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Abstract—Topology identification (TI) in distribution networks
is a challenging task due to the limited measurement resources
and therefore the inevitable need to use pseudo-measurements
that are often inaccurate. To address this issue, a new method
is proposed in this paper to integrate harmonic synchrophasors
into the TI problem in order to enhance TI accuracy in distri-
bution networks. In this method, topology identification is done
jointly based on both fundamental synchrophasor measurements
and harmonic synchrophasor measurements. This is done by
formulating and then solving a mixed-integer linear program-
ming (MILP) problem. Furthermore, an analysis is provided to
capture the number of and the location of harmonic sources
and sensors that are needed to ensure full observability. The
benefits of the proposed TI scheme are compared against those
of the traditional scheme that utilizes only the fundamental
measurements. Finally, through numerical simulations on the
IEEE 33-Bus power system, it is shown that the proposed scheme
is considerably accurate compared to the traditional scheme in
topology identification.

Index Terms—Harmonic synchrophasor, phasor measurement
units, distribution networks, switch status, topology identification.

I. INTRODUCTION

KNOWING the topology of distribution network (DN)
is crucial for power distribution system operation, and

comes with various applications such as event source location
[1], state estimation [2], and line impedance estimation [3].
The topology is identified if one knows the status of the
switches in all distribution line segments. If the changes in the
status of the switches are not identified, the accurate topology
of the power system will be lost and large errors will occur in
the mentioned applications that rely on knowing the topology
of the DN.

The problem of topology identification is of importance in
both distribution and transmission networks. In transmission
networks, there are often either sensors that directly identify
the status of switches or there are sufficient measurements to
achieve full observability to estimate the status of switches.
Several methods have been previously proposed to address
topology identification in transmission systems, such as in [4]–
[8].
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However, conducting topology identification is more chal-
lenging when it comes to distribution systems. In particular,
due to the lack of sufficient measurements in DNs, there
is often a need to highly rely on pseudo-measurements in
order to solve the TI problem. For example, pseudo power
injections [9]–[11] and pseudo current injections [12] have
been previously used. However, given the inherent inaccuracy
in pseudo-measurements, they may cause incorrect topology
identification.

In this paper, we propose to utilize harmonic measurements
to resolve the above issue. This idea is motivated by the
fact that, harmonic currents are ubiquitous in DNs as a
result of widespread utilizations of non-linear devices such as
power electronic inverters. Also, a new generation of phasor
measurement units (PMUs) have been developed recently that
can report not only the fundamental synchrophasors but also
the harmonic current synchrophasors with high accuracy [13],
[14]. PMUs of this generation are already installed in multiple
pilot utilities, such as the ones in Japan [15]. The idea of using
harmonic currents in a TI scheme is specially reinforced by
the fact that a group of researchers has developed various
harmonic synchrophasor estimators [16]–[18] which come
with applications in harmonic state estimation [19], [20] and
high impedance fault location [21].

One outstanding merit of the proposed TI scheme is that it
does not require placement of additional PMUs in DNs but
rather utilizes additional information, i.e. harmonic currents,
available from the existing PMUs.

The proposed study is also motivated by the fact that,
incorporating harmonic currents in TI is not a trivial task. To
see this, notice that there are two features in harmonic current
phasors that make them quite different from fundamental
current phasors: 1) the sources of harmonic currents are
located in the load side in contrast to the source of fundamental
current that is in the substation side; and 2) only a few types of
loads can generate considerable amounts of harmonic currents.

The main contributions of the paper are as follows:
• To the best of our knowledge, this is the first paper that

proposes using harmonic synchrophasor measurements to
identify the topology of distribution system.

• The proposed method works by integrating a harmonic
TI problem formulation with a fundamental TI prob-
lem formulation through introducing several conjunction
equations to leverage both fundamental and harmonic
measurements to identify the distribution network topol-
ogy.
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Fig. 1. An illustration of harmonic current flow in radial DNs. The branch (q,
q+1) is normally open, and other branches are normally closed. The harmonic
current path is shown by a red arrow line, i.e., from node n to the substation.

