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ACN-Sim: An Open-Source Simulator for
Data-Driven Electric Vehicle Charging Research
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Abstract—ACN-Sim is a data-driven, open-source simulation
environment designed to accelerate research in the field of smart
electric vehicle (EV) charging. It fills the need in this community
for a widely available, realistic simulation environment in which
researchers can evaluate algorithms and test assumptions. ACN-
Sim provides a modular, extensible architecture, which models
the complexity of real charging systems, including battery charg-
ing behavior and unbalanced three-phase infrastructure. It also
integrates with a broader ecosystem of research tools. These
include ACN-Data, an open dataset of EV charging sessions,
which provides realistic simulation scenarios, and ACN-Live, a
framework for field-testing charging algorithms. It also inte-
grates with grid simulators like MATPOWER, PandaPower and
OpenDSS, and OpenAI Gym for training reinforcement learning
agents.

Index Terms—Electric vehicles, computer simulation, charg-
ing stations, distributed energy resources, open-source software,
cyber-physical systems.

I. INTRODUCTION

W ITH millions of electric vehicles (EVs) expected to
enter service in the next decade, generating gigawatt-

hours of additional energy demand, engineers must work
quickly to develop new algorithms to provide safe and afford-
able charging at scale. This need has resulted in a large body
of research in managed or smart charging algorithms, outlined
in [1], [2]. However, transitioning these algorithms from theory
to practice requires dealing with the complexities of practical
systems, which are often overlooked in simplified theoreti-
cal models. While these simpler models can make analysis
tractable, they can also lead to a sizable gap between theoret-
ical results and robust, high-performance implementations of
algorithms. Bridging this gap is critical to making an impact
in practice, but doing so requires (1) access to real-world data,
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Fig. 1. The ACN Research Portal gives users many of the benefits of an EV
charging testbed without needing to build one themselves. It includes data
collected from real charging sessions (ACN-Data), a simulator to evaluate
new ideas (ACN-Sim), and access to run on real hardware (ACN-Live).

(2) detailed simulations driven by realistic models, and (3) the
ability to test an algorithm in the field.

We began to bridge this gap in 2016 by developing
the Caltech Adaptive Charging Network (ACN), a first-of-
its-kind testbed for large-scale, high-density EV charging
research [3], [4]. This testbed consists of 126 networked and
controllable EV charging stations, which allow us to col-
lect data and field test algorithms with real hardware. The
ACN Research Portal (ACN-Portal) is designed to give more
researchers access to the benefits of this testbed. The por-
tal has three major components: (1) ACN-Data, a dataset of
over 80,000 real EV charging sessions from ACNs like the
one at Caltech [5]; (2) ACN-Sim, an open-source, data-driven
simulation environment; and (3) ACN-Live, a framework for
researchers to field test algorithms on the Caltech ACN.
The interaction between these tools and the physical ACN
infrastructure is summarized in Fig. 1.

In this work, we will focus on ACN-Sim, which is open-
source and available at [6]. ACN-Sim has previously been
described in [7], [8]. However, in this work, we extend this
description with new features and applications. Our contribu-
tions are as follows.

1) We describe the architecture and models of ACN-Sim
and its integration with MATPOWER, PandaPower,
OpenDSS, and OpenAI Gym.

2) We describe how algorithms are implemented using
ACN-Sim, including a suite of baseline deadline-
scheduling algorithms and a new module for
model-predictive control, making it easy to implement
algorithms like those proposed in [4].
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3) We demonstrate, using ACN-Sim, that managed EV
charging allows charging systems to safely operate with
significantly smaller transformers/interconnections and
at lower costs than conventional uncontrolled systems.

4) We compare algorithm performance using ACN-Sim,
including the effect of unbalanced three-phase infras-
tructure, which has not been considered in most smart
charging research.

5) We evaluate the effect that managed EV charging
and on-site solar generation will have on a distribu-
tion feeder, using ACN-Sim and its integration with
OpenDSS.

II. EXISTING SIMULATORS

Open-source tools and simulators have a long history of
supporting smart grid research. MATPOWER [9] makes it
easy to solve power flow and optimal power flow problems
in MATLAB. It has inspired projects in other languages,
including PandaPower [10] in Python and PowerModels.jl in
Julia [11]. Other important simulators include OpenDSS [12]
and GridLab-D [13], which enable large-scale studies of
the distribution system. These tools have demonstrated the
importance and impact of open tools within the smart grid
community. ACN-Sim integrates with many of these, including
MATPOWER, PandaPower, and OpenDSS, to enable studies
of the grid impacts of EV charging.

ACN-Sim is not the first simulator specific to EV charg-
ing. V2G-Sim was developed at Lawrence Berkeley National
Laboratory and used to evaluate EVs’ ability to meet drivers’
mobility needs in the context of level-1 charging [14]; battery
degradation [15]; and demand response [16]. V2G-Sim has
also been used to examine grid-level effects of smart charging,
such as smoothing the duck curve[17]. EVLib and EVLibSim
were developed at Aristotle University of Thessaloniki to
model many types of EV charging, including standard conduc-
tive charging, inductive charging, and battery swapping [18].
These simulators address a different problem space from ACN-
Sim. While ACN-Sim is designed to evaluate online and
closed-loop control strategies, these simulators only allow
precomputed schedules or simple controls. ACN-Sim is also
unique in modeling unbalanced, behind-the-meter electrical
infrastructure, allowing it to evaluate algorithms that support
oversubscribed local infrastructure.

More recently, the Open Platform for Energy Networks
(OPEN) from Oxford was released to facilitate simulation and
optimization of smart local energy systems, including elec-
tric vehicle charging [19]. OPEN supports model predictive
control algorithms at the distribution feeder level and unbal-
anced three-phase infrastructure. It also allows for control of
other distributed energy resources such as stationary storage
and building loads. However, it has not been used to consider
the electrical infrastructure behind the meter.

