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Inverter-based Volt-VAR Control in Active
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Abstract—Model-based Vol/VAR optimization method is widely
used to eliminate voltage violations and reduce network losses.
However, the parameters of active distribution networks(ADNs)
are not onsite identified, so significant errors may be involved
in the model and make the model-based method infeasible. To
cope with this critical issue, we propose a novel two-stage deep
reinforcement learning (DRL) method to improve the voltage
profile by regulating inverter-based energy resources, which
consists of offline stage and online stage. In the offline stage,
a highly efficient adversarial reinforcement learning algorithm is
developed to train an offline agent robust to the model mismatch.
In the sequential online stage, we transfer the offline agent safely
as the online agent to perform continuous learning and con-
trolling online with significantly improved safety and efficiency.
Numerical simulations on IEEE test cases not only demonstrate
that the proposed adversarial reinforcement learning algorithm
outperforms the state-of-art algorithm, but also show that our
proposed two-stage method achieves much better performance
than the existing DRL based methods in the online application.

Index Terms—Voltage control, transfer learning, jointly ad-
versarial soft actor-critic, deep reinforcement learning, reactive
power.

I. INTRODUCTION

VOLT/VAR control (VVC) has been successfully inte-
grated into distribution management system to optimize

the reactive power flow, achieving the goal of eliminating the
voltage violations and reducing network losses. Convention-
ally, VVC is a model-based optimization method to generate
a set of optimal strategies for voltage regulation devices and
reactive power resources [1].

With an increasing penetration of distributed generations
(DG) in active distribution network (ADN), the problems of
voltage violations and high network losses are becoming more
severe, especially in the case of reversed active power flow [2],
[3]. Due to the fact that most DGs are inverter-based energy
resources (IB-ER) and typically produce less active power than
the rated capacity, it is reasonable and required for the IB-ERs
to provide Volt/VAR support.

Till now, most VVC methods are model based. This is
to say, the problem of VVC has been described as a non-
linear programming problem. The majority of the existing
VVC algorithms in both centralized manners or decentralized
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manners employ various optimization techniques with real-
time measurements, which rely on the accurate model of the
physical system. The common centralized VVC algorithms
include the well-known conic relaxation methods, interior
point methods [4], mixed integer linear programming [5], and
evolutionary algorithms [2], [6]. Also, plenty of literatures
adopted decentralized algorithms under different structures,
including local control [7], quasi real-time reactive optimiza-
tion [8], alternating direction method of multipliers (ADMM)
[9], [10] and accelerate ADMM based distributed control
[3]. To address the uncertainty issues regarding DERs, robust
optimization [11] and scenario based uncertainty optimization
[12] are also proposed.

However, in ADNs, the network parameters are theoretical
parameters instead of onsite identified ones, which cannot
reflect the real operation states and significant errors are
involved [13]–[16]. The model mismatch issue hinders the
application of existing model-based methods in the real world.
Therefore, model-free control is an alternative and promising
solution for VVC, which learns optimal actions with only
measurements data and continuous exploration in the action
space. Legacy model-free optimization methods were mainly
applied to the wind farm control using game theory [13], [17],
[18] or gradient-based optimization [14]. In recent years, deep
reinforcement learning (DRL) algorithms, which are able to
work in a model-free manner, have demonstrated remarkable
performance on multiple controlling tasks such as games [19],
[20], autonomous driving [21], [22] and continuous control
[23], [24]. Hence, DRL-based VVC algorithms have been de-
veloped and compared to traditional optimization-based meth-
ods in [25], [26]. In these works, DRL-based VVC methods
have shown notable improvement on the performance.

However, the online training start-up of the agents in DRL-
based VVC methods can lead to unbearable cost and high risk,
since the algorithm has little knowledge of the real system.
It is reasonable and desirable for the agents to implement
offline training before online training and application. Since
the configuration of ADNs are continually updated, historical
data is not appropriated for offline training in many scenarios.
Therefore, an ADN simulation model is needed to train the
agent offline. As mentioned above, the parameters of ADN
are inaccurate, so special learning algorithm is indispensable
to accommodate this situation. The agents trained on an
inaccurate model may show undesirable performance when
applied to the real system, which is called the “transfer gap”.

In this paper, we propose a two-stage deep reinforcement
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learning method to optimize the reactive power distribution
in ADNs, which including offline learning stage and online
learning & application stage. Firstly, we build an approximate
ADN model using theoretical parameters. Then, the offline
trained agent based on such model are transferred to online
stage to improve the online exploration efficiency and safety.
Specifically, we formulate the VVC problem as Markov deci-
sion process (MDP) in the online stage.

