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Abstract—The distributed Volt/Var control (VVC) methods
have been widely studied for active distribution networks(ADNs),
which is based on perfect model and real-time P2P communica-
tion. However, the model is always incomplete with significant
parameter errors and such P2P communication system is hard to
maintain. In this paper, we propose an online multi-agent rein-
forcement learning and decentralized control framework (OLDC)
for VVC. In this framework, the VVC problem is formulated as
a constrained Markov game and we propose a novel multi-agent
constrained soft actor-critic (MACSAC) reinforcement learning
algorithm. MACSAC is used to train the control agents online,
so the accurate ADN model is no longer needed. Then, the
trained agents can realize decentralized optimization using local
measurements without real-time P2P communication. The OLDC
with MACSAC has shown extraordinary flexibility, efficiency and
robustness to various computing and communication conditions.
Numerical simulations on IEEE test cases not only demonstrate
that the proposed MACSAC outperforms the state-of-art learning
algorithms, but also support the superiority of our OLDC
framework in the online application.

Index Terms—Voltage control, multi-agent reinforcement
learning, reactive power, distributed control.

I. INTRODUCTION

VOLTAGE violation problems and high network losses
are becoming increasingly severe in active distribution

networks (ADN) with high penetration level of distributed
generation (DG) [1], [2]. As an important solution, Volt-VAR
control (VVC) has been successfully integrated into distri-
bution management systems to optimize the voltage profile
and reduce network losses. Since most DGs are inverter-
based energy resources (IB-ERs), they are able and required
to provide fast Volt/VAR support using their free capacity.

Conventionally, VVC is described as a nonlinear program-
ming problem to generate a set of optimal strategies for voltage
regulation devices and reactive power resources. Plenty of
literatures solve VVC problems using centralized optimization
methods such as interior point methods [3] and evolutionary
algorithms [1]. Despite the wide application of centralized
VVC, they suffered from the single-point failure and heavy
computation & communication burdens. Also, as for the
increasingly huge amount of IB-ERs, centralized VVC is also
limited with communication-dependent time-delay issues.

Therefore, distributed VVC methods have been proposed to
exploit the distributed nature of the ADN. Distributed methods
utilizes local measurements with P2P communication with
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neighbors to realize fast control. Previous papers mainly adapt
distributed optimization algorithms, such as quasi real-time
reactive optimization [4], alternating direction method of mul-
tipliers (ADMM) [5], [6] and accelerate ADMM [2]. However,
these P2P communication system is hard to maintain in real
practice. There are also some decentralized methods [7], [8]
to realize quasi-optimal control, which are based on improved
droop control strategies and only local measurements are used
for each controller.

Till now, most VVC algorithms depend on the accurate
ADN models to achieve desirable performance. It is imprac-
tical and expensive for regional power utilities to maintain
such reliable models, especially in a distribution system with
increasing complexity and numerous buses [9], [10]. Recently,
the effectiveness of (deep) reinforcement learning (RL) based
approaches have been verified to cope with the incomplete
model challenges in energy trading [11], emergency control
[12], load frequency control [13], and voltage regulation [10],
[14].

In order to apply RL algorithms in a distributed or decen-
tralized manner, multi-agent RL has been studied in inspiring
attempts [15]–[21]. [18] proposes a distributed reinforcement
learning based secondary control of DC microgrids based on
pinning consensus. [20] develops a decentralized cooperative
control strategy for multiple energy storage systems based
on Q-learning and the value decomposition network (VDN)
from [22]. [21] develops a multi-agent autonomous voltage
control method based on the state-of-art algorithm multi-agent
deep deterministic policy gradient (MADDPG) proposed in
[23]. Besides, data-driven decentralized control is also studied
in [24]–[26] for dynamic voltage controls to reduce voltage
harmonics and improve power quality.

However, the existing control methods either a) implement
training of agents in the offline stage based on a simulation
model and execute them online without training, which sac-
rifice the model-free feature of multi-agent RL, or b) syn-
chronously learn the agents online with heavy communication
burdens. As for VVC with numerous high-speed IB-ERs, a
novel online multi-agent RL framework that performs online
learning without heavy communication and local computation
burdens is urgently desired.

Moreover, to realize such framework, there are several
critical technical challenges:

1) The deterministic policies of Q-learning and DDPG
algorithms lead to extreme brittleness and notorious
hyperparameter sensitivity [27], which limit the online
application.

2) The power system operational constraints are not mod-
elled explicitly in the existing multi-agent RL based
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methods, which is a critical issue in VVC.
3) Online exploration of the data-driven algorithms could

lead to deterioration on the performance of VVC. Such
exploration and exploitation issue is especially serious
in ADN with high speed IB-ERs.

In this paper, we propose an Online multi-agent reinforce-
ment Learning and Decentralized Control framework (OLDC)
for VVC as shown in fig. 1. Moreover, to improve the stability
and efficiency of VVC, we propose a novel multi-agent RL
algorithm called Multi-Agent Constrained Soft Actor-Critic
(MACSAC) inspired by previous works [10], [23], [27], [28].

Multi-agent learning based on 
MACSAC

Control Center

Local Controller 1

Local Policy

Local Controller N

Local Policy

Local Area 1 Local Area N

Real world ADN

Wide area
comm. network

...

...
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Samples

Policies

1 N

Samples

Policies

Fig. 1. Overall structure of the proposed online multi-agent learning and
decentralized control framework.

As shown in fig. 1, coordinated multi-agent learning based
on MACSAC is conducted in the control center, and the
latest trained polices are sent to controllers to carry out local
control. With the asynchronous learning, sampling and control
processes, this solution can realize safe and fast model free
optimization for VVC in ADNs. The unique contributions of
this article are summarized as follows.

