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Electricity Consumer Characteristics Identification:
A Federated Learning Approach

Yi Wang, Imane Lahmam Bennani, Xiufeng Liu, Mingyang Sun, Yao Zhou,

Abstract—Nowadays, smart meters are deployed in millions
of residential households to gain significant insights from fine-
grained electricity consumption data. The information extracted
from smart meter data enables utilities to identify the socio-
demographic characteristics of electricity consumers and then
offer them diversified services. Traditionally, this task is im-
plemented in a centralized manner with the assumption that
utilities have access to all the smart meter data. However, smart
meter data are measured and owned by different retailers in
the retail market who may not be willing to share their data.
To this end, a distributed electricity consumer characteristics
identification method is proposed based on federated learning,
which can preserve the privacy of retailers. Specifically, privacy-
perseverance principal component analysis (PCA) is exploited to
extract features from smart meter data. On this basis, an artificial
neural network is trained in a federated manner with three
weighted averaging strategies to bridge between smart meter
data and the socio-demographic characteristics of consumers.
Case studies on the Irish Commission for Energy Regulation
(CER) dataset verify that the proposed federated method has
comparable performance with the centralized model on both
balanced and unbalanced datasets.

Index Terms—Federated learning, smart meter, data analytics,
privacy-perseverance, socio-demographic characteristics

I. INTRODUCTION

ELECTRICITY consumers and suppliers have access to
an immense amount of fine-grained electricity data with

the increased deployment of residential smart meters. These
data are usually recorded at a regular interval, such as every
15 min, and carry valuable information on the electricity
consumption behavior of consumers. Smart data analytics help
in revealing hidden information and enable other uses to smart
meters than billing. More specifically, the analysis of smart
meter data allows for systems efficiency and energy savings.
Grid management systems can have a better understanding of
consumer consumption patterns, cope with peak usage [1], and
coordinate consumption for an eased integration of renewable
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energy sources (RESs) [2]. From retailer’s point of view in the
retail market, smart meter data analytics can help them have
more transparency on the electricity consumption behavior
of consumers, thus providing diversified services to them. A
substantial number of studies have been conducted on smart
meter data analytics towards different applications ranging
from load profiling, demand response, load forecasting, tariff
design, and household characteristics identification [3].

Various machine learning techniques such as clustering,
classification, and regression are applied to smart meter data
to extract significant insights and hidden patterns. In addi-
tion to dynamic energy consumption data, the use of static
data such as socio-demographic information of consumers
and household characteristics is being studied as a driver
of residential energy consumption. Studies have shown that
consumer socio-demographic status has a noticeable influence
on their consumption behavior [4]. Conversely, electricity
consumption is also a consumer-oriented process that could be
derived from consumer behavior and socio-economic informa-
tion [5]. Crossing information retrieved in smart meters with
key alternative information on consumers allows for a market
segmentation based on the similarity of consumers’ needs and
behavior. With the insights on socio-economic characteristics
of individual consumers, retailers can also provide personal-
ized consumption feedback and leverage this information for
effective decision making [6].

Analyzing the factors that drive energy consumption has
seen an increasing interest over the past few years. This is
mainly due to the availability of adequate data allowed by
growing deployment of smart meters, real-time smart-home
energy monitoring services, and the implementation of domes-
tic smart metering campaigns. Hayn et al. focused on the im-
pact of socio-demographic factors and equipment with electric
appliances on residential load profiles in [7]. Along the same
lines, McLoughlin et al. linked household characteristics to a
series of Profile Classes (PCs) by applying Self-Organizing
Maps (SOMs) and multi-nominal logistic regression on the
data [8]. Tong et al. introduced the concept of energy behavior
indicators to evaluate the correlation between energy behavior
and household information using wavelet analysis and X-
means clustering [9]. In a more recent study, Sun et al. used
a concurrent k-means and spectral clustering (CKSC) method
to identify the patterns of household electricity consumption,
and to infer them based on dwelling, family, and household
characteristics [10].

In order to characterize the electricity consumption behav-
ior, clustering analysis is commonly applied to smart meter
data as an unsupervised learning technique. The applications
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of such a technique to daily residential load time series in
the power system’s literature are summarized in [11]. In
recent studies, many authors have merged electricity data with
additional information obtained through questionnaires. Most
of these studies are based on data collected from massive smart
metering systems conducted in different countries, as imple-
menting such a study requires a significant budget. Gouveia et
al. combined daily consumption data with 110-question door-
to-door surveys, with a sample of 265 households in the city
of Évora, Portugal in [12]. Their analysis shows that three
major groups of determinants that are physical characteristics
of a dwelling, equipment, and ownership of households, and
occupant profile, are characteristics of electricity consumption
segmentation. Wang et al. used a deep convolutional neural
network (CNN) and a support vector machine (SVM) on
massive load profiles of the Irish CER dataset to identify socio-
demographic information of consumers in [6]. Beckel et al.
introduced a framework to automatically classify household’s
properties using smart meter data in [13]. With their method
called CLASS, they could infer 8 out of the 18 characteris-
tics extracted with an accuracy of more than 70% over all
households. A subsequent study by Hopf et al. [14] extended
the CLASS framework by extracting 88 features instead of
18 from electricity consumption data to classify household
characteristics.