In the offline stage, we propose a novel joint adversarial
soft actor-critic (JASAC) algorithm with the formulation of
adversarial MDP (AMDP) and view the modeling error in
the simulation as an extra disturbance to the system. An
adversary agent on behalf of the modeling error and risk is
utilized to make the main (i.e., protagonist) agent robust to the
model mismatch, which is called the offline agent (OFF-A).
JASAC guarantees an efficient convergence of the adversarial
training process taking advantage of the shared information
between the adversary agent and OFF-A. In the online stage,
we implement the online agent (ON-A) with knowledge of
OFF-A using the state-of-art DRL algorithm called soft actor-
critic (SAC). Thus, the online training process is significantly
accelarated for oniline application.

Compared with previous studies, the unique contributions
of this article are summarized as follows.

1) A two-stage deep reinforcement learning method is
proposed to improve the online safety and efficiency
via offline pre-training. The proposed data-driven VVC
simultaneously works in model-free manner online and
incorporates the knowledge of approximate models of-
fline. This feature makes the proposed method more
practical and effective for the real-world applications.

2) In the offline stage, AMDP is formulated and an adver-
sary agent is trained to exploit the modeling errors of
ADN. The introduction of adversary agent makes the
trained OFF-A robust to the model mismatch. Instead
of conducting the adversarial learning separately as the
existing works, this paper proposes a novel JASAC to
exploit the shared information between agents, which
endows the algorithm with remarkable higher efficiency
and convergence. The proposed JASAC algorithm can
also be further applied to other DRL-based application.

3) In the online stage, the OFF-A is transferred to ON-
A for continuous learning and application. Since the
the OFF-A is robust to the transfer gap due to the
adversarial learning offline, the proposed algorithm gains
significantly better performance and safety in the online
application than the legacy DRL-based VVC.

The remainder of this article is organized as follows. Sec-
tion II formulates the online and offline stage of the VVC
problem for ADNs as a MDP and a AMDP respectively.
Then, the detailed introduction to the proposed VVC algorithm
and JASAC are presented in Section III. In Section IV the
results of our numerical study are shown and analyzed. Finally,
Section V concludes this article.

II. PRELIMINARIES

In this section, we cover the preliminaries of MDP and
AMDP, and then formulate the VVC problem in ADNs into

MDP and AMDP.

A. Markov Decision Process and Reinforcement Learning

In the online stage, the RL agent ON-A learns through the
interaction with an environment E . As a formalization, MDP
defined by the tuple (S,A, p,R, γ) is utilized to describe the
interaction process and suppose the state of the next transition
depends only on current state and the action of the agent. It
should be noted that the exact state space S is often impossible
to get in the real world, so we define O as the observation
space for S. Due to standard conventions for notation, we put
s ∈ S in places instead of o ∈ O and treat the unobserved
states as noises.

In this paper, the state space S and action space A are
continuous, and the unknown state transition probability ρ :
S × S × A → [0,∞) is the probability density of the next
state st+1 ∈ S with the current state st ∈ S and the action
at ∈ A, which means st+1 ∼ ρ(· |st, at ). The reward function
R : S × A → R quantifies the agent’s performance in each
transition. We use rt = R(st, at) to denote the reward on each
transition. γ ∈ [0, 1] is the discount factor trading off current
and future rewards. Also, s0 denotes the initial state.

The goal is to learn a policy that maximizes the total
expected discounted rewards, i.e., π∗(at|st) = arg maxπ J(π)

and J(π) = E
[∑T

t=0 γ
trt

]
. The policy π is the stochastic

distribution of the action at token by the agent under the state
st, i.e., at ∼ π(· |st ).

In order to implement RL algorithms, two value
functions V π(s) and Qπ(s, a) are defined. V π(s) =

E
τ∼π

[∑T
t=0 γ

trt |s0 = s
]

is the state-value function represent-
ing the expected discounted reward after state s with the policy
π. Qπ(s, a) = E

τ∼π

[∑T
t=0 γ

trt |s0 = s, a0 = a
]

is the action-
value function representing the expected discounted reward
after taking action a at state s with the policy π. Here, τ ∼ π
is the trajectory when applying π. From the definition, it is
obvious that V π(s) = E

a∼π
Qπ(s, a).