Despite these open-source tools, many researchers still uti-
lize custom simulators, which are often simple MATLAB or
Python scripts. Building a custom simulator takes time and
distracts researchers from focusing on their research ques-
tions. The history of MATPOWER and other open-source
projects has shown that researchers can accomplish more by

Fig. 2. Architecture of ACN-Sim along with related sub-modules Signals,
Algorithms, and ACN-Data. Note that EV models both the physical vehicle
and session information, such as departure time and energy requested.

using open-source tools. Moreover, one-off simulators can
be error-prone. ACN-Sim has over 12,000 unit and integra-
tion tests, which help ensure that bugs are caught before
they affect research results. Finally, reproducibility is key
in modern research. Using an open-source simulator like
ACN-Sim, researchers can easily share code and use original
implementations as baselines to compare against.

Overall, ACN-Sim’s realistic models and data taken from
real charging systems, along with its simple interfaces for
defining new control algorithms and a suite of baseline algo-
rithms, set it apart from existing open-source and custom
simulators, making it a useful addition to the suite of tools
available to researchers.

III. SIMULATOR ARCHITECTURE AND MODELS

ACN-Sim utilizes a modular, object-oriented architecture
which is shown in Fig. 2. This design models physical systems
as closely as possible and makes it easier to extend the sim-
ulator for new use cases. Each box in Fig. 2 refers to a base
class that can be extended to model new behavior or add func-
tionality. While ACN-Sim includes several models of each
component, users are free to customize the simulator to meet
their needs. We encourage researchers to contribute extensions
back to the project so that others can utilize them.

A. Simulator

A Simulator object forms the base of any ACN-Sim
simulation. This Simulator holds models of the hardware
components in the simulated environment and a queue of
events that define when actions occur in the system. ACN-
Sim is based on a discrete-time, event-based simulation model.
Figure 3 describes its operation. During a simulation, the
Simulator stores relevant data, such as the event history,
EV history, and time series for the pilot signal and charging
current for each EVSE,1 for later analysis.

Mathematically speaking, we denote each time step of the
simulator as k in K := {1, 2, 3, . . . , }. We denote the set of
EVs in the simulation by V̂all, the set of EVs currently plugged
in by V̂k, and the set of active EVs which are still charging
by Vk. The state of each EV at time k is described by a tuple
(ai, ei(k), di(k), r̄i(k), si) where ai is the arrival time of the

1EVSE stands for Electric Vehicle Supply Equipment, they are more
commonly known as charging stations or charging ports.
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Fig. 3. Flow chart describing the simulator’s run() function. Each timestep
consists of a single iteration of this loop. The simulation ends when the last
event from the EventQueue is executed, at which time the user can analyze
the simulation results.

EV, ei(k) is its remaining energy demand at the beginning
of the period, di(k) is the remaining duration of the session,
r̄i(k) is the maximum charging rates for EV i, and si is the
EVSE where the EV chooses to charge. We generally treat the
charging network as stateless, so the state of the simulator at
time k is simply the concatenation of the states of all currently
charging EVs, i.e., i ∈ Vk.

The simulator’s action space is the pilot signal for each
EV, which we denote ri(k). This is an upper bound on the
charging rate of the EV. This action space is constrained by
the charging network’s infrastructure, the EVSE’s limits, the
EV’s maximum charging rate r̄i(k), and energy requested by
the EV.

After taking an action, we can observe from the environment
the actual charging rate of the EV, r̂i(k) and the actual energy
delivered to the EV êi(k).

The state is updated according to the rule:

di(k + 1) := di(k) − 1 (1)

ei(k + 1) := ei(k) − êi(k) (2)

The maximum charging rate of the EV, r̄i(k) is not observ-
able, but can be estimated based on r̂i(k). EVs can also arrive
and depart at the beginning of each timestep.

B. Charging Network

1) Electrical Infrastructure: ACN-Sim uses the
ChargingNetwork class to model the electrical infrastruc-
ture of the charging system, including EVSEs, transformers,
switch panels, and cables. Each ChargingNetwork

instance contains a set of EVSE objects, as well as a set of
constraints.

We model constraints by limiting the current through
each bottleneck component in the network. Because charg-
ing systems are radial networks and electrical codes specify
ampacity limits that keep voltages within specifications, it
is sufficient to model only constraints on current magni-
tudes. Using Kirchhoff’s Current Law, we can express these
constraints by

|Il(k)| =
∣
∣
∣
∣
∣
∣

∑

i∈Vk

Aliri(k)e
jφi

∣
∣
∣
∣
∣
∣

≤ cl ∀k ∈ K (3)

where Il(k) is the current through the bottleneck, cl is the
limit on the current magnitude, ri(k) is the charging current
of EV i at time k. The parameter φi is the phase angle of the
current phasor, which can be calculated based on how EVSE
si is connected in the network. For simplicity, we assume φi

is fixed, and voltages in the network are nominal. Ali can be
found via circuit analysis, as shown in [20] for a subset of
the Caltech ACN. ACN-Sim will allow (3) to be violated in
the simulation but will raise a warning at run-time to alert the
user this schedule would not be valid on a real system. This
allows the user to evaluate the severity of such an overload.

To incorporate these constraints, algorithms can either parse
the constraints and include them directly in the algorithm,
as is done in model predictive control, or use the built-in
is_feasible() method, which returns if the proposed
charging rates are allowable under the given network model.