• The problem is originally formulated in form of a nonlin-
ear mixed integer program. Several linearization steps are
developed to convert the problem into a tractable mixed
integer linear program (MILP).

• Through computer simulations, it is shown that the
accuracy of the proposed TI scheme is at least 10%
more than that of the traditional scheme which uses only
measurements of the fundamental currents.

• An analysis is provided that specifies the number of and
the location of the harmonic resources and PMUs that are
required to ensure full observability of the DN.

This paper gives focus to the study of TI in radial networks,
as DNs are mostly with radial topology [12].

II. HARMONIC CURRENTS IN RADIAL NETWORKS

According to the Norton Theorem and concerning the
harmonic currents, the nonlinear loads can be modeled by
a harmonic current source and a shunt admittance [22]. We
assume that there exist no harmonic resonance in the DN
under study. This assumption is justified by the fact that, har-
monic resonance may occur only when the resonant frequency
coincides with a harmonic frequency, which may happen
only rarely. Besides, there exist mature techniques to damp
harmonic resonance [23]. Under the said assumption, the load
shunt impedance is much larger than the equivalent harmonic
impedance of the substation, see [22] for more details. As a
result, almost all of the harmonic source current is injected
into the substation and the harmonic current injected to the
load can be neglected.

Consider the power distribution system in Fig. 1. Its corre-
sponding equivalent impedance network is as shown in Fig.
2. The harmonic current injection to the substation can be
calculated as follows:

Isub =
1

Zsub∑m
n=1

1
Zn

+ 1
Zsub

Is =
1∑m

n=1
Zsub

Zn
+ 1

Is ≈ Is, (1)

From (1), we see that almost all of the harmonic currents
coming from node n are being injected into the substation.
Accordingly, for every harmonic source we can define the
harmonic current path as the path of harmonic current which
is flowing from the node with the harmonic source to the
substation. For example, the red line in Fig. 1 is a harmonic
current path corresponding to the harmonic source at node n.

Zsub Is

Isub

Zq+1 Zm Z1 Zn Zn+1 Zq

Fig. 2. Equivalent impedance network of the DN in Fig. 1. Zsub is the
equivalent impedance of the substation. Zn is the impedance of the load at
node n.

In a radial DN, there is only one harmonic current path for
each harmonic source, but a branch of the DN can correspond
to several harmonic current paths. Thus, the harmonic currents
of the branches falling on at least one harmonic current path
can be the combination of several harmonic sources. For
instance, if there are two harmonic sources with currents of 1
A and 2 A, then the possible combinations of the harmonic
sources, i.e. the possible harmonic currents of the branches
falling on at least one harmonic current path, could be 1 A, 2
A, and 3 A.

To identify the status of a branch as closed, it suffices to
show that the branch falls on at least one harmonic current
path. Nevertheless, the status of a branch cannot be identified
as either closed or open if the branch carries no harmonic
current. Rather, to identify the status of a branch as open one
needs to detect a loop, in which only the single branch of
interest does not fall on any harmonic current path. In that
case, the switch on the branch of interest must be open.

The above methodology in identifying open switches is
based on the fact that, in a DN with radial topology, at least one
branch must be open in every loop of branches. For example,
in the power system of Fig. 1 which includes only one loop the
branch (q, q + 1) must be open if there is a harmonic current
on every branch except on the branch (q, q + 1).

In summary, carrying no harmonic current is a necessary
but not sufficient condition for a branch to be identified as
open. The status of a switch with no harmonic current can
be identified as open only by detecting a loop with the said
conditions.

III. TOPOLOGY IDENTIFICATION IN A NONLINEAR
OPTIMIZATION FRAMEWORK

In this section, a TI scheme is proposed that utilizes both the
fundamental and harmonic current measurements in DNs. The
proposed TI scheme is formulated as a nonlinear optimization
problem.