B. Adversarial Markov Decision Process

In the offline stage, we train the OFF-A and set up an
adversary agent to mock the transfer gap from OFF-A to
ON-A. This adversarial setting can be described as a two
player discounted zero-sum Markov game [27], in which the
protagonist and the adversary (opponent) are involved. In this
paper, we formalize this game as an adversarial MDP, which
is an expansion of the MDP in Section II-A. Note (·)p or (·)p
to be the variables for the protagonist and (·)o or (·)o for the
adversary.

Hence, AMDP can be expressed as the tuple
(S,Ap,Ao, ρ,R, γ). Ap is the action space of the protagonist
representing the OFF-A, so Ap equals A in the MDP. Ao is
the action space of the adversary, which mocks the transfer
gap such as parameters errors. S and γ remain the same as
MDP.

The definition of the other symbols in Section II-A are
expanded respectively: ρ : S × Ap × Ao → [0,∞) is the
state transition probability. At some time step t, the protagonist
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picks an action apt ∼ πp(·|st) while the adversary chooses
aot ∼ πo(·|st). Then the environment transitions to the next
state st+1 ∼ ρ(·|st, apt , aot ).

The reward function R is expanded to S × Ap ×Ao → R
and rt = R(st, a

p
t , a

o
t ). In AMDP, the protagonist maximizes

J(πp, πo) with πp while the adversary minimizes it using πo
as shown in Equation (1).

π∗p(apt |st) = arg max
πp

min
πo

J(πp, πo)

π∗o(aot |st) = arg min
πo

max
πp

J(πp, πo)
(1)

C. VVC Problem Formulation

The VVC problem of ADNs is formulated as MDP for the
online stage and ADMP for the offline stage. The detailed
VVC problem settings are given in the supplemental file [28].
The specific definitions of state space, action space and reward
function are designed for both MDP and AMDP as follows.

1) State Space: The actual state space of the ADN is
complex and impossible to fully perceive. Hence, in the MDP
and AMDP, the state space S is supposed to be the same
as observation space O. s ∈ S is defined as a vector s =
(P,Q,V, t). Here P,Q is the vector of nodal active/reactive
power injections Pi, Qi(∀i ∈ N ), V is the vector of voltage
magnitudes Vi(∀i ∈ N ). t is the time step in each episode.

2) Action Space: For the protagonist OFF-A in the of-
fline stage and ON-A in the online stage, the action space
A = Ap includes the controllable range of the reactive power
outputs of all IB-ERs and SVCs. Such devices provide high
speed reactive power support and have large capacity in high
penetration areas. Though other slow devices such as shunt
capacitors do exist in ADNs, their operation schemes are
usually scheduled offline because of their limited allowable
daily switching times.

Hence, ap = a ∈ A is defined as (QG,QC). QG and
QC are the vectors of reactive power generation of IB-
ERs and SVCs QGi, QCi respectively with range |QGi| ≤√
S2
Gi − PGi

2
and QCi ≤ QCi ≤ QCi.

The action space of adversary in the offline stage is defined
as the modeling errors represented by line parameter devia-
tions. For ao ∈ Ao, ao = (∆rij ,∆xij), (i, j) ∈ E where E
is the collection of branches. The simulation parameters are
calculated with Equation (2),

rij = r0
ij + ∆rij , ∀(i, j) ∈ E

xij = x0
ij + ∆xij , ∀(i, j) ∈ E

(2)

where rij , xij are resistance and reactance of branch ij, r0
ij

and x0
ij are the approximate parameters.

The variation range of ∆rij and ∆xij determines the ad-
versarial force in AMDP. Unreasonably strong adversary leads
to very conservative OFF-A and make the offline adversarial
training unstable. In ADN, the line parameter is calculated
according to the type of wire and its length. Though such
parameters are usually influenced by temperature,shape and
manufacturing tolerance, their deviations are limited in reality.

3) Reward Function: Though the reward is generated by
the environment without s involved explicitly in the classic
RL algorithms, it is designed to be a function of previous
states (observations). The reward function depends on the goal
of VVC and is the key to achieve proper performance. In this
paper, the objectives are minimization of active power loss and
mitigation of voltage violations. Hence, the reward consists of
two terms: penalty for active power loss RP , and penalty for
voltage violations RV .
RP is calculated according to the active power injections

P(t) as shown in Equation (3):

RP (t) = −
∑
i∈N

Pi(t) (3)

In this paper, we focus the grid with high penetration of
DGs, where the voltage violations are usually severe and
the regulation capacity may be not enough to eliminate all
violations in some scenarios. Hence, RV is assigned according
to the 2-norm of voltage magnitude violations called voltage
violation rate (VR) as RV (t) = VR(t). ReLU is the well-
known rectified linear unit function defined as ReLU =
max(0, x). We have RV (t) ≥ 0 where the equality holds if and
only if all voltage magnitudes satisfy the voltage constraints.
Note that RV can effectively mitigate the voltage violations
even when some violating nodes cannot be eliminated.