Although several works have been done on the identifi-
cation of the socio-demographic characteristics of electricity
consumers, the identification algorithms are implemented in a
centralized manner, assuming that all data from smart meters
can be accessed from a data lake. However, in a retail market,
the smart meter data are owned by different retailers, who
may not be willing to share their data. In this situation, the
consumer characteristics identification model cannot directly
make use of the full dataset. At the legal level, governments
or organizations worldwide are also increasingly committed
to data privacy protection. For example, the European Union
has started to enforce the General Data Protection Regulation
(GDPR) since 2017 [15]. To address the privacy concern,
federated learning has been proposed to train a learning
model across multiple decentralized clients with local data
samples, where the original data are not shared, thus the
privacy can be persevered [16]. The basic idea of federated
learning is that multiple distributed clients train the machine
learning model individually using the local data, and then the
server summarizes the trained models to form the final global
model. In general, federated learning can be divided into
three categories according to the distribution of datasets, i.e.,
horizontal federated learning, vertical federated learning, and
federated transfer learning. The concept of federated learning
was originally proposed by Google in 2016 [17], where Two
approaches to reducing the uplink communication costs, i.e.,
structured updates and sketched updates under the federated
framework. Since then, it has been applied in various fields,
including mobile devices, industrial engineering, healthcare,
and many others [18] [19]. A sparse ternary compression
(STC) framework was studied in [20] to tackle the challenges
brought by the independent and identically distributed (i.i.d.)
client data. Federated learning has been widely applied in

the Internet of Things (IoT). An edge federated learning
(EdgeFed) approach was proposed in [21] to separate the
local model updating task from mobile devices. How federated
learning can be applied in the autonomous IoT to make full
use of various data from smart end-user devices was discussed
in [22]. An activity and resource-aware federated learning
model was studied in [23] for distributed mobile robots in
the IoT environment. A federated learning framework without
a centralized cloud server was provided in [24] over wireless
networks.

To the best of our knowledge, however, federated learning
has rarely been applied in power and energy systems. It is
of great importance to investigate the feasibility of using
this powerful tool to realize the privacy-preserving electricity
consumer characteristics identification. One related work is
a federated load forecasting model for the electric vehicle
(EV) networks studied in [25]. Another interesting work is a
federated reinforcement learning (FRL) method for the energy
management of multiple smart homes considering various
appliances, rooftop PV, and energy storage [26]. In this paper,
we extend the current state-of-the-art by developing a feder-
ated approach to identifying the characteristics of residential
consumers using smart meter data and door-to-door surveys.
The feature set is first established from smart meter data. On
this basis, privacy-persevering principal component analysis
(PCA) will be carried out to further extract the features.
Classifiers based on artificial neural network (ANN) are then
trained in a federated manner to predict the class labels for
the selected relevant characteristics, which include occupant
information (e.g., social class, number of residents), dwelling
properties (e.g., type of home), and domestic appliances (e.g.,
light bulbs proportion).

To summarize, this paper makes the following contributions:
1) Proposing a federated framework for electricity consumer

characteristics identification for the first time that can
protect the privacy of the retailers without sharing smart
meter data;

2) Providing a federated PCA approach for further feature
extraction which can be implemented with a simple
communication structure;

3) Investigating two performance-based weighted combina-
tion methods for the federated ANN model training and
compared them with traditional data size-based weighted
combination method;

4) Verifying the effectiveness of the proposed method by
conducting comprehensive case studies on the Irish Com-
mission for Energy Regulation (CER) open dataset.

The remainder of this paper is organized as follows: Section
II introduces the Irish CER dataset and defines the federated
consumer characteristics identification problem. Section III
provides the framework and details the algorithms for the
identification task. Section IV conducts case studies and
makes comparisons to verify the effectiveness of our proposed
method. Section V draws the conclusions.

II. PROBLEM STATEMENT

This section first introduces the dataset to be studied and
then defines the problem to be addressed in this paper.
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A. Irish CER Dataset

Our study is based on the Irish CER dataset [27], which
was collected by CER as part of the Smart Metering Project
(2007) to assess the performance of smart meters and their
impact on consumers’ behavior in Ireland. The dataset contains
raw smart meter data gathered with a 30-min granularity from
private households for 536 days from July 2009 to December
2010. Among the households that took part in this experiment,
a total of 4,232 are residential consumers. Fig. 1 shows the
weekly averaged load profiles of four consumers with distinct
patterns in terms of both shape and magnitude.

In connection with the measurement of household elec-
tricity consumption, participants were also required to fill
out a questionnaire containing questions on occupant socio-
demographic status (e.g., employment status, social class),
their consumption behavior (e.g., interest in reducing bill),
household properties (e.g., floor area, number of bedrooms),
and home appliances (e.g., number of washing machines). In
this paper, 15 socio-demographic characteristics are selected
from the 140 questions of the pre-trial survey. For better visu-
alization and interpretability of the results, a restricted number
of class labels have been assigned to each characteristic.
Table I lists the selected electricity consumer characteristics
to be identified. The chosen class labels and the number of
consumers associated with each characteristic are also given.
These characteristics are classified into three main categories:
(1) occupant information, (2) dwelling properties, and (3)
domestic appliance properties. In the survey sheet, the rows
with missing data and properties’ specific classes involving
insignificant proportions of consumers were removed. From
Table I, it can be seen that the class labels are very unbalanced
for some of the characteristics. For example, 3,424 consumers
do not live alone, while only 808 consumers live alone. This
aspect of imbalance in the data will be taken into account
in the algorithm design and performance evaluation of the
characteristics identification model.

