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Hierarchical coupled driving-and-charging model of
electric vehicles, stations and grid operators

Benoit Sohet, Yezekael Hayel, Olivier Beaude and Alban Jeandin

Abstract—The decisions of operators from both the trans-
portation and the electrical systems are coupled due to Electric
Vehicles’ (EVs) actions. Thus, decision-making requires a model
of several interdependent operators and of EVs’ both driving and
charging behaviors. Such a model is suggested for the electrical
system in the context of commuting, which has a typical trilevel
structure. At the lower level of the model, a congestion game
between different types of vehicles gives which driving paths
and charging stations (or hubs) commuters choose, depending
on travel duration and energy consumption costs. At the middle
level, a Charging Service Operator sets the charging prices at the
hubs to maximize the difference between EV charging revenues
and electricity supplying costs. These costs directly depend on the
supplying contract chosen by the Electrical Network Operator at
the upper level of the model, whose goal is to reduce grid costs.
This trilevel optimization problem is solved using an optimistic
iterative algorithm and simulated annealing. The sensitivity of
this trilevel model to exogenous parameters such as the EV
penetration and an incentive from a transportation operator is
illustrated on realistic urban networks. This model is compared
to a standard bilevel model in the literature (only one operator).

Index Terms—Electric vehicles, Trilevel optimization, Smart
charging, Coupled transportation-electrical systems

I. INTRODUCTION

Electric Vehicles (EVs) are a promising solution to reduce
greenhouse gas emissions and local pollution (air quality,
noise). Considering policies and targets around the world,
EVs should account for 7 % of the global vehicle fleet by
2030 [1]. This represents an opportunity for the different
stakeholders of electric mobility, but also challenges for the
grid: in France for example, standard predictions give a
2.2 to 3.6 GW power demand increase during winter peak
periods in 2035 [2]. Challenges already arise nowadays due
to significant local penetrations of EVs1, which may lead
to local grid constraints and infrastructure investment costs.
Therefore, decision-making models are needed to help electric
mobility operators with their infrastructure investments and
pricing mechanisms, which exploit EV flexibility, in particular
during charging.
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1More than 80,000 EVs in circulation in Paris region: https:
//www.statistiques.developpement-durable.gouv.fr/sites/default/files/2020-04/
immatriculations neuves 2019.zip

Note that key components of the charging operation of EVs
depend on their driving strategies, like the charging place
and hours. The driving and charging decisions of EV users
(here referred to as “EVs”) are thus interdependent, which
couples the electrical and the transportation systems, especially
in urban networks. This coupling is easily conceivable when
during widespread holidays departures most of driving EVs
need to charge at public charging stations, where there could
be significant waiting time and reduction of available power.
Therefore, due to EVs, infrastructure and pricing strategies
of an operator of the transportation or the electrical system
not only have an impact on the other operators of the same
system, but also on the operators of the other system. For
example, Park & Ride hubs installed at a city’s outskirt by
local authorities to mitigate traffic congestion and pollution2

are also an opportunity for “smart charging”.
Models of this coupled electricity-transportation system are

suggested in works identified in the review paper [3] and in
more recent papers. In [4] and [5], some operator controls an
EV fleet and solves the vehicle routing problem to minimize
both EVs costs (travel and charging duration and cost) and
grid costs. Some papers focus instead on independent EV
drivers who learn the optimal driving path and charging station
to stop, like in [6] or in one of our previous works [7].
Review paper [3] distinguishes between expansion planning
of charging stations as in paper [8], and coordinated operation
of a fixed coupled electricity-transportation system, such as
the present paper. Among coordinated operation papers whose
goal is to design price incentives, some are based on a real-
time model of EVs like [9]. This often entails simplifications
such as electrical grid constraints neglected in [10], or a coarse
zone model of the transportation network in [11].

The present paper adopts a stationary EV model point
of view in order to better focus on operators’ long-term
incentives, like the ones presented in the coordinated operation
papers [12], [13] mentioned in review [3], and in more
recent papers [14], [15]. At the lower level, EVs behavior is
modeled as the equilibrium of a driving-and-charging game:
EVs choose the resources (driving path, charging station. . . )
with minimal costs – either financial (traffic tolls, charging
cost) or temporal (travel duration, queuing and charging times)
– which are function of the other EVs’ strategies, due to
congestion effects. At the upper level, an urban planner from
the transportation and/or the electrical system incites these
EVs through pricing mechanisms to adopt “optimal” behavior.

220,000 parking spaces at Paris gates: https://data.iledefrance-mobilites.fr/
explore/dataset/parcs-relais-idf/
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However, the reduction in the literature of the electrical
system’s management to one type of operator is particularly
unrealistic. Concerning electric mobility, the electrical opera-
tors carry out two main functions: the Charging Service to EVs
(guaranteed by Operators called CSOs) and the management of
the Electrical Network (done by the ENO). In this work, a CSO
brings together both the charge point operator in charge of the
station and the mobility service provider which deals with the
EV customers, and the ENO is both the grid manager and the
electricity provider. In the previously mentioned papers, smart
charging pricing is chosen to optimize either the ENO’s [14]
or the CSOs payoff [9], but the interaction between CSO and
ENO is not considered. In this work, we use instead a trilevel
setting, with the EVs at the lower level, the CSOs at the middle
one and the ENO at the upper level. In a future work, we will
consider the interaction between several CSOs on top of EVs’
game, as in papers [9] and [16]. Other works such as [17],
[18] also consider several CSOs, but in a futuristic electricity
market environment rather than the current realistic framework
of CSOs buying electricity from suppliers (the ENO in the
present paper).

In electrical systems, trilevel frameworks are commonly
employed in cyber security [19], expansion planning [20] or
demand-side management [21], but to our knowledge, only
two papers on electric mobility use a trilevel setting. In [22],
the ENO chooses the wholesale electricity prices for each
charging station. Each station charges its EVs, which only
choose the charging quantity depending on the local retail
electricity price set by the CSO of the corresponding station.
Due to the simple formulations of the three levels objective
functions (no game between EVs), this trilevel setting is easily
solved analytically. In [23], EVs choose a driving path, a
station and a charging quantity. The CSOs choose the local
retail prices in order to minimize their costs (the electricity
bought from the ENO) and the time EVs spend on the road.
The ENO chooses the local wholesale prices for each station
to minimize its costs (related to electrical grid constraints) and
the time EVs spend on the road. Note that the lower level is
not a game but simply an optimization problem as there is no
interaction between EVs. The trilevel optimization is solved
iteratively: the ENO updates the wholesale prices, then the
CSO uses an analytical expression to compute the optimal
retail prices. The theoretical and algorithmic details are not
specified in this work.