RV (t) = −
∑
i∈N

[
ReLU2(Vi(t)− V ) + ReLU2(V − Vi(t))

]
(4)

The overall reward is the weighted sum of previous penalty
terms, with a hyperparameter Cv > 0 as the weight ratio.

rt = R(st, at, st+1)
.
= RP (t) + CvRV (t) (5)

III. METHODS

A. Overview of the Two-stage DRL-based VVC

In this paper, we propose a two-stage DRL-based VVC with
a transferable DRL agent as shown in Figure 1. In the online
stage, the state-of-art deep reinforcement learning algorithm
soft actor-critic (SAC) is adopted for the ON-A due to its
outstanding sample efficiency. However, the direct usage of
SAC for online training often leads to severe security problems
or unbearable cost in the start-up phase. Hence, we propose
an alternative solution to train the transferable OFF-A in the
offline stage which fully utilize the domain knowledge and
historical experiences, and transfer OFF-A to ON-A to cope
with the online training challenge.

Based on the off-policy feature of SAC that allows the target
and behavior policy to be different, it is possible to use two
common sources of samples: 1) offline models of ADNs, and
2) historical control samples. Both sources can only provide
a rough description of the actual physical system since errors
exist in the parameters of models and current system varies
from the historical one over time. In this paper, we focus on
the former source since the latter one is not always available.

In this paper, the OFF-A is trained against the possible
modeling errors to be robust to the transfer gap or transferable
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Fig. 1. The overall structure of the proposed two-stage VVC algorithm

in another way. The space of all possible modeling errors is
termed the disturbance space X . Instead of requiring the exact
distribution of X and sampling all possible combinations [29],
an adversary agent is trained jointly to mock the modeling
errors and impede the protagonist by applying disturbances on
the model parameters. The aim of the adversary is to disturb
the protagonist in certain X and minimize the total discounted
reward that the protagonist can get. Therefore, the adversary
agent can learn the most tough scenarios for the protagonist
and make the latter one as robust as possible regarding X .

Though the original adversarial RL method [30] has been
justified valid, it suffers poor efficiency and convergence in
large scale cases. To improve the performance, we propose
an adversarial reinforcement learning algorithm JASAC in
Section III-C. Instead of training the protagonist and the
adversary separately, JASAC shares the estimation of the value
functions between the two agents, since they are in the same
zero-sum game. The shared information allows each agent
to optimize the value function approximation considering the
other’s behavior, so both the efficiency and convergence are
promoted especially in cases with large scale of action and
state space.

Finally, after the offline stage, the robust OFF-A is trans-
ferred to ON-A in the online stage. The numerical tests show
that ON-A can realize VVC of the ADN safely and efficiently
with continuous learning from online samples.

B. Soft Actor-Critic

In order to solve the MDPs, the actor-critic framework
is popular among modern RL algorithms. Well-known actor-
critic methods includes proximal policy optimization (PPO)
[31], asynchronous advantage actor-critic (A3C) [32], deep
deterministic policy gradient (DDPG) [33] and SAC [17], [34].
PPO and A3C are on-policy methods, which means the new
samples have to be generated according to the latest policy
of the agent. The sample efficiency of such methods is often
far from satisfactory. Though DDPG is a famous off-policy

method, it learns a deterministic policy and suffers in the
online exploration.

To cope with these challenges, SAC follows the previous
maximum entropy algorithms especially soft Q-learning (SQL)
[35] and provides an off-policy maximum entropy RL algo-
rithm. The state value function is entropy-regularized as

V π(s) = E
τ∼π

[ ∞∑
t=0

γt
(
rt + αH (π(·|st))

)∣∣∣∣∣ s0 = s

]
(6)

where H(π(·|st)) = E
a∼π(·|st)

[− log π(·|st)] is the entropy

for the stochastic policy at st. And Qπ(s, a) is entropy-

regularized accordingly as Qπ(s, a) = E
τ∼π

[∑T
t=0 γ

trt +

α
∑T
t=1 γ

tH
(
π(·|st)

)∣∣s0 = s, a0 = a

]
.