2) Stochastic Space Assignment: ChargingNetwork
assumes that each EV is preassigned to a specific EVSE,
and no two EVs are ever assigned to the same EVSE at
the same time. This holds when applying a workload from
ACN-Data to its corresponding network model. However,
in some cases, such as when generating events from a
statistical model or applying a real workload to a new
network configuration, it can be helpful to allow for non-
deterministic space assignments. ACN-Sim accomplishes this
through the StochasticNetwork class (which is a sub-
class of ChargingNetwork). Using this network model,
EVs are assigned to a random open EVSE when they
arrive instead of using a predefined station_id (si in
the mathematical model) for assignment. Since it is possi-
ble for no EVSEs to be available when a new EV arrives,
StochasticNetwork also includes a waiting queue for
EVs which arrive while all EVSEs are in use. When an EV
leaves the system, the first EV in the queue takes its place.
By default, we assume that the presence of EVs in the waiting
queue does not affect drivers’ departure times. However, with
the early_departure option, drivers swap places with the
first EV in the queue as soon as they finish charging. This is
a common practice in many offices that have more EV drivers
than EVSEs.

3) Included Site Models: While users are free to develop
their own charging networks, ACN-Sim includes functions to
generate network models that match the physical infrastructure
of the three sites currently included in ACN-Data (Caltech,
JPL, and Office001). In addition, the auto_acn function
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allows users to quickly build simple single-phase and three-
phase networks by providing just a list of station ids and
a transformer capacity. In these auto_acn networks, it is
assumed that the transformer is the only source of constraints.
These functions work with both ChargingNetwork and
StochasticNetwork, which can be set as a parameter.

C. EVSE

EVSEs, short for Electric Vehicle Supply Equipment, are
the devices EVs plug into to charge. The EVSE communi-
cates a pilot signal to the EV’s onboard charger, which is an
upper limit on the current the EV is allowed to draw from
the EVSE. The granularity of this pilot is dependent on the
particular EVSE. Some EVSEs provide continuous control,
while others offer only a discrete number of set-points. In
addition, according to the J1772 standard, no pilot signals are
allowed between 0 to 6 A [21]. In most current research, the
additional constraints imposed by EVSEs without continuous
control are neglected [1]. However, including these constraints
is important for practical algorithms and is non-trivial.

ACN-Sim provides three EVSE models that cover most
ideal and practical level-2 EVSEs.

• EVSE allows any pilot signal between an upper and
lower bound. By default, EVSE allows any non-negative
charging rate.

• DeadbandEVSE also allows continuous pilots but
excludes 0 - 6 A as required by the J1772 standard.

• FiniteRatesEVSE only allows pilot signals within a
finite set, accurately modeling most commercial EVSEs.
For example, many of the EVSEs used in the Caltech
ACN allow {6, 7, . . . , 31, 32} or {8, 16, 24, 32} amps.

Within ACN-Sim, EVSE is also the interface between the
charging network and an EV. When an EV plugs into the
system, a reference to that EV is added to the correspond-
ing EVSE. When it is time to update the pilot to an EV, the
Simulator first passes the pilot to the EVSE, which in turn
passes it on the EV and eventually the Battery. This mimics
the flow of information in a real charging system. Similarly,
when an EV leaves the system, the reference to that EV is
removed from the EVSE.

D. EV

The EV object contains relevant information for a single
charging session, such as arrival time, departure time, esti-
mated departure time, and requested energy. The estimated
departure time may differ from the actual departure time.
Likewise, it may be infeasible to deliver the requested energy
in the allotted time due to maximum charging rate restric-
tions, system congestion, or insufficient battery capacity. By
allowing this, ACN-Sim models the case where user inputs or
predictions are inaccurate, which is common in practice [5].

E. Battery

Most EV charging research utilizes an ideal battery model,
where EVs are assumed to follow the given pilot signal exactly.
However, in practice, we see that the charging rate of an EV
is often strictly lower than the pilot signal and decays as the

battery approaches 100% state-of-charge [1], [4]. This can sig-
nificantly increase the total time required to charge the battery
and results in under-utilization of infrastructure capacity.

ACN-Sim jointly models the vehicle’s battery and bat-
tery management system. The battery’s actual charging rate
depends on the pilot signal and the vehicle’s onboard charger,
state-of-charge, and other environmental factors. ACN-Sim
currently includes two battery models.

The Battery class is an idealized model and serves as the
base for all other battery models. The actual charging rate of
the battery, r̂(k), in this idealized model is described by

r̂i(k) := min{ri(k), r̄(k)i, ēi(k)}
where ri(k) is the pilot signal passed to the battery, r̄i(k) is
the maximum charging rate of the on-board charger, and ēi(k)
is the difference between the capacity of the battery and the
energy stored in it at time k in the units of A·periods. We do
not consider discharging batteries, so all rates are positive.
Linear2StageBattery is an extension of Battery

that approximates the roughly piecewise linear charging pro-
cess used for lithium-ion batteries, often referred to as
Constant Current - Constant Voltage (CC-CV) charging. The
first stage, referred to as bulk charging, typically lasts from
0% to between 70 to 90% state-of-charge. During this stage,
the current draw, neglecting changes in the pilot, is nearly
constant. In the second stage, called absorption, the bat-
tery’s voltage is held constant while the charging current
decreases roughly linearly. The actual charging rate of the
Linear2StageBattery is given by

r̂i(k) :=
{

min{ri(k), r̄i(k), ēi(k)} if SoCi ≤ th

min
{

(1 − SoCi)
r̄i(k)

1−th , ri(k)
}

otherwise

where SoCi is the state-of-charge of the battery and th marks
the transition from the bulk stage to the absorption stage of
the charging process. Figure 4 shows how these two models
compare for two charging profiles taken from ACN-Data.

We find that while the piecewise linear model is a good
approximation, it does not capture all the battery/BMS behav-
iors we observe in practice (as in the right panel of Fig. 4).
For many experiments, the Linear2Stage model is sufficient.
However, for evaluating the interactions between battery man-
agement systems and smart charging or studying the effect
of smart charging on battery aging, more advanced models
may be needed. ACN-Sim’s modular architecture allows new
battery/BMS models to be easily implemented as subclasses
of Battery. By doing this, a researcher can implement vari-
ous battery/BMS systems such as electrochemical models [22],
electro-thermal and aging models [23], or manufacturer spec-
ification (spec) based models [24], [25].