The contributions of this paper can be summarized as
follows. First note that, although they were two original
contributions of our previous paper [24], this work still relies
on two features which are unique in the coupled electrical-
transportation literature:

• considering commuting and EVs charging during a whole
working day gives the possibility for smart charging
mechanisms on top of pricing incentives;

• a charging price at a given hub which depends on the
smart charging load at this hub. This price is a conges-
tion cost function which can be nonseparable (i.e., not
only depends on congestion nearby, but on all over the

TABLE I: Table of main notations

Abbreviations
CSO Charging Service Operator
ENO Electrical Network Operator

EV / GV Electric / Gasoline Vehicles
Hub Park & Ride charging station
LMP Locational Marginal Price
P&C Plug and Charge
PT Public Transport
SC Smart Charging
WE Wardrop Equilibrium

Parameters
ir Parking (and charging) hub associated to path r
rS Path r + charging at hub
rH Path r + charging later (e.g., at home)
Hcso Set of CSO’s hubs
e1 EV class that can charge at hub or later
e0 EV class that can only charge at hub
Xe EV penetration
ti PT fare from hub i to destination
λi Charging unit price (9) at CSO’s hub i ∈ Hcso
λ0S Constant charging unit price at city’s hub i ∈ H\Hcso
λ0H Constant charging unit price at home
Li Charging need aggregated over all EVs charging at hub i

Πmid CSO’s objective (charging revenues − supply contract)
Πup ENOS’s objective (supply contract − grid costs)

Variables
xs,r Flow rate of vehicle class s on path r
xs,a Flow rate of vehicle class s on arc a (=

∑
{r s.t. a∈r} xs,r)

`i,t Aggregated charging power at hub i and time slot t
α Charging unit price magnitude (CSO’s decision variable)
P Elec. supplying contract threshold (ENO’s decision variable)

network) thus requiring new theoretical results to study
the uniqueness of the equilibrium of EVs’ game.

The original contributions of the present paper are:

1) a realistic model of commuting and charging at work
using a trilevel setting, intended for and solved by the
ENO, at the upper level. The CSO and ENO maximize
their payoffs using realistic pricing mechanisms and EVs
interact both while driving and charging in a coupled
game;

2) a new theoretical proof of the unique aggregated charging
need at each hub at the equilibrium of the coupled
routing-and-charging game between EVs.

3) a carefully designed iterative algorithm solving the
trilevel model using simulated annealing, Brent’s method
and convex optimization, with a theoretical proof of the
global algorithm’s convergence;

4) sensitivity results on a realistic setting and a compara-
tive study of our trilevel model with a bilevel setting
(ENO and CSO combined together in a unique opera-
tor using Locational Marginal Pricing), standard in the
literature [12], [13].

The paper is organized as follows. The objectives and
available strategies of the three types of agents considered
(EVs, CSO and ENO) are introduced in Sec. II. The theoretical
trilevel model of the interactions between these agents is given
in Sec. III. An algorithmic solution of this trilevel optimization
problem is studied in Sec. IV and applied in Sec. V to
examine the sensitivity of our model to exogenous parameters
and compare it to the standard model in literature. Finally,
conclusions and perspectives are given in last section.
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II. A SMART COUPLED DRIVING-AND-CHARGING MODEL
WITH THREE TYPES OF ACTORS

The smart charging use case considered in this work is about
commuting: drivers, coming from different places, choose their
path to get to their workplace, which are all located in a same
city or urban area. In this city, there are Park & Ride hubs
where EV users may leave their car charging during working
hours, and finish the commuting to their workplace by foot
or public transport. In addition to drivers, there are two other
types of agents/operators considered in this system:
• The CSOs which are in charge of several hubs and decide

the corresponding smart charging fares;
• The ENO which is in charge of the grid of the city

considered (assumed to be a medium-voltage one) and
which specifies the electricity supply contract with CSOs.

Note that the operators do not control vehicles (in the sense
of Vehicle Routing Problems) but only send incentives to
influence both the driving and charging decisions of drivers
(who interact through congestion effects in the sense of routing
games).

A. Vehicle users: a coupled driving-and-charging decision

The transportation network is modeled by a graph in which
each arc represents a street (illustrated in Fig. 1). Here a path
r refers to the successive arcs used to go from an origin O to
the hub ir chosen to park the vehicle, and also includes the
public transport arc connecting ir to the workplace destination
D. Vehicle users have to choose one of the path to go from
their origin to their destination, depending on the commuting
duration and on the energy consumption costs.

Vehicles are of two distinct types: EVs (index e) and
Gasoline Vehicles (GVs, index g) which rely on thermal
engines. EVs are split into two classes: EVs in class e1, when
choosing a path r, can either decide to charge at hub ir during
working hours (fictitious path denoted rS), or only park there
and charge later, e.g. at home (path rH ). EVs in class e0 do
not have enough energy (their State of Charge, or SoC, is
low) to go home after work and will automatically choose to
charge at the hub (path rS). Vehicles of a same class (g, e0
or e1) share the same costs, but more vehicle classes could be
considered in order to distinguish for example pure EVs from
plug-in hybrid vehicles.

The duration cost of a path r is the same for all vehicle
classes and is made of two parts. The first one reflects
congestion on each road a composing path r following the
Bureau of Public Road (BPR) function [25]:

da(xa) = τ
la
va

(
1 + 2

(
xa
Ca

)4
)
, (1)

with xa = xg,a + xe0,a + xe1,a the total flow of vehicles of
all classes on arc a, la its length, va the corresponding speed
limit and Ca its capacity. The internal parameters of the BPR
function are determined in accordance with [26] for urban area
congestion measures. The value of time τ transforms the travel
duration into a monetary cost. Note that this congestion cost
depends on the drivers path choice through variable xa. The

Fig. 1: Illustration of a transportation network. Each path
r ∈ {u, v} includes the driving path to get to the hub ir
associated to r and the PT fare tr to go from hub ir to the
workplace. At hub ir, it is possible to only park there and
charge later at constant price λ0H (the corresponding global
path is written rH ); or, it is possible to charge at the hub (rS).
Considering the latter decision, the charging price at hub ir
is constant (λ0S) if the hub is managed by the City authority
(like hub iu). Otherwise, if the hub is managed by the CSO
(like hub iv) then the charging price λiv is smartly designed
by the CSO.

second part of the duration cost is a constant ti representing,
if any, the time (expressed as a cost) to go from the hub i
where a vehicle is parked to its workplace. Note that other
constant costs can be added to ti like public transport fares.