B. Federated Consumer Characteristics Identification

In a competitive retail market, consumers are served by N
electricity retailers. The set and number of consumers served
by the n-th retailer are denoted as Cn and cn, respectively.
The retailer has full access to the electricity consumption data
Dn and the socio-demographic characteristics Yn of these cn
consumers. The size of the matrix Yn is cn×K, where K = 15
is the number of characteristics to be identified, and the vector
Yn,k denotes the k-th characteristics of these cn consumers.

The electricity consumption data and socio-demographic
characteristics of a total of M =

∑N
n=1 cn consumers are

D = [DT
1 ,D

T
2 , . . . ,D

T
N ]T and Y = [Y T

1 , Y
T
2 , . . . , Y

T
N ]T ,

respectively. Let’s Yk denote the k-th characteristics of all
consumers. The electricity consumer characteristics identifica-
tion problem is essentially a classification model that makes
a bridge between the load profile D shown in Fig. 1 and
the socio-demographic characteristics Y shown in Table I.
Mathematically, a classification model fk should be trained

based on the load profiles D and the label Yk for the k-th
characteristics:

yk = fk(ωk,D) (1)

where ωk and yk denotes the parameters and label of the clas-
sification model fk for the k-th characteristics, respectively.

Previous work proposed in [13] and [6] trained the classi-
fication or regression model fk in a centralized manner, with
both D and Y directly accessed from a data lake. However,
in a competitive retail market, electricity consumption data
and socio-demographic characteristics of consumers are the
important digital assets of retailers. They are often unwilling
to share these data. Therefore the characteristics identification
model fk has to be trained in a decentralized manner. The
federated learning framework can be applied in this situa-
tion where only very limited information, i.e., ωk,n and ωk

are exchanged between a computational center and retailers.
The federated model for identifying consumer characteristics
should address two main issues in a decentralized manner:

1) Since the original smart meter data D is of high dimen-
sions, it cannot be directly fed into a classification model,
and its important features should be first extracted before
training the classification model;

2) An effective and highly accurate classification model fk
should be trained for each consumer characteristic.

III. PROPOSED METHODOLOGY

This section provides a framework and technical details to
address the abovementioned two issues.

A. Framework

Feature extraction and model training are the two basic
tasks for a classification model. For the federated consumer
characteristics identification problem, extracting features from
smart meter data and training classification models for dif-
ferent characteristics should also be implemented, but in a
distributed way.

As shown in Fig. 2, the procedure of the proposed method
consists of three main stages: 1) feature set formulation, where
a set of features is manually calculated according to the basic
understanding of electricity consumption behavior; 2) privacy-
persevering feature extraction, where PCA is implemented in
a distributed way to further extract the features as input to the
regression model; 3) federated characteristics identification,
where the federated ANN model is trained for this task. The
details of the three stages are presented below.

B. Feature Set Formulation

The formulation of the feature set is a crucial step for time
series classification problems. A well-performed feature ex-
traction allows better accuracy and interpretability of the clas-
sification results [28]. The daily load profile of an individual
electricity consumer is highly dynamic. The selected features
of consumers should be stable and can reflect daily and weekly
patterns. Therefore, the average weekly load profile is first
calculated for each consumer. On this basis, the feature set is
formulated manually based on the work carried out in [13] and
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Fig. 1: Weekly averaged load profiles of four consumers.

Fig. 2: Procedure of the proposed method.

[29]. The feature set contains three categories: statistics (e.g.,
total, mean, maximum, and minimum consumption), ratios
(e.g., load factors of the whole week), and statistics (e.g., quan-
tiles, entropy). The descriptive characteristics specific to time
series data have been considered (e.g., kurtosis, skewness). The
contrast in the energy consumption behavior of consumers on
weekdays (Mon-Fri) and weekends are also taken into account
separately, which are included in the feature set. Finally, the
feature at different time intervals of the day and these are
identified as baseload (2 am − 5 am), morning (6 am − 10
am), midday (11 am − 2 pm), and evening (6 pm − 10 pm).

An exhaustive list of features is provided in Table II. The
listed features are computed for each consumer from weekly
aggregated consumption data on weekdays and weekends
over the whole trial period. A total of 73 features were
calculated to form the final feature set. Each feature has
a self-explanatory name. For instance, “mean morning wd”
refers to the mean of electricity consumption on a weekday in
the morning. Similarly, “max base wee” refers to the maxi-
mum consumption during baseload hours on a weekend day.
“GE 0.5kW proportion” denotes the proportion of electricity
consumption values greater than or equal to 0.5kW over the
week, while “GT mean proportion” means the proportion of
consumption greater than the weekly mean. Last, “LF” refers
to the Load Factor ratio.

If the retailers have consensus on how to formulate the fea-
ture set, this task can be performed by the retailers themselves
without the need to share data. For simplicity, Dn denotes
the feature set formulated by the n-th retailer instead of the
original smart meter data in the rest of the paper.