F. Event Queue/Events

ACN-Sim uses events to describe actions in the simulation.
There are two types of events currently supported.

• PluginEvent signals when a new EV arrives at the
system. A PluginEvent also contains a reference to
the EV object which represents the new session.
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Fig. 4. Comparison of Linear2Stage and idealized Battery mod-
els with a real charging curve collected from two distinct users of the
Caltech ACN when the pilot signal is not binding. We can see that the
Linear2Stage model with appropriate parameters matches the battery
behavior well in the first case, but in the second case, there are dynamics in
the joint battery/battery management system that the Linear2Stage model
does not capture; namely the double-tail behavior (which is recurring for this
user).

• UnplugEvent signals when an EV leaves the system
at the end of its charging session.

Each event has a timestamp describing when the event should
occur. Events are stored in a queue sorted by their timestamp.
Since multiple events could occur at the same timestep, we fur-
ther sort by event type, first executing UnplugEvents, then
PluginEvents. At each timestep, the Simulator executes
all events left in the queue with timestamps on or before the
current timestep. After any event, the scheduling algorithm is
called to adapt to the new system state. Users are free to create
new events by extending the Event class.

To generate events, users can either get real event sequences
from ACN-Data, generate event sequences from statistical
models, or manually create events to investigate edge cases. To
make accessing ACN-Data simpler for users, ACN-Sim pro-
vides direct integration with the ACN-Data API. This allows
the user to specify a site and date range, and ACN-Sim will
gather the actual workload from that ACN and generate the
appropriate PluginEvents and UnplugEvents. ACN-Sim
also provides utilities for learning statistical models such as
Gaussian Mixture Models, directly from data using tools from
scikit-learn as described in [5].

Researchers could also generate events through co-
simulation of the transportation or power network. For exam-
ple, a PluginEvent might be generated by a transportation
model that calculates user’s arrival time and energy demands
based on their travel patterns taken from GPS data or travel
surveys. ACN-Sim can also be used to address routing/station
assignment problems. To do this, the decisions of the assign-
ment problem can be used with models of vehicle energy use
and traffic to generate plugin and unplug events. Depending on
the particular problem setting, events could be precomputed or
generated during the ACN-Sim simulation. Likewise, a power
network simulator might generate a demand response event
when a distribution transformer’s loading becomes too high.
These are not included in the current release of ACN-Sim but
are planned as future work.

The above models for generating PluginEvents and
UnplugEvents assume that driver behavior is fixed. In

reality, charging operators interact with drivers who may
strategically respond to scheduling algorithms or pricing
schemes by adjusting their arrival time, departure time, or
energy request. While not currently included, we plan to
incorporate strategic driver models in a future release of
ACN-Sim.

G. Signals

The signals sub-module allows ACN-Sim to integrate with
external signal sources, which can be an important part of EV
charging systems such as 1) utility tariffs, 2) solar generation
curves, 3) external loads.

1) Utility Tariffs: Operating costs are an important concern
for EV charging facilities. To support utility tariffs, ACN-
Sim includes the TimeOfUseTariff class, which supports
time-varying and seasonal tariff schedules with or without
demand charges. To make integration easier for users, ACN-
Sim includes several utility tariff schedules. Users can define
new schedules in a simple JSON format. This functionality
allows users to investigate cost minimization strategies and
accurately estimate the operating costs of charging system
designs under different tariff structures. In Section V-A, we
use these tariff schedules to calculate operating costs, and in
Section V-B, we provide the tariff as an input to the minimum
cost objective for the MPC algorithm.

2) Solar Generation: As many sites with EV charging also
have on-site solar generation, studying the behavior of an EV
charging facility that takes solar generation into account is an
important use case. ACN-Sim allows users to input a solar
generation signal as a CSV file to the Simulator. Solar data
can be user-generated, downloaded from an external source,
or generated by an external solar generation simulator such as
NREL’s system advisor model (SAM) [26]. Such functionality
allows users to study the effects of on-site solar on cost, energy
demands met, grid loading, and other metrics associated with
large-scale EV charging.

3) External Load: EV charging facilities often share a
meter with other loads, such as the buildings on a university or
corporate campus. To reduce demand charge and stress on the
grid, it can be advantageous to consider these other loads when
scheduling EV charging. To facilitate the study of algorithms
that do this, ACN-Sim allows users to input an external load
profile as a CSV file. External load data can be user-generated
or downloaded from an external source. Section V-D provides
an example of an experiment using external loads and on-site
solar generation.

4) Other Signals: Other signals such as pollution indexes
or demand response profiles can be loaded into the simula-
tor using the signals dictionary within the Simulator
constructor or passed directly to the control algorithm.

H. Co-Simulation With Grid Simulators

ACN-Sim also provides co-simulation with popular grid-
level simulators, including MATPOWER, PandaPower, and
OpenDSS. This allows researchers to investigate Vehicle-Grid
Integration (VGI) problems such as algorithms to alleviate
voltage and overload issues in the local distribution system
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or aggregation approaches to bid into markets. In the current
version, simulations are run sequentially, with the output of
the ACN-Sim experiment serving as an input to the grid sim-
ulator. In future releases, we plan to support feedback from
the grid simulation into ACN-Sim.

I. OpenAI Gym Integration

Reinforcement learning (RL) has long been applied to
problems in scheduling and resource allocation [27]. Smart
EV charging is a particularly interesting application for RL
as it involves a complex and uncertain environment with
large state and action spaces and safety-critical constraints.
To help researchers apply new and existing RL algorithms
to problems in EV charging, we have integrated ACN-Sim
with OpenAI’s Gym package [28]. Gym uses a standard
Environment interface to make it easy for researchers to
apply RL algorithms to problems ranging from video games
to robotics.