1) Compared to the existing algorithms like MADDPG
[23], our proposed MACSAC significantly improves
the stability and efficiency of the training and applica-
tion processes. Instead of using deterministic policies,
MACSAC utilizes stochastic policies with maximum
entropy regularization following [27], which prevents
optimization failure and ameliorates training robustness.
MACSAC also explicitly model voltage constraints fol-
lowing [10] instead of treat it as a penalty, which can
significantly improve voltage security level.

2) In order to synergistically combine online multi-agent
RL and decentralized control, a novel OLDC framework
with detailed timing design is proposed in this paper.
The proposed VVC with OLDC can both learn the
control experiences continuously to meet the incomplete
model challenge, and make decision locally to realize
fast control. Also, OLDC can be extended to apply in
other multi-agent power system controls, and is capable
with future off-policy multi-agent RL algorithms.

3) With the off-policy nature of MACSAC, our OLDC
provides a promising method for balancing exploration
and exploitation in RL-based algorithms. The safety and
operation efficiency is dramatically enhanced by saving
the cost of redundant exploration online.

The remainder of this article is organized as follows.
Section II formulates the the VVC problem in ADNs as a
constrained multi-agent Markov game, and also briefly intro-
duces RL and the multi-agent actor-critic framework. Then,
the detailed introduction to the proposed MACSAC and OLDC
are presented in Section III. In Section IV the results of our
numerical study are shown and analyzed. Finally, Section V
concludes this article.

II. PRELIMINARIES

In this section, we firstly introduce the VVC problem in
this paper. Then, the settings of Markov games and RL in this
paper is explained. In the last subsection, we introduce pre-
liminaries of actor-critic and multi-agent actor-critic methods.

A. VVC Problem Formulation

An ADN is divided into N nature control areas with local
measurements and control agent. It can be depicted by an
undirected graph Π(N , E) with the collection of all nodes
N =

⋃
i∈[1,N ]Ni, the collection of each area i’s nodes Ni,

and the collection of all branches E . Since it is common for
the ADN in the real world to equip only with single-phase
steady-state measurements, the VVC problem is formulated on
balanced networks for real-time steady-state dispatch in this
paper. Since the inner details of the model are not required
and only the input and output data are necessary, such model
can be easily extended to unbalanced multi-phase networks.
Such extension is validated in section IV-D with a three phase
unbalanced distribution network.

While we consider the steady-state voltage control, the
power flow equations are employed as shown in eq. (1), where
Pij , Qij is the active and reactive power flow from node i to
j, Vi is the voltage at node i and Gij + jBij is the admittance
of branch ij, and Gsh,i + jBsh,i is the shunt admittance of
node i.

Pij = GijV
2
i −GijViVj cos θij −BijViVj sin θij ,∀ij ∈ E

Qij = −BijV 2
i +BijViVj cos θij −GijViVj sin θij ,∀ij ∈ E

θij = θi − θj ,∀ij ∈ E
(1)

The kth area is equipped with nIBk IB-ERs and nCDk
compensation devices such as static Var compensators (SVC).
Without loss of generality, we assume that the IB-ERs and
compensation devices are installed on different nodes in Nk.
Accordingly, the collection of the nodes equipped with IB-ERs
and compensation devices are noted as NIBk and NCDk.
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Since NIBk ∩NCDk = ∅, the power injections at each nodes
can be determined via eq. (2).

Gsh,iV
2
i +

∑
ij∈E

Pij =

{
−PDj , j ∈ N\NIBk

PGj − PDj , j ∈ NIBk

−Bsh,iV 2
i +

∑
ij∈E

Qij =


−QDj , j ∈ N\{NIBk ∪NCDk}
QGj −QDj , j ∈ NIBk

QCj −QDj , j ∈ NCDk
(2)

where QCj is the output of reactive compensator at node j;
PGj , QGj are the active and reactive power output of DG at
node j; PDj , QDj are the active and reactive power of the
load at node j.

The IB-ERs are typically designed with redundant rated
capacity for safety reasons and operate under maximum power
point tracking (MPPT) mode. Hence, the controllable range of
the reactive power of IB-ERs can be determined by the rated
capacity SGi and current active power output PGi. The reactive
power range of controllable devices is |QGi| ≤

√
S2
Gi − P 2

Gi

and QCi ≤ QCi ≤ QCi.

B. Markov Games and Reinforcement Learning

In order to formalize sequential multi-agent decision pro-
cesses, we consider an extension of the Markov decision
processes (MDP) called constrained Markov Games (CMG),
which can be seen as a constrained version of Markov games
(MG) [29]. In a MG, multiple agents can interact with a
common environment locally. A MG for N agents is de-
fined by a tuple (S, [Oi]N , [Ai]N , ρ, [Ri]N , γ). The set of
states S describes all possible states of the common environ-
ment. The sets of local observations O1, . . . ,ON and actions
A1, . . . ,AN are the local observations and actions for each
agent.Ri is the ith reward function defined as S ×Ai 7→ R.

In each time step t, each agent i firstly observes the
environment as oi,t ∈ Oi; then, chooses its action ai,t using
a stochastic policy defined as a probability density function
πi : Oi × Ai 7→ [0,∞), i.e., ai,t ∼ πi(· |oi,t ). The actions
taken at t lead to the next state according to an unknown state
transition probability ρ : S × A1 × · · · × AN × S → [0,∞).
After the transition, each agent i obtains an reward ri,t by the
corresponding reward function Ri(si,t, ai,t) and receives the
next observation oi,t+1. The goal of each agent is to maximize
its own total expected discounted return Ji = E

[∑T
t=0 γ

tri,t

]
,

where γ is a discount factor and T is the time horizon. Note s0
as the initial state, π as all policies, ot as all local observations
at t, at as all actions at t for convenience.