A. Partial Topology Identification using Harmonic Currents

In general, dedicated meters are installed in DNs to monitor
the harmonic current injections of large nonlinear loads such
as large DGs. On this account, we assume that the harmonic
current measurements are available for topology identification.
Let Ihi denote the current of the hth harmonic component as-
sociated with the harmonic source located at node i. According
to the Kirchhoff’s Current Law (KCL) we have:∑

j∈Ni

Ih(i,j) = Ihi ∀k ∈ K, (2)
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where Ih(k,j) is the hth harmonic current on branch (k, j); K
is the set of nodes containing harmonic sources; and Nk is the
set of nodes connected to the node k. For the nodes with no
harmonic source, we have:∑

j∈Ni

Ih(i,j) = 0 ∀i ∈ N , i /∈ K, (3)

where N is the set of all nodes in the DN.
As was discussed in Section II, detecting the paths of

harmonic currents is vital in identifying the status of the
switches in the DN. To this end, one needs to examine whether
or not a branch carries a harmonic current. This can be done
by looking into the numerical value of Ih(i,j). More precisely,
if Ih(i,j) is larger than the magnitude of the smallest-magnitude
combination of all existing harmonic sources in the DN, i.e.
the parameter z, then the branch must be on a harmonic current
path. To simplify the analysis, we make two adjustments.
First, instead of assessing the magnitude of harmonic current
Ih(i,j) we choose to assess the absolute values of the real
and imaginary parts of the harmonic current Ih(i,j). Second,
instead of using the parameter z in the comparisons, we use
a threshold parameter c that is less than the parameter z. To
this end, we first obtain the absolute values of the real and
imaginary parts of the harmonic current Ih(i,j) as follows:

Re{Ih(i,j)} = 2qh,r(i,j)X
h,r
(i,j) −Xh,r

(i,j) ∀(i, j) ∈ B (4)

Im{Ih(i,j)} = 2qh,i(i,j)X
h,i
(i,j) −Xh,i

(i,j) ∀(i, j) ∈ B (5)

Xh,r
(i,j) ≥ 0; Xh,i

(i,j) ≥ 0 ∀(i, j) ∈ B, (6)

where B is the set of all branches; qh,r(i,j) and qh,i(i,j) are binary
variables; and Xh,r

(i,j) and Xh,i
(i,j) are non-negative variables. If

the real or imaginary part of Ih(i,j) is positive, then qh,r(i,j) or
qh,i(i,j) must be 1 and Xh,r

(i,j) or Xh,i
(i,j) must be equal to the real

or imaginary part of Ih(i,j), respectively. If the real or imaginary
part of Ih(i,j) is negative, then qh,r or qh,i must be 0 and Xh,r

(i,j)

or Xh,i
(i,j) must be equal to the absolute value of the real or

imaginary part of Ih(i,j), respectively. All in all, we see that
the absolute values of the real and imaginary parts of Ih(i,j)
are Xh,r

(i,j) and Xh,i
(i,j), respectively.

Next, we compare the summation of the variables Xh,r
(i,j)

and Xh,i
(i,j) against the threshold c to see whether or not the

branch (i, j) falls on any harmonic current path. The harmonic
current flowing through a branch may be the combination of
several harmonic sources at different nodes of the DN. If the
branch (i, j) is not on any harmonic current path, then we must
have Xh,r

(i,j) +Xh,i
(i,j) ≤ c. In contrast, if the branch (i, j) is on

a harmonic current path, we must have Xh,r
(i,j) + Xh,i

(i,j) ≥ c.
The comparison between Xh,r

(i,j)+Xh,i
(i,j) and the threshold pa-

rameter c can be mathematically formulated by the following
constraint:

(1− bh(i,j))[(X
h,r
(i,j) +Xh,i

(i,j))− c]

+ bh(i,j)[c− (Xh,r
(i,j) +Xh,i

(i,j))] ≤ 0 ∀(i, j) ∈ B, (7)

where bh(i,j) is a binary variable. From (7), the numerical
values of 0 and 1 for the binary variable bh(i,j) translate to
the inequalities of Xh,r

(i,j)+Xh,i
(i,j) ≤ c and Xh,r

(i,j)+Xh,i
(i,j) ≥ c,

respectively. Consequently, numerical values of bh(i,j) = 0 and
bh(i,j) = 1 correspond to the branch (i, j) not being on any
harmonic current path and being on at least one harmonic
current path, respectively.