To integrate ACN-Sim with Gym we implement this
Environment interface to wrap an ACN-Sim Simulator.
The gym-acnportal package also provides an expanded
Interface object (see Section IV-A), which allows the sim-
ulation to proceed one time-step at a time during training. At
each step, the agent receives a state, which is a partial obser-
vation of the environment. This consists of the concatenation
of each EV’s parameters, as described in Section III-A, along
with the index of the timestep, k, and network constraints C,
where

C := (Ali, φi, cl) ∀l ∈ L, ∀i ∈ V

The agent also receives a reward from its previous action. This
reward can be customized to the particular objective of the
agent. For example, a simple reward for an agent whose only
objective is to charge vehicles without violating infrastructure
constraints might be:

R(k) := uED − ηuCV (4a)

where

uED(k) :=
∑

i∈V
ei(k) − ei(k − 1) (4b)

uCV(r, k) := max

(

0,
∑

l∈L

∣
∣
∣
∣
∣

∑

i∈V
Aliri(k)e

jφi

∣
∣
∣
∣
∣
− cl

)2

(4c)

Here (4b) rewards the agent for the energy it delivered in
time step k, while (4c) penalizes the agent for any constraint
violation. We use the coefficient η to adjust the magnitude of
this penalty.

We also provide a vector of the individual constraint vio-
lations (i.e., each term of the exterior summation in (4c)) as
an entry in the info dict returned by the step() function
to aid those researchers studying algorithms for constrained
Markov decision processes (CMDPs) [29].

After receiving the observation, reward, and constraint vio-
lation costs, the agent then calculates an action, which here
is a charging rate for each EV. To keep the size of the state
and action spaces consistent, we pad the state with additional

triplets of 0’s for each EVSE without an EV plugged in, such
that the number of (ei(k), di(k), ri(k)) triplets is always equal
to the number of EVSEs in the network. We also pad sched-
ules (actions) with 0’s for each EVSE without an EV. This
action is then passed to the step function, and the process
repeats. The reset function allows the environment to return
to a known state after a training episode. After training an RL
agent, the gym-acnportal package also provides a wrapper
that allows the agent to be deployed as an ACN-Sim algorithm
using the standard Interface.

In addition to customizing the reward and constraint viola-
tion functions, researchers can also adjust the environment’s
state and action space. For example, in [30] the action space
is a set of parameters for an additive-increase, multiplicative-
decrease (AIMD) algorithm. Additions to the state space might
include congestion metrics, prices, or renewable generation
forecasts.

IV. CHARGING ALGORITHMS

A. Interface

To make algorithm implementations more flexible, we intro-
duce an interface that abstracts away the underlying infrastruc-
ture, whether simulated or real, allowing us to use the same
algorithm implementation with both ACN-Sim and ACN-Live.
This means that algorithms can be thoroughly tested with
ACN-Sim before they are used on physical hardware. It also
means algorithms developed to work with ACN-Sim can work
with other platforms simply by extending the Interface
class.

B. Defining an Algorithm

To define an algorithm in ACN-Sim users only need
to extend the BaseAlgorithm class and define the
schedule() function. This function takes in a list of active
sessions, meaning that the EV is plugged in and its energy
demand has not been met and returns a charging schedule for
each. This schedule is a dictionary that maps station_id
to a list of charging rates in amps. Each entry in the sched-
ule is valid for one timestep beginning at the current time.
Algorithms have access to additional information about the
simulation through the Interface class, such as the current
timestep, infrastructure constraints, and allowable pilot signals
for each EVSE.

C. Included Algorithms

ACN-Sim is packaged with many common online schedul-
ing algorithms that can be used as benchmarks.

Uncontrolled Charging: Most charging systems today do
not manage charging. With Uncontrolled Charging, each EV
charges at its maximum allowable rate. This algorithm does
not factor in infrastructure constraints, so they may be violated.

Round Robin: Round Robin (RR) is a simple algorithm
that attempts to share charging capacity equally. It creates a
queue of all active EVs. For each EV in the queue, it checks
if it is feasible to increment its charging rate by one unit. If
it is, it increments the rate and replaces the EV at the end of
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the queue. If it is not, the charging rate of the EV is fixed,
and the algorithm does not return the EV to the queue. This
continues until the queue of EVs is empty. In this context, a
feasible charging rate is one that does not cause an infrastruc-
ture constraint to be violated and is less than the maximum
charging rate, r̄i(k), and the energy demand, ei(k), of the EV.

Sorting Based Algorithms: Sorting based algorithms are
commonly used in other deadline scheduling tasks such
as job scheduling in servers due to their simplicity [31].
ACN-Sim includes several of these algorithms, including First-
Come First-Served (FCFS), Last-Come First-Served (LCFS),
Earliest-Deadline First (EDF), Longest Remaining Processing
Time (LRPT), and Least-Laxity First (LLF). These algorithms
work by first sorting the active EVs by the given metric, then
processing them in order. Each EV is assigned its maximum
feasible charging rate, which is calculated using a bisection
algorithm, given that the assignments to all previous EVs are
fixed. This process continues until all EVs have been pro-
cessed. For any algorithm which uses departure time, e.g., EDF
and LLF, estimated departure time is used. The researcher is
left to decide the accuracy of the estimated departure time.

Model Predictive Control: Many approaches to the EV
scheduling problem rely on model predictive control (MPC).
In [4] we present the Adaptive Scheduling Algorithm (ASA),
which is one example of an MPC algorithm for managed
EV charging applications. Every time period, k, we solve an
optimization problem in the form:

max
r

U(r) (5a)

s.t. 0 ≤ ri(t) ≤ r̄i(k) t ≤ d̃i(k), i ∈ V (5b)

ri(t) = 0 t > d̃i(k), i ∈ V (5c)
∑

t∈T
ri(t) ≤ ei(k) i ∈ V (5d)

∣
∣
∣
∣
∣

∑

i∈V
Aliri(t)e

jφi

∣
∣
∣
∣
∣
≤ cl t ∈ T , l ∈ L (5e)

where t ∈ T are time-steps within the optimization horizon
and is the d̃i(k) is the estimated remaining session duration
for EV i.