The second type of cost for drivers is related to energy
consumption. The charging fare at hub i is more precisely a
charging unit price λi, i.e. per unit of energy used, and is
specified in the next section. EVs deciding to charge during
working hours will be charged up to full SoC. More precisely,
the amount of energy EVs of class ej charge at the hub is
equal to the energy consumed while driving to their workplace,
plus the difference sj between full SoC and the SoC before
the morning trip. The former quantity of energy is assumed
to depend only on the travelled distance, i.e. the energy ms

consumed by a vehicle of class s per distance unit is constant.
Thus, EVs of class ej charging at the hub ir of path r have
to pay:

`ej ,r × λir , with `ej ,r = (lrme + sj) , (2)

where lr is the total length of path r. Then, the energy
consumed by an EV on path r is approximated by the product
lrme. A more realistic consumption model – which also de-
pends on the driving speed and exogenous weather conditions
(for auxiliary consumption) – would be an interesting follow-
up of this work. It is assumed that EVs which do not charge at
the hubs also take into account a consumption cost: `ej ,rλ

0
H ,

with λ0H a constant corresponding to the charging unit price at
home for example. Similarly, the consumption cost for GVs is
`g,rλg with `g,r = lrmg . The total cost for a vehicle of class
s choosing path r is:

cs,r(x) =
∑
a∈r

da(xa) + tir + `s,rλ , (3)

where λ is equal to λg if s = g, λ0H if s = e1 and r = rH or
λir if s = ej and r = rS .
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The interaction between drivers through congestion effects
constitutes a nonatomic multiclass congestion [27] game G
with nonlinear cost functions c = (cs,r) defined in (3). In such
frameworks, the vehicle users reach a particular distribution
of choices between the possible paths, called a Wardrop
Equilibrium (WE), where no user has an interest to change
her choice unilaterally:

Definition 1 (Wardrop Equilibrium [28]). The global vehicle
flow x∗ is a Wardrop Equilibrium (WE) if and only if:

∀s ∈ {g, e0, e1} , cs,r(x
∗) ≤ cs,r′(x∗), (4)

for all paths r, r′ with r such that x∗s,r > 0.

The charging unit price λi at CSO’s hub i ∈ Hcso is a
congestion cost determined by the CSO and is specified in
the next section.

B. Charging Service Operator: sets charging price

A CSO adapts the charging unit prices at its hubs in
order to maximize the difference between its revenues from
EV charging and its electricity supplying costs. Here, it is
supposed that there is only one CSO in the city to avoid a
complex competition between several CSOs, which will be
the focus of a future work. More precisely, this CSO does not
own all the hubs of the city, otherwise it could set arbitrarily
high prices and EVs of class e0 would have no choice but
to pay these prices. Instead, some hubs belong to the city
for example with a constant charging unit price λ0S , supposed
higher than λ0H , the one available at home. The set of all hubs
is denoted H and the set of the CSO’s hubs, Hcso.

At its hubs, the CSO determines the charging profile over
working hours aggregated over all EVs such that their SoC is
full at the end of the day. The charging unit price λi at each
CSO’s hub i can be lower than the one at city’s hubs, λ0S .
More precisely, λi depends on the total charging need of EVs
at CSO’s hub i and other electricity usages called nonflexible
because of their nonshiftable operation. This nonflexible term
corresponds for example to the consumption of a shopping
mall attached to the hub. The CSO schedules EV charging in
order to smooth the power load at its hubs and therefore reduce
its electricity supplying costs (see next section for details). For
each CSO’s hub, the aggregated charging need is scheduled
using a water-filling algorithm introduced in [29]. The CSO
sets the charging unit prices λi based on the output of this
algorithm.

The working hours are divided into T discrete time slots.
Without loss of generality, these time slots have the same
duration of a time unit. For each hub i, the CSO has to
determine the energy `i,t which is charged during time slot
t. Assuming that the charging power is constant during each
time slot, `i,t also represents the constant power load of the
charging operation at time slot t, as the duration of a time slot
is a time unit. The total charging need Li at hub i is equal to:

Li(xe) =
∑
r

δir,i
∑
j=0,1

xej ,rS `ej ,r , (5)

with δir,i = 1 or 0 whether or not the destination hub ir
associated to path r is hub i, and xej ,rS the flow of EVs of

class ej choosing path r and charging at hub i at the end of
the path. Each hub i has its own nonflexible consumption of
electricity `0i,t at time slot t. Note that this nonflexible term
can include local electricity production and be negative, but
here it is supposed that `0i,t ≥ 0 to simplify notations. The
water-filling algorithm minimizes a quadratic proxy [29] of
the total load at hub i while making sure that all EVs leave
the hub with full SoC:

G∗i = min
(`i,t)

T∑
t=1

(
`i,t + `0i,t

)2
s.t.

T∑
t=1

`i,t = Li . (6)

Note that the Vehicle to Grid (V2G) technology can be
integrated into this model by allowing `i,t to be negative,
while making sure that at each time slot the aggregated SoC
remains inside tangible bounds3. However we chose not to
consider V2G because in general injected electricity is not
compensated financially yet and may be potentially harmful
for the local distribution grid. Note also that battery health
limitations (depth of discharge, number of cycles. . . ) cannot
be integrated as it is because only the aggregated charging
loads at each hub are modeled. A way to consider it however
should be to assign a different charging power limit to each EV
class depending on its initial SoC. Assuming without loss of
generality that

(
`0i,t
)
t

is increasingly sorted, the water-filling
solution of this problem depends on the aggregated charging
need Li:

G∗i (Li) =

(
Li + L0

i,t0

)2
t0(Li)

+

T∑
t=t0+1

(
`0i,t
)2
, (7)

where L0
i,t =

∑
s≤t `

0
i,s and t0(Li) ≥ 1 is such that Li ∈

]∆t0 ; ∆t0+1], with ∆t = t×`0i,t−L0
i,t for t ≤ T and ∆T+1 =

+∞. The corresponding optimal aggregated charging profile
is `∗i,t = 0 for t > t0, and for t ≤ t0:

`∗i,t(Li) =
Li + L0

i,t0

t0(Li)
− `0i,t . (8)

Then, the CSO sets the charging unit price λi at hub i
as a function of G∗i . In this work we use the Locational
Marginal Pricing (or LMP), in which λi is the derivative of
G∗i , which is proven to be the most efficient way to incite
users to reduce G∗i [30]. Our model can be adapted to other
pricing mechanisms, like the average CSO’s cost [24]. More
precisely, λi is set to be proportional to the LMP as follows:

λi(α ,Li) = α× dG∗i
dLi

= 2α
Li + L0

i,t0

t0(Li)
, (9)

with α the variable with which the CSO optimizes its payoff.
This variable is the same for all CSO’s hubs i and can be
seen as a conversion parameter from marginal energy costs
dG∗i /dLi (kW2/kWh) of all of its hubs i into reasonable
monetary prices λi (e/kWh) in order to maximize its payoff.
As λi is a function of Li, the charging unit price at CSO’s hub
i is a congestion cost like travel duration, i.e. depends on the
number of EVs charging at hub i. Note that the CSO does not

3Min/max capacity of the “aggregated battery” connected to a given hub,
where the max. bound is the sum of capacities of individual EVs plugged-in.
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Fig. 2: Diagram of the different agents, their decision variables and their interactions.

change the structure of the charging unit prices at its hubs (as
locational marginal prices), but only their order of magnitude.