From the discussion in section II, we know that a numerical
value of 1 for the binary variable bh(i,j) testifies the in-service
status of the branch (i, j), but a numerical of 0 for the binary
variable bh(i,j) doesn’t indicate the in-service or out-of-service
status for the branch. As a result, additional information is
needed to determine the status of all the branches. This can be
done by looking into the fundamental currents measurements.

B. Topology Identification using Fundamental Currents

According to the KCL we have:∑
j∈Ni

I(i,j) = Ii ∀i ∈ N , (8)

where I(i,j) is the fundamental current on branch (i, j);
and Ii is the fundamental current injection into the node i,
which can be obtained from the pseudo-measurements, i.e., the
measurements estimated from the seasonal load curves. The
status of the branch (i, j) can be modeled by the following
constraint:

−Ms(i,j) ≤ I(i,j) ≤Ms(i,j) ∀(i, j) ∈ B. (9)

where M is a large number selected arbitrarily and s(i,j) is a
binary variable. A numerical value of 1 for the binary variable
s(i,j) corresponds to the in-service status for the branch (i, j)
and requires the fundamental current I(i,j) to be within the
interval of [−M,M ]. In contrast, a numerical value of 0 for the
binary variable s(i,j) corresponds to the out-of-service status
for the branch (i, j) and requires the fundamental current I(i,j)
to be 0.

C. Topology Identification using Fundamental and Harmonic
Currents

So far, we have explained how measurements of funda-
mental and harmonic currents can be used to derive the
status of the switches. However, to integrate both fundamental
and harmonic into on TI problem, we need to derive the
relationships between the binary variables bh(i,j) and s(i,j).
bh(i,j) = 1 indicates that the switch is closed which enforces
s(i,j) = 1. Also, s(i,j) = 0 indicates that the switch is
open which enforces bh(i,j) = 0. Finally, when bh(i,j) is 0 the
corresponding switch can be open or closed and accordingly
s(i,j) can be 0 or 1. These relationships between the binary
variables bh(i,j) and s(i,j) can be modeled by the following
constraint:

bh(i,j) ≤ s(i,j) ∀(i, j) ∈ B. (10)

Besides the relationships between the fundamental and
harmonic switch binary variables, there is a further relationship
between the fundamental switch binary variables which should
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be taken into account. The following equation establishes
another relationship between the binary variables s(i,j), using
the fact that in every loop of a radial network at least one
switch must be open:∑

(i,j)∈L

s(i,j) ≤ Nl − 1 ∀L ∈ P, (11)

where L is the set of all branches in an arbitrary loop of the
DN; P is the set of all the possible loops in the DN, which
can be formed using the algorithm provided in [24]; and Nl is
the number of branches in the loop L. For (11), we notice that
if in a loop L of the radial network Nl − 1 switches turn out
to be closed from the harmonic currents analysis, the binary
variables s(i,j) for all these Nl−1 switches are enforced to be
1. Then the binary variable s(i,j) for the last remaining switch
of the loop L must be 0, which requires the last switch to
be open. Therefore, (11) addresses the said condition at the
end of section II to identify the status of the switch with no
harmonic current.

Finally, there is another relationship between all the binary
variables s(i,j) which ensures the radial configuration of the
DN [11]: ∑

(i,j)∈B

s(i,j) = N − 1, (12)

where N is the total number of nodes in the DN.
Let Ih,m(i,j) and Im(i,j) denote the measurements of harmonic

and fundamental currents, respectively, collected by PMUs.
The following optimization problem minimizes the error in
the estimation of harmonic and fundamental currents in the
DN [9]:

Min
∑

(i,j)∈M

|Ih(i,j) − Ih,m(i,j)|

|Ih,m(i,j)|
+
|I(i,j) − Im(i,j)|
|Im(i,j)|

s.t. Eqs (2) ∼ (12),

(13)

where M is the set of all branches equipped with PMUs.
It should be noted that, in problem (13), we minimize the
normalized values of the errors. If the accuracy is not the
same for the fundamental and harmonic measurements, then
we may include some coefficients in the objective function in
(13) to further adjust normalization.