During the learning process, all the samples of MDP are
stored in the replay buffer D as (s, a, r, s′) ∈ D. To ap-
proximate Qπ by neural network iteratively, Bellman equation
is applied to the entropy-regularized Qπ and approximated
with samples as Equation (7) since Es′,a′H (π (·|s′)) =
−Es′,a′ log π (·|s′).

Qπ(s, a) = E
s′,a′

[
R(s, a, s′) + γ (Qπ (s′, a′) + αH (π (·|s′)))

]
≈ r + γ (Qπ (s′, ã′)− α log π ( ã′| s′)) , ã′ ∼ π( ·| s′)

(7)
Note that ã′ is generated from the latest π( ·| s′) while s′

is from D. With this approximation, we use mean-squared
Bellman error (MSBE) function to update the Q network.

With the value function as the “critic”, the “actor” policy is
optimized to maximize the state value function V π(s). In SAC,
the reparameterization trick using a squashed Gaussian policy
is introduced: ãθ(s, ξ) = tanh (µθ(s) + σθ(s)� ξ) , ξ ∼
N (0, I), where µθ, σθ are two parameterized neural networks.
Hence, the expectation over actions is converted to the expecta-
tion over noise ξ, and the policy parameter θ can be optimized
according to

max
θ

E
s∼D
ξ∼N

[Q (s, ãθ(s, ξ))− α log πθ ( ãθ(s, ξ)| s)] (8)

A naive implement of SAC is given in the supplemental file
[28] using Equations (7) and (8). Several techniques [34] to
make SAC more practical and stable, such as optimization of
the α, frozen target and two Q-functions, are omitted here.

C. Jointly Adversarial Soft Actor-Critic

In the offline stage, the protagonist and adversary agents are
trained respectively to solve the AMDP in Section II-B. To
realize the adversarial training, the original algorithm robust
adversarial reinforcement learning (RARL) [30] alternatively
trains the agents in a separate manner using policy gradient
method. Though the effectiveness of RARL has been tested
under several standard robotic environments, its stability,
convergence and efficiency remain concerns. The bottlenecks
for RARL are: 1) the separate training structure blocks the
knowledge sharing between agents and make the algorithm
less efficient; 2) policy gradient method is on-policy and
suffers from stability and sample efficiency.
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In this work, we innovate an algorithm called jointly
adversarial soft actor-critic (JASAC) for the AMDP. The
overall framework is provided in Algorithm 1. An off-policy
maximum entropy optimization is conducted based on SAC
for each agent in an alternative manner. During the training
process, the agents share the knowledge of the system using
a spanned state-action value function and each optimizes the
policy considering the other one on each step, which is the
key novelty of JASAC.

Under the formulation of AMDP, we incorporate the maxi-
mum entropy framework like SAC for both agents. The value
function is derived as

V π(s) = E
[ T∑
t=1

γt−1
(
R(st, a

p
t , a

o
t )

− αp log πp(a
p
t |st)− αo log πo(a

o
t |st)

)] (9)

where π denotes (πp, πo), and αp, αo are the Lagrange mul-
tipliers for the entropy constraints. αp > 0 and αo < 0 since
the adversary minimizes the expectation of total discounted
reward as Equation (1).

1) Learning Q-Functions: In a separate training frame-
work, each agent implements an approximator Qφ(s, a) for
the state-action value function. Though the action space of the
agents are not the same, they are playing in the same game
so that the actual value function V ∗(s) should be identical as
maxπp

minπo
V πpπo(s) = minπo

maxπp
V πpπo(s) [36]. The

consistent value function inspires us to share the value approx-
imation between agents during adversarial training and achieve
the equilibrium faster. To do this, we define a joint Q-function
instead of two separate ones as Qπ : S × Ap × Ao → R
according to Equation (9).

Typically, we adapt Bellman equation to estimation the Q-
value as shown in Equation (10). The shared information in
Qπ allows us to consider both current policies πp, πo during
the approximation instead of doing it alternatively.