As G∗i is a nondecreasing function of Li (see (7)), variable
α must be nonnegative in order to have λi ≥ 0. Moreover, it
is assumed that some regulator sets an upper-bound α to the
CSO’s decision variable. The feasible set of the CSO’s strategy
is denoted A = {α ∈ R | 0 ≤ α ≤ α}. The CSO wants to
optimize its net payoff, the difference between its revenues
and its costs. Its revenues are what EVs pay to be charged at
CSO’s hubs, and its costs come from the electricity supplying
contracts with the ENO, which are described in next section.

C. Electrical Network Operator: designs CSO supply contract

In this urban framework, only the medium-voltage distri-
bution grid and its operator the ENO are considered, and not
the possible interactions with low-voltage distribution and the
transmission grids. This ENO specifies the electricity supply-
ing contract with the CSO to engage grid costs reductions.
The CSO has to pay the ENO the supplying costs Ci,t for the
energy used to charge EVs at CSO’s hub i and time slot t.
The ENO determines one of the parameters of the contracts,
a power threshold P , which is the same for all hubs and time
slots. Whether the total load at given hub and time slot is
above or below this threshold P , the CSO’s electricity bill
varies.

The total load at CSO’s hub i and time slot t is made of
the optimal aggregated charging profile given by the water-
filling algorithm and the nonflexible part, and is equal to `tot

i,t =
`∗i,t + `0i,t. If the total load `tot

i,t is below the power threshold
P , the price per energy unit is µ(P ), otherwise, the unit price
of the exceeding load is µ(P ) > µ(P ). Functions µ and µ
are increasing: the higher the power threshold P prescribed
to the CSO, the higher the price per energy unit. To simplify,
linear functions are used: µ(P ) = qP and µ(P ) = qP with
q > q. The total supplying costs for both the charging and the
nonflexible consumption at hub i and time slot t are given by
the following function C, and the supplying costs Ci,t only
due to charging are defined on a pro rata basis:

Ci,t (Li , P ) =
`∗i,t(Li)

`tot
i,t(Li)

× C
(
`tot
i,t(Li), P

)
, where (10)

C
(
`tot
i,t, P

)
= µ(P ) min

(
`tot
i,t , P

)
+ µ(P ) max

(
0 , `tot

i,t − P
)
.

Note that even if threshold P is the same for all CSO’s hubs,
the supplying cost functions Ci,t for EV charging are different
due to the different nonflexible loads `0i,t at each hub i.

For each time slot t, the ENO’s cost Gt is defined as the
marginal grid costs associated with EV charging. The grid

costs are modeled as a quadratic proxy of the apparent power
at the head of the city’s grid. If St is the apparent power
required to meet the total energy demand

(
`tot
i,t

)
i

during time
slot t, and S0

t the one corresponding to the nonflexible demand(
`0i,t
)
i

only, then the ENO’s cost can be expressed as Gt =

(St)
2−(S0

t )2. Note that at hubs j /∈ Hcso which do not belong
to the CSO, EVs are supposed to plug and charge: `∗j,1 =
Lj and `∗j,t = 0 if t > 1. The apparent power is obtained
by solving the power flow equations from the Bus Injection
Model [31], which correspond to the power balance at each
bus (between the given power production/load S0,k at bus k
and power flows Sk from/to the bus):

S0,k = Uk
∑
m∈Xk

Yk,mUm (= Sk) , (11)

with Uk the complex voltage at bus k, Xk the set of buses
connected to bus k and Yk,m the admittance of the line
between buses k and m.

The ENO’s objective can then be expressed as:

Πup (P ,L) =

T∑
t=1

( ∑
i∈Hcso

Ci,t (Li , P )− β × Gt (`∗t )
)
, (12)

with L = (Li)i and β a parameter which transforms Gt
into a monetary cost. The ENO’s decision variable, the power
threshold P ≥ 0, is supposed to be bounded by P by some
regulator. The feasible set of the ENO’s strategy is denoted
P = {P ∈ R | 0 ≤ P ≤ P}. Note that the ENO’s objective
depends on L, the result of drivers’ strategies, which depends
itself on ENO’s decision variable P , as shown in the next
section. The different agents, their decision variables and their
interactions are summarized in Fig. 2.

III. THE TRILEVEL OPTIMIZATION PROBLEM

Last section introduced the three types of agents in our
smart charging framework and their interactions. This section
focuses on the outcome of such a system. The following
multilevel optimization problem is solved by the ENO as the
decision maker at the upper level of the decision process. In
particular, the ENO aims to maximize its objective function
denoted Πup. Note that the electricity supplying contract
between the ENO and CSO, and the charging unit prices
at CSO’s hubs are long-term strategies (resp. of the ENO
and CSO). They are assumed to be based on the forecast of
drivers’ behavior on a specific working day, forecast which is
the Wardrop Equilibrium (WE) vehicles naturally reach and
which depends on the charging unit prices (see next section).
For example, the ENO might be pessimistic and optimizes
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its net payoff on a worst-case-scenario day (e.g., with a high
proportion of EVs on the roads).

The information available for each agent is as follows. The
drivers know their costs functions on this specific working day:
they observe the charging unit price functions chosen by the
CSO. Therefore they can choose the optimal path and place to
charge during this working day, corresponding to the WE of
this day. The CSO has access to the behavior model of vehicle
users and knows the main characteristics of the problem, such
as the transportation network properties, the travel demands
between origins O and destinations D, etc. Therefore, the CSO
can compute the WE for any charging unit prices it chooses.
However, the CSO has no information on the grid topology
and consequently on ENO’s costs, so that it does not know
how the ENO chooses the supplying contract. Thus, the CSO
must observe its supplying contract only once it is chosen by
the ENO. Finally, the ENO has also access to the behavior
model of vehicle users and to general information (e.g., travel
demands), including the structure of the charging unit prices,
which is assumed to be publicly disclosed by the CSO. This
way, the ENO can compute the WE, the CSO’s revenues
and then CSO’s reaction to its supplying costs (chosen by
the ENO). This constitutes a trilevel optimization problem as
illustrated on Fig. 2, with the ENO at the upper level, the CSO
at the middle one and the drivers at the lower level.

A. Vehicle users at Wardrop Equilibrium

Before defining the trilevel optimization problem, some
details about the lower level are needed. On the working day
considered, the city’s commuters have to choose how to get to
their workplace and whether they charge their vehicle during
the working hours. Due to the congestion effects on the road
and also on the charging unit prices at CSO’s hubs, the deci-
sion of a driver depends on the others’. The solution concept
used to study this interaction is the Wardrop Equilibrium (see
Definition 1). Such equilibria can be computed via Beckmann
function [32]:

Proposition 1. For any CSO’s strategy α, the local minima of
the following constrained optimization problem are WE of G:

min
x∈X
B(x, α) , with (13)

B(x, α) =
∑
a

∫ xa

0

da +
∑

(s,r)∈S

xs,r (tir + `s,rλs,r) + α
∑
i∈Hcso

G∗i (xe)

X =
{

(xs,r)s,r | xs,r ≥ 0 ,
∑
r∈OD

xs,r = XOD
s

}
,

with xa =
∑
{r s.t. a∈r}

∑
s xs,r the total vehicle flow on arc

a, S = {(ej , rS) s.t. ir /∈ Hcso, (g, r), (e1, rH)} and XOD
s

the portion of class s vehicles with origin O and destination
D.