IV. TOPOLOGY IDENTIFICATION IN A LINEAR
OPTIMIZATION FRAMEWORK

The proposed TI scheme formulated in (13) is a mixed
integer nonlinear programming (MINLP) problem, while no
algorithm is yet developed to guarantee to solve this problem.
Thus, in this section we take several steps to reformulate the
problem in (13) to a solvable MILP format.

A. Tackling the Non-Linearity in the Constraints

In problem (13), the constraints (4), (5), and (7) include
non-linear terms. All the non-linear terms are formed by the
product of a binary variable and a continuous variable. The
non-linear constraint (4) in problem (13) can be replaced with
the following linear constraints:

Re{Ih(i,j)} = 2Wh,r
(i,j) −Xh,r

(i,j) ∀(i, j) ∈ B (14)

−Mqh,r(i,j) ≤Wh,r
(i,j) ≤Mqh,r(i,j) ∀(i, j) ∈ B (15)

−M(1−qh,r(i,j)) ≤Wh,r
(i,j)−X

h,r
(i,j) ≤M(1−qh,r(i,j)) ∀(i, j) ∈ B,

(16)
where Wh,r

(i,j) is a new continuous optimization variable. A
similar approach can be taken to replace the non-linear con-
straints (5) and (7) with linear ones. As a result, the constraint
(5) can be replaced by the following constraints:

Im{Ih(i,j)} = 2Wh,i
(i,j) −Xh,i

(i,j) ∀(i, j) ∈ B (17)

−Mqh,i(i,j) ≤Wh,i
(i,j) ≤Mqh,i(i,j) ∀(i, j) ∈ B (18)

−M(1−qh,i(i,j)) ≤Wh,i
(i,j)−X

h,i
(i,j) ≤M(1−qh,i(i,j)) ∀(i, j) ∈ B.

(19)
Similarly, the constraint (7) can be replaced by the following
constraints:

2cbh(i,j)−2Xh
(i,j)+Xh,r

(i,j)+Xh,i
(i,j)− c ≤ 0 ∀(i, j) ∈ B (20)

−Mbh(i,j) ≤ Xh
(i,j) ≤Mbh(i,j) ∀(i, j) ∈ B (21)

−M(1− bh(i,j)) ≤ Xh
(i,j) − (Xh,i

(i,j) +Xh,i
(i,j)) ≤M(1− bh(i,j))

∀(i, j) ∈ B.
(22)

B. Tackling the Non-Linearity in the Objective Function

The non-linearity of the objective function in problem (13)
is because of the optimization variables that are complex
numbers and the operators that calculate the absolute values.
All these sources of non-linearity can be removed by adding
the new variables Gh,r

(i,j), Gh,i
(i,j), Gr

(i,j), and Gi
(i,j) and the

following new constraints to the optimization problem (13):

−Gh,r
(i,j) ≤

Re{Ih(i,j) − Ih,m(i,j)}

|Re{Ih,m(i,j)}|
≤ Gh,r

(i,j) ∀(i, j) ∈M (23)

−Gh,i
(i,j) ≤

Im{Ih(i,j) − Ih,m(i,j)}

|Im{Ih,m(i,j)}|
≤ Gh,i

(i,j) ∀(i, j) ∈M (24)

−Gr
(i,j) ≤

Re{I(i,j) − Im(i,j)}
|Re{Im(i,j)}|

≤ Gr
(i,j) ∀(i, j) ∈M (25)

−Gi
(i,j) ≤

Im{I(i,j) − Im(i,j)}
|Im{Im(i,j)}|

≤ Gi
(i,j) ∀(i, j) ∈M. (26)

As a result, the problem in (13) can be reformulated to the
following MILP:

Min
∑

(i,j)∈M

Gh,r
(i,j) +Gh,i

(i,j) +Gr
(i,j) +Gi

(i,j)

s.t. Eqs (2) ∼ (3), (8) ∼ (12), (14) ∼ (26).

(27)
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V. OBSERVABILITY ANALYSIS

This section provides an analysis on the number of and
location of harmonic sources and PMUs that are needed
to ensure full observability of the DN. For simplifying the
analysis we consider a TI scheme that utilizes only harmonic
current measurements:

Min
∑

(i,j)∈M

Gh,r
(i,j) +Gh,i

(i,j)

s.t. Eqs (2) ∼ (3), (10) ∼ (12), (14) ∼ (26).