An open-source implementation of the ASA algorithm is
available in the adacharge package [32], which is based on
CVXPY [33], [34], and makes it easy to use variations on ASA
with ACN-Sim. With this library, users can easily choose from
existing objective functions and constraints or create their own.
The general framework for these MPC algorithms is outlined
in [4].

V. USE CASES

ACN-Sim has been used to explore many research ques-
tions. In this section, we provide examples, including eval-
uating (1) possible infrastructure solutions, (2) the effect of
unbalance on oversubscribing infrastructure, (3) time-series
of EV charging profiles, and (4) the effect of large-scale EV
charging on a distribution feeder. In addition, ACN-Sim has
been used to design dynamic pricing schemes and cost-optimal
scheduling [35], train reinforcement learning agents for EV

charging systems [3], and examine the effect of non-ideal bat-
teries and EVSE pilot quantization on model predictive control
and baseline algorithms [4]. The code for all case studies
presented here is available at [36].

A. System Planning

In this section, we demonstrate how the simulator can be
used to aid in system planning and design. We consider a site
host who would like to install an EV charging solution at an
office building. The host estimates that the system will charge
approximately 100 EVs per day. There are several ways to
meet this demand.

1) Install 102 level-1 EVSEs with a maximum charging
power of 1.9 kW with a 200 kW transformer.

2) Install 102 level-2 EVSEs with a maximum charging
power of 6.6 kW with a 680 kW transformer.

3) Install 30 level-2 EVSEs with the 200 kW transformer.
4) Install 102 level-2 EVSEs with the 200 kW transformer

and use smart charging algorithms to avoid overloading
the transformer.

We can use ACN-Sim to guide this site host. We assume that
the office will have a usage pattern similar to that of JPL.2 As
such, we train a Gaussian Mixture Model based on the data
collected from weekday usage at JPL, as described in [5].
We assume the site will not allow usage on weekends. We
then use ACN-Sim’s GaussianMixtureEvents tool to
create a queue of events from this generative model, assuming
100 arrivals on weekdays and 0 on weekends. We also create
models of the charging networks described in each proposal.
Since EVs are generated, we use the StocasticNetwork,
which randomly assigns EVs to EVSEs when they arrive. For
proposals 1, 2, and 3, we use the built-in Uncontrolled
charging algorithm. For proposal 4, we consider an MPC based
algorithm based on (5) with cost minimization objective

UCostMin := uEC + uDC + 10−6uQC + 10−12uES (6a)

where

uEC(r) := π
∑

t∈T
i∈V

ri(t) −
∑

t∈T
i∈V

κ(t)ri(t) (6b)

uDC(r) := −P̂ · max

(

max
t∈T

∑

i∈V
r(t), q0, q′

)

(6c)

uQC(r) :=
∑

t∈T

T − t + 1

T

∑

i∈V
ri(t) (6d)

uES(r) := −
∑

t∈T
i∈V

ri(t)
2 (6e)

Here (6b) contains the value and cost of energy. We use π =
1000 to ensure that the algorithm delivers as much energy as
possible. κ(t) is the time-varying cost of energy, for which we
use summer rates from the sce_tou_ev_4_march_2019
tariff schedule included in ACN-Sim. Equation (6c) is a
demand charge proxy that prorates the demand over the

2JPL users pay a fixed price of $0.10/kWh, so we will assume that this
site will charge a similar (subsidized) price.
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TABLE I
INFRASTRUCTURE SOLUTION EVALUATION (100 EV/DAY)

TABLE II
INFRASTRUCTURE SOLUTION EVALUATION (200 EV/DAY)

remaining days in the month. Equations (6d) and (6e) are regu-
larizers that promote charging as quickly as possible and equal
sharing of capacity, respectively. The coefficients for these
regularizers are selected so that their impact on the objec-
tive value is small while still promoting desirable properties
in the final schedule. For more information about this objec-
tive function, see [4]. For this, and all other experiments in
this paper, we will assume perfect estimates of the session
duration, e.g., d̃i(k) = di(k).

We evaluate the scenarios on four criteria: 1) transformer
capacity required, 2) percentage of total energy requested that
was delivered, 3) number of times drivers need to swap spaces
to allow others to charge after they finish, and 4) the operating
cost of the system. We repeat these experiments for ten months
of generated data, with mean results shown in Table I. Note
that the standard deviation between months was less than 3.5%
for each metric in each case.

From Table I, we can see that while installing 100 level-1
EVSEs might be the simplest solution, these slow chargers can
only meet 75.4% of demand because they cannot support users
with large energy needs and short deadlines. However, the
alternative of installing a 680 kW transformer and associated
service upgrade would be cost-prohibitive for most sites, and
installing only 30 level-2 EVSEs requires over 1,100 swaps
per month, leading to lost productivity and poor user expe-
rience. In this case, the smart charging solution with model
predictive control has clear advantages in both capital cost
(only requiring a 200 kW transformer), user satisfaction (no
swaps are necessary while nearly all user demands are met),
and operating costs (having the lowest cost per kWh). This
illustrates the benefits of smart charging systems, which we
can quantify with ACN-Sim.

The benefit of smart charging approaches is amplified as
EV adoption grows, and charging infrastructure must scale
accordingly. In this scenario, we consider how the system will
scale to 200 charging sessions per day. The results are shown
in Table II. Intuitively the systems designed for 100 EVs per
day require far more swaps with increased demand, and sim-
ilarly, the percent of demand met decreases. This is also true

for the smart charging (MPC) case. However, while scaling
the number of EVSEs in traditional uncontrolled charging
systems would require a corresponding scaling of the trans-
former capacity to ensure safety, the smart charging approach
allows us to add new EVSEs without increasing the trans-
former capacity. To enable scalability, we can leave an open
space beside each of the originals and install a second EVSE
using the same cable. We then use the charging algorithm
to ensure the capacity of this cable is not exceeded. In
this experiment, we assume the cable was sized for a single
EVSE (32 A). However, if the scale-out was planned, a larger
cable could have been installed initially. Thus, we can easily
scale the number of EVSEs without increasing transformer or
interconnection capacity.