Unfortunately, for some CSO’s strategies α ∈ A, there
might be several minima of (13) and therefore, several WE.
However, the following proposition shows (proof in Ap-
pendix B) that even if there are several WE, they all lead
to the same congestion d∗a(α) on each road a and the same

total charging need L∗i (α) at CSO’s hub i. Therefore, for given
strategies α and P , the CSO and the ENO can expect a unique
drivers’ impact on their metrics, respectively on CSO’s hubs
and on the electrical grid.

Proposition 2. Let the CSO’s strategy be any α ∈ A. Any
different WE x,y of game G verify:

∀a , xa = ya , ∀i ∈ Hcso , Li(x) = Li(y) . (14)

Note that total charging needs at WE depend on α, CSO’s
decision variable (see the expression of B(x, α) in (13)).
According to Prop. 1 and 2, any solution of optimization
problem (13) gives the unique L∗(α) = (L∗i (α))i∈Hcso

at WE.

B. The trilevel problem formulation
As mentioned in Sec. II-B, the objective Πmid of the CSO is

the difference between its charging revenues and its electricity
supplying costs. At each CSO’s hub i, the revenue Ri is
the product between the charging unit price λi and the total
charging need Li at this hub. The CSO knows, for each
α ≥ 0, that this need is the unique L∗i (α) when drivers are at
equilibrium, so that the revenue from hub i can be written:

Ri(α ,L
∗
i (α)) = L∗i (α)× λi

(
α ,L∗i (α)

)
. (15)

In function of ENO’s strategy P , the CSO has to minimize
over α ∈ A the following objective:

Πmid (α, P,L∗(α)) =
∑
i∈Hcso

(
Ri (α)−

T∑
t=1

Ci,t
(
L∗i (α), P

))
(16)

For each CSO’s strategy α ∈ A, the ENO knows the
global charging need L∗(α) at WE. However, as the objective
function Πmid is not convex, Πmid might have several global
optima α∗.

In this work, it is supposed that there is a minimal co-
operation between the CSO and the ENO, which leads to
an optimistic formulation of the multilevel problem. This
optimistic assumption states that for any ENO’s strategy P ,
the global optimum α∗ of (16) which gives the highest ENO’s
objective Πup(P,L∗(α∗)) is chosen. Finally, the global trilevel
optimization problem to solve is:

max
P∈P,α∗∈A

Πup

(
P ,L∗(α∗)

)
, (17a)

s.t. Πmid (α∗ , P ,L∗(α∗)) = Πmid (P ) , (17b)

s.t. L∗(α∗) = L

(
arg min

x∈X
B (x , α∗)

)
, (17c)

where Πmid (P ) = maxα∈AΠmid (α , P ,L∗(α)) and function
arg min returns the set of global minima of B, which share
the same L∗ (see Prop. 2).

This trilevel problem can be seen as a Stackelberg game
(between the upper and middle levels) with equilibrium con-
straints (lower level) [33]. Note that depending on the informa-
tion available to the ENO and CSO, other trilevel frameworks
can be considered: if both the CSO and the ENO know the
reactions of the other, they play in a simultaneous Nash game,
with equilibrium constraints (lower level). However, solving
this Nash game with algorithms such as Best Response may
not converge due to the equilibrium constraints.
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C. Iterative method based on literature review

In this section the most commonly used model of EV
charging incentives in coupled electrical-transportation sys-
tems [12], [13] is introduced briefly. In this reference model,
the EV lower level is the same as the one in the new trilevel
model introduced in this paper. However, the different opera-
tors of the electrical system (CSO and ENO) are gathered into
a unique System Operator (SO), which chooses the charging
unit prices at its hubs which directly minimize the grid costs
G = β

∑
t Gt (instead of maximizing CSO’s payoff). To this

end, the SO uses the following LMP function in order to
determine the charging price for each hub i:

λi(L) = α̃× dG (`)

dLi
, (18)

which is the derivative of grid costs G obtained with power
flow computations (11) instead of the local quadratic proxy (6).
Parameter α̃ converts marginal grid costs into reasonable
charging prices like CSO’s decision variable α. However, no
method to fix α̃ is available in the literature.

Note that papers using this method have no smart charging
algorithm, so here the whole EV battery need is assumed
to be charged during the first time slot: `1 = L (method
referred to as LMP+P&C in numerical Sec. V, for Plug and
Charge). However, it is possible to consider an improved
method (referred to as LMP+SC, for “Smart Charging”) by
solving the following charging scheduling problem:

G∗ = min
(`i,t)

T∑
t=1

βGt (`t) s.t. ∀i ,
T∑
t=1

`i,t = Li . (19)

Both alternative methods (LMP+P&C and LMP+SC) follow
an iterative process: they alternatively compute the aggregated
charging needs L(0) at WE corresponding to charging unit
prices λ(0), then compute λ(1) using (18) then update the
charging needs L(1) and so on. Note that there is no proof of
convergence of this iterative process in the literature.

IV. RESOLUTION OF TRILEVEL OPTIMIZATION PROBLEM

A. An iterative method for upper and middle levels optimiza-
tion

In most multilevel optimization problems, the convex lower
level is replaced by the corresponding Karush-Kuhn-Tucker
(KKT) conditions [34], which would transform the trilevel
problem (17) into a bilevel (upper-middle) one with equi-
librium constraints. However, using KKT conditions intro-
duces integer variables and therefore transforms the global
optimization problem into a mixed-integer nonlinear optimiza-
tion problem, which increases dramatically the computational
complexity [35]. In our setting we found that it was much
faster to rather keep the initial trilevel structure (17) and
simply solve the convex lower level using sequential least
squares programming [36]. Thus, for the resolution of the
global problem, we focus on the upper (ENO) and middle
(CSO) levels. The lower level is referred to as an implicit
numerical function L∗(α) of CSO’s price strategy α (see
Prop. 2), which is the global charging need when vehicle users

Algorithm 1: Iterative global algorithm
Input: P0 , α0 , k = 0

1 Notation: Πmid(α , P )← Πmid
(
α , P ,L∗(α)

)
2 α0 = arg maxα Πmid(α , P0)
3 while Πmid(αk , Pk) < Πmid(αk , Pk)− εmid do
4 k ← k + 1
5 (i) (Pk , αk) = arg maxP,α Πup(P,L∗(α)) (21)
6 s.t. ∀l < k, Πmid (α, P ) ≥ Πmid (αl, P )− εmid/3
7 solved with simulated annealing (Algorithm 2)
8 (ii) αk = arg maxα Πmid(α , Pk) (22)
9 solved with Brent’s method [38]