In the power system control domain, it is important for RL
agents to keep safe exploration. A natural way to incorporate
safety is to formulate constraints into the RL problem. Fol-
lowing the constrained MDP (CMDP) given by [30], CMG
is formulated as an constrained extension of MG, where each
agent i must satisfy its own constraints on expectations of
auxiliary costs. An extra group of auxiliary cost functions
Rc1, . . . , R

c
N defined as Rci : S × Ai 7→ R is inserted into

the tuple of MG. At time step t, the cost is defined as

rci,t = Rci (st, ai,t) where st ∈ S. The constraints are expressed

as Jci = E
[∑T

t=0 γ
trci,t

]
≤ Jci .

Under the settings of CMG, the task of the RL algorithms,
or multi-agent RL algorithms explicitly, is to learn an optimal
policy π∗i for each agent i to maximize Ji, i.e.,

π∗i (ai,t |oi,t ) = arg max
πi

Ji(πi) s.t. Jci ≤ J
c

i , (3)

with sequential decisions data and without knowledge of the
probability density functions ρ. Such feature of RL algorithms
leads to huge potential to optimize the agents in a model-free
manner.

C. Actor-Critic and Multi-agent Actor-Critic

In order to accomplish the reinforcement learning task,
a group of RL algorithms called actor-critic algorithms are
becoming popular in the recent years for their high sample
efficiency and stability, such as PPO [31], A3C [32], DDPG
[33], and SAC [27]. These algorithms utilize deep neural
network to approximate an “actor”, which generate actions
with observations using policy π, and an “critic” which
evaluate the policy using Qπ or V π . By training the actor
and critic alternatively, these algorithms could explore the
environment efficiently and get high quality policies. The
constrained version of SAC is also developed in [10].

For such multi-agent environments, separately adopting tra-
ditional RL algorithms for each agent is poorly suited because
the environment is non-stationary from the perspective of each
individual agent. In this paper, we follow the multi-agent
actor-critic framework in [23], [34] to cope with the inherent
non-stationary challenges of multi-agent environments. The
architecture of the multi-agent RL system is illustrated in
fig. 2. Both a critic and a local actor are constructed for each
agent. At training time, the critics are allowed to use global
information, including all observations and actions, to build
its own evaluation of the global environment characteristics.
The local actors are trained with the corresponding critic with
the knowledge of other actors since we consider a cooperative
setting in this paper. After training is complete, the local actors
are deployed and make decisions in a decentralized manner
using only the local information.

Environment

Actor

Critic Critic

Local area 1 Local area N

Actor

o ar o ar

Global Obs.

… …

… …

… …

1 N

1 N

1 N

Decentralized ExecutionCentralized Learning

Fig. 2. Multi-agent reinforcement learning system for VVC of ADNs.

However, previous work is not intended for online control-
ling and acts in an offline training and online application mode.
In our DRL-based VVC algorithm, the most important task is
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to utilized online learning and control to adaptively operates
ADNs. So in section III-C, we propose an online multi-agent
learning and decentralized control framework (OLDC) with
totally asynchronous sampling, training and application, which
fully preserves the advantage of OLDC in the online stage.

III. METHODS

In this section, we innovate an online multi-agent reinforce-
ment learning method to solve the VVC problem formulated
as a MG. Since the method is carried out online, the safety,
efficiency and optimality are the critical concerns to address
in the real world problem. Firstly, the VVC problem is for-
mulated into CMG. Then, we develop an innovated off-policy
multi-agent algorithm called MACSAC in section III-B, which
improves the safety and efficiency of the existing algorithms.
Finally, based on the off-policy nature of MACSAC, we
propose OLDC as an online multi-agent actor-critic framework
with totally asynchronous sampling, learning and application
in section III-C, which is also capable with other off-policy
algorithms. The structure diagram is shown in fig. 3, which
emphasizes the decentralized nature of the control process and
the asynchronous nature of the centralized learning part.

Local
Agent (Controller)

Local
Agent (Controller)

Measurement Measurement

A
ct

io
n

Area 1 Area 2

Area 3

A
ction

Local
Agent (Ctrl.)

Asynchronous Centralized Learning

Updated Policy Updated PolicyUpdated
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D

at
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ata

Fig. 3. Structure diagram of the proposed OLDC. In the control process, each
agent does not communicate at all; but asynchronously, the data is sent and
computed in the control center, and the policies are updated, which does not
affect the control process.

A. VVC Formulation in Constrained Markov Game

The VVC problem of ADNs is formulated as CMG with
their natural features. The detailed VVC problem settings are
given in the supplemental file [35] due to page limitation. The
specific definitions of state space, action space and reward
function are designed as follows.

1) State Space: The state of CMG s ∈ S is defined as
a vector s = (P,Q,V, t). Here P,Q is the vector of nodal
active/reactive power injections Pj , Qj(∀j ∈ N ), V is the
vector of voltage magnitudes Vj(∀j ∈ N ). t is the time step
in each episode.

2) Observation Spaces: The local observations of each
agent are selected according to the local measurements. In
this paper, oi ∈ Oi is defined as (Pi,Qi,Vi,P

e
i ,Q

e
i ), where

Pi,Qi is the vector of ith area’s nodal active/reactive power
injections Pj , Qj(∀j ∈ Ni); V is the vector of ith area’s
voltage magnitudes Vj(∀j ∈ Ni); Pei ,Q

e
i is the vector of

outlet powers of ith area.
3) Action Spaces: For each agent i, the action space Ai is

constructed with all the controllable reactive power resources
in ith area, including PV inverters and SVCs. That is, Ai =
{QGj , QCk}, j ∈ NIBi, k ∈ NCDi, which is similar to [2].