Interestingly, as the number of EVs served by the system
increases, the effective cost per kWh decreases for all systems.
This indicates the economies of scale associated with demand
charge. With more usage, it is possible to spread the demand
charge over more energy delivered, decreasing the price per
kWh. This decrease in demand charge is greater than the
increase in energy price, which results from needing to charge
users in more expensive TOU periods, leading to a net decrease
in per-unit costs.

B. Importance of Three-Phase Models

As we have seen in Section V-A, smart charging algorithms
can lead to significant savings in terms of both capital invest-
ment and operating costs. However, despite significant work,
there are still relatively few algorithms proposed in the litera-
ture which can be directly applied in practice. To develop more
practical algorithms, ACN-Sim provides a platform to evalu-
ate them in as realistic a setting as possible. A key feature of
ACN-Sim is its ability to simulate the unbalanced three-phase
electrical infrastructure common in large charging systems.
Most charging algorithms in the literature rely on constraints
that implicitly assume single-phase or balanced three-phase
operation.

To see why these assumptions are insufficient for practical
systems, we consider two versions of the LLF algorithm. In the
first, LLF only ensures that the total power draw is less than the
transformer’s capacity, which is sufficient for a single-phase or
balanced system. In the second, LLF uses the full three-phase
system model that includes individual line constraints. This
experiment’s results are shown in Fig. 5, where we can see that
only considering maximum power draw leads to significant
constraint violations in line currents. However, by using an
algorithm that considers the full three-phase model, we ensure
these line constraints are not violated at the cost of not fully
utilizing the 70 kW transformer’s capacity due to unbalance.

This motivates us to consider algorithms that incorpo-
rate unbalanced three-phase constraints. These constraints are
necessary to ensure safety and can significantly impact the
performance of an algorithm. To see this, we will consider
the percentage of user energy demands met when infrastruc-
ture constraints are binding. We use this metric to evaluate
six algorithms over a range of possible transformer capac-
ities based on the real charging workload of the Caltech
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Fig. 5. Aggregate power draw and line-currents at the primary and secondary
side of the transformer when running single-phase and three-phase LLF algo-
rithms on the Caltech ACN with a 70 kW transformer capacity. Shading in
the lower plots denote each phase while the black dotted line denotes the
power/current limit. The experiment is based on data from the Caltech ACN
on September 5, 2018 and uses a 5 minute timestep.

ACN from September 2018. To demonstrate the effect of
infrastructure models, we conduct this experiment with single-
phase and three-phase models, as shown in Fig. 6. Here we
can see that in the single-phase case, EDF, LLF, and MPC
(with objective (6a)) all perform near optimally,3 exceeding
the performance of Round Robin and FCFS by up to 8.6%.
However, the subplot on the right tells a different story. Here
we see that the MPC algorithm can match the offline optimal
performance as before, while EDF and LLF both underper-
form. In fact, in the highly constrained regime, Round Robin
outperforms EDF and LLF despite having less information
about the workload. We attribute these results to the impor-
tance of phase-balancing in three-phase systems, which has
been historically under-appreciated in the managed charging
literature.

In addition to comparing algorithms, the curves in Fig. 6
can also inform charging systems’ design when accounting
for the online algorithm used. For example, we can see that
if a host wants to deliver >99% of charging demand using
MPC, a 70 kW transformer would be sufficient, assuming an
unbalanced three-phase system. Alternatively, if an existing
transformer can only support 40 kW of additional demand,
a host could expect to meet approximately 85% of demands
without an upgrade.

C. Time Series Inspection

ACN-Sim also allows us to examine the charging profile of
individual EVs, as shown in Fig. 7. Here we can see a quali-
tative difference between the algorithms. For example, FCFS
behaves similarly to Uncontrolled charging but is delayed as
the EV must wait its turn in the queue. For EDF and LLF,
charging can be interrupted when EVs with earlier deadlines
arrive or as an EV’s laxity evolves over time. Oscillations
in the LLF plot result from an increase in laxity as the EV
charges, which can decrease its standing in the queue, causing

3Here optimally is defined as the maximum amount of energy which could
be delivered subject to constraints. It is found by solving (5) with perfect
foresight for all EVs in the simulation. We use U(r) = ∑

i∈V̂all,t∈T ri(t).

Fig. 6. Comparison of percentage of energy delivered as a function of trans-
former capacity for single-phase (left) and three-phase (right) systems. Stars
represent the offline optimal, which is an upper bound based on perfect future
information. The simulation runs from Sept. 1 through Oct. 1, 2018, with a
timestep of 5 minutes. To generate events, we use ACN-Sim’s integration with
ACN-Data to get real charging sessions from the Caltech ACN, assuming the
ideal battery model. We also use the included Caltech ACN charging network
model with ideal EVSEs and use its optional transformer_cap argument
to limit the infrastructure capacity. In the left plot, MPC, EDF, and LLF are
nearly coincident, as are Round Robin and FCFS. Similarly, in the right plot,
EDF and LLF overlap in most cases.

Fig. 7. Comparison of charging profiles for one EV on September 13, 2018
with a 70 kW transformer capacity.

it to stop charging temporarily. These oscillations are gen-
erally bad for user experience, preventing LLF from being
used widely for smart charging. The smoothed LLF algorithm
proposed in [37] adapts the LFF algorithm to prevent these
oscillations. Round Robin, MPC, and the offline optimal are
quite different. Each EV charges steadily but at a rate below
its maximum as congestion in the system necessitates shar-
ing charging capacity. Here both MPC and the offline optimal
use objective (6a). With this tariff schedule, on-peak rates run
from 12 - 6 pm. Offline Optimal finishes charging this user
before this peak period. Meanwhile, MPC charges briefly in
during the peak hours.