Output: Pk , αk

Algorithm 2: Simulated annealing solving (21)
Input: Nr , (αl)l , η , k = 0

1 while k < Nr do
2 k ← k + 1
3 P uniformly chosen, αP = arg maxαl

Πmid (αl , P )
4 while (P , α) not feasible do
5 α randomly chosen from N (αP , η)

6 Acceptation: k = 0, with probability γz,n (P, α)

Output: Accepted (P , α) giving maximal Πup

are at equilibrium. The global trilevel optimization problem is
rewritten as:

max
P∈P ,α∗∈A

Πup (P ,L∗(α∗)) ,

s.t. Πmid (α∗ , P ,L∗(α∗)) ≥ Πmid (P )− εmid ,
(20)

with εmid > 0 a tolerance level introduced to guarantee the
convergence of the algorithm suggested to solve (20). Note
that a pessimistic version of Algorithm 1 introduced below
can be used instead of the optimistic formulation (20). To
ease notations, Πmid (α∗, P,L∗(α∗)) is written Πmid (α∗, P ),
but note that both the computation of Πmid and Πup requires
L∗, i.e. to solve the convex lower level optimization.

The global trilevel problem (20) is solved using Algo-
rithm 1, which is a simplified version of the iterative bounding
algorithm introduced in [37], as there are no constraints at the
upper and middle levels other than variable bounds. In Algo-
rithm 1, the global optimization problems (21) and (22) at each
iteration are solved by algorithms detailed in next section, but
any other suitable algorithms can be applied. By definition of
αk, if the solution of (21) at an iteration of Algorithm 1 verifies
the stopping criteria, then it is a solution of the initial trilevel
problem (20). The convergence of Algorithm 1 is guaranteed
by the following proposition (proved in Appendix C).

Proposition 3. Algorithm 1 stops after a finite number of steps
K and delivers an output (PK , αK) solution of (20).

B. CSO and ENO optimization problems: a simulated anneal-
ing approach

Solving the optimization problems (21) and (22) of Algo-
rithm 1 requires a global optimization method for nonconvex
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Fig. 3: Sioux falls transportation network. Commuters come
from two different origins and have the same destination. They
choose at which hub to park and the path to get there.

and nondifferentiable objectives with continuous constraints.
A natural candidate [39] is the simulated annealing method
introduced in [40]. The principle is to explore a sufficient
number of random feasible couples (P , α). The stopping
criterion chosen is based on the concept of acceptance, where
a potential couple (P , α) is accepted with probability:

γz,n (P, α) = min

(
1, exp

(
Πup(P,L∗(α))−Πup(z)

|Πup(z)| ×K(n)

))
(23)

with z the last accepted couple and K a function of the number
of iterations n, here chosen as K(n) = 0.99n. Note that a
couple giving a lower Πup than the last accepted couple may be
accepted, although it becomes less likely after many iterations
(decreasing K). Following [41], the algorithm stops when no
couple (P, α) has been accepted Nr iterations in a row.

Note that solving scalar optimization (22) is much faster
using scalar algorithms like Brent’s method [38] rather than
simulated annealing. For problem (21), the difficulty with
simulated annealing is to randomly find feasible couples
(P, α), i.e. which verify the constraints in (21): ∀l < k,
Πmid (α, P, ) ≥ Πmid (αl, P )− εmid

3 . However we observed that
the optimum α of Πmid(·, P ) depends faintly on P because
the variations of the electricity supplying costs Ci,t(L∗i (α), P )
due to P are small. Then for every P ∈ P , the α ∈ A
such that (P, α) is feasible are in the neighborhood of αP ,
with αP = arg maxαl

Πmid (αl, P ). Consequently, we suggest
that P ∈ P should be uniformly chosen first and then α,
drawn from a normal distributionN (αP , η) with mean αP and
standard deviation some parameter η to choose. The resulting
simulated annealing method is described in Algorithm 2.

Our global multilevel problem is solved with Algorithm 1,
which uses at each iteration global optimization Algorithm 2.
This numerical resolution is applied in next section to illustrate
how our model can help ENO and CSO make decisions. œ

V. CASE STUDIES

In this section, Algorithm 1 introduced in previous section is
applied to our trilevel model to find the optimal strategies for
the ENO and the CSO in function of exogenous parameters.
The parameters of the problem are set as follows, unless
otherwise specified: 1500 commuters drive from each origin

Fig. 4: IEEE 33-bus medium-voltage distribution network.

1 and 13 (3000 vehicles in total) of Sioux falls transportation
network represented in Fig. 3, to destination 16. More pre-
cisely the drivers have to choose at which of the four hubs
(at locations 8, 10, 17 and 18, the latter being owned by
the city) they want to park and maybe charge. In Sec. V-A,
hubs are supposed equally distant from destination and ti = 0
without loss of generality. The constant charging unit price
at city’s hub is λ0S = 25 ce/kWh, higher than the one at
home, λ0H = 20 ce/kWh. Half of vehicles are electric (except
in Sec. V-A), and the two EV classes e0 and e1 are equally
represented, with s0 = 5 kWh and s1 = 0 kWh. The length
of the road between locations 3 and 4 is 2.5 km and the other
lengths can be geometrically deduced from it. For all roads
a, the speed limit is va = 50 km/h and the road capacity is
Ca = 0.2 (i.e., travel duration triples if 20 % of the 3,000
vehicles take road a). The values of τ = 10 e/h, me = 0.2
kWh/km, mg = 0.06 L/km and λg = 1.50 e/L are taken
from [24]. The four hubs belong to the IEEE 33-bus system
illustrated in Fig. 4 and whose parameters are given in [42].
In particular, the total nonflexible consumption during working
hours near each hub is respectively 1.51, 0.68, 0.45 and 0.45
MWh. Each hub’s total nonflexible consumption is divided
into a random profile over T = 8 time slots. The upper bounds
for the ENO and the CSO’s variables are set high enough to
contain the optimal values: α = 10−3 e/kW2 and P = 4 MW.
The converting parameters are set as follows: q = 0.1 e/kW2,
q = 3q and β = 10−3 e/kVA2. Finally, the simulated
annealing parameters Nr = 15 and η = 2.5 × 10−6 e/kW2

have been adjusted with the help of brute-force search, to
ensure a sufficient exploration of Πup domain4.

Before studying the global trilevel model in the next sec-
tions, the aggregated charging profiles (8) corresponding to
the unique charging need L∗i at equilibrium at each hub i
(see Prop. 2) are illustrated in Fig. 5. This figure shows
the local water-filling structure of these profiles (referred to
as Trilevel) for each CSO’s hub. Figure 5 also displays the
charging profiles obtained solving (19), as in the LMP+SC
method. Note that this profile is exclusively concentrated on
the third time slot due to a lower nonflexible consumption
than during the other time slots. For comparison, the P&C
profile corresponding to L∗ is also shown. It typically leads
to significantly larger peak powers compared to the proposed
water-filling scheduling and, in turn, higher grid costs.