4) Reward and Cost Functions: In the classic RL algo-
rithms, the reward is designed to be a function of previous ob-
servations. In this paper, the rewards of agents are calculated in
the coordinator, so all observations are available to the reward
functions. Since the objectives are to minimize active power
loss and mitigate voltage violations, the reward functions and
cost functions are defined as eq. (4) and eq. (5). βi is the
cooperative index of agent i, which describes the willingness
of the agent to optimize the welfare for global system rather
than itself.

ri,t = RP (t) =
∑

i∈[1,N ]

[P e(Ni)−
∑
j∈Ni

Pj(t)] (4)

rci,t = RV (Ni, t) + βiRV (N , t) (5)

The index functions RP and RV can be evaluated in the
coordinator for any collection of nodes Ni at time step t.

RV (Ni, t) =
∑
j∈Ni

[
[Vj(t)− V ]2+ + [V − Vj(t)]2+

]
(6)

Here, [·]+ is the rectified linear unit function defined as
[x]+ = max(0, x). We have RV (t) ≥ 0 where the equality
holds if and only if all voltage magnitudes satisfy the voltage
constraints. Note RV as voltage violation rate (VVR) since
it is assigned according to the 2-norm of voltage magnitude
violations. We use VVR instead of the amount of violated
nodes like [10] because the voltage violations are usually
severe in the ADNs and the regulation capacity may be not
enough to eliminate all violations in some scenarios. In such
scenarios, VVR serves as a much smoother index and can
effectively mitigate the voltage violations.

B. Multi-agent Constrained Soft Actor-Critic

To improve the safety and efficiency of the existing multi-
agent RL algorithms, we propose MACSAC in this subsection.
As space is limited, the detailed derivation of MACSAC and
practical skills are provided in the supplemental file [35].

First of all, with the formulation of CMG for VVC in
section II, the multi-agent RL problem is reformulated as
eqs. (7) to (10) for each agent i locally. Here, eq. (7) is the
original RL objective; eq. (8) is the action constraint, where
ai and ai is the lower and upper bound of ai; eq. (9) is the
entropy constraint from [27], where Hi is the lower bound of
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πi’s entropy; eq. (10) is the state constraint of our CMG, i.e.,
the expected discount sum of VVR.

max
πi

J0
i (πi) = E

τ∈ρφ

[
T∑
t=0

γtri,t

]
, s.t. (7)

ai ≤ ai ≤ ai, (8)

E
(oi,t,ai,t)∈ρπ

[− log (πi(ai,t |oi,t ))] ≥ Hi, ∀t, (9)

J
c

i ≥ Jci (πi) = E
τ∈ρφ

[
T∑
t=0

γtrci,t

]
. (10)

For the action constraint eq. (8), it has already been included
in the action spaces’ definition. As usual, we adapt Lagrange
relaxation here to handle constraints eqs. (9) and (10). Mul-
tipliers αi and λi are introduced for eq. (9) and eq. (10)
respectively. Note that (αi,Hi) and (λi, J

c

i ) are two pairs
of variables. In each pair, if one variable is considered
as a hyperparameter, the other one can be determined via
iterations. Since the physical meaning of J

c

i is clear, we
select αi and J

c

i as hyperparameters. Hence, the problem
is refined as max

πi
min
λi

Ji + λi

[
J
c

i − Jci (πi)
]
, where Ji =

E
τ∈ρφ

[∑T
t=0 γ

tri,t − αi log (πi(ai,t |oi,t ))
]
. In the traditional

RL-based algorithms, the voltage constraints are penalized
directly in the reward, which means the multipliers λi here
are designed to be a given penalty hyperparameter. With an
inappropriate penalty hyperparameter, the voltage constraints
can not be satisfied or lead to unpreferred convergence. In
this paper, the dynamic update of multiplier λi guarantees the
safety of the proposed algorithm.

1) Preparation: The actors optimize the policies πθi , i ∈
[1, N ] with parameters θi, i ∈ [1, N ] according to the op-
timization problem above. In MADDPG, πi is defined as a
deterministic map from Oi to Ai, but faces overfitting problem
and shows undesirable instability. Inspired by [27], π is defined
as a probability distribution πi(·|oi,t) here in a stochastic
manner. Since directly optimization of a distribution is hard
to implement, the policies πi is reparameterized as

ãθi(oi, ξi) = tanh (µθi(oi) + σθi(oi)� ξi) , ξi ∼ N (0, I)
(11)

where µθi , σθi is the mean and standard deviations approxi-
mated by neural networks.

In order to quantify the policies, the state-action value
functions Qπi (x,a) are defined in eq. (12) for Ji. Qπi (x,a) is
representing the expected discounted reward after taking action
a under observation x with the policy π. Here, τ ∼ π is the
trajectory when applying π; π is noted for all πθi , i ∈ [1, N ]; x
is all observations (o0, . . . , oN ); a is all actions (a1, . . . , aN ).
At every time step t, we store {x, a, r,x′}t in the experience
replay buffer D, and then learn the critics and actors alterna-
tively as follows.

Qπi (x,a)
.
=

E
τ∼π

[
T∑
t=0

γtri,t − αi
T∑
t=1

γt log πi(·|xt) |x0 = x,a0 = a

]
(12)

From the definition, the only difference between each Qπi is
ri,t and πi. In the rest of MACSAC, we use neural networks
Qπφi to approximate the actual Qπi .

As for the state constraint term Jci , similar state-action value
functions Qc,πi are defined by substituting ri,t with rci,t in
eq. (12).

2) Learning the critics: As defined in eq. (12), we learn
centralized critics with all observations and actions instead of
learn local ones separately. Such manner can cope with the
non-stationary problem from the perspective of any individual
agents. Since in this paper the agents are cooperative, the
policies of others are available when training a certain critic.