C. Privacy-preserving Feature Extraction

Principle component analysis (PCA) is a commonly used
dimension reduction method for extracting important features
from the original data. The m-th line of the dataset D, denoted

as dm, corresponds to the characteristics of the m-th consumer
and should be normalized to zero by subtracting the mean
value of these characteristics µ = 1

M

∑M
m=1 Dm. On this basis,

the covariance matrix can be calculated as [30]:

Cov =

M∑
m=1

(dm − µ)(dm − µ)T =

M∑
m=1

dmdT
m −MµµT

(2)
If we denote An =

∑
m∈Cn

dmdT
m, Bn =

∑
m∈Cn

dm, Eq.
(2) can be written as:

Cov =

N∑
n=1

An −
1∑N

n=1 cn
(

N∑
n=1

Bn)(

N∑
n=1

Bn)
T (3)

The next step is to calculate the eigenvectors and eigen-
values of the covariance matrix Cov using singular value
decomposition (SVD). A subset of the eigenvectors with top
eigenvalues is formulated into a projection matrix T and the
dimension reduced feature vector for the m-th consumer and
feature matrix for the consumers served by the n-th retailer
are calculated as:

d′m = dmT, D′n = DnT (4)

It can be seen from Eq. (3) that only
∑N

n=1 An,
∑N

n=1 Bn,
and

∑N
n=1 cn are needed for every retailer to calculate the

covariance matrix using additive operations. Thus additive ho-
momorphic encryption can be used to implement the privacy-
preserving feature extraction. The Paillier algorithm is an
effective approach for the partial additive homomorphic en-
cryption scheme [31]. It supports the addition of two encrypted
integers and the multiplication of an encrypted integer by
an unencrypted integer. However, sometimes the data to be
encrypted are not an integer in the real world. For example,
the matrix An and Bn are floating-point numbers. Fortunately,
the Paillier cryptosystem can also be extended to floating-point
numbers and can be realized in Python [32] [33].

The basic idea of the proposed federated PCA is shown in
Fig. 3. In our proposed framework, there are two communi-
cation schemes marked by red and black arrows.

The red communication scheme is a sequential link starting
from the first retailer and ending at the server. Specifically, a
server is first established in the cloud, and the server generates
a key pair, i.e., the public key and private key, where the
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TABLE I: The socio-demographic and household characteristics to be studied

Socio-demographic characteristics Class labels Number
(1) Occupant information

Age of income earner
1: Young <=35 436
2: Middle age 36-65 2819
3: Old>65 953

Employment status 1: Employed 2536
2: Unemployed 1696

Retirement status 1: Retired 1285
2: Not retired 2947

Social class
1: AB 642
2: C1-C2 1840
3: DE 1593

Have children 1: Yes 1229
2: No 3003

Live alone 1: Yes 808
2: No 3424

Number of residents 1: Few <=2 2199
2: Many >2 2033

(2) Dwelling properties

Type of home 1: Detached house or bungalow 2189
2: Semi-detached or terraced 1964

Rented or owned 1: Rented 299
2: Owned 3921

Number of bedrooms
1: Low <=2 404
2: Middle =3 1884
3: High >3 1944

Age of house
1: Very new <=15 1667
2: New >15 and <=30 790
3: Old >30 1771

(3) Domestic appliance properties

Cooking 1: Electric 2960
2: Not electric 1272

Number of home appliances
1: Low <=5 1585
2: Middle >5 and <=8 2251
3: High >8 396

Number of entertainment
appliances

1: Low <=3 2050
2: Middle (4,5) 1290
3: High >5 892

Energy efficient light-bulb
proportion

1: Up to half 2746
2: Three quarters or more 1486

Fig. 3: Communication scheme of federated PCA.

public key is shared with all retailers for encryption, and the
private key is held by the server for decryption. Then, each
retailer computes and encrypts An, Bn, and cn locally as [An],
[Bn], and [cn], respectively. Since the server has a private
key to decrypt these values, these encrypted values cannot
be sent directly to the server for summation. Instead, these

encrypted values are summed sequentially by passing through
all the N retailers. The last retailer sends the final summations∑N

n=1[An],
∑N

n=1[Bn], and
∑N

n=1[cn] to the server.
On this basis, the server only decrypts these summations,

calculates the covariance matrix Cov using Eq. (3), and obtains
the projection matrix T by SVD. The black communication
scheme is a distribution link starting from the server and end-
ing at different retailers. Based on the black communication
scheme, Finally, the server distributes T to all retailers so that
the retailers can calculate the reduced matrix using Eq. (4).

The details of the privacy-perserving PCA are summarized
in Algorithm 1.

Note that the federated PCA produces accurate instead of
approximated results because there is no information loss
in the two communication schemes with an additive homo-
morphic encryption approach. The summations,

∑N
n=1[An],∑N

n=1[Bn], and
∑N

n=1[cn] are calculated sequentially by the
retailers. Since only the summations are sent across retailers,
and the server does not have access to the important statistical
data An, Bn and cn of each retailer, privacy is preserved.
Actually, there are several works that have been done about
distributed PCA to protect the privacy of individual partici-
pants [34]. These methods are based on one communication
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TABLE II: List of the 73 extracted consumption features

Statistics Ratios Distribution
mean weekdays Load factor week GE 0.5kW proportion
mean weekend LF base wd GE 1kW proportion
mean week LF base wee GE 2kW proportion
max week LF morning wd GT mean proportion
min week LF morning wee first location of max
total week LF midday wd last location of maxi
mean base wd LF midday wee first location of min
mean base wee LF evening wd last location of min
mean morning wd LF evening wee variance week
mean morning wee min/mean wd quantile 25
mean midday wd min/mean wee quantile 75
mean midday wee mean evening/midday wd median week
mean evening wd mean evening/midday wee skewness
mean evening wee mean morning/midday wee kurtosis
max weekday mean morning/midday wd entropy
max weekend mean base/midday wd autocorrelation
max base wd mean base/midday wee
max base wee mean weekday/week
max morning wd mean weekend/week
max morning wee total weekday/week
max midday wd total weekend/week
max midday wee
max evening wd
max evening wee
min weekday
min weekend
min base wd
min base wee
min midday wd
min midday wee
min morning wd
min morning wee
total weekday
total weekend

Algorithm 1: Privacy-preserving PCA

Input: D = [DT
1 ,D

T
2 , . . . ,D

T
N ]T ,tpA = tpB = tpc = 0.