Qπ(s, ap, ao) = E
s′,a′p,a

′
o

[
R(s, ap, ao, s

′) + γ
(
Qπ(s′, a′p, a

′
o)

− αp log πp(a
′
p|s′)− αo log πo(a

′
o|s′)

)]
(10)

Also, the parameters of target Q networks φ̂ are delayed
comparing to the learned φ as indicated in [17]. Hence, the
target of Q-functions y(r, s′) is calculated using the Bellman
equation Equation (10) as

y(r, s′) = r + γ
[
Qφ̂(s′, ã′p, ã

′
o)

− αp log π(ã′p|s′)− αo log π(ã′o|s′)
] (11)

where ã′p and ã′o) are generated using the latest πp(·|s′) and
πo(·|s′). With this target value, we update φ1, φ2 by gradient
descent on MSBE function JQ(φ):

JQ(φ) = E
(s,a,r,s′)∼D

[(
Qφ(s, a)− y(r, s′)

)2]
(12)

2) Learning the Policy: The policies are learnt by optimiz-
ing the expected value. With the joint Q-functions, the value
function V π(s) is calculated by the expectation on both action
spaces.

V π(s) = E
ap∼πp
ao∼πo

[
Qπ(s, ap, ao)

− αp log πp(ap|s)− αo log πo(ao|s)
] (13)

To decouple the expectation and actions, the reparam-
eterization trick in SAC is utilized here as ãθp(s, ξp) =
tanh (µθ(s) + σθ(s)� ξp) , ξp ∼ N (0, I) and ãωo (s, ξo) =
tanh (µω(s) + σω(s)� ξo) , ξo ∼ N (0, I), where θ is the
parameter of protagonist policy and ω of adversary policy.
The original problem maxπp

minπo
V π(s0) is transformed to

max
θ

min
ω

E
s∼D
ξp∼N
ξo∼N

[
Qφ
(
s, ãθp(s, ξp), ã

ω
o (s, ξo)

)
− αp log πp(ã

θ
p(s, ξp)|s)− αo log πo(ã

ω
o (s, ξo)|s)

] (14)

Though it is possible in SAC to determine the optimal policy
directly if the action space is discrete and small, evaluating
the equilibrium solution in every step is time-consuming
for a minimax optimization problem on continuous space.
Following SAC and RARL, we alternatively learn πp and
πo in a descent manner. Because θ and ω are independent
in the entropy terms, we derive the loss function for policy
parameters θ, ω as

Jπp
(θ) =

1

|B|
∑
s∈B

[
Qφ̂(s, ãθp(s, ξp), ã

ω
o (s, ξo))

− αp log πp(ã
θ
p(s, ξp)|s)

] (15)

Jπo
(ω) =

1

|B|
∑
s∈B

[
Qφ̂(s, ãθp(s, ξo), ã

ω
o (s, ξo))

− αo log πo(ã
ω
o (s, ξo)|s)

] (16)

where B is a batch of samples from D. It should be empha-
sised that in Equations (15) and (16), the joint Q-functions pro-
vides the possible state value considering not only one’s own
action, but also the opponent’s action. It makes the updated
policy take the other’s stochastic actions into consideration and
correct the search direction.

Finally, before migrating the protagonist to the online stage,
we have to bridge JASAC and SAC. The protagonist policy
πp can be migrated directly as π in SAC. Because we want
to continue the training online to realize a model-free VVC,
Q∗φ is marginalized for protagonist as Q∗Φ since no adversary
is conducted online.

Q∗Φ(s, ap) = E
ξo∼N

Q∗φ(s, ap, ã
ω
o (s, ξo)) (17)

IV. NUMERICAL STUDY

In this section, numerical experiments are conducted using
IEEE 33-bus and 69-bus distribution test cases to validate
the advantage of the proposed two-stage method over some
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Algorithm 1: Jointly Adversarial Soft Actor-Critic
Initialize experience pool, function approximators’
parameter vectors θ, ω for policy and φ for value
function;

foreach episode do
foreach environment step do

apt ∼ πp(·|st), aot ∼ πo(·|st);
Feed apt , a

o
t to the environment, get reward rt and

next state st+1;
D ← D ∪ {(st, (apt , aot ), rt, st+1)};

end
foreach gradient step do

φ← φ− λ∇φJQ(φ) ;
θ ← θ + λ∇θJπp

(θ);
ω ← ω − λ∇ωJπo

(ω);
end
φ̂← ηφ+ (1− η)φ̂;

end
Marginalize Q∗φ for protagonist as Q∗Φ using

Equation (17);
Output: Transferable protagonist state-action value

function Q∗Φ and π∗p for online stage.

popular benchmark algorithms including DRL algorithms
and optimization-based algorithms. Steady-state distribution
system reinforcement learning environments are built under
the scheme of the well-known toolkit Gym [37]. Detailed
simulation configuration is given in the supplemental file [28].