Using Bellman equation, we could approximate the current
state-action value with the expectation of all possible next state
and corresponding actions with π. That is,

Qφi(x, a1, . . . , aN ) ≈ E
x,a,r,x′

[yi]

yi = ri + γ
[
Qφ̂i(x

′, ã′1, . . . , ã
′
N )− αi log πθi(ã

′
i |o′i )

] (13)

where ã′i
.
= ãθi(o

′
i, ξi); φ̂i is the delayed parameters for φi

and is updated using φ̂i ← ηφi + (1− η)φ̂i.
Hence, the training of φi is to minimize the loss L(φi) =

E
x,a,r,x′

[
(Qφi(x, a1, . . . , aN )− yi)2

]
.

Similarly, we calculate the approximated value for Qcϕi as
yci = rci +γQcϕ̂i(x

′, ã′1, . . . , ã
′
N ), and update ϕi by minimizing

the loss L(ϕi) = E
x,a,r,x′

[(
Qcϕi(x, a1, . . . , aN )− yci

)2]
.

3) Learning the actors: With the definition of critics, the
optimization problem of actors is transformed from maximiz-
ing Ji, which is hard to get, to eq. (14) with approximated
Qφi and Qcϕi .

max
θi

E
x∼D

[Qφi(x, ã1, . . . , ãN )− αi log πθi(ãi |oi )]

s.t. E
x∼D

[
Qcϕi(x, ã1, . . . , ãN )

]
≤ Jci

(14)

where ãi
.
= ãθi(oi, ξi).

The Lagrange function L(θi, λi) is derived for eq. (14) as,

L(θi, λi) = E
x∼D

[Qφi(x, ã1, . . . , ãN )− αi log πθi(ãi |oi )]

+ λ

[
J
c

i − E
x∼D

[
Qcϕi(x, ã1, . . . , ãN )

]]
(15)

Hence, the dual problem for θi and λi is max
θi

min
λi

L(θi, λi).

In MACSAC, we update θi as θi+σθi∇θiL(θi, λi), and update
λi as

[
λi − σλi ∇λiL(θi, λi)

]
+

.
The algorithm of MACSAC is shown in algorithm 1. Com-

pared to the state-of-art multi-agent RL algorithm MADDPG
[23], our MACSAC a) utilizes stochastic policies instead of
deterministic policies for each agent and follow the maximum-
entropy training in [27], which avoids overfitting to local op-
timal polices and gains significantly higher sample efficiency
and stability, and b) introduces constraints for each agent and
solve CMG instead of MG, which guarantees voltage safety
explicitly. Also, both MADDPG and MACSAC are off-policy
actor-critic algorithms, since we do not have any assumption
with the order of samples or samples’ original policy. It means
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Algorithm 1: Multi-agent Constrained SAC
Initialize experience pool D, policy and value function
approximators’ parameter vectors;

foreach episode do
foreach environment step t do

foreach agent i do in parallel
Locally observe oi,t;
ai,t = ãθi(oi, ξi), ξi ∼ N (0, I);
Feed ai,t to the environment and get reward
ri,t and next observation oi,t+1;

end
D ← D ∪ {(xt,at, rt,xt+1)};
foreach agent i do in parallel

Sample a batch Bi,t from D;
Update Qφi : φi ← σi∇φiL(φi);
Update Qcϕi : ϕi ← σi∇ϕiL(ϕi);
Update πθi : θi ← θi + σi∇θiL(θi, λi);
Update λi: λi ← [λi − σi∇λiL(θi, λi)]+;
φ̂i ← ηφ̂i + (1− η)φi;
ϕ̂i ← ηϕ̂i + (1− η)ϕi;

end
end

end

that the sampling policies, which are executed locally, are not
required to be the latest policies. Such feature inspires us to
come up with OLDC as follows.

C. Online Centralized Training and Decentralized Execution
Framework

With the physical structure shown in fig. 1, we propose
OLDC to carry out MACSAC online with high efficiency. The
detailed diagram of OLDC is illustrated in fig. 4. Note that
in OLDC, sampling (green), learning (blue) and application
(orange) are totally asynchronous.
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Fig. 4. The proposed OLDC framework with totally asynchronous sampling
(green), learning (blue) and application (orange).

1) Timing: In the bottom of fig. 4, a timeline is built for
all agents and the centralized server.

As the orange part, in every time gap ∆t, each agent i
a) get the local measurement oi, b) generate the action ai
with local policy πi as ai ∼ πi(·|oi), and c) send ai to local
controlled devices. Note that the lower bound of ∆t depends
on the measurements, computation of πi, and devices. In this
control process, no centralized communication is needed and
all computations are carried out locally in a decentralized
manner. Since we consider high-speed measurements and
devices, and πi is reparameterized as ãθi(oi, ξi) with neural
networks and can be fast evaluated, ∆t can be relatively small.

Asynchronously, the samples got in every Ts is uploaded to
the experience replay buffer on the server as the green part.
Because of relatively slow communication, Ts is much greater
than ∆t. However, the sampling process would not delay the
actual control speed, since all application is carried out locally
as above.

Also asynchronously as the blue part, the training of agents
is carried out every Tu: batch of samples B ∈ D is randomly
selected to train the critics and actors using eqs. (13) and (15),
and the updated policies π are sent to the agents. Since
the communication is relatively slow and computations is
relatively heavy, Tu is also much greater than ∆t. Note that the
training process would not delay the application or sampling;
also, the samples are selected from the experience replay
buffer, so the training is not directly affected by Ts.

2) Communication and Computation: OLDC is robust to
communication and computation conditions. In the application
process, local controller only evaluates a small neural network
from local measurements oi to ai for local devices with little
computation burdens and no communications are needed with
other controllers or upper control center. Most computations
of MACSAC are carried out on the centralized server with
abundant resources.