D. Grid Integration

The load profiles generated by ACN-Sim can also be used
to evaluate the impact that large-scale EV charging has on
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Fig. 8. Comparing the effect of charging scenarios on net power draw at
Bus 2053 (top) and minimum system voltage (bottom). EV data taken from
September 6, 2018 at the JPL ACN. Background load is taken from smart
meter data from September 6, 2017. Solar PV production is estimated using
NREL’s SAM tool for a 225 kW AC PV array in Des Moines, Iowa.

a distribution feeder. In this case, we use OpenDSS [12] to
add EV charging to one bus of a 240-bus distribution feeder
located in the Midwest United States [38].4

We add an EV charging facility as an unbalanced three-
phase load to bus 2053, which has a transformer capacity of
225 kVA. We use the JPL charging network with workload
data from Sept. 5, 2019. Background load is from smart meter
data collected Sept. 5, 2017 (both days were weekdays). To
minimize the effect of EV charging on the grid, we will seek
to flatten the load at the EV site. This prevents large spikes in
demand which could cause voltage issues on the distribution
feeder. While we only consider local load flattening in this
example, ACN-Sim could also be used to investigate global
load flattening based on the aggregate load on the feeder. We
consider four cases, a baseline with no EV charging, uncon-
trolled charging, MPC with a load flattening objective, and
MPC with load flattening and on-site solar. The load flattening
objective is given by

ULoadFlat := uLF + 100uNC + 10−3uES (7a)

where

uLF(r) :=
∑

t∈T

(
∑

i∈V
ri(t) + N(t)

)2

(7b)

uNC(r) :=
∑

i∈V

∣
∣
∣
∣
∣

∑

t∈T
ri(t) − ei

∣
∣
∣
∣
∣

(7c)

Here N(t) denotes the bus’s net background load after sub-
tracting on-site generation. The uNC term is a non-completion
penalty for failing to deliver all the energy requested by EVs.
uNC has a coefficient of 100 to encourage delivering all the
demanded energy before flattening the load. This coefficient

4This feeder includes a voltage regulator at the substation.

is selected empirically to ensure that > 99.5% of energy
demands are met. We add the equal sharing term to ensure
a unique solution to the optimization.

Because none of these algorithms use direct feedback from
the grid simulator, we first run the ACN simulation for the
full 24-hour horizon, then use this power draw as an input
to OpenDSS. The results of these experiments are shown in
Fig. 8. Uncontrolled charging results in an unacceptable mini-
mum voltage of under 0.93 p.u. and overloads the transformer
at bus 2053. This indicates that the grid as designed could not
support uncontrolled charging at this scale at bus 2053.

To prevent voltage issues, we can schedule charging during
periods of low background load by using MPC with objec-
tive (7a). We provide the actual building load as an input to
the algorithm and ensure that the total load is constrained to
be below the transformer’s capacity. From Fig. 8, we can see
that this improves the minimum system voltage to 0.965 p.u.,
which matches the system-wide minimum from the baseline.

Since many EV charging systems are co-located with solar
PV, we also consider adding a 270 kW DC (225 kW AC) PV
array at bus 2053. The solar data was generated from NREL’s
SAM tool for Des Moines, Iowa, in a typical meteorological
year (TMY) for Sept. 5. We use the same MPC algorithm but
now set the background load to the net load after subtracting
solar. We see in Fig. 8 this roughly recovers the same grid-wide
minimal voltage as before we added an ACN. This indicates
that smart charging and solar PV could enable widespread
adoption of EV charging without adverse grid impacts. These
case studies assume perfect knowledge of background load
and generation, as forecasting methods are beyond this study’s
scope. However, no knowledge of future EV arrivals is used.

VI. CONCLUSION

In this work, we present ACN-Sim, a data-driven simula-
tor designed to aid in developing practical online scheduling
algorithms for EV charging. This tool significantly reduces the
software engineering burden on researchers and exposes them
to practical issues present in real charging systems. ACN-Sim
also makes it easier for researchers to share their experiment
code, improving transparency and code reuse in the commu-
nity. Finally, ACN-Sim integrates with the Adaptive Charging
Network Research Portal, a larger suite of tools that includes
a database of real charging sessions and a framework for
field testing algorithms. ACN-Sim will continue to grow to
meet the community’s needs, including new models of systems
components and charging networks.

Currently, ACN-Sim provides a realistic simulation environ-
ment for evaluating algorithms for controlling level-2 charging.
Based on requests from users, we are currently working on
extensions of ACN-Sim to model DC Fast Charging (DCFC)
and stationary storage. We are also investigating models to
generate PlugIn and Unplug events from vehicle GPS data
or route maps.

Moving forward, we plan to continue to develop the simula-
tor with the help of users. The long-term evolution of the tool
will depend on what research questions users want to answer
and how they modify the simulator to meet their needs. We are
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particularly interested in pursuing tighter integration with grid
simulators to allow for grid-aware control schemes. Another
interesting area is modeling strategic user behavior. Currently,
our simulations assume that users will not change their behav-
ior in response to charging algorithms or prices. This is likely
not the case in practice. Instead, we should model users as
strategic agents. This could open up entirely new lines of
research where smart charging algorithms must account for
this strategic behavior in users. We can also utilize ACN-Live
to evaluate if our user models accurately represent the behavior
we see in practice.

In the longer term, we plan to introduce physics-based bat-
tery models which capture battery degradation, add support for
bi-directional, vehicle-to-grid modeling, and release a suite of
representative test-cases to standardize algorithm evaluation.
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