(28)

We define an independent loop as a loop that doesn’t include
any other loop within. We have the following theorem:

Theorem 1: Consider a DN in which a PMU is placed
in each independent loop. The status of all switches in this
DN could be identified using only the harmonic current
measurements, if there is a harmonic source at each node of
the DN.

Proof:
• Step 1: we show that under the said condition, all

harmonic current paths can be detected. For a loop with
Nl nodes, one can formulate Nl−1 independent equations
on the currents flowing in the Nl−1 branches of the loop,
each equation corresponding to a known harmonic source
that is measured at one of the Nl nodes of the loop; see
[9] for more details. Another independent equation can be
formulated for the measurement performed by the PMU
that is placed in the loop. In overall, the Nl formulated
equations will provide a unique solution to the currents
flowing in Nl branches of the loop. This solution is then
used along with (7) to calculate numerical values of the
binary variables bh(i,j). Consequently, all harmonic current
paths in the DN can be detected.

• Step 2: A branch that falls on a harmonic current path
can be identified as closed. To complete the proof of
the theorem, we only need to show that a branch must
be open if it doesn’t fall on any harmonic current path.
To this end, let (n, n + 1) denote a branch carrying no
harmonic current. There must be two different harmonic
current paths from node n to the substation and from node
n + 1 to the substation, to carry the harmonic currents
generated by the harmonic sources at nodes n and n+1.
The two harmonic current paths don’t include the branch
(n, n + 1) since it is assumed that no harmonic current
flows through it. The branches on the said two harmonic
currents paths together with the branch (n, n+ 1) make
a loop, in which the branch (n, n + 1) is the only one
with no harmonic current. Therefore, from Section II the
branch (n, n + 1) must be open to preserve the radial
topology of the DN.

VI. PERFORMANCE EVALUATION

In this section, IEEE 33-Bus power system [25] is used for
assessing the performance of the proposed TI scheme. Unless
stated otherwise, the magnitude and the location of harmonic
source currents are as described in [19], where there is data
particularly on the 3rd harmonic current of phase A. This
choice of data is following the fact that, the 3rd harmonic

2 71 543 6 8 9

19 222120

Sub

11 1610 141312 15 17 18

2423 25 26 27 28 3029 3231 33

PMU

Harmonic 

source

l5

l3l1

l2

l4

Loop

Fig. 3. The IEEE 33-Bus power system includes five independent loops,
where in each independent loop a PMU is placed. The dotted and dashed
lines are normally open and closed lines, respectively.

currents normally come with the largest magnitudes. There
are 5 independent loops in the feeder under study as shown
in Fig. 3. From [9], unique harmonic and fundamental branch
current estimates can be obtained for the DN in Fig. 3, which
renders the problem (27) solvable. Synthesized measurements
of branch harmonic currents and harmonic sources are ob-
tained from PSCAD, where the load is modeled based on the
Model A given in [26]. The measurements are contaminated
according to the Gaussian distribution [27]. Unless stated
otherwise, the threshold parameter c is set to 25% of the
parameter z. The results are obtained based on Monte Carlo
simulation with 100 iterations for each test case. The accuracy
of the TI schemes can be obtained according to the following
formula:

Accuracy =
Ncorrect

Ntotal
× 100%, (29)

where Ntotal is the total number of tests and Ncorrect is the
number of the tests with a correct output being produced. For
a TI scheme that utilizes only the measurements of harmonic
currents, i.e., the problem (28), the correct output refers to
the correct identification of harmonic current paths. For the
proposed scheme in (27) and the traditional TI scheme, the
correct output refers to the correct topology of the DN. The
topology of the DN resulted from the traditional TI scheme is
obtained by solving the following optimization problem:

Min
∑

(i,j)∈M

Gr
(i,j) +Gi

(i,j)

s.t. Eqs (8) ∼ (9), (12).

