or Model-2, a reduction of up to 0.4%, 0.6%,

and 1.2% could be observed for Model-3 at the price of $100,

$290, and $500, respectively. Similarly, a reduction of up to

0.4%, 1.0%, and 1.8% could be observed for Model-4 at the

price of $100, $290, and $500, respectively.
As the BES prices increase, the cycle aging decreases for

Model-3 and Model-4. At the same time, calendar aging

increases, as the BES is cycled less. Model-4 caused the

lowest capacity loss among all models, which was not higher

than 2.8% (at $100). Interestingly, Model-2 caused the highest

capacity loss due to cycle aging (at least 1.5%), which was

even higher than in Model-1. Apparently, the less accurate

SoE estimation of Model-1 led to slower cycle aging. How-

ever, Model-2 could yield a lower total cost than Model-1,

especially at lower BES prices, because it caused the lowest

calendar aging (1.7%) and, more importantly, yielded the

lowest energy cost ($4290) out of all models.

(a) Scenario-1

(b) Scenario-2

Fig. 4. The assessment metrics of (a) Scenario-1 (SoE limits of 30%-80%)
and (b) Scenario-2 (SoE limits of 10%-90%), where the considered BES
installation price is indicated on top of the bars representing the total cost
or the total capacity loss.



2) Scenario-2: Similar trends with Scenario-1 can be ob-

served among the models and across the three BES prices in

Scenario-2, Fig. 4(b). The economic performance of Model-3

and Model-4 was equally good in Scenario-2. The total cost

of either model was not higher than $4392 at $100. Again,

Model-4 yielded the lowest cost at $290 and $500, which

was not higher than $4590 and $4799, respectively. Apart

from the lower energy cost in Scenario-2, the calendar aging

also decreased, as lower values of SoE helped the BES retain

more capacity during rest periods. This is why these models

achieved the best economic performance in Scenario-2 as well.

In contrast, Model-1 and Model-2 gave higher total costs in

Scenario-2 at all prices and under both assessments of cycle

aging. Again, comparing with the highest cost of either Model-

1 or Model-2, a reduction of up to 0.7%, 1.3%, and 2.3% could

be observed for Model-3 at the price of $100, $290, and $500,

respectively, Similarly, a reduction of up to 0.7%, 1.7%, and

3.1% could be observed for Model-4 at the price of $100,

$290, and $500, respectively. Model-2 gave the lowest energy

cost ($4273) and the lowest capacity loss due to calendar aging

(1.4%) out of all models. At the same time, however, it caused

the highest cycle-based capacity loss (at least 2%) leading to

the largest BES degradation, while Model-4 gave the lowest

capacity loss in total, which was not higher than 2.8% at $100.

B. Discussion

The evaluation of Model-3 and Model-4 highlighted the

importance of including both energy and degradation cost in

the objective functions that determine the BES dispatch.

1) SoE Limits: Model-3 and Model-4 could be used with

either conservative or with less strict SoE limits, as both

scenarios resulted in almost equal economic benefits for the

building owner and the residents. Test with scenarios of

different SoE limits are suggested to investigate if the obtained

results can be further improved. The choice of optimal SoE

limits depends on the possible economic benefit from load-

shifting, which is affected e.g., by price fluctuation or PV

generation within a day. If the revenue can compensate for

the degradation cost, then a larger SoE window can be used.

2) Degradation Models: In both scenarios, Model-4 gave

the lowest total cost at $290 and $500 irrespective of the

deviation between the two different assessments of cycle

aging. Either Model-3 or Model-4 could achieve the most eco-

nomic operation at $100. Comparing this two models, Model-

4 caused a lower calendar aging (despite directly forcing the

BES to higher SoE values), which contributed to a reduced

degradation cost, especially when this was a larger part of the

total cost. On the other hand, Model-3 gave lower energy cost,

which contributed to the reduction of its total cost, when the

degradation cost was a less significant part of it. When cycle

aging was omitted from the cost function, there was no clear

advantage of using the more accurate measurement-based BES

model (Model-2) instead of the conventional one (Model-1).

The accuracy of the aging models can vary depending on

the BES chemistry. The aging models used in this paper might

not be applicable to all Li-ion BESs. Moreover, it can be hard

to obtain reliable aging parameters for each installed stationary

BES, if aging models that are derived from empirical fitting

are to be used, such as, for example, the cycle aging model

presented in Section II-D1 and the calendar aging model.

The cycle aging model presented in Section II-D2, on the

other hand, is a more practical modeling approach, as it uses

a degradation cost function derived by data provided by the

manufacturer, which also adds reliability to the cost of the

implemented BES scheduling solution. It should be noted,

however, that not all manufacturers provide such detailed data

regarding the impact of each cycle to the BES lifetime (often

only a maximum number of cycles or throughput is given).

Rainflow counting could also be used instead of the half-cycle

counting used with this model, however, as explained in [12],

the cost function would not be continuously differentiable, and

it could therefore not be used in a LP problem formulation.

Furthermore, the results (calculated capacity loss after each

day-ahead optimization) based on half-cycle counting agreed

with the results based on rainflow counting (obtained by the

rainflow function in MATLAB [36]), thus validating the half-

cycle counting approach presented in Section II-D2.

3) Battery Retirement: The degradation cost in this study

is related with η, which is used to evaluate the remaining

useful lifetime of the BES and serves as a termination (re-

tirement) criterion [37]. It is assumed that, when the BES

capacity is reduced to η% of its initial value, the BES is

replaced. However, storing electricity generated from RES is

a less demanding function than powering electric vehicles.