Server generates a key pair and shares the public key.
for n = 1, ...N − 1

Retailer n computes and encrypts An, Bn, and cn
as [An], [Bn], and [cn].

Retailer n computes the summations
tpA = tpA + [An], tpB = tpB + [Bn], and
tpc = tpc + [cn], which are then sent to Retailer
n+ 1;

end
Retailer N computes tpA = tpA + [AN ],
tpB = tpB + [BN ], and tpc = tpc + [cN ], and send
them to Server.

Server decrypts these summations, calculates T and
distributes it to retailers.

Each retailer calculated D′n using Eq. (4).
Output: Reduced matrix D′n for each retailer.

scheme, and some of them have no encryption systems. Thus,
these methods need to make some approximations or add
noises to protect privacy, which are different from the proposed
federated PCA method.

D. Federated Characteristics Identification

Based on the feature extracted by PCA, an feed-forward
ANN model with dense connections is trained for each char-

Fig. 4: Federated consumer characteristics identification in a
competitive retail market

acteristics. Assuming that there are a certain number of hidden
layers in ANN and for each hidden layer we have

z(l) =W (l)v(l) + b(l) (5)

where W (l) and b(l) denote the weight vector and bias of the
l-th hidden layer; v(l) = φ(z(l−1)) is the input of the l-th
layer as well as the output of the (l− 1)-th layer, and φ(·) is
the tanh activation function. Softmax is used in the last layer
for the identification (classification) task.

If we denote ωk as the collection of all the weights and
bias of the ANN for the k-th characteristics, the whole
identification model can be represented as:

ŷk,m = fk(ωk,dm) (6)

A smooth function categorical cross-entropy is used to guide
the model training:

Lk =
1

M

M∑
m=1

[yk,m log ŷk,m− (1− yk,m) log(1− ŷk,m)] (7)

Thus, the global gradient can be calculated using the back-
propagation algorithm

∇ωk =
∂Lk(ωk)

∂ωk
(8)

As shown in Fig. 4, in the federated framework the ANN
model fk(ωk,dm) is not directly trained on the whole dataset.
Each retailer trains the ANN using its own datasets Dn and
Yn and obtains the n-th gradient:

∇ωn,k =
∂Lk(ωn,k)

∂ωn,k
(9)

These local gradients are then sent to and combined in the
server to calculate the global gradient [35]:

∇ωk =

N∑
n=1

an,k∇ωn,k (10)

where an,k denotes the weight of the gradient of the n-th
retailer for the k-th characteristics.

Finally, the server updates the parameter ωk using Adam
[36] which has an adaptive learning rate by introducing the
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first and second moments. Specifically, at the t-th iteration,
the biased first moment mt and second moment vt are first
calculated as [36]:

mt = βt
1m

t−1 + (1− βt
1)∇ωt

k

vt = βt
2v

t−1 + (1− βt
2)∇ωt

k
2 (11)

where βt
1 and βt

2 denote the exponential moving average of
∇ωt

k and ∇ωt
k
2, respectively. Then the unbiased first moment

m̂t and unbiased second moment v̂t are calculated as:

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(12)

Thus, the global parameter ωt
k is updated as:

ωt+1
k = ωt

k −
λm̂t√
v̂t + ε

(13)

where ε is a very small constant to avoid zero division; λ
denotes the learning rate.

Three types of weights are defined to combine the local
gradients in the server:

1) Normal: the weights are proportional to the sizes
of the training datasets in different retailers an,k =

cn/
∑N

n=1 cn. Since each consumer corresponds to one
data sample, cn, the number of consumers served by
the n-th retailer, also means the number of data sample
owned by the n-th retailer in the federated learning
framework.

2) LA: the weights are proportional to the average losses
of the training datasets in different retailers an,k =

Ln,k/
∑N

n=1 Ln,k.
3) LS: the weights are proportional to the total losses

of the training datasets in different retailers an,k =

cnLn,k/
∑N

n=1 cnLn,k.
The full algorithm for federated ANN for the k-th charac-

teristics identification is summarized in Algorithm 2.
To further enhance the communication security of the links

between the retailers and the server, the Paillier cryptosystem
is also applied to encrypt the gradients ∇ωn,k learned by
different retailers and corresponding weights an,k. Then, the
gradients can be combined in the server. Since the gradients
and corresponding weights are floating-point numbers, these
numbers should also be encrypted by extended Paillier cryp-
tosystem [32].

IV. CASE STUDIES

This section conducts comprehensive case studies on the
Irish CER dataset to verify the effectiveness of the federated
identification model.