A. Proposed and Baseline Algorithms Setup

In the offline stage, the proposed algorithm JASAC is
implemented for solving AMDP. For the benchmark algorithm,
we first follow the structure of RARL. The original version of
RARL utilized on-policy algorithms to train both protagonist
and adversarial agents and showed poor convergence in our
environments. Hence, we substitute the on-policy algorithm
for both agents with off-policy algorithms, which can be seen
as a separately adversarial soft actor-critic (ASAC) algorithm.
The major difference between JASAC and ASAC is that the
former one shares critic value information between agents.
An optimization-based algorithm with SOCP relaxation is
implemented using the power flow model [28], either with
oracle parameters (VVO) or with fake parameters (VVO with
error). Also, in order to show the effectiveness of adversarial
training, SAC is selected as one of the benchmarks to solve
MDP.

In the online stage, in addition to optimization-based and
SAC benchmarks, we also migrate the trained SAC in the
offline stage to the online (preSAC) following our two-stage
DRL structure. The algorithm hyperparameters for both stages
are listed in the supplemental file [28].

Due to the stochastic property of DRL-based algorithms, we
use 5 independent random seeds for each group of experiment,
whose mean value and error bounds are presented in the
figures.

B. Offline Convergence and Efficiency

In the offline stage, we train the proposed JASAC algorithm
and DRL-based benchmarks with our simulation environ-
ments. Also, optimization-based benchmarks are evaluated
with corresponding models respectively. The step average
value of active power loss, voltage violation rate and neg-
ative reward (only for DRL algorithms) are shown in sub-
figures of Figure 2. The solid curves (green for JASAC, red
for ASAC, blue for SAC) represent the mean performance
across independent random seeds, and the light color filled
regions are corresponding error bounds. The optimization-
based benchmarks are drawn as black dashed lines.
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Fig. 2. Offline training process with the test systems

The first important observation from Figure 2 is that SAC
algorithm converges to a lower active power loss than the
optimization-based method VVO without oracle parameters,
which significantly reveals the advantage of DRL-based al-
gorithms over such parameter-sensitive optimization method
regarding Volt/VAR control problem. Such fact could also be
supported by the follow-up online results (Figure 3 and tables I
and II) and other related works [16], [25]. On the other
hand, though the oracle VVO attains the minimum of active
power loss theoretically once given all true parameters, SAC
algorithm could closely approach it after certain iterations, as
depicted in the figure.

In terms of the comparison between JASAC/ASAC and
SAC, we notice that the first two methods converge to the
same value above SAC. Such gap arises due to the extra
adversarial training mechanism in JASAC/ASAC, in which the
adversary seeks for worse cases using model errors, essentially
sacrificing a bit training performance for the robustness of the
protagonist. In Section IV-C, we would further discuss that
such design would help to produce trust-worth actions at the
very start when dealing with the transfer gap from offline to
online. Fortunately, such trade-off for robustness is almost of
no cost, since in offline stage, our simulation has no actual
loss on the real world system.
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Finally, comparing JASAC with ASAC, the advantages of
JASAC over ASAC with respect to training efficiency and
convergence rate are evidently shown in Figure 2. The third
subplot, which illustrates the change of negative rewards
with iterations, well reveals the dynamics of the training
process. We could see that even with adversarial training,
JASAC achieves similar efficiency and convergence rate as
SAC, while ASAC suffers from the balancing process in the
adversarial training. In fact, this significant improvement of
JASAC compared to ASAC is credited to the the shared value
information of the agents and the consideration of each other’s
policy. Such features make JASAC preferable in practice for
Volt/VAR control, not only in this study but also in more
complex potential tasks.

C. Online Safety and Efficiency
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Fig. 3. Online Volt/VAR control process with the test systems

In the online stage, while maintaining similar simulation
ideas as the offline stage, we change our focus to real
world model, where simulations represent real world control
process and actions are no longer cost-free. Hence, safety
and efficiency become more important in every part of the
simulations. Figure 3 shows an example line plot and Tables I
and II includes some major indices. In the table, we calculate
the start and max value of active power loss and VR. The
ideal optimal solution calculated by VVO with oracle model
and VR = 0 is used as a baseline to calculate the increments
in active power loss of other methods. Note that we trained
the stochastic algorithms with 5 independent random seeds,
based on which we could get the mean values and standard
deviations across seeds.