Stationary BESs with reduced capacity could still be used

in energy management, which could potentially lead to an

overestimation of the degradation cost, if the BES is ultimately

replaced at a capacity, which is lower than η. In practice, the

BES needs to be replaced after a certain part of its initial

capacity is lost, as the overall BES performance deteriorates.

The choice of η, however, is still an open question, as there are

relatively few research studies and applications of residential,

stationary BES.

4) Revenue Streams: The motivation for focusing on energy

arbitrage as the main revenue stream is twofold: 1) operational

policies that reduce degradation have a more severe impact

on the profit from energy arbitrage than the profit from

balancing services [38], which makes the contribution of the

measurement-based model in reducing the energy cost all the

more important, and 2) there are strong indications that energy

arbitrage would be the preferred revenue stream for residential

BES owners, who consider protection against high electricity

prices as one of the main motives for installation of residential

BESs [39]. The proposed model could also be extended to

study other revenue streams. Participation of residential BESs

in frequency regulation would be an interesting topic for

future research, although it should be noted that frequency

regulation is more practical at the aggregated level, due to

minimum capacity requirements [8] and because it depends on

signals from the grid operator [40], which would complicate

the control of multiple small-scale BESs.
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V. DEMONSTRATION RESULTS

A BMG-EMS was designed to implement remote control of

the BES at the HSB LL building. The BMG-EMS integrated

Model-1 and Model-2 and utilized the in-built measurements

and control systems of the bi-directional grid side converter.

A. Overview of the Communication and Control Set-up

The design of the communication platform and the server

interfaces can be seen in Fig. 5. The Message Queue Teleme-

try Transport (MQTT) protocol was used for real-time data

sharing between the server, where the BMG-EMS was imple-

mented, and the MQTT broker of the grid side converter. The

server interfaced MATLAB [36] to set up the communication

and control interface with the test site. A more detailed

description of the control set-up can be found in [29]. A

MATLAB to GAMS interface was used for data exchange with

the optimization models and to retrieve the BES scheduling

solution (power set-points), which was dispatched online.

B. Performance Evaluation

Fig. 6 and Fig. 7 respectively show the BES response

during a 24h demonstration of Model-1 and Model-2 at HSB

LL building. In Fig. 6, it can clearly be observed that the

dispatched power did not match the big charging request.

As explained in Section II-C2, SoE mismatches or SoH

issues can lead to such deviations from the expected BES

performance. This is because the current limiter function of

the battery management system is activated to protect the BES

from undesired operating conditions, e.g., high temperatures or

over/under-voltages (caused by too high/low SoC or degraded

BES cells, as was the case here). To mitigate this issue with

Model-1 one would have to apply stricter operation limits

in upper/lower SoE and BES power. This is, however, a

rule-based solution approach that would considerably reduce

the BES flexibility. An alternative solution can be found in

the measurement-based model. As seen in Fig. 7, the BES

response was significantly improved in the demonstration of

Model-2 without implementing additional, non-optimal limits.

This is because any dependency of the efficiencies and deliv-

ered BES power on the SoE that has been captured by the

discharging/charging sample data has been considered in the

parametrization of this model.
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Fig. 6. The set-points and the real-time measurements of the battery power
(demonstration of Model-1 at HSB LL building).
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Fig. 7. The set-points and the real-time measurements of the battery power
(demonstration of Model-2 at HSB LL building).

The comparison of Model-1 and Model-2 showed that

the BES was cycled more when the accuracy of the BES

model was improved. This confirms what was indicated by

the simulation results, as Model-2 gave a higher cycle ag-

ing. Moreover, the total mismatch in delivered charging and

discharging BES energy over the requested BES energy was

3.7% and 13.3% in the demonstration of Model-2 and Model-

1, respectively. This validates the enhanced accuracy of the

measurement-based model and, by extent, the reliability of the

BES scheduling solution in the simulation results of Section

IV, since the measurement-based model was incorporated in

Model-2, Model-3, and Model-4 and the assessment of Model-

1 was performed using the measurement-based model.

VI. CONCLUSIONS

This paper presents a BMG energy management model

that uses BES as a flexible resource considering the energy

market-based participation of the buildings. The developed

mathematical model incorporates the measurement-based BES

model, which can capture realistic performance characteristics,

with cycle aging models, while the calendar aging is also cal-

culated after the final dispatch decisions for a comprehensive

evaluation of the degradation. The following conclusions can

be made from the study performed at the HSB LL, regarding:

• Energy cost and degradation: Model-3 and Model-4,

which combined the measurement-based model with cy-

cle aging models dependent on throughput and DoD,



respectively, could reduce the annual energy and degra-

dation cost by up to 3.1% compared to when degradation

was neglected. The capacity loss was found to be lowest

in Model-4. Model-4 also yielded the lowest cost for the

BES prices of $290 and $500.

• SoE limits: It is possible to have more flexible limits on

the SoE levels of the BES, if these models are used. On

the other hand, if degradation is neglected in the BES

dispatch, conservative limits should be applied to prolong

the BES lifetime, unless high economic benefits that can

offset the degradation cost can be guaranteed.

• Validity of the measurement-based model: A considerable

improvement in the BES responses, as compared to those

of the conventional BES model, was shown in the real

test. As a result, the daily undelivered BES energy over

the total request was reduced from 13.3% to 3.7% at

the same time as the BES usage was increased. This

indicates a more reliable implementation of the BES

dispatch following the targets of the building operator.

• Potential uses of the model: The proposed model can

therefore be employed for both real-time energy man-

agement and long-term assessment studies in order to

accurately estimate the benefit of BES’s flexibilities in

reducing the building total costs.
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