OLDC could choose to upload any proper numbers of sam-
ples in every Ts considering the communication conditions.
Without loss of generality, one sample is drawn in fig. 4 with
dashed green box. Also, even if the communication to the
server is unstable and some samples were lost, they could be
ignored safely.

3) Exploration and Exploitation: For data-driven algo-
rithms like MACSAC, the balance of exploration and exploita-
tion is extraordinary important. In MACSAC, bigger multiplier
αi will results in higher entropy level, which means πi is
more stochastic and explore the environment better. However,
the exploration will sacrifice the exploitation, i.e., optimality
and performance. In the practical application, a smaller αi is
preferred as long as the convergence and learning efficiency
are satisfactory.

Hence, OLDC provides another way to balance exploration
and exploitation. Suppose we upload m samples in every Ts,
which means 0 ≤ m < Ts/∆t. Since other samples are not
uploaded or used in training, we can carry out the policy in
a deterministic manner, that is, ãθi(oi, 0) = tanh (µθi(oi))
instead of ãθi(oi, ξi), ξi ∼ N (0, I). To be brief, only the
actions of samples which are meant to upload should explore
stochastically in OLDC. With smaller m, the exploration is
weaker and exploitation is stronger. Moreover, m and Ts can
be changed online to manually control the learning process or



IEEE TRANSACTIONS ON SMART GRID, VOL. XX, NO. X, FEBRUARY 2021 7

even stop learning with m = 0. With a proper tuned m and
Ts, the efficiency of MACSAC can be dramatically improved
in the online application.

4) Special Case: As a special case, OLDC is also capable
with single-agent actor-critic RL, i.e., N = 1. The sampling,
training and execution are still asynchronous if needed.

With extraordinary efficiency and robustness to various
computing and communication conditions, OLDC is a practi-
cal and suitable framework for online (MA)RL application in
the power system, especially for multi-agent RL-based VVC
in the ADNs.

IV. NUMERICAL STUDY

In this section, numerical experiments are conducted to
validate the advantage of the proposed OLDC and MACSAC
over some popular benchmark algorithms including DRL
algorithms and optimization-based algorithms. Multi-agent RL
environments are built of steady-state power systems under the
scheme of the toolkit Gym [36]. Both the balanced 33-bus test
feeder [37] and 141-bus test feeder [38] are adapted as ADNs.
The balanced power flow equations are solved to simulate the
ADNs. All of the algorithms are implemented in Python, while
the DRL-based algorithms utilize deep learning framework
PyTorch, and the optimization-based methods utilize Casadi
[39] and Ipopt.Experiments are run on a MacBook Pro with
16GB memory and 3.1GHz dual-core Intel i5 CPU. In the 33-
bus case, there are three PV inverters and one SVC, which are
assumed as four stations. In the 141-bus case, we have 13 PV
inverters, 5 SVCs and 5 stations. The base of powers is set as
1 MVA. Detailed simulation configuration and load/generation
profiles are given in the supplemental file [35].

A. Proposed and Baseline Algorithms Setup

In the following experiments, the proposed MACSAC is
implemented with our OLDC. For the benchmark algorithm,
we adapt the state-of-art MADDPG [23] as a multi-agent RL
baseline, and CSAC from [10] as a centralized RL baseline.
An optimization-based algorithm with SOCP relaxation is
implemented with oracle models (VVO), which could serve
as a benchmark of theoretically best performance. VVO with
approximated models and practical considerations is treated
as the model-based benchmark called approximated VVO
(AVVO). The algorithm hyper-parameters for RL algorithms
are listed in the supplemental file [35].

Due to the stochastic property of DRL-based algorithms, we
use 3 independent random seeds for each group of experiment,
whose mean values and error bounds are presented in the
figures as solid lines and filled areas.

B. Algorithm Convergence and Efficiency with Ideal Simula-
tion

To verify the convergence and efficiency of the proposed
MACSAC, we first conduct an ideal centralized experiment
with the RL algorithms, in which all RL algorithms do not
consider the speed of communication, that is, CSAC in a
centralized manner and MACSAC / MADDPG in OLDC

(Tu = Ts = 1) can execute the policies in every time
step. During the execution, all samples are uploaded to the
experience replay buffer. In this first experiment, all stochastic
explorations are carried out in an identical copy of our
simulated system, thus policies are free of noisy explorations
in the our testing algorithms for now. Note that though such
noise-free scenario is actually not realistic in practice, the
results of which are informative for making it more explicit to
compare the convergence and efficiency of RL and multi-agent
RL approaches.

The step value of active power loss and VVR during the
training process are shown in figs. 5 and 6. The model-based
benchmark VVO is also tested with results averaged across
load/generation profile since it is deterministic.
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Fig. 5. 33-bus case results of MACSAC and benchmarks under the ideal
scenario without communication delay and stochastic exploration in test.

TABLE I
QUANTIFIED INDICES OF THE FINAL EPISODE IN IDEAL SCENARIO

Test system Algorithm Ploss/MW VVR

Mean Std. Mean Std.

33-bus sys.

CSAC 1.43e-01 2.46e-02 5.38e-06 5.20e-06
MADDPG 3.47e-01 1.34e-01 1.88e-04 2.80e-04
MACSAC 1.64e-01 1.22e-02 4.19e-06 4.13e-06

AVVO+ 7.32e-01 - 9.02e-04 -
VVOo 9.83e-02 - 8.51e-06 -

141-bus sys.

CSAC 3.01e-01 3.88e-02 0 0
MADDPG 8.27e-01 4.00e-01 2.02e-06 2.53e-06
MACSAC 3.51e-01 3.57e-02 0 0

AVVO+ 9.81e-01 - 7.83e-05 -
VVOo 1.64e-01 - 0 -

+ optimization-based VVO with the approximate model.
o ideal optimal solution using perfect ADN model.