4For example, above Nr = 15, the ratio accepted/explored points is no
longer acceptable.
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Fig. 5: Aggregated charging profiles for each CSO’s hub, for
the water-filling method (6) (Trilevel), the improved reference
method (19) (LMP+SC) and the LMP+P&C method.

A. Sensitivity to Electric Vehicles penetration

Using our trilevel model, operators can find their optimal
strategies as the proportion Xe of EVs among vehicles grows.
More precisely, for each Xe value, Algorithm 1 gives the
corresponding optimal payoffs and strategies for the ENO and
the CSO (see Fig. 6). This figure shows that in general, both
payoffs increase with Xe, as a higher Xe means more EV
charging. Furthermore, in order to keep affordable charging
prices at its hubs, the CSO has to reduce α as Xe increases
and amplifies the price incentive part dG∗i /dLi (see (9)). Note
that when the number of EVs is high (Xe ≥ 85 %), the ENO
must lower the CSO’s contract threshold P ∗, otherwise the
CSO would increase the monetary value α of smart charging to
reduce its expensive supplying costs by inciting EVs to rather
charge at city’s hub. Thus, the ENO reduces its revenues from
CSO’s contract so that its payoff stagnates and CSO’s payoff
considerably increases.

For each EV penetration Xe, there is a unique charging
need at each hub corresponding to vehicles’ reaction to optimal
strategies of the ENO and the CSO. Note that the uniqueness
of the charging need at city’s hub is not guaranteed by Prop. 2,
but is invalidated only in specific cases (e.g., several city’s
hubs, specific ratios for roads’ lengths and energy prices. . . ).
As these charging needs greatly increase with Xe, they are
normalized by the total charging need aggregated over all
hubs to emphasize their relative variations: L̃i = Li/

∑
j Lj

(see Fig 7). Note that different temporal profiles of the same
nonflexible consumption (at each hub) lead to similar Fig. 6,
but different normalized charging needs L̃i. Figure 7 shows
the L̃i for two different nonflexible consumption profiles. This
figure reveals that the choice of hub by EVs depends greatly on
the nonflexible consumption when the number of EVs is small,
but less so as Xe increases. As the EV penetration increases,
GVs are replaced by EVs, which enables more EVs to use
closer hubs to the origins (as 10 and 17), to the detriment of
city’s hub 18. Note that fewer EVs choose hub 8 rather than
hubs 10 and 17 due to the higher nonflexible consumption
there (resp. 1.51 compared to 0.68 and 0.45 MWh).

Fig. 6: Optimal ENO and CSO’s payoffs (resp. Πup and Πmid)
and normalized strategies (resp. P ∗/P and α∗/α) depending
on EV penetration Xe. When EV penetration goes over 75 %,
CSO’s payoff increases to the detriment of the ENO’s because
the ENO reduces the CSO’s supplying contract.

Fig. 7: Normalized charging needs L̃i = Li/
∑
j Lj at all hubs

depending on EV penetration Xe, for two different nonflexible
consumption profiles. The profile considered has a significant
impact for low EV penetrations. For both profiles, L̃8 and
L̃18 decrease with Xe because hub 18 is further away from
the origins and hub 8 has a higher nonflexible consumption.

B. Sensitivity to Public Transport fare

Last section was dedicated to the long-term EV penetration.
This section focuses on the reaction of the ENO and CSO to
an incentive coming from the transportation system. Here, it is
supposed that city’s hub 18 benefits from a subsidized Public
Transport (PT) fare t18 = 1 e. We consider the PT fare t
chosen by a transportation operator and that commuters pay
to go from CSO’s hubs to the destination: t = t8 = t10 =
t17. Figure 8 shows the evolution of charging needs Li at all
hubs i in function of this PT fare. Note that all EVs of class
e1 charge at home: the CSO is better off with high enough
charging prices even if it means fewer EVs charging at its
hubs. For PT fares lower than t = 2 e, the number of EVs
(of class e0) choosing city’s hub increases with t. Between
t = 2 e and 3 e, this number drops because the PT fare
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Fig. 8: Charging needs Li at all hubs depending on the unique
PT fare t. L18 globally increases with t, except around t =
2 e where EVs charging at home choose to park at hub 18.

became too expensive for EVs charging at home, which instead
all choose paths leading to city’s hub 18. Then however, more
and more EVs of class e0 naturally choose the city’s hub.

C. Comparison with iterative method based on literature

This section compares the trilevel model built in this paper
with the most commonly used model of EV charging incen-
tives in coupled electrical-transportation systems [12], [13]
(see Sec. III-C), on the EV penetration sensitivity example
of Sec. V-A. Figure 9 shows for each EV penetration Xe the
grid costs G (filled black markers) and the charging revenues
R =

∑
i∈Hcso

Ri (empty red markers) for the trilevel method
(star marker), the improved iterative method (LMP+SC) for
two values of α̃, and the LMP+P&C method for α̃ = 0.01.

Figure 9 shows that for the same α̃ = 0.01 value, the
LMP+P&C method (diamond marker) gives higher grid costs
than the LMP+SC one (square), as expected, but also lower
charging revenues: as grid costs are higher, the charging unit
prices too so that EVs prefer to charge at city’s hub (up to
Xe = 60 %, where they accept these high prices because
of the congested paths to access city’s hub). The impact
of the conversion parameter α̃ is also illustrated in Fig. 9.
For example, when α̃ is too high (e.g., α̃ = 0.03), the
LMP+SC method (triangle marker) gets similar results as the
LMP+P&C one (diamond). Note that charging revenues are
always higher in the trilevel model of this paper than in the
other methods. This seems intuitive given that this metric is
explicitly taken into account in the framework of this paper
while the alternative methods focus on grid cost minimization.

Figure 9 illustrates that the trilevel model of this paper
(star marker) obtains fairly low grid costs compared to the
LMP+P&C method or the LMP+SC one with α̃ not carefully
designed. This indicates that the supplying contract, the proxy
used in the scheduling problem (6) and the corresponding
LMP (9) are good heuristics to reduce grid costs, as expressed
in our previous paper [43]. Note that with a particular value
α̃ = 0.01, the LMP+SC method (square marker) obtains the

Fig. 9: ENO grid costs (solid lines) and CSO charging rev-
enues (dashed lines), depending on EV penetration, obtained
with our Trilevel method (star marker), the LMP+P&C one
(diamond) and LMP+SC method for different normalizations
α̃ of the LMP (square and triangle). The literature-based
method may lead to minimal grid costs only if smart charging
is considered and if α̃ is carefully chosen (square marker).
Charging revenues are always higher with Trilevel method.

minimal grid costs. This is made possible because the goal of
the operator choosing the charging profiles and prices in this
method is to precisely minimize grid costs. However in prac-
tice, the hubs’ operator wants to maximize its payoff and may
have no information on the electrical grid, as in the trilevel
model of the present paper, which guarantees the highest
charging revenues among all methods. Moreover, the results
of the LMP+SC method are highly sensitive to the choice of
parameter α̃, as shown in Fig. 9. Finally, note that parallel
computations are not practical for the iterative methods. Due
to the complexity of solving scheduling problem (19), the
LMP+SC method is actually slower (two times in average)
to solve than the trilevel model, which has more optimization
layers.