The advantage of the proposed two-stage structure for DRL-
based algorithms emerges in the online plot Figure 3 and
Tables I and II, where we could clearly observe a much better
performance of JASAC and preSAC than SAC. The rationale
behind this is that the basic rules of the control tasks and
the neural network structures could be well learned in offline
training stage and then inherited by the online stage. These

TABLE I
ONLINE PERFORMANCE COMPARISON WITH THE 33-BUS SYSTEM

Algo. Ploss/MW VR

Mean Inc.* Std. Mean Std.

Start

SAC 2.39e-00 1.74e-00 2.31e-01 3.58e-03 3.03e-03
preSAC 8.08e-01 1.59e-01 1.08e-01 1.81e-03 5.18e-04
JASAC 6.93e-01 4.37e-02 6.94e-03 1.10e-03 8.41e-05

VVO+ 9.21e-01 2.71e-01 - 2.19e-03 -

Max

SAC 2.41e-00 1.76e-00 2.05e-01 1.08e-02 1.22e-02
preSAC 8.28e-01 1.79e-01 7.87e-02 2.40e-03 6.54e-04
JASAC 7.00e-01 5.02e-02 3.23e-03 1.39e-03 1.34e-04

VVO+ 9.21e-01 2.71e-01 - 2.19e-03 -

Optimal Sol.o 6.49e-01 0 - 0 -
* mean value increment comparing to the lower bound.
+ optimization-based VVO with the offline approximate model.
o ideal optimal solution using perfect ADN model.

TABLE II
ONLINE PERFORMANCE COMPARISON WITH THE 69-BUS SYSTEM

Algo. Ploss/MW VR

Mean Inc.* Std. Mean Std.

Start

SAC 1.72e-00 1.37e-00 2.30e-01 1.74e-03 6.50e-04
preSAC 3.84e-01 3.60e-02 1.89e-02 3.38e-04 5.02e-05
JASAC 4.15e-01 6.75e-02 1.38e-02 7.16e-05 3.31e-05

VVO+ 3.11e-01 -3.7e-02 - 1.18e-03 -

Max

SAC 1.96e-00 1.61e-00 3.83e-01 1.74e-03 6.50e-04
preSAC 4.15e-01 6.71e-02 1.28e-02 3.38e-04 5.02e-05
JASAC 4.15e-01 6.75e-02 1.38e-02 7.31e-05 3.15e-05

VVO+ 3.11e-01 -3.7e-02 - 1.18e-03 -

Optimal Sol.o 3.48e-01 0 - 0 -
* mean value increment comparing to the lower bound.
+ optimization-based VVO with the offline approximate model.
o ideal optimal solution using perfect ADN model.

consistent prior knowledge would make the algorithms take
good actions even at the very beginning of the control process,
thus giving rise to a significant improvement of the efficiency.

Further more, the adversarial training in the offline stage,
as is mentioned previously, proves itself to be effective in the
online stage when we look into the performances of preSAC
and JASAC, especially at their starting phase. Specifically
speaking in Figure 3a and Table I, at the start of 33-bus case,
preSAC has an active power loss increment of 1.59 × 10−1

from the ideal optimal solution, while JASAC cuts it by over
70% to 4.37 × 10−2. JASAC also reduces the VR by nearly
40% to 1.1×10−3. For the max value in the process and other
cases, such comparisons still hold. The key of our proposed
JASAC lies in the strategy to prepare the agent for the transfer
gap by first sacrificing a bit training performance in the cost-
free offline stage, in return for the robustness of the protagonist
who could take preeminent actions in the real world online
stage.

V. CONCLUSION

A two-stage deep reinforcement learning algorithm is pro-
posed to optimize the reactive power distribution in inverter-
based ADNs without accurate model parameters. The key
novelty of the proposed algorithm lies in transfer of knowledge



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 20XX 8

from the offline stage to online and significantly improvement
on online control safety and efficiency. In the offline stage, we
propose a novel RL algorithm JASAC with the formulation of
AMDP to make the offline agent robust to the transfer gap.
And in the online stage, OFF-A is transferred as ON-A and
performs continuous online learning and control using SAC.
Numerical studies on IEEE 33-bus and 69-bus test cases have
indicated that the proposed two-stage method outperforms the
benchmark methods regarding safety and efficiency in the
online stage, and also demonstrated that the proposed JASAC
has better convergence and efficiency in the offline stage
comparing to the benchmark adversarial learning algorithm.

In the future work, the application of the proposed adver-
sarial JASAC to more complex control problems is also a
promising research direction.
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