A. Experimental Setups

The whole dataset is first divided into two parts: the first
80% is used to train the federated characteristics identification
model; the rest 20% is used to test the performance of the
model. Furthermore, the training dataset is partitioned into five
parts for N = 5 retailers, each of which has approximately
16% consumers. Since the training dataset is not colossal, the
ANN model has only one hidden layer with a dropout in the

Algorithm 2: Federated ANN for the k-th Character-
istics Identification
Input: D′ = [D′1T ,D

′
2
T , . . . ,D′NT ]T , maximum

iteration number tmax, random initialization
parameters ω0

n.
Server shares ω0

n with all retailers.;
while t ≤ tmax do

for n = 1 to N do
Retailer n computes local gradient ∇ωn,k of
ANN using Backpropagation with 3 iterations
and records the average training loss Lt

n,k ;
n = n+ 1;

end
Server computes the weight atn,k and the global
gradient: ∇ωt

k =
∑N

n=1 a
t
n,k∇ωt

n,k;
Server updates the parameter ωt+1

k using Adam
and shares it with all retailers;
t = t+ 1

end
Output: The k-th characteristics identification model

fk(ωk,dm).

connections between the hidden layer and the output layer.
The number of principal components to retain in PCA and
the hyperparameters of the ANN model are tuned by cross-
validation.

B. Evaluation Metrics

The predicted characteristics on the test dataset can be com-
pared with the actual characteristics associated with the same
consumers to obtain a confusion matrix for the classification
problem [37]. Taking the binary classification problem as an
example, the confusion matrix is:

CM =

[
TP FN
FP TN

]
(14)

where TP (True positive) and TN (True negative) denote the
number of positive and negative instances that are correctly
classified, respectively, while FN (False negative) and FP
(False positive) denote the number of positive instances and
negative instances that are misclassified, respectively.

Based on the confusion matrix, the accuracy is defined in
order to evaluate the quality of the prediction by computing
the total number of correct predictions across all instances:

Accuracy =
TP + TN

TP + FN + FP + TN
(15)

An accuracy value of 1 (or 100%) corresponds to a per-
fect classification, while the accuracy of 0 means a perfect
misclassification. Accuracy shows significant limitations when
working with an unbalanced dataset, as it does not discrimi-
nate between the number of correctly classified instances of
different classes. This means that high accuracy can unfairly
be achieved by a classifier that only predicts the majority class.

A well-known metric used in the framework of an unbal-
anced dataset is the Matthews Correlation Coefficient (MCC).
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In parallel to the accuracy score, the MCC is also used to
assess the performance of the identification model, as it is a
metric better suited to overcome the bias of accuracy due to
class imbalance. The MCC coefficient is defined as:

MCC =
TP · TN− FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(16)

MCC takes a value in the interval [−1, 1]. An MCC of 1
corresponds to a perfect classification, while an MCC of −1
corresponds to a perfect misclassification. Unlike Accuracy,
the proportion of each class of the confusion matrix is consid-
ered in MCC. In addition, a high score can only be achieved
if the classifier has been able to correctly predict the majority
of positive data instances and the majority of negative data
instances while reducing FP and FN [38].

C. Basic Results

Table III gives the performance of the different identification
methods for 15 consumer socio-demographic characteristics
in terms of Accuracy and MCC, where “Centralized” and
“C-PCA” denote the centralized ANN models without and
with PCA-based feature extraction, respectively. Comparing
the Centralized method and C-PCA method, it can be observed
that, overall, the performance is improved through feature
extraction with the averaged Accuracy and MCC score of
68.53%, and 0.2989, respectively. There is an increase in
Accuracy up to 1.69% and up to 12.5% for the MCC. This
means that PCA-based feature extraction is an effective means
of improving the performance of these identification models.

The federated learning models with differently weighted
combination strategies (LA, LS, and Normal) exhibit similar
performance due to the fact that the datasets of all retailers
serve a similar number of consumers who are i.i.d. It is also
interesting to observe that even though the federated learning
model is trained locally by each retailer and combined in
the server, the performance is not always worse than the
centralized approach. This is because that the neural network
training problem is nonconvex and thus, training the model
in a distributed manner with their local datasets may result in
a higher accuracy if better suboptimal solutions or the global
optimal solution can be identified.

In general, the results show that household characteristics
can be revealed from electricity consumption data by the iden-
tification models with fair Accuracy and MCC scores. More
specifically, the characteristics identification model achieves an
accuracy of approximately 84% for “#4 Live alone”, and an
MCC of 0.48 for predicting “#3 Number of residents”. In the
identification of “#1 Employment status” and “#2 Retirement
status”, “#6 Number of bedrooms”, “#10 Type of home” and
“#12 Number of entertainment appliances”, as well as of
“#13 cooking type”, the proposed model has been able to
predict the characteristic with an MCC of about 0.25 to 0.45.
Conversely, the most difficult characteristics identified by our
model are “#14 Age of house” and “#15 Rent or owned”,
with MCC scores of only about 0.18 and 0.11, respectively. A
low identification performance may reflect a low correlation
between the smart meter data and the age of the house.

Fig. 5: Convergence of the federated model for “#1 Employ-
ment status”.

Fig. 6: Convergence of the federated model for “#5 Number
of residents”.

It is, however, important to acknowledge the imbalance of
the Irish CER dataset used in this study. The dataset contains
a disproportionate ratio of observations in each class for most
characteristics, which may lead to biased results in terms of
Accuracy. In this sense, more attention should be paid to the
MCC score when interpreting the results.