The first important observation from figs. 5 and 6 is that
both CSAC and MACSAC converge to a lower active power
loss than the optimization-based method AVVO without or-
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Fig. 6. 141-bus case results of MACSAC and benchmarks under the ideal
scenario without communication delay and stochastic exploration in test.

acle parameters, which reveals the advantage of DRL-based
algorithms over such parameter-sensitive optimization method
regarding VVC problem. On the other hand, though the oracle
VVO attains the minimum of active power loss theoretically
once given all true parameters, DRL-based algorithms could
closely approach it after certain iterations, as depicted in the
figure.

Only using local measurements during application for each
agent, MACSAC has achieved similar performance as the cen-
tralized algorithm CSAC, which in comparison utilizes global
measurements during application, even in an ideal centralized
scenario advantageous for the latter. Such results strongly
support the fact that the CMG formulation and OLDC-like
learning framework is valid for VVC in ADNs.

Also, MACSAC outperforms MADDPG obviously regrad-
ing active power loss and VVR in limited steps as figs. 5
and 6 shows. In fact, this significant improvement in MACSAC
compared to MADDPG is credited to the usage of maximum-
entropy regularized stochastic policies rather than determin-
istic policies, since the latter could easily overfit the value
functions and lead to extreme brittleness [27]. Such features
make MACSAC preferable in practice for multi-agent VVC,
not only in this study but also in more complex potential tasks.

C. Online Application Performance with Real-world Simula-
tion

To simulate the online stage, practical considerations in-
clude: a) communication speed is limited comparing to the
control speed, so the centralized algorithm CSAC can generate
actions every 8 steps; b) exploration has to be performed on
the real system; and c) training and sampling can be performed
every 8 steps. With the stochastic explorations, all RL-based
methods including CSAC, MADDPG and MACSAC have to

keep a stochastic range around the policy outputs and put the
stochastic action directly to the real system. The performance
would be affected comparing with the ideal scenarios above.
Since the original OLDC framework is not suitable for online
learning, we implement both MACSAC and MADDPG under
OLDC with Tu = Ts = 8 and m = 1. Note that VVO is still
implemented in the ideal scenario to provide a lower bound
reference.
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Fig. 7. Online application performance with real-world simulation of 33-bus
case.
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Fig. 8. Online application performance with real-world simulation of 141-bus
case

Figures 7 and 8 shows the results in online application.
With OLDC, MACSAC has achieved smaller active power loss



IEEE TRANSACTIONS ON SMART GRID, VOL. XX, NO. X, FEBRUARY 2021 9

TABLE II
QUANTIFIED INDICES OF THE FINAL EPISODE IN ONLINE APPLICATION

Test system Algorithm Ploss/MW VVR

Mean Std. Mean Std.

33-bus sys.

CSAC 3.27e-01 2.81e-02 3.24e-04 6.73e-05
MADDPG 3.68e-01 1.32e-01 6.31e-04 5.31e-05
MACSAC 1.88e-01 1.08e-02 2.19e-04 1.55e-04

AVVO+ 8.06e-01 - 4.29e-03 -
VVOo 9.83e-02 - 8.51e-06 -

141-bus sys.

CSAC 7.73e-01 9.02e-02 7.24e-03 3.31e-03
MADDPG 1.10e-00 1.98e-01 4.65e-03 1.98e-01
MACSAC 3.72e-01 6.24e-02 2.84e-03 9.67e-04

AVVO+ 1.30e-00 - 8.29e-02 -
VVOo 1.64e-01 - 0 -

+ optimization-based VVO with the approximate model.
o ideal optimal solution using perfect ADN model.

and VVR than CSAC in this scenario. The obviously better
performance justifies multi-agent RL especially MACSAC
with OLDC as an outstanding solution for VVC in ADNs.

Comparing MACSAC and MADDPG, though both algo-
rithms are conducted under OLDC, MACSAC converges to
much better power loss and VVR with more stable perfor-
mance. Besides, though MACSAC cannot converge to the
exact optimal solution as a oracle method, it outperforms other
RL-based methods apparently in the online application. Such
significant privilege over MADDPG in terms of active power
loss and VVR supports MACSAC as a preferred multi-agent
RL algorithm for VVC in ADNs. With the improved voltage
performance and smaller voltage violations, the voltage profile
can be kept in an acceptable range by a designed voltage range
[V , V ].

D. Unbalanced Active Distribution Network

Since the proposed method does not require the inner
detailed model of the controlled network, it is also applicable
for the unbalanced ADNs with slight modifications on the
observation spaces and reward functions. The three phase
voltage magnitudes of jth node are defined as V aj , V

b
j , V

c
j .

In the observation oi = (Pi,Qi,Vi,P
e
i ,Q

e
i ), Vi is up-

dated from single-phase voltage magnitudes [Vj∈Ni ] to three-
phase voltage magnitudes [V aj∈Ni , V

b
j∈Ni , V

c
j∈Ni ]. As for the

reward function, the voltage violation rate penalty RV (Ni, t) is
updated as −

∑
j∈Ni

[
[V̄j(t)− V ]2+ + [V − V̄j(t)]2+

]
, where

V̄j =
∑
h∈{a,b,c} V

h
j /3. In the proposed method, only the

input and output data are utilized to learn and control, so
the algorithm part still holds. In order to test the validity of
the proposed method on unbalanced ADNs, the IEEE 37-bus
test feeder is installed with three PV inverters and one SVC
and assumed as 3 stations. The simulation is carried out via
OpenDSS. Detailed parameters are given in the supplemental
file [35].

The experiment is carried out with the same online applica-
tion setting as section IV-C. The learning process and control
performance is illustrated in fig. 9.