(30)

A. The Overall Performances of the Proposed Scheme

As discussed in section I, the main source of error in the
traditional TI scheme is the errors in pseudo-measurements.
The pseudo-measurements of fundamental current injections
are estimated using the seasonal load curves and the nodal
voltages [12]. Compared to the pseudo-measurements of the
loads, larger amounts of error could be carried by the pseudo
current injections. When using only harmonic current measure-
ments, the switches on the harmonic current paths are always
identified correctly, which can be seen from the simulation
results in Fig. 4. Fig. 5 shows the accuracy of the proposed and
the traditional TI schemes for a various percentage of errors
in the pseudo-measurements. From Fig. 5, the accuracy of the
proposed scheme is always higher than that of the traditional
scheme. As the percentage of error in pseudo-measurement
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Fig. 4. The harmonic current paths detected by the TI scheme in (28) are
shown in red line.
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Fig. 5. The accuracy of the proposed and the traditional TI schemes against
errors in pseudo-measurements.

increases, the accuracy of both schemes decreases. When the
percentage of error in pseudo-measurement becomes 90%, the
proposed scheme outperforms the traditional scheme by a 13%
improvement in accuracy.

Fig. 6 also shows that, for 40% or less percentage of error
in pseudo-measurements, the accuracy of the proposed and
the traditional TI schemes are almost the same. This result
is justifiable by the fact that, the incorrect estimated status
in the traditional TI scheme correspond to switches that are
not on any harmonic current path and consequently cannot be
corrected by the proposed TI scheme. The better performance
of the proposed TI scheme compared to the traditional scheme
is seen especially when the percentage of error in pseudo-
measurements becomes more than 40%.

B. The Impact of Erroneous Fundamental Current Measure-
ments

We repeat the same numerical case study discussed in
Section VI-A with a minor change in the simulation setup,
by considering erroneous PMUs measurements. The range
of total vector error (TVE) in the PMUs data is set to 1%
to 3%, following the IEEE Std. C37.118.1-2011 [28]. For
various percentage of pseudo-measurements, the accuracy of
the proposed and the traditional TI schemes are almost iden-
tical to the case with errorless PMUs data. This again shows
the outperformance of the proposed TI scheme compared to
the traditional TI scheme for the case of erroneous PMU
measurements.
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Fig. 6. The accuracy of the proposed and the traditional TI schemes with
joint fundamental measurement errors.
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Fig. 7. The accuracy of the TI schemes under (a) erroneous harmonic current
measurements and (b) erroneous harmonic source measurements.

C. The Impact of Erroneous Harmonic Current Measurements

This section assesses the impact of erroneous harmonic
current measurements on the accuracy of the TI schemes. We
consider a scenario where there are 5% TVE in the PMUs
data, 90% error in the pseudo-measurements, and 3% error in
the measurements of fundamental currents flowing through the
branches. From Fig. 7(a), for the case of erroneous harmonic
current measurements all the branches on harmonic current
paths can still be detected correctly. Also, the proposed TI
scheme still comes with 13% advantage in accuracy over the
traditional TI scheme. Therefore, it can be observed that the
proposed TI scheme is robust to the errors in harmonic currents
measurements.

To justify this observation, first, we notice that the value
of the threshold is less than the value of the contaminated
harmonic current measurement. As a result, the harmonic
current paths can be identified correctly. Second, the problem
(27) minimizes the total error in the estimation of harmonic
and fundamental currents. Since the harmonic currents are
scattered all around the power system, incorrect identification
of a harmonic current path is much more impactful on the
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Fig. 8. The impact of threshold parameter on TI accuracy (%).

objective function of problem (27), compared to incorrect
identification of a switch status in the traditional TI scheme
that uses fundamental current measurements. For instance, the
incorrect identification of the harmonic current path generated
by the current source at node 18 may increase the objective
function of problem (27) by more than 1. In contrast, incorrect
identification of a switch status may increase the same objec-
tive function by only a few hundredth of 1. In conclusion, the
optimization problem (27) tends to be robust to the errors in
harmonic current measurements.