VI. CONCLUSION

In this work, the impact on the electrical system of EV
commuting is modeled by a trilevel optimization problem.
The lower, middle and upper levels respectively represent the
EVs, interacting in a coupled driving-and-charging congestion
game, the CSO which can modify the smart charging prices at
its hubs and the ENO which revises the electricity supplying
contracts with each hub. This trilevel problem is seen as a
Stackelberg game (between the upper and middle levels) with
equilibrium constraints (lower level), which is solved with an
optimistic iterative algorithm combined with simulated anneal-
ing. For each ENO and CSO’s strategies, we proved that there
is a unique charging need at each hub when vehicles are at
equilibrium. The behaviors’ coupling between the three levels
is illustrated on realistic urban networks, in function of the
EV penetration and a transportation incentive. A comparison
with a reference model in the coupled electrical-transportation
literature shows the efficiency of the incentives (charging price
and supplying contract) in our realistic trilevel model.
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In a future work, several CSOs will interact in a game
structure, making the trilevel problem an optimization at the
upper level, combined with two games both at the middle and
the lower levels. In parallel, a transportation operator (e.g.,
a public authority responsible for local pollution or dynamic
road pricing) will be added to enable a theoretical study of
the transportation-electrical coupling.

APPENDIX A
PROOF OF PROP. 1: WE COMPUTATION

Proof. A local minimum of (13) verifies the associated
Karush–Kuhn–Tucker conditions. As λi is proportional to the
derivative of G∗i (see (9)), these conditions are equivalent to
the Definition 1 of a WE. See [24] for more details.

APPENDIX B
PROOF OF PROP. 2: UNIQUE CHARGING NEEDS

Proposition 2 is due to the nondecreasing property of con-
gestion and consumption costs. The proof of Prop. 2 requires
the following lemma and definition.

Lemma 1. For all CSO’s strategies α ∈ A, the LMP function
λαi : Li 7→ λi(α,Li) defined in equation (9) is increasing.

Proof. LMP function λαi : Li 7→ 2α
Li+L

0
i,t0

t0(Li)
is piecewise

differentiable for all α ∈ A, with derivative 2α/t0(Li) >
0. We can conclude that λαi is increasing by showing that
it is continuous: if L+

i = ∆+
t then t0(L+

i ) = t and L+
i +

L0
i,t = t`0i,t by definition of ∆t. Similarly, if L−i = ∆−t , then

t0(L−i ) = t−1 and L−i +L0
i,t−1 = t`0i,t−L0

i,t+L0
i,t−1 = (t−

1)`0i,t by definition of L0
i,t. Therefore, λαi (L+

i ) = λαi (L−i ) =
`0i,t.

Definition 2 (Variational Inequality). Let Y ⊆ RN be a
nonempty, closed and convex set. A vector x ∈ Y is a solution
of the Variational Inequality VI(c, Y) if, for any vector y ∈ Y :

c (x)
T

(y − x) ≥ 0 . (24)

Proof of Prop. 2. Let x,y ∈ X be two WE of game G. As
functions da and λi (Lemma 1) are increasing, we have:

[c (x)− c (y)]
T

(x− y) =
∑
a

(xa − ya) (da(xa)− da(ya))

+
∑
i∈Hcso

(
Li(x)− Li(y)

)(
λαi
(
Li(x)

)
− λαi

(
Li(y)

))
≥ 0 ,

which is equal to 0 if and only if (14) holds.
According to [44], WE x and y are solutions of V I(c, X).

Equation (24) applied to (x,y) and (y,x) results in:(
c (x)− c (y)

)T
(x− y) ≤ 0 .

APPENDIX C
PROOF OF PROP. 3: CONVERGENCE OF ALGORITHM 1

Proof. According to the maximum theorem (Beckmann func-
tion B continuous), the mapping x∗(α) solution of (13) is
upper hemicontinuous. As for a given α, all x∗(α) lead to
the same L∗(α), function L∗(α) and therefore Πmid are con-
tinuous. The same theorem states that Πmid(P ) is continuous
because Πmid is. As functions Πmid and Πmid are continuous
respectively on compacts A × P and P , they are uniformly
continuous according to Heine–Cantor theorem, which gives
δε and δε verifying respectively:

∀(α0, P0), (α1, P1) ∈ A×P s.t. ‖(α0, P0)− (α1, P1)‖ ≤ δε ,

Πmid(α1 , P1) ≥ Πmid(α0 , P0)− εmid

3
(25)

∀P0, P1 ∈ P s.t. |P0−P1| ≤ δε , Πmid(P0) ≥ Πmid(P1)−εmid

3
.

Let δ = min(δε, δε). As P is compact, the sequence (Pk) built
at each iteration of Algorithm 1 by (21) admits a subsequence(
Pu(n)

)
which converges to Plim. Then, by definition:

∃Nδ ∈ N∗ s.t. ∀n ≥ Nδ , |Pu(n) − Plim| ≤
δ

2
.

Let k = u(Nδ),K = u(Nδ + 1). Then |Pk−PK | ≤ δ, so that
combining (25) with (αk, Pk), (αk, PK) gives:

Πmid(αk, PK) ≥ Πmid(αk, Pk)− εmid

3
≥ Πmid(PK)− 2

3
εmid,

with αk given by (22) at iteration k. Finally, as (PK , αK)
verifies constraint l = k of (21), we have:

Πmid(αK , PK) ≥ Πmid(αk, PK)− εmid

3
,

thus Πmid(αK , PK) ≥ Πmid(PK)− εmid ,

which means that the stopping criteria is reached after iteration
K, and Algorithm 1 ends with (PK , αK) solution of (20).
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is related to game theory and its applications to the
electrical and transportation systems.

Yezekael Hayel (M’08, SM’17) received the M.Sc.
degree in computer science and applied mathematics
from the University of Rennes 1 in 2002, and the
Ph.D. degree in computer science from the Uni-
versity of Rennes 1 and INRIA in 2005. He is
an Assistant/Associate Professor with the University
of Avignon, France, since 2006. He has held a
tenure position (HDR) since 2013. He was a Vis-
iting Professor with the NYU Polytechnic School of
Engineering from 2014 to 2015. He was the Head of
the Computer Science/Engineering Institute with the

University of Avignon from 2016 to 2019. His research interests include the
performance evaluation and optimization of complex network systems based
on game theoretic and queuing models. He was involved at applications in
communication/ transportation and social networks, such as wireless flexible
networks, bio-inspired and self-organizing networks, and economic models of
the Networks. He is associate editor of the GAMES journal.

Olivier Beaude received the M.Sc. degree in applied
mathematics and economics from École polytech-
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