In fig. 9, it can be observed that the proposed method is
still applicable in the unbalanced distribution network since
MACSAC has achieved similar performance to the optimal
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Fig. 9. Online application performance with real-world simulation of three-
phase unbalanced IEEE 37-bus test feeder.

point. Also, comparing with the centralized CSAC method,
the proposed MACSAC with OLDC has achieved smaller
active power loss and VVR. Comparing with MADDPG, the
proposed method converges to better operation point with
more stable performance. Overall, the validity and privilege of
the proposed method in the unbalanced distribution networks
are supported with this case.

E. Analytical Comparison

In order to show the novelty and improvement of the
proposed method comparing with existing works, table III
has been summarized. Comparing with three typical baselines
including AVVO (optimization method with approximate mod-
els), CSAC [10] and MADDPG [23], the proposed MACSAC
with OLDC has its unique features in several aspects according
to the numerical experiments. Firstly, together with CSAC
and MADDPG, the proposed MACSAC with OLDC learns
the VVC strategy in a model-free manner, and can achieve
near optimal performance without accurate models. Secondly,
MACSAC with OLDC as well as MADDPG is designed for
decentralized control and centralized learning. It keeps the
control policies in the decentralized controllers and can realize
fast control with local measurements and is robust to com-
munications. Finally, MACSAC with OLDC has introduced
stochastic policies, maximum entropy regularization, explicit
voltage constraints, detailed timing design and adjustable sam-
pling ratios comparing with existed MARL algorithms. These
targeted methods have significantly improved the control per-
formance in terms of reducing power losses and mitigating
voltage violations as well as the convergence and stability of
learning.
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TABLE III
MULTI-DIMENSIONAL COMPARISON OF THE PROPOSED METHOD WITH BASELINE METHODS

Methods Control Structure Feature of Methodology Robustness and Convergence Performance

AVVO Centralized optimization 1. Model-based; 2. Bad
performance with inaccurate
models; 3. No exploration
needed.

It does not need learning pro-
cess but fails when the com-
munication is lost.

With approximate models,
there could be severe volt-
age violations and high line
losses.

CSAC Centralized learning and cen-
tralized control

1. Model-free; 2. Single-
agent 3. Stochastic policy
with soft constraints; 4. Volt-
age constraints are explicitly
considered.

With all samples collected to
the centralized agent, it con-
verges better than DDPG; but
when the communication is
lost, the control is interrupted
and fails.

It can effectively optimize
the line losses and voltage
violations. However, if the
communication delays are
considered, the agent is less
efficient.

MADDPG Centralized learning and de-
centralized control

1. Model-free; 2. Multi-
agent; 3. Deterministic poli-
cies with random explo-
ration; 4. Voltage violations
are penalized with fixed pa-
rameters.

The control process is carried
out locally, and is robust to
the communication; however,
the convergence can be rela-
tively slow with more sam-
ples needed.

With sufficient training sam-
ples and the communication
delays simulated, the agent
can achieve similar perfor-
mance as the centralized RL
method CSAC.

MACSAC with OLDC Centralized learning and de-
centralized control with de-
tailed timing design and
adjustable sampling ratio

1. Model-free; 2.Multi-
agent; 3. Stochastic policy
with soft constraints; 4.
Voltage constraints are
explicitly considered.

The control process is carried
out locally, and is robust to
the communication; the con-
vergence is fast and stable
with stochastic policies and
soft constraints.

Considering the conmmuni-
cation delays, the decen-
tralized agents can achieve
better performance than
CSAC since the local con-
trollers are much faster.

V. CONCLUSION

An online multi-agent RL framework OLDC and the cor-
responding algorithm MACSAC are proposed for VVC to
optimize the reactive power distribution in ADNs without
the knowledge of accurate model parameters. With the con-
sideration of distributed stations with high speed IB-ERs
in ADNs, the online multi-agent learning and decentralized
control framework can both learn the control experiences con-
tinuously to meet the incomplete model challenge, and make
decision locally to keep high control speed. Instead of the ex-
isting MADDPG, we propose the safe and efficient MACSAC
with maximum entropy regularized stochastic policies and
explicitly modelled constraints, which prevents optimization
failure and ameliorates training robustness. Numerical studies
on ADNs represented by the modified 33-bus and 141-bus
test cases indicate that the proposed MACSAC outperforms
the benchmark methods in the online application. Also, it is
demonstrated that OLDC has remarkable superiority for online
multi-agent RL-based VVC with extraordinary efficiency and
robustness to various computing and communication condi-
tions.

In the future work, transfer learning or meta learning
with approximate models or historical data can be studied to
provide the proposed MARL-based method with a soft start.
The application of the proposed OLDC to other distributed or
decentralized control problems is also a promising research
direction. With improved performance, MACSAC has the
potential to handle more complex control problems.

APPENDIX A
HYPERPARAMETERS

The hyperparameters of MACSAC, MADDPG and CSAC
used in this paper are shown in table IV. If the parameters is

different in the 33-bus, 141-bus and IEEE 37-bus cases, they
would be listed in {·, ·, ·}.

TABLE IV
ALGORITHM HYPERPARAMETERS

Algo. Parameter Value

Shared optimizer Adam
non-linearity ReLU
replay buffer size 4× 105

no. hidden layers {2, 3, 3}
size of hidden layers 256
episode size 96
η 0.995
λ 10−3

CSAC α {0.1, 0.3, 0.13}
J
c

0
learning rate σ 1e− 3

MACSAC αi {[0.1]1...4, [0.21]1...5, [0.13]1...3}
J
c
i 0,∀i

learning rate σi {1e− 3,∀i}

MADDPG noise {0.07, 0.05, 0.10}
learning rate σi {1e− 3, ∀i}
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