D. The Impact of Erroneous Harmonic Source Measurements

The measurements of harmonic sources are performed by
the monitoring sensors that are located at the loads. These
sensors may produce a level of error larger than the error being
produced by PMUs. Accordingly, in this section, we consider
harmonic source measurements with up to 10% error. The
values of errors set in pseudo-measurements and fundamental
current measurements are 90% and 3%, respectively. Fig.
7(b) shows the accuracy of the TI schemes for a various
percentage of harmonic source TVE. From Fig. 7(b), the
proposed TI scheme is robust to the errors in harmonic source
measurements. This observation is justifiable by a reasoning
similar to the one provided in Section VI-C.

E. The Impact of the Threshold Parameter

The threshold parameter c should be set in a way that,
in the proposed TI scheme the impact of errors in harmonic
sources and harmonic currents are lowered. In this section, the
threshold parameter is set to various levels from 5 to 25 percent
of the parameter z defined in section III-A. The errors in har-
monic currents, harmonic sources, pseudo-measurements, and
fundamental currents are 5%, 10%, 90% and 3%, respectively.

Fig. 8 and Fig. 9 show the accuracy of the TI schemes for
various values of the threshold parameter c. A low value for
the threshold parameter, e.g. c = 5%z may lead to incorrect
detection of some harmonic current paths. For the TI scheme
that uses only harmonic current measurements, this can result
in incorrect identification of some branch status, e.g. the status

Fig. 9. Accuracy of the TI scheme in (28) for various values of the threshold
parameter. The results are shown only for switches with incorrect identified
status.
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Fig. 10. The impact of the number of harmonic source on TI accuracy (%).

of branches (8,21) and (9,15), as it can be seen from Fig. 9.
In contrast, Fig. 8 shows that the accuracy of the proposed
TI scheme is the same for various values of the threshold
parameter c. This is due to the fact that, the proposed TI
scheme in (28) utilizes the fundamental current measurements
to identify the switch status correctly, even if the harmonic
current paths are identified incorrectly. Consequently, we can
observe that the proposed TI scheme is robust to the choice of
the threshold parameter c because of using both the harmonic
and fundamental measurements together.

F. The Impact of the Number of Harmonic Sources

In this section, we study the impacts of the number of
harmonic sources on TI accuracy. Here, we still assume that
five PMUs are installed in our test system as shown in Fig.
3. It is assumed that when there are n harmonic sources in
the test network, then these harmonic sources are located at
node 1 to node n. The harmonic source current at each node
is the same as the harmonic source current at node 11 which
is shown in Fig. 3. It is assumed that there are no harmonic
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measurement errors, and the threshold parameter c is set to
10% of the parameter z. The errors in pseudo-measurements
are set to 90%.

The accuracy of the TI schemes for different number of
harmonic sources are shown in Fig. 10. As the number of
harmonic sources increases, the accuracy of the proposed TI
scheme increases. This is because by having more harmonic
sources, more switches fall on harmonic current paths, which
help the proposed TI scheme to correctly derive the status
of the switches that would be identified incorrectly if one
uses only the fundamental current measurements. Also, the
proposed TI scheme works with 100% accuracy when the
number of harmonic sources is equal to the number of nodes
in the DN, which is explained as a requirement for full
observability in theorem 1.

There is a chance that the proposed TI scheme works with
100% accuracy even with fewer sources. For instance, when
there are harmonic sources at nodes 18, 22, 25, and 33, all
the closed switches fall on at least one harmonic current path,
and the proposed TI scheme also achieves 100% accuracy.
However, the theorem gives a sufficient condition to make sure
that all closed switches fall on at least one harmonic current
path, which consequently leads to 100% accuracy.

VII. CONCLUSION

In this paper, a novel topology identification (TI) scheme
was proposed for radial distribution networks (DNs). The
proposed TI scheme uses both the harmonic and fundamental
current measurements to enhance the TI accuracy in DNs.
Through numerical simulations on IEEE 33-Bus power sys-
tem, it was shown that the accuracy of the proposed TI scheme
is at least 10% more than that of the traditional TI scheme that
uses only measurements of fundamental currents. Also, it was
shown that the proposed TI scheme is robust to the errors
in harmonic and fundamental current measurements. Further-
more, a theoretical analysis was provided on the observability
of the DN using harmonic current measurements. Accordingly,
a case study is shown that the proposed TI scheme will work
with 100% accuracy when the number of harmonic sources is
equal to the number of nodes in the DN.
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