Fig. 5 and Fig. 6 present the changes in training loss over
all training datasets, the Accuracy and MCC of the federated
model on the test dataset in different communication rounds
to identify the “#1 Employment status” and “#5 Number of
residents”. Note that the convergences curves are the aver-
ages of five independent simulations. Both figures show fast
convergences of the federated model. The federated model is
combined according to the total losses of the training datasets
in different retailers, i.e., the LS method. Similar trends and
fast convergences can also be observed in the LA and Normal
methods for different characteristics identification.

Table IV gives the performance of three commonly used
classification models, i.e., K-Nearest Neighbors (KNN), Ran-
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TABLE III: Performance of different identification models for 15 consumer characteristics.

Characteristics Accuracy MCC
Centralized C-PCA LA LS Normal Centralized C-PCA LA LS Normal

#1 Employment status 0.7190 0.7332 0.7367 0.7432 0.7420 0.4099 0.4426 0.4480 0.4609 0.4586
#2 Retirement status 0.7591 0.7698 0.7577 0.7594 0.7651 0.4265 0.4433 0.4057 0.4065 0.4255

#3 Have children 0.7686 0.7769 0.7727 0.7739 0.7739 0.4144 0.4205 0.4084 0.4105 0.4104
#4 Live alone 0.8442 0.8288 0.8412 0.8453 0.8465 0.4415 0.4820 0.4801 0.4703 0.4894

#5 Number of residents 0.7485 0.7580 0.7503 0.7500 0.7527 0.4959 0.5155 0.4998 0.4994 0.5044
#6 Number of bedroom 0.5302 0.5882 0.5911 0.5920 0.5941 0.1961 0.2551 0.2682 0.2655 0.2679

#7 Age 0.6770 0.6805 0.6728 0.6728 0.6743 0.2804 0.2082 0.2261 0.2351 0.2381
#8 Number home appliances 0.6423 0.6572 0.6610 0.6665 0.6706 0.3218 0.3442 0.3512 0.3597 0.3676

#9 Light bulb proportion 0.6021 0.5762 0.6308 0.6322 0.6284 0.0080 0.0328 0.0134 0.0261 0.0161
#10 Type of home 0.6017 0.6173 0.6191 0.6191 0.6176 0.2007 0.2291 0.2336 0.2335 0.2303
#11 Social class 0.5583 0.5656 0.5644 0.5660 0.5647 0.2454 0.2638 0.2617 0.2624 0.2606

#12 Number of entertainment appliances 0.5396 0.5714 0.5517 0.5466 0.5487 0.2273 0.2914 0.2636 0.2517 0.2575
#13 Cooking 0.7155 0.7332 0.7267 0.7264 0.7311 0.2029 0.2790 0.2740 0.2700 0.2829

#14 Age of house 0.4782 0.4947 0.5068 0.5162 0.5121 0.1280 0.1603 0.1791 0.1951 0.1878
#15 Rent or owned 0.9265 0.9289 0.9295 0.9301 0.9298 -0.0135 0.1152 0.1029 0.1245 0.1137

Average 0.6740 0.6853 0.6875 0.6893 0.6901 0.2657 0.2989 0.2944 0.2981 0.3007

dom Forest (RF) [39], and XGBoost [40] for consumer char-
acteristic identification. It can be seen that among these three
methods, XGBoost has the best performance in terms of av-
erage Accuracy and MCC. However, the applied ANN model
with PCA has better performance than XGBoost, especially
for MCC.

D. Tests on Unbalanced Datasets

The above case studies are conducted on evenly distributed
datasets, i.e., the number of consumers and distributions of
characteristics are similar among different retailers. However,
the consumers served by different retailers are probably un-
balanced. Thus, two unbalanced cases are studied here.

The first one is the number-unbalanced case, where five
retailers serve 5%, 10%, 10%, 15%, and 40% consumers,
respectively. Table V presents the performance of the feder-
ated methods with different combination strategies. It can be
observed that even though the LA method has not taken the
number of consumers into account, it can achieve comparable
performance with the LS and Normal methods. The main
reason is that the LA method has a regularization effect over
local updates that are too aggressive. In a round of federated
training, local updates of retailers with a higher amount of data
may diverge from the initial model weights. Averaging based
on the amount of data gives higher weights to these updates
that diverge and thus may result in an aggregated update
that is far from the initial weights of the model. In contrast,
averaging based on the average loss gives high weights to local
updates from the clients with worse performance, but not to
local updates from the clients with a higher amount of data.
This approach might be too aggressive and thus introduces an
additional regularization effect.

The second one is the characteristics-unbalanced case where
the characteristics of the consumers served by the same retailer
are highly unbalanced. Table VI gives the performance of
the federated methods with different combination strategies.
It can be seen that the LA and LS methods perform slightly
worse but comparable to the centralized and balanced cases.
While the Normal method, as a commonly used combination
method, shows much worse performance in this situation.

The MCC scores for different characteristics are close to
zero, which means that the trained models only guess the
characteristics at random. This characteristics-unbalanced case
highlights the importance of considering training losses in the
server combination process.

Based on the above experiments, several meaningful obser-
vations can be summarized as follows:

1) PCA-based feature extraction helps to enhance the per-
formance of the ANN model;

2) The ANN model has comparable performance with XG-
Boost in terms of Accuracy but shows large improve-
ments in terms of MCC;

3) The federated ANN model have similar performance on
the balanced dataset or number-unbalanced dataset with
three different weighted averaging strategies.

4) LA and LS have better performance than Normal on the
characteristics-unbalanced dataset.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents a federated learning approach for elec-
tricity consumer characteristics identification, which consists
of privacy-persevering PCA and federated ANN model. The
case studies show that by extracting features using PCA, the
identification models gain better performance. The federated
identification models with LA, LS, and Normal combination
strategies have comparable performance to the centralized
method. However, when the characteristics of the consumers
are highly unbalanced among different retailers, the Normal
method performs much worse. The LA and LS methods still
have comparable performance since they take into account the
training losses of different retailers in the server combination
process.

Extra benefits (such as the benefits from a better understand-
ing of the consumers and implementation of demand response)
can be gained by applying the federated learning approach.
How to share the benefits among retailers who contribute
their own data is an interesting topic and will be studied in
the future. In addition, clustering is an effective approach for
electricity consumer behavior analysis. Thus, another of our
future works is to develop a federated clustering algorithm on
smart meter data.
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TABLE IV: Comparisons with other machine learning models.

Characteristics Accuracy MCC
KNN RF XGBoost KNN RF XGBoost

#1 Employment status 0.6217 0.6929 0.7416 0.1762 0.3430 0.4469
#2 Retirement status 0.6517 0.7191 0.7116 0.4287 0.4446 0.4146

#3 Have children 0.6667 0.6891 0.7191 0.0923 0.0850 0.2208
#4 Live alone 0.7940 0.7903 0.8015 0.2656 0.2228 0.2607

#5 Number of residents 0.6667 0.6816 0.7116 0.3386 0.3689 0.4284
#6 Number of bedroom 0.5281 0.6330 0.6367 0.2049 0.3514 0.3486

#7 Age 0.6330 0.6404 0.6292 0.1628 0.1133 0.1042
#8 Number home appliances 0.5843 0.5730 0.6142 0.2311 0.1873 0.2680

#9 Light bulb proportion 0.5281 0.6217 0.6554 -0.1199 -0.0027 0.1178
#10 Type of home 0.5056 0.5918 0.6918 0.0229 0.1939 0.1982
#11 Social class 0.4045 0.4757 0.5131 0.0462 0.1414 0.2034

#12 Number of entertainment appliances 0.5581 0.5893 0.5955 0.2630 0.2878 0.3350
#13 Cooking 0.6667 0.7341 0.7491 0.0216 0.2412 0.2900

#14 Age of house 0.3570 0.4644 0.4681 0.0004 0.1173 0.1205
#15 Rent or owned 0.9272 0.9287 0.9299 -0.0008 0.1005 0.1237

Average 0.6069 0.6549 0.6712 0.1201 0.1984 0.2418

TABLE V: Performances of number-unbalanced case.

Charact- Accuracy MCC
eristics LA LS Normal LA LS Normal

#1 0.7426 0.7414 0.7296 0.4609 0.4578 0.434
#2 0.7662 0.771 0.7591 0.4287 0.4446 0.4146
#3 0.7721 0.771 0.7698 0.402 0.4041 0.3984
#4 0.8536 0.8512 0.8383 0.5093 0.5169 0.4419
#5 0.7556 0.7591 0.7568 0.5103 0.5176 0.5125
#6 0.5929 0.5953 0.5905 0.2651 0.2683 0.2634
#7 0.6853 0.6865 0.6793 0.2443 0.2534 0.2334
#8 0.6632 0.6692 0.6736 0.3523 0.366 0.3738
#9 0.6293 0.6399 0.6281 0.0281 0.0636 0.0079

#10 0.6197 0.6366 0.627 0.2351 0.2693 0.2508
#11 0.5632 0.573 0.5558 0.2557 0.2736 0.244
#12 0.5419 0.5514 0.5478 0.2457 0.2585 0.2547
#13 0.7178 0.7285 0.7131 0.2471 0.2734 0.2659
#14 0.5077 0.497 0.51 0.1781 0.1613 0.1836
#15 0.9289 0.9301 0.9301 0.0813 0.1245 0.1245

Average 0.6893 0.6934 0.6873 0.2963 0.3102 0.2936

TABLE VI: Performance of characteristics-unbalanced case

Charact- Accuracy MCC
eristics LA LS Normal LA LS Normal

#1 0.7438 0.7349 0.5998 0.4804 0.4352 0
#2 0.7642 0.7606 0.6963 0.4504 0.4165 -0.0057
#3 0.7659 0.7772 0.7172 0.4276 0.4354 0.1238
#4 0.8247 0.8388 0.8084 0.5283 0.5058 0.0093
#5 0.7541 0.745 0.7364 0.5076 0.4935 0.4902
#6 0.5908 0.5876 0.5607 0.2657 0.2541 0.2234
#7 0.6746 0.6823 0.6683 0.2175 0.2402 -0.0214
#8 0.671 0.6785 0.6226 0.3717 0.3832 0.3204
#9 0.6009 0.6092 0.6494 0.0198 0.0416 0

#10 0.6137 0.6035 0.5502 0.2257 0.2051 0.1152
#11 0.5598 0.5586 0.4595 0.2533 0.2439 0.0626
#12 0.546 0.5204 0.5133 0.2697 0.2144 0.1413
#13 0.7338 0.74 0.696 0.317 0.3129 -0.0355
#14 0.4782 0.5047 0.3943 0.1481 0.1844 0
#15 0.8789 0.9165 0.9289 0.187 0.2081 0

Average 0.68 0.6838 0.6401 0.3113 0.305 0.0949
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